Astérisque

CHRISTINE LAURENT-THIÉBAUT JÜRGEN LEITERER Uniform estimates for the Cauchy-Riemann equation on q-concave wedges

Astérisque, tome 217 (1993), p. 151-182 <http://www.numdam.org/item?id=AST 1993 217 151 0>

© Société mathématique de France, 1993, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

UNIFORM ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION ON q-CONCAVE WEDGES

Christine LAURENT-THIÉBAUT and Jürgen LEITERER

- 0. Introduction
- 1. Preliminaries
- 2. Local q-concave wedges
- 3. A Leray map for local q-concave wedges
- 4. An integral formula in local q-concave wedges
- 5. Homotopy formula and solution of the $\overline{\partial}$ -equation in local q-concave wedges
- 6. Estimates
- 7. Globalisation

0. Introduction

This article is the continuation of [L-T/Le]. Both papers are preliminary works for a systematic study of the tangential Cauchy-Riemann equation on real submanifolds from the viewpoint of uniform estimates and by means of integral formulas. For this study we have to solve the Cauchy-Riemann equation with uniform estimates on q-convex and q-concave wedges in \mathbb{C}^n (for historical remarks, see the introduction to [L-T/Le]). Whereas [L-T/Le] is devoted to q-convex wedges, here we study q-concave wedges.

The main result of the present paper can be formulated as follows. Let $G \subseteq \mathbb{C}^n$ be a domain, q an integer with $1 \leq q \leq n-1$, and $\varphi_1, \ldots, \varphi_N$ a collection of real C^2 functions on G satisfying the following three conditions :

- (i) $E := \{ z \in G : \varphi_1(z) = \cdots = \varphi_N(z) = 0 \} \neq \emptyset ;$
- (ii) $d\varphi_1(z) \wedge \cdots \wedge d\varphi_N(z) \neq 0$ for all $z \in G$;
- (iii) If $\lambda = (\lambda_1, \dots, \lambda_N)$ is a collection of non-negative real numbers with $\lambda_1 + \dots + \lambda_N = 1$, then, at all points in G, the Levi form of the function

$$\lambda_1 \varphi_1 + \cdots + \lambda_N \varphi_N$$

has at least q+1 positive eigenvalues.

Set

$$D = \bigcap_{j=1}^{N} \{ z \in G : \varphi_j(z) > 0 \}$$
 (0.1)

and

$$\Omega = \bigcup_{j=1}^{N} \{ z \in G : \varphi_j(z) > 0 \} .$$
 (0.2)

Further, for $\xi \in \mathbb{C}^n$ and R > 0, we denote by $B_R(\xi)$ the open ball of radius R in \mathbb{C}^n centered at ξ . Then Theorems 5.6, 5.7 and 6.6 of the present work imply the following

0.1. THEOREM. — For each point $\xi \in E$ there exists a radius R > 0 such that :

- (a) If q−N ≥ 0, then each holomorphic function on D extends holomorphically to D ∪ B_R(ξ);
- (b) If $q-N \ge 1$ and f is a continuous $\overline{\partial}$ -closed (n, r)-form with $1 \le r \le q-N$ on D, then there exists a continuous (n, r-1)-form u on $D \cap B_R(\xi)$ with

$$\overline{\partial}u = f \quad \text{on} \quad D \cap B_R(\xi) \;. \tag{0.3}$$

Moreover if, for some β with $0 \leq \beta < 1$, f satisfies the estimate

$$\|f(\zeta)\| \leq [\operatorname{dist}(\zeta, \partial D)]^{-\beta}, \quad \zeta \in D,$$
(0.4)

then the solution u of (0.3) can be given by an explicit integral operator and, for all $\varepsilon > 0$, there is a constant $C_{\varepsilon} > 0$ (independent of f) such that :

If $0 \leq \beta < 1/2$, then u is Hölder continuous with exponent $1/2 - \beta - \varepsilon$ on $\overline{D \cap B_R(\xi)}$ and

$$\|u\|_{1/2-\beta-\varepsilon,\overline{D\cap B_R(\xi)}} \leq C_{\varepsilon} \sup_{\zeta \in D} \|f(\zeta)\| [\operatorname{dist}(\zeta,\partial D)]^{\beta}, \qquad (0.5)$$

where $\|\cdot\|_{1/2-\beta-\varepsilon,\overline{D\cap B_R(\xi)}}$ is the Hölder norm with exponent $1/2-\beta-\varepsilon$ on $\overline{D\cap B_R(\xi)}$. If $1/2 \leq \beta < 1$, then

$$\sup_{z \in D} \|u(z)\| [\operatorname{dist}(z, \partial D)]^{\beta - 1/2 + \varepsilon} \leq C_{\varepsilon} \sup_{\zeta \in D} \|f(\zeta)\| [\operatorname{dist}(\zeta, \partial D)]^{\beta} .$$
(0.6)

Note that the radius R and the constant C_{ε} in Theorem 0.1 depend continuously on $\varphi_1, \ldots, \varphi_N$ with respect to the C^2 topology.

Theorem 0.1 implies the following corollary for the domain Ω defined by (0.2) :

0.2. COROLLARY. — For each point $\xi \in E$ there exists a radius R > 0 such that :

- (i) If $q \ge 1$, then each holomorphic function on Ω extends holomorphically to $\Omega \cup B_R(\xi)$;
- (ii) If $q \ge 2$ and f is a continuous $\overline{\partial}$ -closed (n, r)-form with $1 \le r \le q-1$ on Ω , then there is a continuous (n, r-1)-form u on $\Omega \cap B_r(\xi)$ with

$$\overline{\partial}u = f \quad \text{on} \quad \Omega \cap B_r(\xi) \;. \tag{0.7}$$

It is easy to see that, for r = 1, estimates (0.5) and (0.6) (with Ω instead of D) hold also in this corollary. We do not know whether this is true for $r \ge 2$.

For the smooth case (N = 1) Theorem 0.1 was obtained by Lieb [Li]. We prove Theorem 0.1 by means of integral formulas which are obtained combining the construction of Lieb [Li] with the construction of Range and Siu [R/S]. The main problem then consists in the proof of the estimates. Fortunately, in large parts, this proof is parallel to the corresponding proof in the *q*-convex case which is carried out in [L-T/Le]. Note that, in both proofs, an idea of Henkin plays a very important role (see the introduction to [L-T/Le]). Note also that in the survey article [He] of Henkin a global result, corresponding to the important special case $\beta = 0$, $\varepsilon = \frac{1}{2}$ of Theorem 0.1 is formulated (see [He] th. 8-12 d)).

Finally we want to compare our results with the work [G] of Grauert. He studied domains of type Ω defined by (0.2), where instead of condition (*iii*) the following stronger hypothesis is used :

(iii)' There is a fixed (q+1)-dimensional subspace T of \mathbb{C}^n such that, for all j = 1, ..., Nand $z \in G$, the Levi form φ_j is positive definite on T.

Under this hypothesis, Corollary 0.2 follows from Satz 1 in [G]. Note that the conclusion of Satz 1 in [G] is essentially stronger than the conclusion of our Corollary 0.2 : we can solve $\overline{\partial}u = f$ only on the smaller set $\Omega \cap B_r(\xi)$ if f is given on Ω , whereas Grauert proves the existence of a basis of Stein neighborhoods U of ξ such that, if f is given on $\Omega \cap U$, the equation $\overline{\partial}u = f$ can be solved on the same set $\Omega \cap U$. In the smooth case (N = 1) such a solution without shrinking of the domain is possible also with estimates as in Theorem 0.1 (see Theorem 14.1 in [He/Le 2]). On the other hand, it is not clear whether one can solve (even without estimates) the $\overline{\partial}$ -equation without shrinking of the domain in the situation of Theorem 0.1 if $N \ge 2$. Note also that the statement of Theorem 0.1 under the stronger condition (*iii*)' and without estimates and with shrinking of the domain can be obtained also from Satz 1 in [G].

1. Preliminaries

1.1. — For $z \in \mathbb{C}^n$ we denote by z_1, \ldots, z_n the canonical complex coordinates of z. We write $\langle z, w \rangle = z_1 w_1 + \cdots + z_n w_n$ and $|z| = \langle z, z \rangle^{1/2}$ for $z, w \in \mathbb{C}^n$.

1.2. Let M be a closed real C^1 submanifold of a domain $\Omega \subseteq \mathbb{C}^n$, and let $\zeta \in M$. Then we denote by $T_{\zeta}^{\mathbb{C}}(M)$ the *complex*, and by $T_{\zeta}^{\mathbb{R}}(M)$ the *real* tangent space of M at ζ . We identify these spaces with subspaces of \mathbb{C}^n as follows : if ρ_1, \ldots, ρ_N are real C^1 functions in a neighborhood U_{ζ} of ζ such that $M \cap U = \{\rho_1 = \cdots = \rho_N = 0\}$ and

 $d\rho_1(\zeta) \wedge \cdots \wedge d\rho_N(\zeta) \neq 0$, then

$$T_{\zeta}^{\mathbf{C}}(M) = \left\{ t \in \mathbf{C}^n : \sum_{\nu=1}^n \frac{\partial \rho_j(\zeta)}{\partial \zeta_{\nu}} t_{\nu} = 0 \text{ for } j = 1, \dots, n \right\}$$

and

$$T_{\zeta}^{\mathbb{R}}(M) = \left\{ t \in \mathbb{C}^n : \sum_{\nu=1}^{2n} \frac{\partial \rho_j(\zeta)}{\partial x_{\nu}} x_{\nu}(t) = 0 \text{ for } j = 1, \dots, n \right\},$$

where x_1, \ldots, x_{2n} are the real coordinates on \mathbb{C}^n with $t_{\nu} = x_{\nu}(t) + ix_{\nu+n}(t)$ for $t \in \mathbb{C}^n$ and $\nu = 1, \ldots, n$.

1.3. — Let $\Omega \subseteq \mathbb{C}^n$ be a domain and ρ a real C^2 function on Ω . Then we denote by $L_{\rho}(\zeta)$ the Levi form of ρ at $\zeta \in \Omega$, and by $F_{\rho}(\cdot, \zeta)$ the Levi polynomial of ρ at $\zeta \in \Omega$, *i.e.*

$$L\rho(\zeta)t = \sum_{j,k=1}^{n} \frac{\partial^2 \rho(\zeta)}{\partial \overline{\zeta}_j \partial \zeta_k} \overline{t}_j t_k$$

 $\zeta \in \Omega, \ t \in \mathbb{C}^n$, and

$$F_{\rho}(z,\zeta) = 2\sum_{j=1}^{n} \frac{\partial \rho(\zeta)}{\partial \zeta_j} (\zeta_j - z_j) - \sum_{j,k=1}^{n} \frac{\partial^2 \rho(\zeta)}{\partial \zeta_j \partial \zeta_k} (\zeta_j - z_j) (\zeta_k - z_k)$$

 $\zeta \in \Omega$, $z \in \mathbb{C}^n$. Recall that by Taylor's theorem (see, e.g., Lemma 1.4.13 in [He/Le 1])

$$\operatorname{Re} F_{\rho}(z,\zeta) = \rho(\zeta) - \rho(z) + L_{\rho}(\zeta)(\zeta - z) + o(|\zeta - z|^2) .$$
(1.1)

1.4. — Let $J = (j_1, \ldots, j_\ell)$, $1 \le \ell < \infty$, be an ordered collection of elements in $\mathbb{N} \cup \{*\}$. Then we write $|J| = \ell$, $J(\hat{\nu}) = (j_1, \ldots, j_{\nu-1}, j_{\nu+1}, \ldots, j_\ell)$ for $\nu = 1, \ldots, \ell$, and $j \in J$ if $j \in \{j_1, \ldots, j_\ell\}$.

1.5. — Let $N \ge 1$ be an integer. Then we denote by P(N) the set of all ordered collections $K = (k_1, \ldots, k_\ell), \ell \ge 1$, of integers with $1 \le k_1, \ldots, k_\ell \le N$, and by P(N, *) the set of all ordered collections $K = (k_1, \ldots, k_\ell), \ell \ge 1$ such that either $K \in P(N)$ or for a $\nu \in \{1, \ldots, \ell\}, k_\nu = *$ and $K(\hat{\nu}) \in P(N)$ as well as K = (*). We call P'(N) the subset of all $K = (k_1, \ldots, k_\ell) \in P(N)$ with $k_1 < \cdots < k_\ell$ and P'(N, *) the subset of all $K = (k_1, \ldots, k_\ell) \in P(N)$ or $1 \le k_1 < \cdots < k_{\ell-1} \le N$ and $k_\ell = *, i.e.$ $K_{(\hat{\ell})} \in P'(N)$ and $K = K_{(\hat{\ell})} *$, as well as K = (*).

1.6. — Let $J = (j_1, \ldots, j_\ell)$, $1 \leq \ell < \infty$, be an ordered collection of integers with $0 \leq j_1 < \cdots < j_\ell$. Then we denote by Δ_J (or $\Delta_{j_1 \cdots j_\ell}$) the simplex of all sequences $\{\lambda_j\}_{j=0}^{\infty}$ of numbers $0 \leq \lambda_j \leq 1$ such that $\lambda_j = 0$ if $j \notin J$ and $\Sigma \lambda_j = 1$. We orient Δ_J by the form $d\lambda_{j_2} \wedge \cdots \wedge d\lambda_{j_\ell}$ if $\ell \geq 2$, and by +1 if $\ell = 1$.

Further Δ_{J*} (or $\Delta_{j_1\cdots j_\ell*}$) will be the simplex of all sequences $\{\lambda_j\}_{j=0}^{\infty} \cup \{\lambda_*\}$ of numbers $0 \leq \lambda_j \leq 1, 0 \leq \lambda_* \leq 1$ such that $\lambda_j = 0$ if $j \notin J$ and $\sum_{j=0}^{\infty} \lambda_j + \lambda_* = 1$. We orient Δ_{J*} by the form $d\lambda_{j_2} \wedge \cdots \wedge d\lambda_{j_\ell} \wedge d\lambda_*$.

We set also $\Delta_{\emptyset} = \emptyset$.

1.7. — We denote by $\mathring{\chi}$ a fixed C^{∞} function $\mathring{\chi}: [0,1] \longrightarrow [0,1]$

with $\overset{\circ}{\chi}(\lambda) = 0$ if $0 \leq \lambda \leq 1/4$ and $\overset{\circ}{\chi}(\lambda) = 1$ if $1/2 \leq \lambda \leq 1$.

1.8. — Let $N \ge 1$ be an integer and $K = (k_1, \ldots, k_\ell) \in P'(N, *)$. Then, for $\lambda \in \Delta_{OK}$ with $\lambda_0 \ne 1$, we denote by $\hat{\lambda}$ the point in Δ_K defined by

$$\overset{\circ}{\lambda}_{k_{\nu}} = \frac{\lambda_{k_{\nu}}}{1-\lambda_0} \quad (\nu = 1, \dots, \ell)$$

and for $\lambda \in \Delta_{K*}$ with $\lambda_* \neq 1$, we set $\overset{*}{\lambda}$ the point in Δ_K defined by

$$\overset{*}{\lambda}_{k_{\nu}} = \frac{\lambda_{k_{\nu}}}{1 - \lambda_{*}} \quad (\nu = 1, \dots, \ell) \quad .$$

If $\lambda \in \Delta_{OK*}$ with $\lambda_0 \neq 1$ we set $\mathring{\lambda}_* = \frac{\lambda_*}{1-\lambda_0}$ and if moreover $\lambda_* \neq 1$ we define $\mathring{\lambda} \in \Delta_K$ by

$$\overset{\circ*}{\lambda}_{k_{\nu}} = \frac{\tilde{\lambda}_{k_{\nu}}}{1 - \lambda_{0}}$$

1.9. Let $D \subset \mathbb{C}^n$ be a domain. D will be called a C^k intersection, $k = 1, 2, \ldots, \infty$, if there exist a neighborhood $U_{\overline{D}}$ of \overline{D} and a finite number of real C^k functions $\rho_1, \ldots, \rho_N, \rho_*$ in a neighborhood of $\overline{U}_{\overline{D}}$ such that

$$D = \{ z \in U_{\overline{D}} : \rho_j(z) < 0 \text{ for } j = 1, \dots, N, * \}$$

and

$$d\rho_{k_1}(z)\wedge\cdots\wedge d\rho_{k_\ell}(z)\neq 0$$

for all $(k_1, \ldots, k_\ell) \in P'(N, *)$ and $z \in \partial D$ with $\rho_{k_1}(z) = \cdots = \rho_{k_\ell}(z) = 0$. In this case, the collection $(U_{\overline{D}}, \rho_1, \ldots, \rho_N, \rho_*)$ will be called a C^k frame for D.

