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SEMI-GLOBAL EXISTENCE THEOREMS 
OF $b FOR (0 ,n -2 ) FORMS 

ON PSEUDO-CONVEX BOUNDARIES IN C n 

MEI-CHI SHAW 

INTRODUCTION 

Table of contents: 

Chapter 1. Notation and the main results 

Chapter 2. Proof of the Theorems 

Chapter 3. An example 

Let M be the boundary of a pseudo-convex domain D in Cn, n > 2. We 
consider the tangential Cauchy-Riemann équations 

(0.1) dhu = a 

on an open subset u> C M, where a is a (p,q) form in o>, 0 ^ p ^ n, 1 g < 
n — 1. Since d£ = 0, in order for Eq.(O.l) to be solvable, a must satisfy the 
compatibility condition 

(0.2) dha = 0 in u. 

Recently, the semi-global existence results have been obtained by the author 
for any (p,ç) form a, where 1 ^ q ^ n — 3, such that a? is a pseudo-convex 
boundary of finite type as defined in D'Angelo [8]. It is proved in [22] that when 
du lies in a flat or a Levi-flat hypersurface which has a Stein neighborhood basis, 
then Eq.(O.l) is solvable for ail (p,ç) forms a satisfying condition (0.2), where 
1 = ? = n — 3. When q = n — 1 Eq.(O.l) corresponds to the Lewy équation and 
it is well-known that for most a it is not solvable locally unless u is Levi-flat 
(see Hôrmander [11]). 

PartiaDy supported by NSF grant DMS 91-01161 
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In this paper we shall discuss the local and semi-global existence theorems 
for the remaining case, i.e., when q = n — 2. It was observed by Rosay [19] that 
when q = n — 2, condition (0.2) is not sufficient for Eq.(O.l) to be solvable in 
u. In fact, there is an additional compatibility condition that a must satisfy 
in order for Eq.(O.l) to be solvable. This additional condition, called condition 
(A), is a condition on the boundary of du and will be derived in Section I. Our 
main purpose in this paper is to show that condition (0.2) and condition (A) are 
the necessary and sufficient conditions for Eq.(O.l) to be solvable when a is a 
smooth (p, n — 2) form. We also characterize those domains on which condition 
(0.2) always implies condition (A) ( see Proposition 1.2). This condition (A), 
though easy to dérive, does not seem to have been observed before. 

The local solvability of Eq.(O.l) has been studied by many people when M is 
strongly pseudo-convex (see [1,4,10,19,20,21,23,24]). In this case it was proved 
in Henkin [10] that one can construct explicit solution kernels for 1 ^ q ^ n — 2 
when du lies in a hyperplane. When 1 ^ q < n — 2, he actually derived a 
homotopy formula for ô&. When q = n — 2, such a homotopy formula will 
not hold ( see Nagel-Rosay [17]) and polynomial approximation arguments were 
used to construct the solution kernels. In fact, Henkin [10] showed that if du 
is Runge, then condition (0.2) is sufficient for Eq.(O.l) to be solvable when 
q = n — 2. In this paper we shall characterize those domains such that condition 
(0.2) is sufficient for Eq.(O.l) to be solvable. Thèse domains are more gênerai 
than Runge ones. In the strongly pseudo-convex case, it is especially important 
to study the case when n = 3 and a is a (0,1) form, since this will give us 
some insight into the problem of embeddability of abstract CR structures of 
real dimension 5 (see Webster [25]). 

The plan of the paper is as follows. In Section I we define the notation and 
state our main results in Theorems 1 and 2. In Section II we use the Cauchy 
problem for d for the top degree forms to prove Theorems 1 and 2. The Cauchy 
problem is différent in this case from the lower degree cases and this is when the 
second compatibility condition was used. The rest of the proof is similar to the 
case when l ^ ç ^ n — 3. In the end of this paper we give an example by Rosay 
[19] which shows that condition (0.2) is not sufficient for Eq.(O.l) to be solvable. 
The author would like to thank Professor Catlin for helpful discussions and to 
thank professor So-Chin Chen for pointing out the référence [3]. 