1.10. — Let $D \subset \mathbb{C}^n$ be a C^1 intersection and $(U_{\overline{D}}, \rho_1, \ldots, \rho_N, \rho_*)$ a frame for D. Then, for $K = (k_1, \ldots, k_\ell) \in P(N, *)$, we set

$$S_K = \{ z \in \partial D : \rho_{k_1}(z) = \cdots = \rho_{k_\ell}(z) = 0 \}$$

if k_1, \ldots, k_ℓ are different in pairs, and

$$S_K = \emptyset$$

otherwise. We orient the manifolds S_K so that the orientation is skew symmetric in k_1, \ldots, k_ℓ , and

$$\partial D = \sum_{j=1}^{N} S_j + S_* \tag{1.2}$$

and

$$\partial S_K = \sum_{j=1}^N S_{Kj} + S_{K*}$$
 (1.3)

for all $K \in P(N, *)$.

1.11. — Let f be a differential form on a domain $D \subseteq \mathbb{C}^N$. Then we denote by $||f(z)||, z \in D$, the Riemannian norm of f at z (see, e.g., Sect. 0.4 in [He/Le 2]).

1.12. — If M is an oriented real C^1 manifold and f is a differential form of maximal degree, then we denote by |f| the absolute value of f (see, e.g., Sect. 0.3 in [He/Le 2]).

1.13. — Let $D \subset \mathbb{C}^n$ be a domain. Then we shall use the following spaces and norms of differential forms :

 $C^{0}_{*}(D)$ is the set of continuous forms on D. Set

$$||f||_0 = ||f||_{O,D} = \sup_{z \in D} ||f(z)||$$
(1.4)

for $f \in C^0_*(D)$.

 $C^{\alpha}_{*}(\overline{D}), 0 \leq \alpha \leq 1$, is the set of forms $f \in C^{0}_{*}(D)$ whose coefficients admit a continuous extension to \overline{D} which are, if $\alpha > 0$, even Hölder continuous with exponent α on \overline{D} . Set

$$||f||_{\alpha} = ||f||_{\alpha,D} = ||f||_{O,D} + \sup_{\substack{z,\zeta \in D\\ z \neq \zeta}} \frac{||f(z) - f(\zeta)||}{|\zeta - z|^{\alpha}}$$
(1.5)

for $0 < \alpha \leq 1$ and $f \in C^{\alpha}_{*}(\overline{D})$.

 $B_*^{\beta}(D), \beta \ge 0$, is the set of forms $f \in C_*^0(D)$ such that, for some constant C > 0, $\|f(z)\| \le C [dist(z, \partial D)]^{-\beta}, z \in D$.

where dist $(z, \partial D)$ is the Euclidean distance between z and ∂D . Set

$$||f||_{-\beta} = ||f||_{-\beta,D} = \sup_{z \in D} ||f(z)|| [\operatorname{dist}(z,\partial D)]^{\beta}$$
(1.6)

for $\beta \ge 0$ and $f \in B_*^{\beta}(D)$.

If $\Lambda_{p,r}(D)$ is the space of forms of bidegree (p,r) on D, then we set

$$C_{p,r}^{0}(D) = C_{*}^{0}(D) \cap \Lambda_{p,r}(D),$$

$$C_{p,r}^{\alpha}(\overline{D}) = C_{*}^{\alpha}(\overline{D}) \cap \Lambda_{p,r}(D),$$

$$B_{p,r}^{\beta}(D) = B_{*}^{\beta}(D) \cap \Lambda_{p,r}(D),$$

$$C_{p,*}^{0}(D) = \bigcup_{0 \leq r \leq n} C_{p,r}^{0}(D),$$

$$C_{p,*}^{\alpha}(\overline{D}) = \bigcup_{0 \leq r \leq n} C_{p,r}^{\alpha}(\overline{D}),$$

$$B_{p,*}^{\beta}(D) = \bigcup_{0 \leq r \leq n} B_{p,r}^{\beta}(D).$$

and

2. Local q-concave wedges

In this section n and q are fixed integers with $0 \le q \le n-1$. Denote by MO(n,q) the complex manifold of all complex $n \times n$ -matrices which define an orthogonal projection from \mathbb{C}^n onto some q-dimensional subspace of \mathbb{C}^n .

2.1. DEFINITION. — A collection $(U, \rho_1, \ldots, \rho_N)$ will be called a *q*-configuration in \mathbb{C}^n if $U \subseteq \mathbb{C}^n$ is a convex domain, and ρ_1, \ldots, ρ_N are real C^3 functions on U satisfying the following conditions :

- (i) $\{z \in U : \rho_1(z) = \cdots = \rho_N(z) = 0\} \neq \emptyset$;
- (ii) $d\rho_1(z) \wedge \cdots \wedge d\rho_N(z) \neq 0$ for all $z \in U$;
- (iii) If $\lambda \in \Delta_{1\dots N}$ (see Sect. 1.6) and

$$\rho_{\lambda} := \lambda_1 \rho_1 + \cdots + \lambda_N \rho_N ,$$

then the Levi form $L_{\rho_{\lambda}}(z)$ (see Sect. 1.3) has at least q+1 positive eigenvalues.

2.2. DEFINITION. — A local q-concave wedge (E, D), $0 \le q \le n-1$, is a C^3 intersection D such that one can find a frame $(U_{\overline{D}}, \rho_1, \dots, \rho_N, \rho_*)$ (see Sect. 1.9) with $E = \{z \in U_{\overline{D}} : \rho_1(z) = \dots = \rho_N(z) = 0, \rho_*(z) < 0\}$ satisfying

- (i) if $K = (k_1, \ldots, k_\ell) \in P'(N)$ and $U_{\overline{D}}^K = \{z \in U_{\overline{D}} : \rho_{k_1}(z) = \cdots = \rho_{k_\ell}(z)\}$ then $d\rho_{k_1}(z) \wedge \cdots \wedge d\rho_{k_\ell}(z) \neq 0$ for all $z \in U_{\overline{D}}^K$;
- (ii) ρ_* is convex and if $U_{\overline{D}}^{K*} = \{z \in U_{\overline{D}} : \rho_{k_1}(z) = \cdots = \rho_{k_\ell}(z) = \rho_*(z)\}$ then $d\rho_{k_1}(z) \wedge \cdots \wedge d\rho_{k_\ell}(z) \wedge d\rho_*(z) \neq 0$ for all $z \in U_{\overline{D}}^{K*}$;
- (iii) there exist a C^{∞} map $Q: \Delta_{1\dots N} \to MO(n, n-q-1)$ and constants $\alpha, A > 0$ such that

$$-\operatorname{Re} F_{\rho_{\lambda}}(z,\zeta) \ge \rho_{\lambda}(z) - \rho_{\lambda}(\zeta) + \alpha |\zeta - z|^{2} - A|Q(\lambda)(\zeta - z)|^{2}$$

for all $\lambda \in \Delta_{1\dots N}$ and $z, \zeta \in U_{\overline{D}}$.

2.3. LEMMA. — Let $(U, \varphi_1, \ldots, \varphi_N)$ be a q-configuration in \mathbb{C}^n , $0 \leq q \leq n-1$. Then for each $\xi \in U$ with $\varphi_1(\xi) = \cdots = \varphi_N(\xi) = 0$, there exists a number $R_{\xi} > 0$ such that for all R with $0 < R < R_{\xi}$, if

and

$$D = \{ z \in U : \varphi_j(z) > 0, \ j = 1, \dots, N \} \cap \{ z \in \mathbb{C}^n : |z - \xi| < R \}$$
$$E = \{ z \in U : \varphi_1(z) = \dots = \varphi_N(z) = 0 \} \cap \{ z \in \mathbb{C}^n : |z - \xi| < R \}$$

then (E, D) is a local q-concave wedge.

If $U_{\overline{D}} = \{ z \in \mathbb{C}^n : |z-\xi| < R_{\xi} \}, \rho_j = -\varphi_j \text{ for } j = 1, \dots, N, \rho_*(z) = |z-\xi|^2 - R^2$ then $(U_{\overline{D}}, \rho_1, \dots, \rho_N, \rho_*)$ is a frame for D.

Proof. — It is sufficient to repeat the proof of Lemma 2.4 in [L-T/Le] using $-\rho_{\lambda} = -(\lambda_1\rho_1 + \dots + \lambda_N\rho_N) = \lambda_1\varphi_1 + \dots + \lambda_N\varphi_N$ at the place of ρ_{λ}^R .

2.4. DEFINITION. — We shall say that a local q-concave wedge (E, D) is defined by a q-configuration if there exists a frame $(U_{\overline{D}}, \rho_1, \ldots, \rho_N, \rho_*)$ for (E, D) such that $(U_{\overline{D}}, -\rho_1, \ldots, -\rho_N)$ is a q-configuration.

2.5. Remark. — It is easy to see, using Lemma 2.3 and Lemma 2.2 in [L-T/Le], that if $\xi \in \mathbb{C}^n$ is a fixed point and $\varphi_1, \ldots, \varphi_N$ are real C^3 functions in a neighborhood V of ξ such that the following conditions are fulfilled

- (i) $d\varphi_1(\xi) \wedge \cdots \wedge d\varphi_N(\xi) \neq 0$;
- (ii) $\varphi_1(\xi) = \cdots = \varphi_N(\xi) = 0$;
- (iii) set $Y_j = \{z \in V : \varphi_j(z) = 0\}$ for j = 1, ..., N and $\varphi_\lambda = \lambda_1 \varphi_1 + ... + \lambda_N \varphi_N$ for $\lambda \in \Delta_{1...N}$, then for all $K = (k_1, ..., k_\ell) \in P'(N)$ and $\lambda \in \Delta_K$ (see sects 1.5 and 1.6), the Levi form $L_{\rho_\lambda}(\xi)$ restricted to $T_{\xi}^{\mathbb{C}}(Y_{k_1} \cap \cdots \cap Y_{k_\ell})$ (see Sect. 1.2) has at least

$$\dim_{\mathbb{C}} T_{\mathcal{E}}^{\mathbb{C}}(Y_{k_1} \cap \cdots \cap Y_{k_\ell}) - n + q + 1$$

negative eigenvalues ;

then there exists a number $R_{\xi} > 0$ such that, for all R with $0 < R \leq R_{\xi}$, (E, D), where $E = Y_1 \cap \cdots \cap Y_N \cap \{z \in \mathbb{C}^n : |z - \xi| < R\}$ and $D = \{z \in V : \varphi_j(z) < 0\} \cap \{z \in \mathbb{C}^n : |z - \xi| < R\}$, is a local q-concave wedge defined by a q configuration.

2.6. Remark. — It is clear that in the case of a local q-concave wedge defined by a q-configuration we can choose the constant α of Definition 2.2 (iii) such that for each $\lambda \in \Delta_{1...N}$, $z \in U_{\overline{D}}$, the Levi form $L_{\tilde{\rho}_{\lambda}}(\zeta)$ of $\tilde{\rho}_{\lambda}(\zeta) = \rho_{\lambda}(\zeta) - \rho_{\lambda}(z) + \frac{\alpha}{2}|\zeta - z|^2$ has at least (q+1) negative eigenvalues on $U_{\overline{D}}$.

3. A Leray map for local q-concave wedges

Let $D \subset \mathbb{C}^n$ be a C^3 intersection, $(U_{\overline{D}}, \rho_1, \dots, \rho_N, \rho_*)$ a frame for D, and let S_K be the corresponding manifolds introduced in Sect. 1.10.

3.1. DEFINITION. — A Leray map for D or, more precisely, for the frame $(U_{\overline{D}}, \rho_1, \ldots, \rho_N, \rho_*)$ is a map ψ which attaches to each $K \in P'(N, *)$ a \mathbb{C}^n -valued map

$$\psi_K(z,\zeta,\lambda) = \left(\psi_K^1(z,\zeta,\lambda),\ldots,\psi_K^n(z,\zeta,\lambda)\right)$$

defined for $(z, \zeta, \lambda) \in D \times S_K \times \Delta_K$ such that $\langle \psi_K(z, \zeta, \lambda), \zeta - z \rangle = 1$.

Now let (E, D) be a local q-concave wedge and $(U_{\overline{D}}, \rho_1, \dots, \rho_N, \rho_*)$ the associated frame.

Since ρ_* is a convex function, if we set

$$w^*(\zeta) := 2\Big(\frac{\partial \rho_*}{\partial \zeta_1}(\zeta), \dots, \frac{\partial \rho_*}{\partial \zeta_n}(\zeta)\Big)$$

for $\zeta \in U_{\overline{D}}$ and

$$\psi^*(z,\zeta) = \langle w^*(\zeta), \zeta - z \rangle$$

for $(z,\zeta) \in \mathbb{C}^n \times U_{\overline{D}}$, then there exists $\varepsilon, \gamma > 0$ such that

$$\operatorname{Re}\psi^{*}(z,\zeta) \ge \rho_{*}(\zeta) - \rho_{*}(z) + \gamma |\zeta - z|^{2}$$
(3.1)

for all $(z,\zeta) \in \mathbb{C}^n \times U_{\overline{D}}$ with $|\zeta - z| \leq \varepsilon$.

It follows that $\psi^*(z,\zeta) \neq 0$ for all $(z,\zeta) \in D \times S_*$.

Since ρ_1, \ldots, ρ_N are defined and of class C^3 in a neighborhood of $\overline{U}_{\overline{D}}$, we can find C^{∞} functions a_{ν}^{kj} ($\nu = 1, \ldots, N$; $k, j = 1, \ldots, n$) on $U_{\overline{D}}$ such that

$$\left|a_{\nu}^{kj}(\zeta) - \frac{\partial^2 \rho_{\nu}(\zeta)}{\partial \zeta_k \partial \zeta_j}\right| < \frac{\alpha}{2n^2}$$

for all $\zeta \in U_{\overline{D}}$, where α is as in Definition 2.2.

Set
$$\rho_{\lambda} = \lambda_1 \rho_1 + \dots + \lambda_N \rho_N$$
 and $a_{\lambda}^{kj} = \lambda_1 a_1^{kj} + \dots + \lambda_N a_N^{kj}$ for $\lambda \in \Delta_{1\dots N}$. Then

$$\left|\sum_{k,j=1}^{n} \left(a_{\lambda}^{kj}(\zeta) - \frac{\partial^{2} \rho_{\lambda}}{\partial \zeta_{k} \partial \zeta_{j}}(\zeta)\right) t_{k} t_{j}\right| \leq \frac{\alpha}{2} |t|^{2}$$
(3.2)

for all $\zeta \in U_{\overline{D}}$, $t \in \mathbb{C}^n$ and $\lambda \in \Delta_{1 \cdots N}$. Set

$$\widetilde{F}_{\rho_{\lambda}}(z,\zeta) = 2\sum_{j=1}^{n} \frac{\partial \rho_{\lambda}}{\partial \zeta_{j}}(\zeta_{j} - z_{j}) - \sum_{k,j=1}^{n} a_{\lambda}^{kj}(\zeta)(\zeta_{k} - z_{k})(\zeta_{j} - z_{j})$$

for $(z,\zeta,\lambda) \in \mathbb{C}^n \times U_{\overline{D}} \times \Delta_{1\cdots N}$. Then it follows from (3.2) and condition *(iii)* in Definition 2.2 that

$$-\operatorname{Re}\widetilde{F}_{\rho_{\lambda}}(z,\zeta) \ge \rho_{\lambda}(z) - \rho_{\lambda}(\zeta) + \frac{\alpha}{2}|\zeta - z|^{2} - A|Q(\lambda)(\zeta - z)|^{2}$$
(3.3)

for all $(z, \zeta, \lambda) \in U_{\overline{D}} \times U_{\overline{D}} \times \Delta_{1 \cdots N}$.

Denote by $Q_{kj}(\lambda)$ the entires of the matrix $Q(\lambda)$, *i.e.*

$$Q(\lambda) = \left(Q_{kj}(\lambda)\right)_{k,j=1}^{n}$$
 (k = column index)

If $(z, \zeta, \lambda) \in \mathbb{C}^n \times U_{\overline{D}} \times \Delta_{1 \dots N}$, then we set

$$\begin{cases} v^{j}(z,\zeta,\lambda) = 2\frac{\partial\rho_{\lambda}}{\partial\zeta_{j}}(\zeta) - \sum_{k=1}^{n} a_{\lambda}^{kj}(\zeta)(\zeta_{k} - z_{k}) - A\sum_{k=1}^{n} \overline{Q_{kj}(\lambda)(\zeta_{k} - z_{k})} \\ v = (v^{1}, \dots, v^{n}) \\ \varphi = \langle v(z,\zeta,\lambda), \zeta - z \rangle \end{cases}$$
(3.4)

Since $Q(\lambda)$ is an orthogonal projection, we have

$$\varphi(z,\zeta,\lambda) = \widetilde{F}_{\rho_{\lambda}}(z,\zeta) - A|Q(\lambda)(\zeta-z)|^2$$
(3.5)

for all $(z, \zeta, \lambda) \in \mathbb{C}^n \times U_{\overline{D}} \times \Delta_{1 \cdots N}$ and it follows from estimates (3.3) that

$$-\operatorname{Re}\varphi(z,\zeta,\lambda) \ge \rho_{\lambda}(z) - \rho_{\lambda}(\zeta) + \frac{\alpha}{2}|\zeta - z|^{2}$$
(3.6)

for all $(z, \zeta, \lambda) \in U_{\overline{D}} \times U_{\overline{D}} \times \Delta_{1 \cdots N}$.

Now we set for $(z, \zeta, \lambda) \in U_{\overline{D}} \times \mathbb{C}^n \times \Delta_{1 \dots N}$.

$$\begin{cases} w^{j}(z,\zeta,\lambda) = v^{j}(\zeta,z,\lambda) \\ \psi(z,\zeta,\lambda) = \varphi(\zeta,z,\lambda) \end{cases}$$

$$(3.7)$$

It follows from estimate (3.6) that $\psi(z,\zeta,\lambda) \neq 0$ if $(z,\zeta,\lambda) \in D \times S_K \times \Delta_K$ for some $K \in P'(N)$.

Therefore, by setting

$$\psi_K(z,\zeta,\lambda) = \frac{w(z,\zeta,\lambda)}{\psi(z,\zeta,\lambda)}$$
(3.8)

for $(z, \zeta, \lambda) \in D \times S_K \times \Delta_K, K \in P'(N)$ and

$$\psi_{K*}(z,\zeta,\lambda) = \stackrel{\circ}{\chi} (\lambda_*) \frac{w^*(\zeta)}{\psi^*(z,\zeta)} + \left(1 - \stackrel{\circ}{\chi} (\lambda_*)\right) \frac{w(z,\zeta,\lambda)}{\psi(z,\zeta,\lambda)}$$
(3.9)

for $(z, \zeta, \lambda) \in D \times S_{K*} \times \Delta_{K*}$, $K \in P'(N)$, we obtain a family $\psi = \{\psi_K, \psi_{K*}\}_{K \in P'(N)}$ of \mathbb{C}^n -valued C^1 maps. Obviously, ψ is a Leray map for the frame $(U_{\overline{D}}, \rho_1, \dots, \rho_N, \rho_*)$.

3.2. DEFINITION. — A map f defined on some complex manifold X will be called k-holomorphic if, for each point $\xi \in X$, there exist holomorphic coordinates h_1, \ldots, h_n in a neighborhood of ξ such that f is holomorphic with respect to h_1, \ldots, h_k .

We deduce immediately from (3.4), (3.7) and Lemma 3.3 in [L-T/Le] that :

3.3. LEMMA. — For every fixed $(z, \lambda) \in U_{\overline{D}} \times \Delta_{1...N}$ the map $w(z, \zeta, \lambda)$ and the function $\psi(z, \zeta, \lambda)$ are (q+1)-holomorphic in $\zeta \in \mathbb{C}^n$.

4. An integral formula in local q-concave wedges

We denote by $\widehat{B}(z,\zeta)$ the Martinelli-Bochner kernel for (n,r)-forms, *i.e.*

$$\widehat{B}(z,\zeta) = \frac{1}{(2\pi i)^n} \det\left(\overbrace{\frac{\overline{\zeta} - \overline{z}}{|\zeta - z|^2}}^{1}, \overbrace{\frac{\overline{\zeta} - \overline{z}}{|\zeta - z|^2}}^{n-1}\right) \wedge dz_1 \wedge \cdots \wedge dz_n$$

for all $z, \zeta \in \mathbb{C}^n$ with $z \neq \zeta$ (for the definition of determinants of matrices of differential forms, see, e.g., Sect. 0.7 in [He/Le 2]). If $D \subset \mathbb{C}^n$ is a domain and f is a continuous differential form with integrable coefficients on D, then we set

$$B_D f(z) = \int_{\zeta \in D} f(\zeta) \wedge \widehat{B}(z,\zeta), \quad z \in D$$

(for the definition of integration with respect to a part of the variables, see, e.g., Sect. 0.2 in [He/Le 2]).

Let $D \subset \mathbb{C}^n$ be a C^3 intersection, $(U_{\overline{D}}, \rho_1, \ldots, \rho_N, \rho_*)$ a frame for D, and let S_K be the corresponding manifolds introduced in Sect. 1.10.

Further, let ψ be a Leray map for the frame $(U_{\overline{D}}, \rho_1, \dots, \rho_N, \rho_*)$. Then we set

$$\psi_{OK}(z,\zeta,\lambda) = \mathring{\chi}(\lambda_0) \frac{\overline{\zeta} - \overline{z}}{|\zeta - z|^2} + \left(1 - \mathring{\chi}(\lambda_0)\right) \psi_K(z,\zeta,\mathring{\lambda})$$
(4.1)

for $K \in P'(N, *)$ and $(z, \zeta, \lambda) \in D \times S_K \times \Delta_{OK}$. Note that $1 - \overset{\circ}{\chi} (\lambda_0) = 0$ for λ in the neighborhood $\Delta_{OK} \setminus \overset{\circ}{\Delta}_{OK}$ of Δ_0 and therefore ψ_{OK} is of class C^2 . For $K \in P'(N, *)$ we introduce the differential form

$$\widehat{R}_{K}^{\psi}(z,\zeta,\lambda) = \frac{(-1)^{|K|}}{(2\pi i)^{n}} \det\left(\underbrace{\psi_{OK}(z,\zeta,\lambda)}_{0,K},\underbrace{d\psi_{OK}(z,\zeta,\lambda)}_{0,K}\right) \wedge dz_{1} \wedge \dots \wedge dz_{n}$$

defined for $(z, \zeta, \lambda) \in D \times S_K \times \Delta_{OK}$, and the differential form

$$\widehat{L}_{K}^{\psi}(z,\zeta,\lambda) = \frac{1}{(2\pi i)^{n}} \det\left(\overbrace{\psi_{K}(z,\zeta,\lambda)}^{n-1}, \overbrace{d\psi_{K}(z,\zeta,\lambda)}^{n-1}\right) \wedge dz_{1} \wedge \dots \wedge dz_{n}$$

defined for $(z, \zeta, \lambda) \in D \times S_K \times \Delta_K$ (here *d* denotes the exterior differential operator with respect to all variables z, ζ, λ). If *f* is a continuous differential form on \overline{D} , then, for all $K \in P'(N, *)$, we set

$$R_{K}^{\psi}f(z) = \int_{(\zeta,\lambda)\in S_{K}\times\Delta_{OK}} f(\zeta)\wedge\widehat{R}_{K}^{\psi}(z,\zeta,\lambda), \quad z\in D,$$
$$L_{K}^{\psi}f(z) = \int_{(\zeta,\lambda)\in S_{K}\times\Delta_{K}} f(\zeta)\wedge\widehat{L}_{K}^{\psi}(z,\zeta,\lambda), \quad z\in D.$$

and

Then, for each continuous (n, r)-form f on \overline{D} , $0 \le r \le n$, such that df is also continuous on \overline{D} , one has the representation

$$(-1)^{n+r}f = dB_D f - B_D df + \sum_{K \in P'(N)} \left(L_K^{\psi} f + dR_K^{\psi} f - R_K^{\psi} df \right) + \sum_{K \in P'(N) \cup \emptyset} \left(L_{K*}^{\psi} f + dR_{K*}^{\psi} f - R_{K*}^{\psi} df \right) \text{ on } D.$$
(4.2)

This formula is basic for the present paper. It has different names and a long history (see Proposition 1.3.1 in [Ai/He], Sect. 3.12 in [He/Le 2] and the notes at the end of ch. 4 in [He/Le 1], we call it *Cauchy-Fantappie formula*.

4.1. Cauchy-Fantappie formula for a local q-concave wedge. — Let (E, D) be a local q-concave wedge, $0 \le q \le n-1$, $(U_{\overline{D}}, \rho_1, \dots, \rho_N, \rho_*)$ the associated frame satisfying conditions (*i*), (*ii*) and (*iii*) in Definition 2.2 and ψ the Leray map constructed in Section 3 for the frame $(U_{\overline{D}}, \rho_1, \dots, \rho_N, \rho_*)$.

We set

$$T^{\psi} = B_D + \sum_{K \in P'(N)} R_K^{\psi} + \sum_{K \in P'(N) \cup \emptyset} R_K^{\psi},$$
$$L^{\psi} = \sum_{K \in P'(N)} L_K^{\psi} + \sum_{K \in P'(N) \cup \emptyset} L_{K*}^{\psi},$$
$$L_*^{\psi} = \sum_{K \in P'(N) \cup \emptyset} L_{K*}^{\psi}.$$

and

With this notation, for each continuous (n, r)-form f on \overline{D} , $0 \le r \le n$, such that df is also continuous on \overline{D} , (4.2) can be written

$$(-1)^{n+r}f = dT^{\psi}f - T^{\psi}df + L^{\psi}f \quad \text{on } D .$$
(4.3)

4.1.1. THEOREM. — If $0 \leq r \leq q-N$, for each continuous (n, r)-form f on \overline{D} such that df is also continuous on \overline{D}

$$(-1)^{n+r}f = dT^{\psi}f - T^{\psi}df + L_*^{\psi}f$$
 on D.

Proof. — In view of the Cauchy-Fantappie formula (4.3) it is sufficient to prove that for $0 \le r \le q-N$, $K \in P'(N)$, $L_K^{\psi} f = 0$.

Let us denote by $[\widehat{L}_{K}^{\psi}]_{\deg \overline{\zeta} = k}$ the part of the form \widehat{L}_{K}^{ψ} which is of type (0, k) in ζ . Then, by Lemma 3.3, $[\widehat{L}_{K}^{\psi}]_{\deg \overline{\zeta} = k} = 0$ for $K \in P'(N)$ and $k \ge n-q$.

Since f is of type (n, r), dim $\Delta_K = |K|-1$, dim $S_K = 2n-|K|$ and $|K| \leq N$ we obtain, by definition of $L_K^{\psi} f$, that $L_K^{\psi} f = 0$ for $0 \leq r \leq q-N$ and $K \in P'(N)$.

4.1.2. Remark. — In fact we can prove that, for $K \in P'(N)$, $L_K^{\psi} f = 0$ if $r \leq q - |K|$.

4.2. The manifolds Γ_K . — As we want to obtain an integral formula for forms which are not necessarily defined on ∂D , we are going to replace the integrals over the manifolds S_K in (4.2) by integrals over certain submanifolds Γ_K of D.

For $K = (k_1, \ldots, k_\ell) \in P(N, *)$ we set

$$U_{\overline{D}}^{K} = \{ \zeta \in U_{\overline{D}} : \rho_{k_{1}}(\zeta) = \cdots = \rho_{k_{\ell}}(\zeta) \}$$

if k_1, \ldots, k_ℓ are different in pairs, and $U_{\overline{D}}^K = \emptyset$ otherwise. By conditions (i) and (ii) in Definition 2.2 each $U_{\overline{D}}^K$ is a closed C^3 submanifold of $U_{\overline{D}}$. We denote by $\rho_K, K \in P(N, *)$, the function on $U_{\overline{D}}^K$ which is defined by

$$\rho_K(\zeta) = \rho_{k_\nu}(\zeta) \quad (\zeta \in U_{\overline{D}}^K; \nu = 1, \dots, \ell) .$$

Now, for all $K \in P(N, *)$, we define

$$\Gamma_K = \{ \zeta \in U_{\overline{D}}^K : \rho_j(\zeta) \leq \rho_K(\zeta) \leq 0 \text{ for } j = 1, \dots, N, * \} .$$

Then it is easy to see that all Γ_K are C^3 submanifolds of \overline{D} with piecewise C^3 boundary, and that

$$\overline{D} = \Gamma_1 \cup \cdots \cup \Gamma_N \cup \Gamma_*$$

and

$$\partial \Gamma_K = S_K \cup \Gamma_{K1} \cup \dots \cup \Gamma_{KN} \cup \Gamma_{K*}, \quad K \in P(N)$$

We choose the orientation on Γ_K such that the orientation is skew symmetric in the components of K, and the following conditions hold :

 $\left. \begin{array}{l} \Gamma_1, \ldots, \Gamma_N, \Gamma_* \text{ carry the orientation of } \mathbb{C}^n, \text{ and if} \\ K \in P(N, *) \text{ and } 1 \leq j \leq N \text{ with } * \notin K, \text{ resp. } j \notin K, \text{ then} \\ \Gamma_{K*}, \text{ resp. } \Gamma_{Kj} \text{ are oriented just as } -\partial \Gamma_K \end{array} \right\}$

As in [L-T/Le], we obtain the following lemmas :

4.2.1. LEMMA. — If Γ_K are the above manifolds, then

$$\partial \Gamma_K = S_K - \sum_{j=1}^N \Gamma_{Kj} - \Gamma_{K*}$$

for all $K \in P(N, *)$.