1. NOTATION AND THE MAIN RESULTS 

Let M be the boundary of a pseudo-convex domain D and p be its defining 
function, i.e., M = {z G Cn\p(z) = 0} and \dp\ = 1 on M. We assume that 
M is of fini te type in the sensé of D'Angelo [8]. Let u C M such that u = 
M H {z € Cn\r{z) < 0} and dp A dr ^ 0 on the boundary of du. The space 
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Cfaq)(û) dénotes ail the (p>q) forma in u) with coefficients in C°°{Q). For any 
a G CQJ^) there exists a smooth (p, q) form a in Cn such that râ = a where 
r is the pointwise restriction operator to the boundary and projection to the 
parts which are orthogonal to the idéal generated by dp. Similarly we define the 
space C(£%q)(u) for (p,?) forms in w with C°°(u>) coefficients. The 5* operator 
is defined to be as follows: for any a G C^f)^) * t^at 18 extension 
of a such that râ = a, then we define B^oc = r(dâ). It is easy to see that the 
définition of d\> is independent of the choice of à. For other définitions and the 
basic properties of the d\, complex, we refer the readers to Kohn-Rossi [16] or 
Folland-Kohn [9]. Since p plays no rôle in the discussion of d*, we shall assume 
that p = n for simplicity. 

Let K be a compact set in Cn. We shall use the notation 0(K) to dénote the 
set of fonctions which are defined and holomorphic in some open neighborhood 
of K. Let u)t CC o> such that u€ increases to u as 6 \ 0 and each du€ is 
smooth. For any a G C{£>n_2)(^) such that Eq. (0.1) is solvable for some 
u G n-3)(^)> then f°r any 9 € 0(dw) we have, for small e > 0, 

'du 
Û A J = lim 

vr d 
a A a 

( î . i ) 

= lim 
«—o sd 

qkq 6d 

= lim 
€— o do>c 

du f\g 

= lim 
d sd 

d(uAg) 

= lim 
«-•0 s 

v+ ls dur 

= 0 

The third equality in (1.1) holds since the différence of du and d^u is a 
multiple of dp and dp = dp — dp. Thus another necessaxy condition for Eq.(O.l) 
to be solvable for a G C(£>n_2)(^) 16 that 

(A) 
fdu> 

Û A J = 0 for ail G E 0(du>). 

The following proposition characterizes ail the domains u such that condition 
(0.2) will imply condition (A). At the end of this paper we shall give an example 
of a ô&-closed form which does not satisfy condition (A). 
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Proposition 1.2. IfO{û) is dense in 0(du>) (in the C{du>) norm), for any a 
satisfying condition (0.2), a satisfies condition (A). In particuiar, if polynomials 
are dense in 0(du>), then condition (0.2) implies condition (A). 

Proof. Prom our assumption, for any g G 0{du>), there exists a séquence of 
holomorphic functions gn G 0{û) such that gn converges to g in C{du)). We 
have, for any a satisfying condition (2), 

sd 
a A g = lim 

n-+oo du 
OL Kgn 

= lim 
n—»oo 

' B(aAgn) 

= lim 
n-+oo 

#6<* A gn 
vr 

= 0. 

Thus condition (0.2) implies condition (A). If one can approximate any fimction 
g G 0(du>) by holomorphic polynomials, it is obvious that (2) implies (A) and 
the proposition is proved. 

Our main results in this paper are the following theorems. 

Theorem 1. Let M be the boundary of a smooth pseudo-convex domain in 
Cn, n ^ 3 and M is of flnite type. Let u> C M be a connected subset such that 
the boundary du? is the transversal intersection of M with a simply connected 
Levi-flat hypersurface MQ which has a Stein neighborhood basis. Let u)1 be any 
relatively compact subset of u>. For any a G C(^,n-2)(^) 5UĈ  a SSL̂ ŝ es 
the compatibility conditions (0.2) and (A), there exists au £ C(£>n_3)(ù/) such 
that B\>u = a in u)1. 

If one assumes that u can be exhausted by subsets whose boundaries lie in 
Levi-flat hypersurfaces, then we have the following semi-global existence resuit. 

Theorem 2. Let M and u be the same as in Theorem 1. Furthermore we 
assume u> = Uu>j such that uij CC CCw and du>i lies in a Levi-flat hyper-
surface for each i. For any a 6 C(ï?,n_2)(^) suc^ *̂ a* a 3SL^s^es conditions 
(0.2) and (A), there exists a u € C(%in-z)(v) 8UC^ that d\>u = a in u). 

Corollary 2.1. If Mo is simply connected and deflned by a pluriharmonic func-
tion, then the assertions in Theorem 2 holds. In particulart if Mo is a hyperplane, 
then the assertions in Theorem 2 hold 

We also have the following local solvability resuit near a point of finite type. 
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Theorem 3. Let M be a smooth be a smooth pseudo-convex hypersurface in 
Cn, n ^ 3 and z0 £ M. Suppose zo is a point of £nite type, then there exists 
a local neighborhood basis {u>€}(>o of zo for M such that the following holds: 
for any e > 0, if a £ C^n_2^(û€) such that a satisEes the conditions (0.2) and 
(A), there exists au £ C(ïjn_3) such that B^u = a inu>€. 

We note that Bedford-Fornaess (see the exemple on P. 21 in [3]) has given 
an example of an levi-flat hypersurface which does not have a Stein neighbor
hood basis. We mention that Bedford-de Bartolomeis [2] showed that Levi-flat 
hypersurfaces can not always be flattened locally even from one side. Thus our 
theorems generalize the results of Henkin [9] even in the strongly pseudo-convex 
case. 

2. PROOF OF THE THEOREMS 

To prove Theorems 1 and 2, we need to solve the Cauchy problem for B on the 
top degree forms. Let L* ^(G) dénote forms on a domain G with L2(G) 
coefficients. We dénote the space of square integrable holomorphic functions by 
H2(G) and the spce of holomorphic functions in C°°(G) by A°°(G). We have 
the following lemma. 

Lemma 2.1. Let G be a bounded pseudo-convex domain in Cn, n ^ 2. For 
any f £ L^n^(Cn), such that f is supported in Zî and 

(2.2) 
Jn 

/ A (7 = 0 for any g £ H2(G), 

we can find a u £ ^(n,n-i)(^n) suc^ *^a* u 18 supported in G and Bu = f in 
the distribution sensé in Cn. Furthermore, we have the following estimâtes: 

(2.3) I l « 1 1 ^ C || / \\l 

where the constant C dépends only on the diameter of the domain G. 
Ifwe assume that G is a bounded pseudo-convex domain with smooth bound

ary, then we can substitute (2.2) by the condition 

(2.2') 
vr 

/A<7 = 0 foraxiy g € A°°(G), 

and the same conclusion holds. 
Ifwe assume that G is a bounded pseudo-convex domain with a Stein neigh

borhood basis, then we can substitute (2.2) by the condition 
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(2.2") 
/ G ' 

/A<7 = 0 for any GEO(G)Y 

and the saine conclusion holds. 

Proof. We shall first prove the lemma assuming that G is a bounded pseudo 
convex domain. Following Hôrmander's theory for D, the ô-Neumann operators 
for (0,1) forms, denoted by Nx> exist on G. One can also define the d-Neumann 
operator on functions (denoted by No) using N\. In fact, let t? be the formai 
adjoint of 5, then it follows from Theorem 3.1.19 in Folland-Kohn [9] that 

(2.4) j v 0 = t ? j v ? A 

whenever the formula is defined. We also have that 

(2.5) 0dNo = I-H 

where t? is the adjoint operator of D and H is the Bergman projection operator 
from square-integrable functions into square integrable holomorphic functions 
H2(G). 

In fact, the formula (2.4) and (2.5) hold on ail of L2(G). To see this, we 
use the fact that N\ is a bounded operator on L*01^(G) and the bounds only 
dépend on the diameter of G. In fact, using the précise estimâtes obtained by 
Hôrmander [12], we can have the following estimâtes: 

(2.6) ll/Vxa \\U e*2||a||2G 

where S is the diameter of the domain G (for détails of estimate (2.6), see 
Hôrmander[12] and the proposition 2.3 in [21]). For any v € C°°(G), we have 
from (2.4) 

(2.7) 

\\N0v\\2 = (d#NÎdv,NÎBv) 

= (N15v,NÎdv) 

£ K J V t & r l I I I J V ? * » ! ! 