4.2.2. LEMMA. — If Γ_K are the above manifolds and Δ_K, Δ_{OK} are oriented simplices introduced in Sect. 1.6, then

 $\sum_{K \in P'(N,*)} (-1)^{|K|} \partial(\Gamma_K \times \Delta_{OK}) =$

$$\overline{D} \times \Delta_O + \sum_{K \in \mathcal{P}'(N,*)} (-1)^{|K|} S_K \times \Delta_{OK} - \sum_{K \in \mathcal{P}'(N,*)} \Gamma_K \times \Delta_K.$$
(4.4)

$$\sum_{K \in P'(N,*)} \partial(\Gamma_K \times \Delta_K) = \sum_{K \in P'(N,*)} S_K \times \Delta_K$$
(4.5)

and

$$\sum_{K \in P'(N) \cup \emptyset} \partial(\Gamma_{K*} \times \Delta_{K*}) = \sum_{K \in P'(N) \cup \emptyset} S_{K*} \times \Delta_{K*} + \sum_{K \in P'(N)} \Gamma_{K*} \times \Delta_K .$$
(4.6)

4.3. The operators L and M. — Let $w^*(z,\zeta)$, $\psi^*(z,\zeta)$, $w(z,\zeta,\lambda)$ and $\psi(z,\zeta,\lambda)$ be the maps defined in paragraph 3. We set

and

$$\begin{split} \Phi^*(z,\zeta) &= \psi^*(z,\zeta) - 2\rho_*(\zeta) \quad \text{ for } (z,\zeta) \in \mathbb{C}^n \times U_{\overline{D}} \\ \Phi(z,\zeta,\lambda) &= \psi(z,\zeta,\lambda) + 2\rho_\lambda(\zeta) \quad \text{ for } (z,\zeta,\lambda) \in \mathbb{C}^n \times U_{\overline{D}} \times \Delta_{1\cdots N}. \end{split}$$

Then it follows from (3.1), (3.6) and (3.7) that $\Phi^*(z,\zeta) \neq 0$ for $(z,\zeta) \in D \times \overline{D}$ and $\Phi(z,\zeta,\lambda) \neq 0$ for $(z,\zeta,\lambda) \in D \times \overline{D} \times \Delta_{1...N}$.

So we can define the C^2 maps

$$\tilde{\psi}_{K}(z,\zeta,\lambda) = \stackrel{\circ}{\chi} (\lambda_{*}) \frac{w^{*}(\zeta)}{\Phi^{*}(z,\zeta)} + \left(1 - \stackrel{\circ}{\chi} (\lambda_{*})\right) \frac{w(z,\zeta,\lambda)}{\Phi(z,\zeta,\lambda)}$$

*

for all $(z,\zeta,\lambda) \in D \times \overline{D} \times \Delta_K, K \in P'(N,*)$. Notice that $\tilde{\psi}_K(z,\zeta,\lambda) = \psi_K(z,\zeta,\lambda)$ when $(z,\zeta,\lambda) \in D \times S_K \times \Delta_K$.

We set for $(z,\zeta,\lambda) \in D \times \overline{D} \times \Delta_K$

$$\widehat{L}_{K}^{\widetilde{\psi}}(z,\zeta,\lambda) = \frac{1}{(2i\pi)^{n}} \det\left(\overbrace{\widetilde{\psi}_{K}(z,\zeta,\lambda)}^{1}, \overbrace{d\widetilde{\psi}_{K}(z,\zeta,\lambda)}^{n-1}\right) \wedge dz_{1} \wedge \cdots \wedge dz_{n}$$

and one has $\widehat{L}_{K}^{\widetilde{\psi}} = \widehat{L}_{K}^{\psi}$ on $D \times S_{K} \times \Delta_{K}$.

We set also for $(z, \zeta, \lambda) \in D \times \overline{D} \times \Delta_K$

$$\widehat{M}_{K}^{\widetilde{\psi}}(z,\zeta,\lambda) = \frac{1}{(2i\pi)^{n}} \det\left(\overbrace{d\widetilde{\psi}_{K}(z,\zeta,\lambda)}^{n}\right) \wedge dz_{1} \wedge \cdots \wedge dz_{n}$$

4.3.1. Remark. — It comes from the properties of determinants that if $K \in P'(N)$

$$\widehat{L}_{K}^{\vec{\psi}}(z,\zeta,\lambda) = \frac{1}{(2i\pi)^{n} \Phi^{n}(z,\zeta,\lambda)} \det\left(\overbrace{w(z,\zeta,\lambda)}^{n-1},\overbrace{dw(z,\zeta,\lambda)}^{n-1}\right)$$

for $(z, \zeta, \lambda) \in D \times \overline{D} \times \Delta_K$, where $w(z, \zeta, \lambda)$ is (q+1)-holomorphic in ζ .

Now let us define the operators L, L^*, M and M^* on $C^0_{n,r}(D), 0 \leq r \leq n$, by

$$Lf(z) = \sum_{K \in P'(N,*)} \int_{\zeta \in \Gamma_K \times \Delta_K} f(\zeta) \wedge \widehat{L}_K^{\tilde{\psi}}(z,\zeta,\lambda), \quad z \in D$$

$$L^*f(z) = \sum_{K \in P'(N) \cup \emptyset} \int_{\zeta \in \Gamma_K \times \Delta_K} f(\zeta) \wedge \widehat{L}_{K*}^{\tilde{\psi}}(z,\zeta,\lambda), \quad z \in D$$

$$Mf(z) = \sum_{K \in P'(N,*)} \int_{\zeta \in \Gamma_K \times \Delta_K} f(\zeta) \wedge \widehat{M}_K^{\tilde{\psi}}(z,\zeta,\lambda), \quad z \in D$$

$$M^*f(z) = \sum_{K \in P'(N) \cup \emptyset} \int_{\zeta \in \Gamma_K \times \Delta_{K*}} f(\zeta) \wedge \widehat{M}_{K*}^{\tilde{\psi}}(z,\zeta,\lambda), \quad z \in D$$

for $f \in C^0_{n,r}(D)$.

For $f \in C_{n,r}^0(D)$, the forms Lf, L^*f, Mf and M^*f are continuous on D.

4.3.2. LEMMA. — Let f be a continuous (n, r)-form on \overline{D} . If we set

$$\Lambda f(z) = \sum_{K \in P'(N) \cup \emptyset} \int_{\Gamma_{K*} \times \Delta_K} f(\zeta) \wedge \widehat{L}_K^{\psi}(z,\zeta,\lambda), z \in D ,$$

then $\Lambda f \equiv 0$ when $0 \leq r \leq q - N$.

Proof. — By remark 4.3.1, $[\widehat{L}_{K}^{\tilde{\psi}}]_{\deg \overline{\zeta} = k} = 0$ for $K \in P'(N)$ and $k \ge n-q$. Using that dim $\Gamma_{K*} = 2n - |K|$ and $|K| \le N$, the result follows easily from the definition of Λ .

4.3.3. PROPOSITION. — Let f be a continuous (n, r)-form on \overline{D} such that df is also continuous on \overline{D} , then

$$L^{\psi}f = \sum_{K \in P'(N,*)} L_{K}^{\psi}f = Ldf - dLf + (-1)^{r+n}Mf$$

and, if $0 \leq r \leq q - N$

$$L^{\psi}_* f = \sum_{K \in P'(N) \cup \emptyset} L^{\psi}_{K*} f = L^* df - dL^* f + (-1)^{r+n} M^* f .$$

Proof. — As
$$\widehat{L}_{K}^{\tilde{\psi}} = \widehat{L}_{K}^{\psi}$$
 on $D \times S_{K} \times \Delta_{K}$, we have for $z \in D$
$$\sum_{K \in P'(N,*)} L_{K}^{\psi} f(z) = \sum_{K \in P'(N,*)} \int_{\zeta \in S_{K} \times \Delta_{K}} f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z,\zeta,\lambda) .$$

Then using (4.5) in Lemma 4.2.2, we get

$$\sum_{K \in P'(N,*)} L_K^{\psi} f(z) = \sum_{K \in P'(N,*)} \int_{(\zeta,\lambda) \in \partial(\Gamma_K \times \Delta_K)} f(\zeta) \wedge \widehat{L}_K^{\bar{\psi}}(z,\zeta,\lambda)$$
$$= \sum_{K \in P'(N,*)} \left[\int_{(\zeta,\lambda) \in \Gamma_K \times \Delta_K} df(\zeta) \wedge \widehat{L}_K^{\bar{\psi}}(z,\zeta,\lambda) + (-1)^{n+r} \int_{(\zeta,\lambda) \in \Gamma_K \times \Delta_K} f(\zeta) \wedge d_{\zeta,\lambda} \widehat{L}_K^{\bar{\psi}}(z,\zeta,\lambda) \right]$$

by Stokes'theorem.

As
$$d_{\zeta,\lambda}\widehat{L}_{K}^{\vec{\psi}}(z,\zeta,\lambda) = -d_{z}\widehat{L}_{K}^{\vec{\psi}}(z,\zeta,\lambda) + \widehat{M}_{K}^{\vec{\psi}}(z,\zeta,\lambda)$$
, then we get
$$\sum_{K \in P'(N,*)} L_{K}^{\psi}f(z) = Ldf - dLf + (-1)^{r+n}Mf .$$

In the same way, using (4.6) in Lemma 4.2.2 and Lemma 4.3.2, we obtain the second relation in Proposition 4.3.3. \blacksquare

4.4.The operator H. — Using Φ^* and Φ (see Sect. 4.3), we can define the C^1 map

$$\eta(z,\zeta,\lambda) = \mathring{\chi}(\lambda_0) \frac{\overline{\zeta} - \overline{z}}{|\zeta - z|^2} + \left(1 - \mathring{\chi}(\lambda_0)\right) \left[\mathring{\chi}(\mathring{\lambda}_*) \frac{w^*(\zeta)}{\Phi^*(z,\zeta)} + \left(1 - \mathring{\chi}(\mathring{\lambda}_*)\right) \frac{w(z,\zeta,\mathring{\lambda})}{\Phi(z,\zeta,\lambda)} \right]$$

for all $(z, \zeta, \lambda) \in D \times \overline{D} \times \Delta_{01 \dots N*}$, with $z \neq \zeta$ (for the definitions of $\mathring{\chi}, \mathring{\lambda}_*$ and $\mathring{\lambda}^*$ see Sect. 1.7 and 1.8). Note that

$$\eta(z,\zeta,\lambda) = \frac{\overline{\zeta} - \overline{z}}{|\zeta - z|^2} \quad \text{if} \quad 1/2 \leqslant \lambda_0 \leqslant 1$$

$$\eta(z,\zeta,\lambda) = \stackrel{\circ}{\chi} (\stackrel{\circ}{\lambda}_*) \frac{w^*(\zeta)}{\Phi^*(z,\zeta)} + (1 - \stackrel{\circ}{\chi} (\stackrel{\circ}{\lambda}_*)) \frac{w(z,\zeta,\stackrel{\circ}{\lambda})}{\Phi(z,\zeta,\stackrel{\circ}{\lambda})} \quad \text{if} \quad 0 \leqslant \lambda_0 \leqslant 1/4$$

$$\eta(z,\zeta,\lambda) = \stackrel{\circ}{\chi} (\lambda_*) \frac{w^*(\zeta)}{\Phi^*(z,\zeta)} + (1 - \stackrel{\circ}{\chi} (\lambda_*)) \frac{w(z,\zeta,\stackrel{\circ}{\lambda})}{\Phi(z,\zeta,\stackrel{\circ}{\lambda})} \quad \text{if} \quad \lambda_0 = 0 .$$

In particular, for all $K \in P'(N, *)$ we have the relations

$$\eta(z,\zeta,\lambda) = \psi_{OK}(z,\zeta,\lambda) \quad \text{if} \quad (\zeta,\lambda) \in S_K \times \Delta_{OK} \tag{4.8}$$

(see (4.1) for the definition of ψ_{OK}) and

$$\eta(z,\zeta,\lambda) = \tilde{\psi}_K(z,\zeta,\lambda) \quad \text{if} \quad (\zeta,\lambda) \in \Gamma_K \times \Delta_K \ . \tag{4.9}$$

n-1

Now for $(z,\zeta,\lambda) \in D \times \overline{D} \times \Delta_{01\cdots N*}$ with $z \neq \zeta$ we introduce the continuous differential forms

$$\widehat{G}(z,\zeta,\lambda) = \frac{1}{(2i\pi)^n} \det\left(\overbrace{\eta(z,\zeta,\lambda)}^{n-1}, \overbrace{d\eta(z,\zeta,\lambda)}^{n-1}\right) \wedge dz_1 \wedge \dots \wedge dz_n$$
$$\widehat{H}(z,\zeta,\lambda) = \frac{1}{(2i\pi)^n} \det\left(\overbrace{d\eta(z,\zeta,\lambda)}^{n}\right) \wedge dz_1 \wedge \dots \wedge dz_n$$

where d is the exterior differential with respect to all variables z, ζ, λ .

Then it is easy to see that

$$d\widehat{G} = \widehat{H} \tag{4.10}$$

It follows from the definitions of the kernels $\hat{B}, \hat{R}^{\psi}_{K}, \hat{L}^{\tilde{\psi}}_{K}$ and from the relations (4.7), (4.8) and (4.9) that

$$\widehat{G}\mid_{D\times\overline{D}\times\Delta_0} = \widehat{B} \tag{4.11}$$

$$\widehat{G}\mid_{D\times S_K\times\Delta_{0K}} = (-1)^{|K|} \widehat{R}_K^{\psi} \quad \text{for all} \quad K \in P'(N, *)$$
(4.12)

$$\widehat{G}\mid_{D\times\Gamma_K\times\Delta_K} = \widehat{L}_K^{\psi} \quad \text{for all} \quad K \in P'(N, *) .$$
(4.13)

Like in [L-T/Le] we can describe the singularity of \hat{G} and \hat{H} at $z = \zeta$.

4.4.1. LEMMA. — Denote by $[\widehat{G}(z,\zeta,\lambda)]_{\deg \lambda=k}$ and $[\widehat{H}(z,\zeta,\lambda)]_{\deg \lambda=k}$ the parts of the forms $\widehat{G}(z,\zeta,\lambda)$ and $\widehat{H}(z,\zeta,\lambda)$, respectively, which are of degree k in λ . Then the following statements hold :

- (i) The singularity at $z = \zeta$ of the form $[\widehat{G}(z,\zeta,\lambda)]_{\deg \lambda = k}$ is of order $\leq 2n-2k-1$;
- (ii) The singularities at $z = \zeta$ of the first-order derivatives with respect to z of the coefficients of $[\widehat{G}(z,\zeta,\lambda)]_{\deg \lambda=k}$ are of order $\leq 2n-2k$;
- (iii) The singularity at $z = \zeta$ of the form $[\hat{H}(z,\zeta,\lambda)]_{\deg \lambda = k}$ is of order $\leq 2n-2k+1$.

As (E, D) is a local q-concave wedge, the map w is (q+1)-holomorphic in ζ (Lemma 3.3) and therefore

4.4.2. LEMMA. — If
$$f \in C^0_{n,r}(\overline{D})$$
 with $r \leq q-N+1$, then
$$\int_{(\zeta,\lambda)\in \Gamma_K \times \Delta_K} f(\zeta) \wedge \widehat{G}(z,\zeta,\lambda) = 0$$

for all $K \in P'(N)$ and $z \in D$.

Proof. — Let us remark that for $K \in P'(N)$

$$\widehat{G}\mid_{D\times\Gamma_{K}\times\Delta_{K}}=\frac{1}{(2i\pi)^{n}}\frac{1}{\Phi^{n}}\det\left(w(z,\zeta,\lambda),\overline{dw(z,\zeta,\lambda)}\right)\wedge dz_{1}\wedge\cdots\wedge dz_{n}$$

where w is (q+1)-holomorphic in ζ . Therefore $[\widehat{G}(z,\zeta,\lambda)]_{\deg \overline{\zeta}=k} = 0$ for $K \in P'(N)$, $(z,\zeta,\lambda) \in D \times \Gamma_K \times \Delta_K, k \ge n-q$.

Since f is of type (n, r), dim $\Delta_K = |K|-1$, dim $\Gamma_K = 2n-|K|+1$ and $|K| \leq N$, we get

$$\int_{(\zeta,\lambda)\in\Gamma_{K}\times\Delta_{K}}f(\zeta)\wedge\widehat{G}(z,\zeta,\lambda)=0$$

when $r \leq q-N+1$ and $K \in P'(N)$.

Let $f \in B_{n,*}^{\beta}(D), 0 \leq \beta < 1$ (see Sect. 1.13). Then, for all $K \in P'(N, *)$, we define

$$H_K f(z) = \int_{(\zeta,\lambda)\in\Gamma_K\times\Delta_{OK}} f(\zeta)\wedge\widehat{H}(z,\zeta,\lambda), \quad z\in D.$$
(4.14)

It follows from Lemma 4.4.1 (iii) that these integrals converge and the so defined differential forms $H_K f$ are continuous on D. We set

$$Hf = \sum_{K \in \mathcal{P}'(N,*)} (-1)^{|K|} H_K f$$

for $f \in B_{n,*}^{\beta}(D)$, $0 \leq \beta < 1$.

Now let $f \in B_{n,r}^{\beta}(D)$, $0 \leq \beta < 1$, $0 \leq r \leq n$. Since $\widehat{H}(z,\zeta,\lambda)$ is of degree 2nand contain the factor $dz_1 \wedge \cdots \wedge dz_n$ and since $\dim_{\mathbb{R}} \Gamma_K \times \Delta_{OK} = 2n+1$, then only such monomials of $\widehat{H}(z,\zeta,\lambda)$ contribute to the integral in (4.14) which are of degree (n+1-r)in (ζ,λ) and hence of bidegree (n,r-1) in z. This implies that $H_K f = 0$ if r = 0 or $n+1-r < |K| = \dim_{\mathbb{R}} \Delta_{OK}$.

Hence, for $f \in B_{n,r}^{\beta}(D)$, $0 \leq \beta < 1$, $0 \leq r \leq n$, we have

$$Hf = \sum_{\substack{K \in \mathcal{P}'(N, *) \\ |K| \leq n+1-r}} (-1)^{|K|} H_K f,$$

$$Hf = 0 \text{ if } r = 0, \text{ and } Hf \in C^0_{n,r-1}(D) \text{ if } 1 \leq r \leq n.$$

$$(4.15)$$

4.4.3. THEOREM. — Let (E, D) be a local q-concave wedge, $0 \le q \le n-1$ and $f \in B_{n,r}^{\beta}(D)$ an (n,r)-form, $0 \le r \le n$, $0 \le \beta < 1$ such that $df \in B_*^{\beta}(D)$. Then

$$f = dHf + Hdf + Mf$$
 on D.

Let $(U_{\overline{D}}, \rho_1, \ldots, \rho_N, \rho_*)$ the frame associated to (E, D) in Definition 2.2, then, if $0 \leq r \leq q-N$,

$$f = dHf + Hdf + M^*f \quad \text{on } D .$$

In particular, if $r = 0, f = Hdf + M^*f$ on D.

Proof. — The proof of this theorem is analogous to that of Theorem 4.11 in [L-T/Le]. For the convenience of the lecturer we will repeat it here

First consider a form $g \in C_{n,i}^0(\overline{D})$. Then by (4.10)

$$d_{\zeta,\lambda}(g\wedge\widehat{G})=dg\wedge\widehat{G}-d_z(g\wedge\widehat{G})+(-1)^{n+j}g\wedge\widehat{H}$$

and it follows from Stokes' formula (which can be applied in view of Lemma 4.4.1) that

$$\int_{\partial(\Gamma_{K}\times\Delta_{OK})}g\wedge\widehat{G}=\int_{\Gamma_{K}\times\Delta_{OK}}dg\wedge\widehat{G}+d\int_{\Gamma_{K}\times\Delta_{OK}}g\wedge\widehat{G}+(-1)^{n+j}H_{K}g$$

for all $K \in P'(N, *)$. In view of (4.4) this implies that

$$\begin{split} \int_{D\times\Delta_0} g\wedge\widehat{G} + \sum_{K\in P'(N,*)} (-1)^{|K|} \int_{S_K\times\Delta_{OK}} g\wedge\widehat{G} - \sum_{K\in P'(N,*)} \int_{\Gamma_K\times\Delta_K} g\wedge\widehat{G} \\ &= \sum_{K\in P'(N,*)} (-1)^{|K|} \left(\int_{\Gamma_K\times\Delta_{OK}} dg\wedge\widehat{G} + d \int_{\Gamma_K\times\Delta_{OK}} g\wedge\widehat{G} + (-1)^{n+j} H_K g \right). \end{split}$$

Taking into account (4.11) and (4.12) as well as the definitions of T^{ψ} and H, this can be written

$$T^{\psi}g - \sum_{K \in P'(N,*)} \int_{\Gamma_K \times \Delta_K} g \wedge \widehat{G}$$

=
$$\sum_{K \in P'(N,*)} (-1)^{|K|} \left(\int_{\Gamma_K \times \Delta_{OK}} dg \wedge \widehat{G} + d \int_{\Gamma_K \times \Delta_{OK}} g \wedge \widehat{G} \right) + (-1)^{j+n} Hg. \quad (4.16)$$

Now we consider a form $f \in C^0_{n,r}(\overline{D})$ with $0 \le r \le n$ such that df is also continuous on \overline{D} . Setting g = df in (4.16), we obtain that

$$T^{\psi}df = \sum_{K \in \mathcal{P}'(N,*)} (-1)^{|K|} d \int_{\Gamma_K \times \Delta_{OK}} df \wedge \widehat{G} + (-1)^{r+1+n} H df + \sum_{K \in \mathcal{P}'(N,*)} \int_{\Gamma_K \times \Delta_K} df \wedge \widehat{G} + (-1)^{r+1+n} H df + \sum_{K \in \mathcal{P}'(N,*)} (-1)^{|K|} df \wedge \widehat{G} + (-1)^{r+1+n} H df + \sum_{K \in \mathcal{P}'(N,*)} (-1)^{|K|} df \wedge \widehat{G} + (-1)^{r+1+n} H df + \sum_{K \in \mathcal{P}'(N,*)} (-1)^{|K|} df \wedge \widehat{G} + (-1)^{r+1+n} H df + \sum_{K \in \mathcal{P}'(N,*)} (-1)^{|K|} df \wedge \widehat{G} + (-1)^{r+1+n} H df + \sum_{K \in \mathcal{P}'(N,*)} (-1)^{|K|} df \wedge \widehat{G} + (-1)^{r+1+n} H df + \sum_{K \in \mathcal{P}'(N,*)} (-1)^{|K|} df \wedge \widehat{G} + (-1)^{r+1+n} H df + (-1)^{r+1+n} H d$$

Setting g = f in (4.16), applying d to the resulting relation, we obtain that

$$dT^{\psi}f = \sum_{K \in P'(N,*)} (-1)^{|K|} d \int_{\Gamma_K \times \Delta_{OK}} df \wedge \widehat{G} + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + dG + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \times \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \setminus \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \setminus \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \setminus \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \setminus \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} d\left(\int_{\Gamma_K \setminus \Delta_K} f \wedge \widehat{G}\right) + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} dHf + (-1)^{r+n} dHf + \sum_{K \in P'(N,*)} dHf + (-1$$

Using (4.13) and Proposition 4.3.3, these two relations imply that

$$dT^{\psi}f - T^{\psi}df + L^{\psi}f = (-1)^{r+n}(dHf + Hdf + Mf)$$

and hence by (4.3)

$$f = dHf + Hdf + Mf . (4.17)$$

If moreover $0 \leq r \leq q - N$, then by Lemma 4.4.2, we obtain

$$dT^{\psi}f - T^{\psi}df = (-1)^{r+n}(dHf + Hdf) + \sum_{K \in P'(N)} \left[d\left(\int_{\Gamma_{K*} \times \Delta_{K*}} f \wedge \widehat{G} \right) - \int_{\Gamma_{K*} \times \Delta_{K*}} df \wedge \widehat{G} \right] .$$

It follows from Theorem 4.1.1, Proposition 4.3.3 and (4.13) that

$$f = dHf + Hdf + M^*f . ag{4.18}$$

Now we consider the general case. Let $f \in B_{n,r}^{\beta}(D)$, $0 \leq \beta < 1$, $0 \leq r \leq n$, such that also $df \in B_*^{\beta}(D)$. Choose $\varepsilon > 0$ with $\beta + \varepsilon < 1$. Then, by local shifts of f and a partition of unity argument, we can find a sequence of forms $f_{\nu} \in C_{n,r}^0(\overline{D})$ such that also the forms df_{ν} are continuous on \overline{D} and

$$f_{\nu} \longrightarrow f$$
 and $df_{\nu} \longrightarrow df$

in the space $B_*^{\beta+\epsilon}(D)$. By Lemma 4.4.1 (iii), then

$$Hf_{\nu} \longrightarrow Hf$$
 and $Hdf_{\nu} \longrightarrow Hdf$

uniformly on the compact subsets of D. Moreover the kernels \widehat{M}_K^{ψ} are of class C^1 in $D \times \overline{D} \times \Delta_K$ and therefore

$$Mf_{\nu} \longrightarrow Mf$$
 and $M^*f_{\nu} \longrightarrow M^*f$

uniformly on the compact subsets of D. Since, by (4.17) and (4.18), $f_{u} = dH f_{u} + H df_{u} + M f_{u}$

and

$$f_{\nu} = dHf_{\nu} + Hdf_{\nu} + M^*f_{\nu}, \text{ if } 0 \leq r \leq q - N,$$

this implies that

$$f = dHf + Hdf + Mf$$

$$f = dHf + Hdf + M^*f, \text{ if } 0 \leq r \leq q - N. \blacksquare$$

5. Homotopy formula and solution of the $\overline{\partial}$ -equation

in local q-concave wedges

Let (E, D) be a local q-concave wedge, $0 \le q \le n-1$, $(U_{\overline{D}}, \rho_1, \dots, \rho_N, \rho_*)$ the associated frame satisfying conditions (i), (ii) and (iii) in Definition 2.2.

5.1. LEMMA. — Let ξ be a fixed point in E, then there exists a neighborhood W of ξ in \mathbb{C}^n such that for each $f \in B_{n,r}^{\beta}(D)$, $0 \leq \beta < 1$, $0 \leq r \leq n$, the differential form $M^*f = \sum_{K \in P'(N)} \int_{\Gamma_{K*} \times \Delta_{K*}} f(\zeta) \wedge \widehat{M}_{K*}(\cdot, \zeta, \lambda)$ is of class C^1 in W and $D \subset W$. Moreover M^* is a bounded operator from $B_{n,*}^{\beta}(D)$ into $C_{n,*}^1(W)$.

Proof. — Recall that $\widehat{M}_{K*}(z,\zeta,\lambda) = \frac{1}{(2i\pi)^n} \det\left(d\tilde{\psi}_{K*}(z,\zeta,\lambda)\right)$ where $\widetilde{W}(z,\zeta,\lambda)$

$$\tilde{\psi}_{K*}(z,\zeta,\lambda) = \mathring{\chi}(\lambda_*) \frac{w(\zeta)}{\Phi^*(z,\zeta)} + \left(1 - \mathring{\chi}(\lambda_*)\right) \frac{w(z,\zeta,\lambda)}{\Phi(z,\zeta,\lambda)}$$

for $(z, \zeta, \lambda) \in D \times \overline{D} \times \Delta_{K*}$.

Moreover, we know from (3.1) and the definition of Φ^* in Section 4.3 that $\Phi^*(z,\zeta) \neq 0$ for all $(z,\zeta) \in \{x \in U_{\overline{D}}/\rho_*(x) < 0\} \times \{y \in U_{\overline{D}}/\rho_*(y) \le 0\}$. (5.1) From (3.6), (3.7) and the definition of Φ in Section 4.3 we get

Re
$$\Phi(z,\zeta,\lambda) \leq \rho_{\lambda}(z) + \rho_{\lambda}(\zeta) - \frac{\alpha}{2} |\zeta - z|^2$$
 for all $(z,\zeta,\lambda) \in U_{\overline{D}} \times U_{\overline{D}} \times \Delta_K$. (5.2)

Set $\delta = \operatorname{dist}(\xi, \Gamma_{1\cdots N*})$, if $z \in B(\xi, \tau\delta), \tau < 1$, and $\zeta \in \Gamma_{K*}$, then $|z-\zeta| > (1-\tau)\delta$. Let $W_{\tau,\lambda} = \{z \in B(\xi, \tau\delta) \mid \rho_*(z) < \frac{\delta\alpha(1-\tau)}{2}\}$, then $W_{\tau} = \bigcap_{\lambda \in \Delta_{K*}} W_{\tau,\lambda}$ is a neighborhood of ξ , which contains $D \cap B(\xi, \tau\delta)$.

We set $W = \left[(\bigcup_{\tau < 1} W_{\tau}) \cup D \right] \cap \{ z \in U_{\overline{D}} \mid \rho_*(x) < 0 \}$, W is a neighborhood of ξ in \mathbb{C}^n , which contains D. We deduce from (5.1) and (5.2) that $\Phi^*(z,\zeta) \neq 0$ and $\Phi(z,\zeta) \neq 0$ for $(z,\zeta,\lambda) \in W \times \Gamma_{K*} \times \Delta_{K*}$.

Consequently \widehat{M}_{K*} is a C^1 differential form on $W \times \Gamma_{K*} \times \Delta_{K*}$, which defines a bounded operator M^* from $B^{\beta}_{n,*}(D)$ into $C^1_{n,*}(W)$.

5.2. LEMMA. — Let $f \in B_{n,r}^{\beta}(D)$ a (n,r)-differential form, $0 \leq \beta < 1$, such that $df \in B_*^{\beta}(D)$. Then if $0 \leq r \leq q-N-1$, $dM^*f = M^*df$ on W.

Proof. — We consider first the case, where $f \in C^0_{n,r}(\overline{D})$ and df is also continuous on \overline{D} . If $z \in W$

$$dM^*f(z) = (-1)^{r+1} \sum_{K \in P'(N) \cup \emptyset} \int_{(\zeta,\lambda) \in \Gamma_{K*} \times \Delta_{K*}} f(\zeta) \wedge d_{\zeta,\lambda} \widehat{M}_{K*}(z,\zeta,\lambda)$$

since $d\widehat{M}_{K*} = 0$ by definition of \widehat{M}_{K*} .