G eU\\Nidv\\2 

On the other hand, we have 

(Ntdv, JViâv) = (Nîdv,dv) 

(2.8) = WN2Ôv,v) 

ï \\Nov\\\\v\\ 
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Combining (2.10) and (2.11), we have 

(2.9) ||JM|2 â e6*\\vf 

Thus No defined by (2.4) is a bounded on ail smooth functions and it extends to 
L2{G). We also have that (2.5) holds for ail functions in L2(G). Also, it follows 
from (2.5) that 

(2.10) 
\\dN0v\\2 =(#dN0v,N0v) 

= 1(1 - H)v.Nov) £ \\v\\\\NQv\\ ^ c**||t,||2 

Using NQ, we define 

(2.11) u = - • dN0+f 

where • is the Hodge star operator extended naturally to the L2(G) forms. 
Using the relations that t? = — * and = J, we have from (2.5), 

(2.12) 

du = -5(*dN0*f) 

= *tidN0*f 

= * ( * / - # ( * / ) ) 

*(*/-#(*/)) 

For any g 6 H2(G), from (2.2), we have 

(2.13) *(*/-#(*/)) 
'G 

f A a = 0 

Thus from (2.8), H(*f) = 0 and Bu = f in G. 
Extending u to be zéro outside G, we have for any <f> G C(£>n)(Cn)> that 

(u,t?< )̂c» = (*ity,*û)o 

= (-d+<f>,*u)G 
x *(*/-#(*/))sdks 

= (*<f>,*dû)G 

= ( * ^ * / ) G 

= (/,*)c» 
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where the third equality holds since *û 6 Dom(d*). This implies that du = / 
in Cn in the distribution sensé. The estimate (2.3) holds from (2.11) with the 
constant C = eU. 

When G is a bounded pseudo-convex domain with smooth boundary, fol
lowing Kohn's theorem in [9] on the global regularity of the solutions of 8 on 
strongly pseudo-convex domains, we have that A°°(G) is dense in H2(G) ( in 
the L2(G) norm). Thus if / satisfies condition (2.2'), it also satisfies condition 
(2.2) and the same results holds. 

When G is a pseudo-convex domain with a Stein neighborhood basis , we can 
assume that G = H G; such that each G, is strongly pseudo-convex with smooth 
boundary. We note that on each G,-, the space 0(Gi) is dense in JJ2(Gt) since G, 
is strongly pseudo-convex (this essentially follows from the Kohn's ô-Neumann 
theory on strongly pseudo-convex domains). Since 

/ / A ( 7 = / fAg = 0 

JGi JG 

for every g 6 C?(G,), thus condition (2.2) is satisfied for any g G -ET2 (G,) and 
there exists a solution u% which is compactly supported in G% and dui = / in 
Cn. Furthermore, it follows from (2.3) one has that 

I l *i \\Gt£C\\f\\o 

where the constant G can be chosen independent of t. Thus there exist a weak 
convergent subsequence of u,- which converges to an élément u in Cn and the 
support of u is contained in G. One easily sees that u satisfies (2.3) and du = / 
in the distribution sensé in Cn and the lemma is proved. 

Proof of Theorem 1. Let D0 = {z 6 Cn\r(z) < 0} and fi = D Ci D0. From our 
assumption that M0 has a Stein neighborhood basis, we have that ô?0 = Mo H D 
also has a Stein neighborhood basis, since any domain of finite type has a Stein 
neighborhood basis. Let G, be a séquence of smooth decreasing pseudo-convex 
domains G, such that ô>o = nG,. We define îï, = îî \ G,-, fl n G* = Di and 
Çt{^ n u) = û>i. Then each Di is pseudo-convex since it is the intersection of two 
pseudo-convex domains. Also each Di has a Stein neighborhood basis since D 
and Do both have Stein neighborhood basis. We also dénote the boundary of 
d by dd and dGi D fi by u;?. Thus fi, / fi and u>i / a>. 

For any a that satisfies the conditions (0.2) and (A), we have, for any g G 
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O (Di), 

JDU>? 
a A g = 

duo 
aAg-

sd+fd 
d(a A g) 

(2.14) 

= 
/duo 

Û A J -
sdd+ d 

BOL A g 

= 
Jdufo 

û A j -
JU\UI 

dhOtAg 

= 
Jdu 

aAg 

= 0. 

For a fixed t, we extend a to à on fi such that Bâ vanishes to high order on 
u. Let C € C§°(Cn) be a cut-off fonction such that ( = 1 on fi, and Ç = 0 
on fi, \ fij+i- We define ai = (Bâ and extend it to be zéro outside fi, then 
ax E C'£jn_1)(Cn) and Bax = BÇABâ. Setting a2 = Bax. Then a2 G CFÎN)(CN) 

and a2 is supported in D{. 
For any G E 0(2>i), it follows from (2.14) that 

(2.15) 

= 
OL2 A g = 

br 
BÇAdâAg 

= 
= 

Ô(C AdâAg) 

= 
JdDi 

Çdà A g 

= 
= 

Bâ Ag 

= 
Ju>f 

d(â A g) 

= 
Jdu>? 

aAg 

= 0 

Thus c*2 satisfies (2.2). Using lemma 2.1 on the domain D{, there exists a 
ux 6 L*n n-1)(Cn) such that Bui = a2 in Cn and the support of v,\ is contained 
in D{. We set 

(2.16) £i = ax - ui 
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then we have fa = dâ on fi* and Bfc = 5a i - Bui = 0 in Cn. Using the 5-
Neumann operator on fi to solve the Cauchy problem for B for (n, n - 1) forms 
with support in fi (see Proposition 2.7 in [22] for détails), we have that there 
exists a /?o such that 

3 # ) = B 1 in CN 

and the support of is in fi. Purthermore, is smooth up to the boundary 
Ui. We define ao = a — >9o? then 5ao = 5â — cJ#> = 0 in fi, and ao = a in a;,. 
This shows that we have extended a to be 5-closed on fi,. 

Since fi,- f fi, any compact subset u1 can be contained in the boundary of 
a pseudo-convex set fi' and fi' C fi, for some t sufficiently large. Thus one can 
use the d-Neumann operator on (n, n — 2) forms to solve du = ao on fi' and the 
solution u will be smooth to the part of boundary u>i following the regularity 
of the 5-Neumann problem up to the boundary points of finite type proved by 
Kohn [15] and Catlin [7]. Since the method is similar to the case in [22] we omit 
the détails. Restricting u to u'\ Theorem 1 is proved. 

Proof of Theorem 2. Applying the argument of Theorem 1, we can construct a 
solution U{ on every a;,. To extract the convergent subsequence t/,-, we assume 
first that n — 2 > 1. Since 5&(t/j — Ui+i) = 0 in a;,-, from the results of [22], 
there exists a Vi in u>i such that ô&v, = ti, — ti,-+i in a;,-. Extending Vi smoothly 
to Vi outside we have that B^Vi = 0 in a>,_i. Letting ûj+i = tij+i + Bi>Vi, 
we have that dit/j+i = a in a;,-+i and = Uj in Continuing this way 
one can construct a solution u for Eq.(0,l) in u and Theorem 2 is proved for 
n > 3. The case when q = 1, n = 3 is more involved and the argument involved 
holomorphic approximation. We refer the readers to the proof of lemma 3.1 in 
[22] and omit the détails. 

Proof of Corollary 2.1. If Mo is defined by a pluriharmonic function r(z) = 0 
and Mo is simply connected, then there exists a holomorphic function h such 
that r{z) = Imh(z). After a holomorphic change of coordinates it is easy to see 
that the conditions of Theorem 2 are satisfied and the corollary is proved. 

Proof of Theorem S. 
We shall construct a neighborhood basis {a>€} of zo such that du>€ lies in a 

holomorphically fiât hypersurface. The following arguments were kindly pro-
vided by Catlin. Since zo is a point of finite type, it follows from Catlin [6] 
that zo is weakly regular. Thus there exist a family of strictly plurisubharmonic 
functions {A*}*^ defined in a neighborhood U of zo such that 0 ^ A* ^ 1 and 
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(2.17) 

vr 

xre414d 

f dzidzj 
qqkd <sksk on MNU 

for ail a 6 CN. 