Therefore, using Stokes' theorem and (4.6) we get

$$dM^*f(z) = M^*df(z) - \sum_{K \in P'(N) \cup \emptyset} \int_{(\zeta,\lambda) \in S_{K*} \times \Delta_{K*}} f(\zeta) \wedge \widehat{M}_{K*}(z,\zeta,\lambda) \\ - \sum_{K \in P'(N)} \int_{(\zeta,\lambda) \in \Gamma_{K*} \times \Delta_K} f(\zeta) \wedge \widehat{M}_{K*}(z,\zeta,\lambda).$$

But we have $\widehat{M}_{K*} \mid_{S_{K*} \times \Delta_{K*}} = d\widehat{L}_{K*}^{\tilde{\psi}} = 0$, then

$$dM^*f(z) = M^*df(z) - \sum_{K \in P'(N)} \int_{(\zeta,\lambda) \in \Gamma_{K*} \times \Delta_K} f(\zeta) \wedge \widehat{M}_{K*}(z,\zeta,\lambda) .$$
(5.3)

Since
$$\widehat{M}_{K*} |_{\Gamma_{K*} \times \Delta_{K}} = d\widehat{L}_{K}^{\tilde{\psi}} |_{\Gamma_{K*} \times \Delta_{K}}$$
, we have

$$\int_{(\zeta,\lambda)\in\Gamma_{K*} \times \Delta_{K}} f(\zeta) \wedge \widehat{M}_{K*}(z,\zeta,\lambda) = \int_{(\zeta,\lambda)\in\Gamma_{K*} \times \Delta_{K}} f(\zeta) \wedge d_{z,\zeta,\lambda} \widehat{L}_{K}^{\psi}(z,\zeta,\lambda)$$

$$= (-1)^{r} d_{z} \left(\int_{(\zeta,\lambda)\in\Gamma_{K*} \times \Delta_{K}} f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z,\zeta,\lambda) \right)$$

$$+ (-1)^{r+1} \int_{(\zeta,\lambda)\in\Gamma_{K*} \times \Delta_{K}} df(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z,\zeta,\lambda)$$

$$+ (-1)^{r} \int_{(\zeta,\lambda)\in\Gamma_{K*} \times \Delta_{K}} d_{\zeta,\lambda} \left(f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z,\zeta,\lambda) \right) \right)$$
(5.4)

By Lemma 4.3.1 we get that, if $0 \leq r \leq q-N$,

$$\int_{(\zeta,\lambda)\in\Gamma_{K*}\times\Delta_{K}}f(\zeta)\wedge\widehat{L}_{K}^{\tilde{\psi}}(z,\zeta,\lambda)=0$$
(5.5)

and if $0 \leq r \leq q - N - 1$ or df = 0

$$\int_{(\zeta,\lambda)\in\Gamma_{K*}\times\Delta_{K}} df(\zeta)\wedge \widehat{L}_{K}^{\widetilde{\psi}}(z,\zeta,\lambda) = 0.$$
(5.6)

One can easily prove that

$$\sum_{K \in P'(N)} \partial(\Gamma_{K*} \times \Delta_K) = \sum_{K \in P'(N)} S_{K*} \times \Delta_K .$$
(5.7)

Then, from Stokes' theorem and (5.7) we deduce

$$\sum_{K \in P'(N)} \int_{(\zeta,\lambda) \in \Gamma_{K*} \times \Delta_{K}} d_{\zeta,\lambda} \left(f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z,\zeta,\lambda) \right)$$
$$= \sum_{K \in P'(N)} \int_{(\zeta,\lambda) \in S_{K*} \times \Delta_{K}} f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z,\zeta,\lambda).$$
(5.8)

Using $[\widehat{L}_{K}^{\overline{\psi}}]_{\deg \overline{\zeta}=k} = 0$ for $K \in P'(N)$, $k \ge n-q$, and dim $S_{K*} = 2n-|K|-1$ for $K \in P'(N)$, we obtain that

$$\int_{(\zeta,\lambda)\in S_{K*}\times\Delta_{K}} f(\zeta)\wedge \widehat{L}_{K}^{\widehat{\psi}}(z,\zeta,\lambda) = 0 \quad \text{if} \quad 0 \leq r \leq q-N-1 .$$
(5.9)

Therefore using (5.3), (5.4), (5.5), (5.6), (5.8) and (5.9) the lemma is proved for $f \in C_{n,r}^0(\overline{D})$ such that df is continuous on \overline{D} .

Now, let $f \in B_{n,r}^{\beta}(D)$, $0 \leq \beta < 1$, $0 \leq r \leq q-N-1$, such that also $df \in B_{*}^{\beta}(D)$. Choose $\varepsilon > 0$ with $\beta + \varepsilon < 1$. Then as in the proof of Theorem 4.4.3, we can find a sequence of forms $f_{\nu} \in C_{n,r}^{0}(\overline{D})$ such that the forms df_{ν} are also continuous on \overline{D} and

 $f_{\nu} \longrightarrow f$ and $df_{\nu} \longrightarrow df$

in the space $B_*^{\beta+\epsilon}(D)$.

As the kernels \widehat{M}_{K*} are of class C^1 in $W \times \Gamma_{K*} \times \Delta_{K*}$, $K \in P'(N) \cup \emptyset$, $M^*f_{\nu} \to M^*f$ and $M^*df_{\nu} \to M^*df$ for the C^1 topology in the open set W. Since $dM^*f_{\nu} = M^*df_{\nu}$ by the first part of the proof we get that $dM^*f = M^*df$ for $0 \leq r \leq q - N - 1$.

5.3. THEOREM. — Let (E, D) be a local q-concave wedge, $0 \leq q \leq n-1$, $(U_{\overline{D}}, \rho_1, \ldots, \rho_N, \rho_*)$ the frame associated to (E, D) in Definition 2.2 and ξ a fixed point in E. Then there exists a real R, R > 0, such that for each $f \in B_{n,r}^{\beta}(D)$, $0 \leq \beta < 1$, $1 \leq r \leq q - N - 1$, with $df \in B_*^{\beta}(D)$ we have

$$f = Sdf + dSf$$
 on $D \cap B(\xi, R)$

where $S = H + TM^*$, T being the Henkin operator for solving the $\overline{\partial}$ -equation in $B(\xi, R)$.

Proof. — In Theorem 4.4.3, we have proved that, if $1 \le r \le q-N$, we have

$$f = dHf + Hdf + M^*f \quad \text{on} \quad D . \tag{5.10}$$

Let W be the neighborhood of ξ defined in Lemma 5.1. Then, there exists, R > 0, such that $\overline{B}(\xi, R) \subset W$ and M^*f is a C^1 differential form on $\overline{B}(\xi, R)$.

Let T be the operator defined by Corollary 1.12.2 in [He/Le 1] with the Leray map associated to $B(\xi, R)$ (see Definition 2.1.2 and Corollary 2.1.4 in [He/Le 1]). Then we have

$$M^* f = dT M^* f + T dM^* f$$
 on $B(\xi, R)$. (5.11)

Setting $S = H + TM^*$, (5.10), (5.11) and Lemma 5.2 imply

$$f = dSf + Sdf$$
 on $D \cap B(\xi, R)$.

5.4. LEMMA. — Let us suppose that (E, D) is a local q-concave wedge defined by a q-configuration, ξ a fixed point in E and W the neighborhood of ξ defined in Lemma 5.1 using a constant α satisfying the properties of Remark 2.6. Then for each $(z, \lambda) \in W \times \Delta_{1...N}$ there exists a strictly q-convex domain G such that

a) S_{1...N*} ⊂⊂ G ;
b) U_D is a q-convex extension of G ;
c) [Î^ψ_{1...N}]_{degζ=n-q-1} is a ∂-closed form on a neighborhood of G.

Proof. — Set $\tilde{\rho}_i(\zeta) = \rho_i(\zeta) - \rho_i(z) + \frac{\alpha}{2}|\zeta - z|^2$, i = 1, ..., N and for $\varepsilon > 0$, sufficiently small

$$\tilde{\varphi} = \max(-\tilde{\rho}_1,\ldots,-\tilde{\rho}_N,\rho_*-\varepsilon)$$
.

By definition of W, if $z \in W$, we have

$$S_{1\cdots N*} \subset \{\zeta \in U_{\overline{D}} \mid \tilde{\varphi}(\zeta) < 0\}.$$

Consequently there exists $\beta > 0$ such that

$$S_{1\cdots N*} \subset \{\zeta \in U_{\overline{D}} \mid \tilde{\varphi}^{\beta}(\zeta) < 0\}$$

where $\tilde{\varphi}^{\beta} = \max_{\beta} (-\tilde{\rho}_1, \dots, -\tilde{\rho}_N, \rho_* - \varepsilon).$

Since $\tilde{\rho}_{\lambda}$ is strictly (q+1)-convex for each $\lambda \in \Delta_{1...N}$ and ρ_* is convex, the function $\tilde{\varphi}^{\beta}$ is strictly (q+1)-convex on $U_{\overline{D}}$. Without loss of generality, we can assume that ρ_* is an unbounded exhausting function for $U_{\overline{D}}$. Then also $\tilde{\varphi}^{\beta}$ is an unbounded exhausting function for $U_{\overline{D}}$.

Since $-\operatorname{Re}\psi(z,\zeta,\lambda) > \tilde{\rho}_{\lambda}(\zeta)$ for $(z,\zeta,\lambda) \in U_{\overline{D}} \times U_{\overline{D}} \times \Delta_{1\cdots N}$, for each $(z,\lambda) \in W \times \Delta_{1\cdots N}$, $\hat{L}^{\psi}_{1\cdots N}(z,\cdot,\lambda)$ is defined on $\{\zeta \in U_{\overline{D}} \mid \tilde{\varphi}^{\beta}(\zeta) < 0\}$.

Using the (q+1)-holomorphy of ψ and the definition of $\widehat{L}^{\psi}_{1...N}$ we get

$$[L_{1\cdots N}^{\psi}]_{\deg \overline{\zeta}=n-q}=0 \quad \text{and} \quad d_{z,\zeta,\lambda}L^{\psi}=0 ,$$

therefore

$$\overline{\partial}_{\zeta} [L_{1\cdots N}^{\psi}]_{\deg \overline{\zeta} = n-q-1} = -(\partial_{\zeta} + d_{z,\lambda}) [L_{1\cdots N}^{\psi}]_{\deg \overline{\zeta} = n-q} = 0$$

For $(z, \lambda) \in W \times \Delta_{1 \dots N}$, $\widehat{L}_{1 \dots N}^{\psi}(z, \cdot, \lambda)$ is $\overline{\partial}$ -closed on $\{\zeta \in U_{\overline{D}} \mid \widetilde{\varphi}^{\beta}(\zeta) < 0\}$ and for sufficiently small c > 0, $G = \{\zeta \in U_{\overline{D}} \mid \widetilde{\varphi}^{\beta}(\zeta) < -c\}$ has the required properties.

5.5. LEMMA. — Under the hypothesis of Lemma 5.4, let $f \in B_{n,q-N}^{\beta}(D)$ an (n,q-N) differential form, $0 \leq \beta < 1$, such that df = 0 then

$$dM^*f=0 \quad on \quad W.$$

Proof. — First let us assume that f is continuous on \overline{D} . Using (5.3), (5.4), (5.5), (5.6) and (5.8) we get for $z \in W$

$$dM^*f(z) = \sum_{K \in P'(N)} \int_{(\zeta,\lambda) \in S_{K*} \times \Delta_K} f(\zeta) \wedge \widehat{L}_K^{\tilde{\psi}}(z,\zeta,\lambda) +$$

Since on $W \times S_{K*} \times \Delta_K$, $\widehat{L}_K^{\psi} = \widehat{L}_K^{\psi}$ and $[\widehat{L}_K^{\psi}]_{\deg \overline{\zeta} = k} = 0$ for $K \in P'(N)$, $k \ge n-q$, we obtain

$$dM^*f(z) = \int_{(\zeta,\lambda)\in S_{1...N*}\times\Delta_{1...N}} f(\zeta)\wedge [\widehat{L}_{1...N}^{\psi}]_{\deg\overline{\zeta}=n-q-1}(z,\zeta,\lambda)$$
$$= \int_{\lambda\in\Delta_{1...N}} \left(\int_{\zeta\in S_{1...N*}} f(\zeta)\wedge [\widehat{L}_{1...N}^{\psi}]_{\deg\overline{\zeta}=n-q-1}(z,\zeta,\lambda)\right). \quad (5.12)$$

We fix $(z, \lambda) \in W \times \Delta_{1 \dots N}$, by Lemma 5.4 $[\widehat{L}_{1 \dots N}^{\psi}]_{\deg \overline{\zeta} = n-q-1}$ is a $\overline{\partial}$ -closed form on a neighborhood of a strictly q-convex domain G containing $S_{1 \dots N^*}$. Moreover U is a q-convex extension of G and by Corollary 12.12 (ii) in [He/Le 2] we can approach $[\widehat{L}_{1 \dots N}^{\psi}]_{\deg \overline{\zeta} = n-q-1}$ uniformly on \overline{G} by a sequence $(F_i)_{i \in N}$ of $\overline{\partial}$ -closed form on U. Therefore we have

$$\int_{\zeta \in S_{1 \dots N^{*}}} f(\zeta) \wedge [\widehat{L}_{1 \dots N}^{\psi}]_{\deg \overline{\zeta} = n - q - 1}(z, \zeta, \lambda) = \lim_{j \to \infty} \int_{\zeta \in S_{1 \dots N^{*}}} f(\zeta) \wedge F_{j}(\zeta)$$

Since $S_{1\dots N*}$ is the boundary of $S_{1\dots N}$ and $f(\zeta) \wedge F_j(\zeta)$ is closed on $S_{1\dots N}$ we obtain

$$\int_{\zeta \in S_{1...N*}} f(\zeta) \wedge [\widehat{L}_{1...N}^{\psi}]_{\deg \overline{\zeta} = n-q-1}(z,\zeta,\lambda) = 0$$

and consequently using (5.12) $dM^*f = 0$ on W.

This proves the lemma when f is continuous on \overline{D} . The same argument as in the proof of Lemma 5.2, implies this lemma when $f \in B_{n,g-N}^{\beta}(D)$.

5.6. THEOREM. — Let (E, D) be a local q-concave wedge defined by a q-configuration (see Definition 2.4), $1 \leq q \leq n-1$, ξ a fixed point in E and N the real codimension of E in \mathbb{C}^n .

Then there exists a real R, R > 0, such that for each $f \in B_{n,q-N}^{\beta}(D), 0 \leq \beta < 1$, $q-N \geq 1$, with df = 0 on D we have

$$f = dSf$$
 on $D \cap B(\xi, R)$

where $S = H + TM^*$, T being the Henkin operator for solving the $\overline{\partial}$ -equation in $B(\xi, R)$.

Proof. — From Theorem 4.4.3, we know that

$$f = dHf + M^*f \quad \text{on} \quad D \ . \tag{5.13}$$

Let W be the neighborhood of ξ defined in Lemma 5.1. Then there exists R > 0 such that $\overline{B}(\xi, R) \subset W$ and $M^* f$ is a C^1 differential form on $\overline{B}(\xi, R)$. Moreover by Lemma 5.5, $M^* f$ is $\overline{\partial}$ -closed on $B(\xi, R)$.

Let T be the operator defined by Corollary 1.12.2 in [He/Le 1] with the Leray map associated to $B(\xi, R)$ (see Definition 2.1.2 and Corollary 2.1.4 in [He/Le 1]).

Then we have

$$M^* f = dT M^* f$$
 on $B(\xi, R)$. (5.14)

Setting $S = H + TM^*$, (5.13) and (5.14) imply

$$f = dSf$$
 on $D \cap B(\xi, R)$.

5.7. THEOREM. — Let (E, D) be a local q-concave wedge, defined by a qconfiguration, $1 \leq q \leq n-1$, N the real codimension of E and ξ a fixed point in E. Let us suppose that $q-N \geq 0$, then there exists a neighborhood W of ξ in $\mathbb{C}^n, D \subset W$, such that each holomorphic function in D has an holomorphic extension to W.