Let SI be the pseudo-convex domain with boundary M. Let 2?<(*o) dénotes a 
bail of radius e with center zo and = B~e(zo) \ B^(zo). We claim that there 
exists a strictly plurisubharmonic function 4>t defined on il D Bt(zo) such that 

(2.18) éAzn) > sup 6Jz). 
x+d4 

Let t] G CZ°(Be(z0)) such that rj = 3 on B^(z0) and 77 = 0 on Jfe. We define 
9k=V + We have gk(zo) è 2 and 

gk(z0) >sup gk. 
x+1 

If we choose k sufRciently large, from (2.17), we have that gk is strictly plurisub
harmonic neax M 0 B((zo). Using Proposition 3.16 in Catlin [5], there exists 
function <j>t on fi fl B€(ZQ) such that 

<f>€ = gk on Afn£e(zo) 

AND 

4>t = 9k on fînBe(z0). 

One easily sees that <f>€ satisfies (2.18). It follows from Theorem 3.15 in [5] 
that the holomorphic convex hull of K€ is the same as the hull of Ke with 
respect to plurisubharmonic functions. Thus there exists a holomorphic function 
F€ E A°°(fi H Be) such that 

fe(z0) > sup\f(z)\ 
x+b4 

Multiplying F( by a nonzero constant and raise to high order if necessary, we 
can assume that /€(*o) = 1 and sup\f(z)\ = È- Applying Sard's theorem, 

one can find a regular value fi of the level set {Ref€ = /i, where | < fi < 
1} = H€ is a smooth hypersurface and M intersects H€ transversally. Letting 
u€ = M H {Ref€ > fi}, it is easy to see that u€ C B€(ZQ) fl M. Thus we 
have constructed a neighborhood basis {u€} which satisfies ail the hypothesis of 
Theorem 2 and Corollary 2.1 and Theorem 3 is proved. 
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3. AN EXAMPLE 

In this section we shall examine some examples which were due to Rosay [19] 
and construct an explicit example of a d*-closed form which does not satisfy 
condition ( A ) . Let Sn be the unit sphère in Cn, n ^ 3 and Ei = 5nn{|2i |2 < 
£ 2 = Sn D {\zi\2 > 5 } . It is proved in [19] that one can solve Eq.(O.l) for any 
(p, q) form a satisfying condition (0.2) in E2 for ail 1 ^ q ^ n — 2 . While on 
Êi, this is only true when 1 f£ q < n — 2 . We note that the boundary of Ei 
and E2 lie in the Levi flat hypersurface Mo = {\z\2 = 5 } which has a Levi-flat 
Stein neighborhood basis. Let n = 3 and C(*3) ^e a cut-off function such that 
f(za) = 0 when |z3|2 £ ± and C(*s) > 0 when \zz\2 < \. We define 

x+b4 C(*a) 
*2 

dz\ A dz2 A dzz A dz% 

and 
CL = rf 

where r is the projection operator from (3,1) form in C3 to Ei defined in 
Section I. It is easy to see that a is a smooth (3,1) form on Ei, since for z € 5 3 , 
\z2\2 = 1 - |zi|2 - |z3|2 £ \ - |z3|2 > 0 on the support of Ç. Also df = 0 on Ei 
which implies that dbC* = 0 on Ei. If we set h(z) = ^ , then h € 0(3Ei) and 

0£i 
a A h = 

drx+x 
1 C(*s) 
Z\ z2 

dz\ A dz2 A dz$ A dz$ 

= 
x+b4r 

C(*s) 
/ | ^ i a = * - i * * i a *(*/-#(*/)) 

1 
-dz\ A dz2 A dz$ A dz$ 

= (27Tt)2 
x+b4r 

Ç(zs)dz3 Adzz 

^ 0 

Thus a does not satisfy the necessary condition (A) and thus can not be solved 
on Ei (or on arbitrarily large subset of Ei). We note that a is not smooth on 
E2. On the other hand, since OÇE2) is dense in C?(3E2), Any cVclosed (3,1) 
form can be solved on E2 from Theorem 2. We also note that the boundary of 
E2 is not Runge. 
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