Proof. — Let f be a holomorphic function in D and $\varepsilon > 0$ a real number. We set $\rho_j^{\varepsilon} = \rho_j + \varepsilon$, $j = 1 \cdots N$, *. For ε sufficiently small, the frame $(U_{\overline{D}}, \rho_1^{\varepsilon}, \dots, \rho_N^{\varepsilon}, \rho_*^{\varepsilon})$ defines a new local q-concave wedge, denoted by $(E_{\varepsilon}, D_{\varepsilon})$, which has the same properties than (E, D). Let $d_{\varepsilon} = \text{dist}(\xi, E_{\varepsilon})$ and $\xi_{\varepsilon} \in E_{\varepsilon}$ a point such that $|\xi - \xi_{\varepsilon}| = d_{\varepsilon}$.

Set $\tilde{f}(\zeta) = f(\zeta)d\zeta_1 \wedge \cdots \wedge d\zeta_n$, \tilde{f} is a d-closed (n,0)-form which is continuous in $\overline{D}_{\varepsilon}$. Since $q \ge N$, Theorem 4.4.3, applied to \tilde{f} and D_{ε} , implies that

$$\tilde{f} = M_{\varepsilon}^* f$$
 in D_{ε} .

As in the proof of Lemma 5.1 we have to consider the functions Φ^* and Φ_{ε} associated to $(E_{\varepsilon}, D_{\varepsilon})$.

If $\zeta \in \Gamma_{K*}^{\varepsilon}$, then $\Phi^*(z,\zeta) \neq 0$ for all $z \in U_{\overline{D}}$ such that $\rho_*^{\varepsilon}(z) < 0$, *i.e.* $\rho^*(z) < -\varepsilon$. On the other hand, for all $(z,\zeta,\lambda) \in U_{\overline{D}} \times U_{\overline{D}} \times \Delta_K$

Re
$$\Phi_{\varepsilon}(z,\zeta,\lambda) \leq \rho_{\lambda}^{\varepsilon}(z) + \rho_{\lambda}^{\varepsilon}(\zeta) - \frac{\alpha}{2}|\zeta - z|^2$$

where the constant α depends only on the second derivatives of $\rho_{\lambda}^{\varepsilon}$ and consequently is independent of ε .

Following the proof of Lemma 5.1, if $\delta_{\varepsilon} = \operatorname{dist}(\xi_{\varepsilon}, \Gamma_{1\cdots N*}^{\varepsilon})$ set $W_{*}^{\varepsilon} = \{z \in B(\xi_{\varepsilon}, \tau \delta_{\varepsilon}) \mid \rho_{*}^{\varepsilon} < \frac{\delta_{\varepsilon} \alpha(1-\tau)}{2} \}$, then $W_{\tau}^{\varepsilon} = \bigcap_{\lambda \in \Delta_{K*}} W_{\tau,\lambda}^{\varepsilon}$ is a neighborhood of ξ_{ε} .

We shall prove that for some τ and for sufficiently small ε , then W_{τ}^{ε} is a neighborhood of ξ .

Since $\Gamma_{1\cdots N*}^{\varepsilon} = \Gamma_{1\cdots N*} \cap D_{\varepsilon}$, we have $\delta_{\varepsilon} \ge \delta - d_{\varepsilon}$. Choose $\varepsilon_0 > 0$ such that for all $\varepsilon < \varepsilon_0, \, \delta - d_{\varepsilon} > \frac{\delta}{2}$ and τ such that $d_{\varepsilon_0} < \frac{\tau \delta}{2}$.

Then if $\varepsilon < \inf(\frac{\alpha}{4}(1-\tau)\delta,\varepsilon_0)$, the point ξ belongs to $\{z \in B(\xi_{\varepsilon},\tau\frac{\delta}{2}) \mid \rho_{*}^{\varepsilon} < \frac{\delta_{\varepsilon}\alpha(1-\tau)}{2}\}$ and therefore $\xi \in W_{\tau}^{\varepsilon}$ and $\Phi_{\varepsilon}(z,\zeta,\lambda) \neq 0$ on $W_{\tau}^{\varepsilon} \times \Gamma_{K*} \times \Delta_{K*}$.

Choose such an ε , it follows from the definition of M_{ε}^* that $M_{\varepsilon}^* \tilde{f}$ is a C^1 , (n, 0)-form in W_{τ}^{ε} , moreover by Lemma 5.5 $dM_{\varepsilon}^* \tilde{f} = 0$.

Finally the (n,0)-form \tilde{h} defined by $\tilde{h} = \tilde{f}$ on D and $\tilde{h} = M_{\varepsilon}^* \tilde{f}$ on W_{τ}^{ε} defined a holomorphic function h on $W = W_{\tau}^{\varepsilon} \cup D$ such that h = f on D.

6. Estimates

In this section we denote by (E, D) a local q-concave wedge, $0 \le q \le n-1$, and by $(U_{\overline{D}}, \rho_1, \ldots, \rho_N, \rho_*)$ the associated frame satisfying (i), (ii) and (iii) in Definition 2.2. Let $\Gamma_K, K \in P(N, *)$ be the submanifolds of \overline{D} defined in Section 4.2 and $\Phi(z, \zeta, \lambda)$ the function defined in Section 4.3.

In Section 4.3, we have defined an operator H from $B_{n,*}^{\beta}(D)$ into $C_{n,*}^{0}(D)$ by

$$Hf = \sum_{K \in P'(N,*)} (-1)^{|K|} H_K f \text{ for } f \in B_{n,*}^{\beta}(D)$$

where the H_K 's are given by (4.14).

Let us set $H'f = \sum_{K \in P'(N)} (-1)^{|K|} H_K f$ and $H^*f = \sum_{K \in P'(N) \cup \emptyset} (-1)^{|K|+1} H_{K*} f$.

Let us recall some definitions and propositions given in [L-T/Le].

6.1. DEFINITION. — Let $K \in P'(N, *)$ and let s be an integer.

A form of type O_s (or of type $O_s(z,\zeta,\lambda)$) on $D \times \Gamma_K \times \Delta_{OK}$ is, by definition, a continuous differential form $f(z,\zeta,\lambda)$ defined for all $(z,\zeta,\lambda) \in D \times \Gamma_K \times \Delta_{OK}$ with $z \neq \zeta$ such that the following conditions are fulfilled :

- (i) All derivatives of the coefficients of $f(z, \zeta, \lambda)$ which are of order 0 in ζ , of order ≤ 1 in z, and of arbitrary order in λ are continuous for all $(z, \zeta, \lambda) \in D \times \Gamma_K \times \Delta_{OK}$ with $z \neq \zeta$.
- (ii) Let ∇^κ_z, κ = 0, 1, be a differential operator with constant coefficients which is of order 0 in ζ, of order κ in z, and of arbitrary order in λ. Then there is a constant C > 0 such that, for each coefficient φ(z, ζ, λ) of the form f(z, ζ, λ),

$$\left|\nabla_{z}^{\kappa}\varphi(z,\zeta,\lambda)\right| \leq C|\zeta-z|^{s-\kappa}$$

for all $(z,\zeta,\lambda) \in D \times \Gamma_K \times \Delta_{OK}$ with $z \neq \zeta$.

(iii) There exist neighborhood $U_0, U_K \subseteq \Delta_{OK}$ of Δ_0 and Δ_K , respectively, such that $f(z,\zeta,\lambda) = 0$ for all $(z,\zeta,\lambda) \in D \times \Gamma_K \times (U_0 \cup U_K)$.

The symbols $O_s(z,\zeta,\lambda)$ and O_s will be used also to denote forms of this type, also in formulas. For example :

 $f = O_s$ means : f is a form of type O.

 $O_s \wedge f = O_k \wedge g + O_m$ means : for each form h of type O_s there exist a form u of type O_k and a form v of type O_m such that $h \wedge f = u \wedge g + v$.

The equation

$$Ef(z) = \int_{(\zeta,\lambda)\in S_K \times \Delta_{OK}} O_s(z,\zeta,\lambda) \wedge f(z,\zeta,\lambda)$$

means : there exists a form \widehat{E} of type O_s such that

$$Ef(z) = \int_{(\zeta,\lambda)\in S_K\times\Delta_{OK}} \widehat{E}(z,\zeta,\lambda) \wedge f(z,\zeta,\lambda)$$

for all f.

6.2. DEFINITION. — Let $m \ge 0$ be an integer. An operator of type m is, by definition, a map

$$E: \bigcup_{0 \leq \beta < 1} B^{\beta}_{n,*}(D) \longrightarrow C^{0}_{n,*}(D)$$

such that there exist

- an integer $k \ge 0$,
- $K \in P'(N)$,

- a form $\widehat{E}(z,\zeta,\lambda)$ of type $O_{|K|-2n+2k+m}$ on $D \times \Gamma_K \times \Delta_{OK}$ such that, for all $f \in B_{n,*}^{\beta}(D), 0 \leq \beta < 1$,

$$Ef(z) = \int_{(\zeta,\lambda)\in\Gamma_{K}\times\Delta_{OK}} \widetilde{f}(\zeta) \wedge \frac{\widehat{E}(z,\zeta,\lambda)\wedge\Theta(\zeta)}{\Phi^{k+m}(z,\zeta,\lambda)}$$

where $\tilde{f} \in B^{\beta}_{0,*}(D)$ is the form with

$$f(\zeta) = \tilde{f}(\zeta) \wedge d\zeta_1 \wedge \cdots \wedge d\zeta_n ,$$

and for Θ holds the following :

if m = 0, then $\Theta = 1$;

if $m \ge 1$, then there exist indices $i_1, \ldots, i_m \in K$ such that either

$$\Theta = \partial \rho_{i_1} \wedge \cdots \wedge \partial \rho_{i_m} \quad \text{or} \quad \Theta = \overline{\partial} \rho_{i_1} \wedge \partial \rho_{i_2} \wedge \cdots \wedge \partial \rho_{i_m}$$

(for the definition of λ , see Sect. 1.8).

6.3. PROPOSITION. — Let us consider an operator E of type $m, m \ge 0$.

(i) Let $0 \leq \beta < 1/2, 0 < \varepsilon \leq 1/2 - \beta$, and $1 \leq r \leq n$. Then $E(B_{n,r}^{\beta}(D)) \subset C_{n,r-1}^{1/2-\beta-\varepsilon}(\overline{D})$

and the operator E is compact as operator between the Banach spaces $B_{n,r}^{\beta}(D)$ and $C_{n,r-1}^{1/2-\beta-\epsilon}(\overline{D})$

(ii) Let $1/2 \leq \beta < 1$, $0 < \varepsilon \leq 1-\beta$, and $1 \leq r \leq n$. Then $E(B_{n,r}^{\beta}(D)) \subset B_{n,r-1}^{\beta+\varepsilon-1/2}(\overline{D})$

and the operator E is compact as operator between the Banach spaces $B_{n,r}^{\beta}(D)$ and $B_{n,r-1}^{\beta+\epsilon-1/2}(D)$.

For the proof of this proposition see the proof of Theorem 4.12 in Section 8 of [L-T/Le].

6.4. THEOREM. — The operator H' is a finite sum of operators of type $m, m \ge 0$.

Proof. — It comes from the definition of H' that the calculations are exactly the same than in the proof of Theorem 5.4 in [L-T/Le]. The only change is that we have exchange the roles of z and ζ in the definition of w. But using that, for all $k = 1, \ldots, N, \rho_k$ is of class C^3 , we get that

$$O_0 \wedge W = O_0 \wedge \sum_{j=1}^n w^j(z,\zeta,\lambda) d\zeta_j = O_0 \wedge \sum_{k \in K} \frac{\partial \rho_k}{\partial z_j}(z) d\zeta_j + O_1$$
$$= O_0 \wedge \partial \rho_j(\zeta) + \sum_{k \in K} \left(\frac{\partial \rho_k}{\partial z_j}(z) - \frac{\partial \rho_k}{\partial z_j}(\zeta) \right) d\zeta_j + O_1$$
$$= O_0 \wedge \partial \rho_j(\zeta) + O_1$$

and in the same way $O_0 \wedge d_\lambda W = \sum_{j \in K} O_0 \wedge \partial \rho_j(\zeta) + O_1$ and $O_0 \wedge \overline{\partial}_{z,\zeta} \Phi = \sum_{j \in K} O_0 \wedge \overline{\partial} \rho_j(\zeta) + O_1$ on $D \times \Gamma_K \times \Delta_{OK}$, $K \in P'(N)$, which are exactly the same estimates than in [L-T/Le].

6.5. PROPOSITION. — Let ξ be a fixed point in E and W the neighborhood of ξ defined in Lemma 5.1. Then for each $f \in B_{n,r}^{\beta}(D)$, $0 \leq \beta < 1$, $0 \leq r \leq n$ the differential form H^*f is of class C^1 in W and the operator H^* is a bounded linear operator from $B_{n,*}^{\beta}(D)$ into $C_{n,*}^1(W)$.

Proof. — By definition of $W, \Phi^*(z,\zeta) \neq 0$, $\Phi(z,\zeta) \neq 0$ and $|z-\zeta| \neq 0$ for $(z,\zeta,\lambda) \in W \times \Gamma_{K*} \times \Delta_{OK*}$.

Therefore the kernels, which are used to define the operator H^* , are C^1 differential forms on $W \times \Gamma_{K*} \times \Delta_{OK*}$. Then it follows easily from the definition of H^* that H^* is a bounded linear operator from $B_{n,*}^{\beta}(D)$, $0 \leq \beta < 1$, into $C_{n,*}^1(W)$.

6.6. THEOREM. — Let ξ be a fixed point in E and R be a positive real number such that $\overline{B}(\xi, R) \subset W$, where W is the neighborhood of ξ defined in Lemma 5.1. Then

the operator $S = H + TM^*, T$ being the Henkin operator for solving the $\overline{\partial}$ -equation in $B(\xi, R)$ has the following properties :

- i) For $0 \leq \beta < 1/2$, $0 < \varepsilon \leq 1/2 \beta$ and $1 \leq r \leq n$, S is a compact operator between the Banach spaces $B_{n,r}^{\beta}(D)$ and $C_{n,r-1}^{1/2-\beta-\varepsilon}(\overline{D} \cap \overline{B}(\xi, R))$.
- ii) For $1/2 \leq \beta < 1$, $0 < \varepsilon \leq 1-\beta$ and $1 \leq r \leq n$, S is a compact operator, between the Banach spaces $B_{n,r}^{\beta}(D)$ and $B_{n,r-1}^{\beta+\varepsilon-1/2}(D \cap B(\xi, R))$.

Proof. — Recall that $S = H' + H^* + TM^*$. It follows from Proposition 6.3 and Theorem 6.4 that H' satisfies the conclusions *i*) and *ii*) of the theorem.

By Lemma 5.1 and Theorem 2.2.2 in [He/Le 1], TM^* is a bounded operator from $B_{n,*}^{\beta}(D)$, $0 \leq \beta < 1$, into $C_{n,*}^{1/2}(\overline{D} \cap \overline{B}(\xi, R))$ and, by Proposition 6.5, H^* is a bounded operator from $B_{n,*}^{\beta}(D)$, $0 \leq \beta < 1$, into $C_{n,*}^1(\overline{D} \cap \overline{B}(\xi, R))$.

Now let $0 \leq \beta < 1/2$. It follows from Ascoli's theorem that the injection maps from $C_{n,*}^{1/2}(\overline{D} \cap \overline{B}(\xi, R))$ and $C_{n,*}^1(\overline{D} \cap \overline{B}(\xi, R))$ into $C^{1/2-\beta-\varepsilon}(\overline{D} \cap \overline{B}(\xi, R))$ are compact. This ends the proof of the theorem in the first case.

Finally, suppose that $1/2 \leq \beta < 1$. By Ascoli's theorem, $H^* + TM^*$ is a compact operator from $B^{\beta}_{n,*}(D)$ into $C^0_{n,*}(\overline{D} \cap \overline{B}(\xi, R))$. Moreover the injection map from $C^0_{n,*}(\overline{D} \cap \overline{B}(\xi, R))$ into $B^{\beta+\epsilon-1/2}_{n,*}(D \cap B(\xi, R))$ is bounded and the second assertion of the theorem is proved.

Combining Theorem 5.3, Theorem 5.6 and Theorem 6.6, we obtain the main result of this paper :

6.7. THEOREM. — Let (E, D) be a local q-concave wedge, $0 \le q \le n-1$, and ξ be a fixed point in E. Then there exists a real R, R > 0, and a linear operator S from $B_{n,r}^{\beta}(D)$ into $C_{n,r-1}^{0}(D \cap B(\xi, R))$, $1 \le r \le n$, such that :

- i) If $0 \leq \beta < 1/2$ and $0 < \varepsilon \leq 1/2 \beta$, S is compact from $B_{n,*}^{\beta}(D)$ into $C_{n,*}^{1/2-\beta-\varepsilon}(\overline{D}\cap \overline{B}(\xi,R))$.
- ii) If $1/2 \leq \beta < 1$ and $0 < \varepsilon \leq 1-\beta$, S is compact from $B_{n,*}^{\beta}(D)$ into $B_{n,*}^{\beta+\varepsilon-1/2}(D \cap B(\xi, R))$.
- iii) For each $f \in B_{n,r}^{\beta}(D)$, $0 \leq \beta < 1$, $1 \leq r \leq q \operatorname{codim}_{\mathbb{R}} E 1$ with $df \in B_{*}^{\beta}(D)$ we have

$$f = Sdf + dSf$$
 on $D \cap B(\xi, R)$.

iv) If moreover the local q-concave wedge (E, D) is defined by a q-configuration and $1 \leq r = q - \operatorname{codim}_{\mathbb{R}} E$, then for each d-closed form $f \in B_{n,r}^{\beta}(D), 0 \leq \beta < 1$ we have

$$f = dSf$$
 on $D \cap B(\xi, R)$.

7. Globalization

Let us denote by E a holomorphic vector bundle over an *n*-dimensional complex manifold X, by Ω and Δ two domains in X such that $\Omega \subset \Delta \subset X$ and by D the domain $\Delta \setminus \Omega$. Further, let $C^{\alpha}_{n,r}(\overline{D}, E), B^{\beta}_{n,r}(D, E)$ etc... the Banach spaces of E-valued differential forms on D, which are obtained canonically extending the definitions of Section 1.13.

7.1. DEFINITION. — Let q and q' be two integers, $0 \le q$, $q' \le n-1$. A domain $D \subset X$ will be called a q-concave, q'-convex domain of order N, $1 \le N \le 2n$, if there exist two domains $\Omega \subset \Delta \subset X$ such that $D = \Delta \setminus \Omega$ and satisfying the following properties :

- (i) For each point ξ ∈ ∂Ω, there exists a neighborhood U_ξ of ξ in X contained in a coordinate domain, such that, after identification with its image in Cⁿ, U_ξ contains a local q-concave wedge (E_ξ, D_ξ) with
 - (a) $\xi \in E_{\xi}$;
 - (b) $\operatorname{codim}_{\mathbb{R}} E_{\xi} \leq N$;
 - (c) (E_{ξ}, D_{ξ}) is defined by a q-configuration;
 - (d) If $(U_{\overline{D}_{\xi}}, \rho_1, \dots, \rho_{N_{\xi}}, \rho_*)$ is a frame for (E_{ξ}, D_{ξ}) then $D \cap U_{\xi} \cap \{z \in U_{\overline{D}_{\xi}} \mid \rho_*(z) < 0\} = D_{\xi}$.
- (ii) Δ is a local q'-convex domain.

7.2. Examples. — The simplest example of such domains is given by $D = B(0, R') \setminus B(0, R)$, 0 < R < R' in \mathbb{C}^n , this is a (n-1)-concave, (n-1)-convex domain of order 1. Another simple example is $D = \Delta \setminus \Omega$ with Δ a C^2 smooth q'-convex domain and Ω a C^3 smooth q-convex domain.

A more interesting example is given by $D = \Delta \setminus \Omega$ where Δ is a strictly pseudoconvex domain with C^2 -smooth boundary and Ω is the union of N strictly pseudoconvex domains with C^3 -smooth boundary, whose boundaries are intersecting transversally. Such a domain is a (n-1)-concave, (n-1)-convex domain of order N.

The case where Δ is a strictly pseudoconvex domain with C^2 -smooth boundary and $\Omega = \Omega_1 \cup \Omega_2$ with Ω_i , i = 1, 2, two strictly q-convex domains with C^3 -smooth boundary intersecting themselves transversally defined by $\Omega_i = \{z \in U_{\partial\Omega_1} \mid \varphi_i(z) < 0\}$ and such that for each $\lambda \in [0, 1]$ and $\xi \in \partial\Omega_1 \cap \partial\Omega_2$ the Levi form $L_{\lambda\varphi_1+(1-\lambda)\varphi_2}(\xi)$ restricted to $T_{\xi}^{\mathbb{C}}(\partial\Omega_1 \cap \partial\Omega_2)$ has at least dim_C $T_{\xi}^{\mathbb{C}}(\partial\Omega_1 \cap \partial\Omega_2) - n + q + 1$ positive eigenvalues, defines a q-concave, (n-1)-convex domain of order 2 (cf. remark 2.5).

7.3. THEOREM. — Let D be a q-concave, q'-convex domain of order N in X. We suppose that $q+q'-N \ge n$. Then there exist linear operators

$$\widetilde{T}_r: \bigcup_{0 \leqslant \beta < 1} B^{\beta}_{n,r}(D, E) \longrightarrow C^0_{n,r-1}(D, E)$$
$$K_r: \bigcup_{0 \leqslant \beta < 1} B^{\beta}_{n,r}(D, E) \longrightarrow C^0_{n,r}(D, E)$$

and

for $n-q' \leq r \leq q-N$ such that the following holds :

(i) if $n-q' \leq r \leq q-N-1$, then

$$f = d\widetilde{T}_r f + \widetilde{T}_{r+1} df + K_r f$$

for all $f \in B_{n,r}^{\beta}(D, E)$, $0 \leq \beta < 1$, such that df also belongs to $B_{*}^{\beta}(D, E)$;

(ii) if r = q-N, then for all d-closed $f \in B_{n,r}^{\beta}(D, E), 0 \leq \beta < 1$,

$$f = dT_r f + K_r f ;$$

- (iii) if $0 \leq \beta < 1/2$ and $0 < \varepsilon \leq 1/2 \beta$, then \widetilde{T}_r and $K_r, n-q' \leq r \leq q-N$, are compact operators from $B_{n,r}^{\beta}(D, E)$ into $C_{n,r-1}^{1/2-\beta-\varepsilon}(\overline{D}, E)$, resp. $C_{n,r}^{1/2-\beta-\varepsilon}(\overline{D}, E)$;
- (iv) if $1/2 \leq \beta < 1$ and $\varepsilon > 0$, then \widetilde{T}_r and $K_r, n-q' \leq r \leq q-N$, are compact operators from $B_{n,r}^{\beta}(D, E)$ into $B_{n,r-1}^{\beta+\varepsilon-1/2}(D, E)$, resp. $B_{n,r}^{\beta+\varepsilon-1/2}(D, E)$

Proof. — By Definition 7.1 and Lemma 2.4 in [L-T/Le] there exists a finite number of open sets $U_1, \ldots, U_m \subset X$ such that $\overline{D} \subset U_1 \cup \cdots \cup U_m$ and each $U_j \cap D$, $1 \leq j \leq m$ is either a local q'-convex domain or a local q-concave wedge defined by a q-configuration. The second case occurs, when $U_j \cap \Omega \neq \emptyset$. Moreover, we may assume that E is trivial over some neighborhood of each $\overline{U_j \cap D}$, $1 \leq j \leq m$.

Let A_j be the operators which are induced in

$$\bigcup_{\leq \beta < 1} B_{n,*}^{\beta}(D,E)$$

by the local operators in the following way : if $U_j \cap D$ is a local q-concave wedge $A_j f = S(f|_{U_j \cap D})$ where S is defined in Theorems 5.3 and 5.6 and if $U_j \cap D$ is a local q'-convex domain $A_j f = H(f|_{U_j \cap D})$ where H is defined in Section 4 of [L-T/Le].

We choose non negative C^{∞} functions χ_j with compact support in U_j such that $\chi_1 + \cdots + \chi_m = 1$ in a neighborhood of \overline{D} and we set

and

$$\widetilde{T}_r f = \sum_{j=1}^m \chi_j A_j f$$
$$K_r f = \sum_{j=1}^m d\chi_j \wedge A_j f$$

for $n-q' \leq r \leq q-N, f \in B_{n,r}^{\beta}(D), 0 \leq \beta < 1$.

Up to the end of this part we will suppose that $X = \mathbb{C}^n$.

7.4. DEFINITION. — A q-concave, q'-convex domain of order $N, 1 \le N \le 2n$, D contained in \mathbb{C}^n will be of special type if $D = \Delta \setminus \Omega$ where Δ is a local q'convex domain and Ω is the union of N strictly q-convex domains $\Omega_i, 1 \le i \le N$, with C^3 smooth boundary intersecting themselves transversally, defined by $\Omega_i = \{z \in U_{\partial\Omega_i} \mid \varphi_i(z) < 0\}$ and such that for each multi-index $K \in \mathcal{P}(N)$, each $\lambda \in \Delta_K$ and each $\xi \in \bigcap_{k_\nu \in K} \partial\Omega_{K_\nu}$ the Levi form $L_{\lambda_1 \varphi_{k_1} + \dots + \lambda_\ell \varphi_{k_\ell}}(\xi)$ restricted to $T_{\xi}^{\mathbb{C}}(\partial\Omega_{k_1} \cap \dots \cap \partial\Omega_{k_\ell})$ has at least dimc $T_{\xi}^{\mathbb{C}}(\partial\Omega_{k_1} \cap \dots \cap \partial\Omega_{k_\ell}) - n + q + 1$ positive eigenvalues. 7.5. PROPOSITION. — Let $D \subset \mathbb{C}^n$ be a q-concave, q'-convex domain of order N and of special type and suppose that $q+q'-N \ge n$. If f is a continuous (n, r)-form in some neighborhood $U_{\overline{D}}$ of \overline{D} , $n-q' \le r \le q-N$, such that $\overline{\partial}f = 0$ in $U_{\overline{D}}$, then there exists a form $u \in \bigcap_{\epsilon>0} C_{n,r-1}^{1/2-\epsilon}(\overline{D})$ such that $\overline{\partial}u = f$ in D.

Proof. — This proposition is the analogous in the case of q-concave, q'-convex domains of Lemma 2.3.4 in [He/Le 1]. Using Theorem 7.3 at the place of Lemma 2.3.1 ([He/Le 1]) we can repeat the proof of Lemma 2.3.4 in [He/Le 1]. We have only to remark that there exists a q-concave, q'-convex domain of order N and of special type G such that $D \subset G \subset U_{\overline{D}}$.

Let us consider $\Omega_{i,\alpha} = \{z \in U_{\partial\Omega_i} \mid \varphi_i(z) > \alpha\}$. For $\alpha > 0$, sufficiently small it is easy to verify that $\Omega_{\alpha} = \bigcup_{i=1}^{N} \Omega_{i,\alpha}$ has the same properties than Ω . Moreover if $\Delta = \{z \in U_{\overline{\Delta}} \mid \rho_j < 0, j = 1, ..., N\}$ then $\Delta_{\beta} = \{z \in U_{\overline{\Delta}} \mid \rho_j < -\beta, j = 1, ..., N\}$ is also a local q-convex domain for sufficiently small $\beta > 0$. Then it suffices to take $G = \Delta_{\beta} \setminus \Omega_{\alpha}$ for some small α and β .

Following the same methods than in part 2.3 of [He/Le 1], we get the following theorem on the resolution of the $\overline{\partial}$ -equation in q-concave, q'-convex domains with estimates up to the boundary.

7.6. THEOREM. — Let $D \subset \mathbb{C}^n$ be a q-concave, q'-convex domain of order N and of special type such that $q+q'-N \ge n$ and for $0 \le \beta < 1$, let $f \in B_{n,r}^{\beta}(D)$ be a $\overline{\partial}$ -closed form on D, $n-q' \le r \le q-N$.

(i) if $0 \leq \beta < 1/2$, there exists $u \in \bigcap_{\varepsilon > 0} C_{n,r-1}^{1/2-\beta-\varepsilon}(\overline{D})$ such that $\overline{\partial}u = f$ and for each $\varepsilon > 0$ there exists also a constant C_{ε} such that

$$||u||_{1/2-\beta-\varepsilon} \leq C_{\varepsilon}||f||_{-\beta};$$

(ii) if $1/2 \leq \beta < 1$, there exists $u \in \bigcap_{\varepsilon > 0} B_{n,r-1}^{\beta+\varepsilon-1/2}(D)$ such that $\overline{\partial} u = f$ and for each $\varepsilon > 0$ there exists also a constant C_{ε} such that

$$||u||_{1/2-\beta-\varepsilon} \leq C_{\varepsilon}||f||_{-\beta} .$$

Proof. — As in the proof of Theorem 2.3.5 in [He/Le 1], we deduce the existence of the solution u from Proposition 7.5 by the bumping method. The estimates are a consequence of the Banach's open mapping theorem and of Theorem 7.3 (cf. [He/Le 1] appendix 2).

Bibliography

- [Ai/He] AIRAPETJAN R.A., HENKIN G.M. Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions, Usp. Mat. Nauk 39 (1984), 39–106, [Engl. trans. Russ. Math. Surv., 39 (1984), 41–118], and : Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions II, Matem. Sbornik 127 (169) (1985), 1, [Engl. trans. Math. USSR Sbornik 55 (1986), 1, 91–111].
- [G] GRAUERT H. Kantenkohomologie, Compositio Math. 44 (1981), 79–101.
- [He] HENKIN G.M. The method of integral representations in complex analysis (russ.). In : Sovremennge problemy matematiki, Fundamentalnye napravlenija, Moscow Viniti 7 (1985), 23–124, [Engl. trans. in : Encyclopedia of Math. Sci., Several complex variables I, Springer-Verlag, 7 (1990), 19–116].
- [He/Le 1] HENKIN G.M., LEITERER J. Theory of functions on complex manifolds, Akademie-Verlag Berlin and Birkhäuser-Verlag Boston, 1984.
- [He/Le 2] HENKIN G.M., LEITERER J. Andreotti-Grauert theory by integral formulas, Akademie-Verlag Berlin and Birkhäuser-Verlag Boston (Progress in Math. 74), 1988.
- [Li] LIEB I. Beschränkte Lösungen der Cauchy-Riemannschen Differentialgleichungen auf q-konkaven Gebieten, Manuscripta Math. 26 (1979), 387– 409.
- [L-T/Le] LAURENT-THIEBAUT C., LEITERER J. Uniform estimates for the Cauchy-Riemann equation on q-convex wedges, Prépublication de l'Institut Fourier nº 186, Grenoble, 1991.
- [R/S] RANGE R.M., SIU Y.T. Uniform estimates for the ∂-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325–354.

Ch. LAURENT-THIÉBAUT INSTITUT FOURIER Université de GRENOBLE 1 BP 74 38402 St Martin d'Hères Cedex (France)

J. LEITERER FACHBEREICH MATHEMATIK der HUMBOLDT-Universität 0-1086 Berlin (Germany)