Christine Laurent-Thiébaut

JÜRGEN LEITERER
 Uniform estimates for the Cauchy-Riemann equation on q-concave wedges

Astérisque, tome 217 (1993), p. 151-182
http://www.numdam.org/item?id=AST_1993_217__151_0

© Société mathématique de France, 1993, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

UNIFORM ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION ON q-CONCAVE WEDGES

Christine LAURENT-THIÉBAUT and Jürgen LEITERER

0. Introduction
1. Preliminaries
2. Local q-concave wedges
3. A Leray map for local q-concave wedges
4. An integral formula in local q-concave wedges
5. Homotopy formula and solution of the $\bar{\partial}$-equation in local q-concave wedges
6. Estimates
7. Globalisation

0. Introduction

This article is the continuation of [L-T/Le]. Both papers are preliminary works for a systematic study of the tangential Cauchy-Riemann equation on real submanifolds from the viewpoint of uniform estimates and by means of integral formulas. For this study we have to solve the Cauchy-Riemann equation with uniform estimates on q-convex and q-concave wedges in \mathbb{C}^{n} (for historical remarks, see the introduction to [L-T/Le]). Whereas [L-T/Le] is devoted to q-convex wedges, here we study q-concave wedges.

The main result of the present paper can be formulated as follows. Let $G \subseteq \mathbb{C}^{n}$ be a domain, q an integer with $1 \leqslant q \leqslant n-1$, and $\varphi_{1}, \ldots, \varphi_{N}$ a collection of real C^{2} functions on G satisfying the following three conditions :
(i) $E:=\left\{z \in G: \varphi_{1}(z)=\cdots=\varphi_{N}(z)=0\right\} \neq \emptyset$;
(ii) $d \varphi_{1}(z) \wedge \cdots \wedge d \varphi_{N}(z) \neq 0$ for all $z \in G$;
(iii) If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ is a collection of non-negative real numbers with $\lambda_{1}+\cdots+\lambda_{N}=1$, then, at all points in G, the Levi form of the function

$$
\lambda_{1} \varphi_{1}+\cdots+\lambda_{N} \varphi_{N}
$$

has at least $q+1$ positive eigenvalues.

Set

$$
\begin{equation*}
D=\bigcap_{j=1}^{N}\left\{z \in G: \varphi_{j}(z)>0\right\} \tag{0.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega=\bigcup_{j=1}^{N}\left\{z \in G: \varphi_{j}(z)>0\right\} \tag{0.2}
\end{equation*}
$$

Further, for $\xi \in \mathbb{C}^{n}$ and $R>0$, we denote by $B_{R}(\xi)$ the open ball of radius R in \mathbb{C}^{n} centered at ξ. Then Theorems 5.6, 5.7 and 6.6 of the present work imply the following
0.1. Theorem. - For each point $\xi \in E$ there exists a radius $R>0$ such that :
(a) If $q-N \geqslant 0$, then each holomorphic function on D extends holomorphically to $D \cup B_{R}(\xi) ;$
(b) If $q-N \geqslant 1$ and f is a continuous $\bar{\partial}$-closed (n, r)-form with $1 \leqslant r \leqslant q-N$ on D, then there exists a continuous ($n, r-1$)-form u on $D \cap B_{R}(\xi)$ with

$$
\begin{equation*}
\bar{\partial} u=f \text { on } D \cap B_{R}(\xi) \tag{0.3}
\end{equation*}
$$

Moreover if, for some β with $0 \leqslant \beta<1, f$ satisfies the estimate

$$
\begin{equation*}
\|f(\zeta)\| \leqslant[\operatorname{dist}(\zeta, \partial D)]^{-\beta}, \quad \zeta \in D \tag{0.4}
\end{equation*}
$$

then the solution u of (0.3) can be given by an explicit integral operator and, for all $\varepsilon>0$, there is a constant $C_{\varepsilon}>0$ (independent of f) such that :

If $0 \leqslant \beta<1 / 2$, then u is Hölder continuous with exponent $1 / 2-\beta-\varepsilon$ on $\overline{D \cap B_{R}(\xi)}$ and

$$
\begin{equation*}
\|u\|_{1 / 2-\beta-\varepsilon, \overline{D \cap B_{R}(\xi)}} \leqslant C_{\varepsilon} \sup _{\zeta \in D}\|f(\zeta)\|[\operatorname{dist}(\zeta, \partial D)]^{\beta} \tag{0.5}
\end{equation*}
$$

where $\|\cdot\|_{1 / 2-\beta-\varepsilon, \overline{D \cap B_{R}(\xi)}}$ is the Hölder norm with exponent $1 / 2-\beta-\varepsilon$ on $\overline{D \cap B_{R}(\xi)}$. If $1 / 2 \leqslant \beta<1$, then

$$
\begin{equation*}
\sup _{z \in D}\|u(z)\|[\operatorname{dist}(z, \partial D)]^{\beta-1 / 2+\varepsilon} \leqslant C_{\varepsilon} \sup _{\zeta \in D}\|f(\zeta)\|[\operatorname{dist}(\zeta, \partial D)]^{\beta} \tag{0.6}
\end{equation*}
$$

Note that the radius R and the constant C_{ε} in Theorem 0.1 depend continuously on $\varphi_{1}, \ldots, \varphi_{N}$ with respect to the C^{2} topology.

Theorem 0.1 implies the following corollary for the domain Ω defined by (0.2) :
0.2. Corollary. - For each point $\xi \in E$ there exists a radius $R>0$ such that :
(i) If $q \geqslant 1$, then each holomorphic function on Ω extends holomorphically to $\Omega \cup B_{R}(\xi)$;
(ii) If $q \geqslant 2$ and f is a continuous $\bar{\partial}$-closed (n, r)-form with $1 \leqslant r \leqslant q-1$ on Ω, then there is a continuous ($n, r-1$)-form u on $\Omega \cap B_{r}(\xi)$ with

$$
\begin{equation*}
\bar{\partial} u=f \quad \text { on } \quad \Omega \cap B_{r}(\xi) \tag{0.7}
\end{equation*}
$$

It is easy to see that, for $r=1$, estimates (0.5) and (0.6) (with Ω instead of D) hold also in this corollary. We do not know whether this is true for $r \geqslant 2$.

For the smooth case ($N=1$) Theorem 0.1 was obtained by Lieb [Li]. We prove Theorem 0.1 by means of integral formulas which are obtained combining the construction of Lieb [Li] with the construction of Range and Siu [R/S]. The main problem then consists in the proof of the estimates. Fortunately, in large parts, this proof is parallel to the corresponding proof in the q-convex case which is carried out in [L-T/Le]. Note that, in both proofs, an idea of Henkin plays a very important role (see the introduction to [L-T/Le]). Note also that in the survey article [He] of Henkin a global result, corresponding to the important special case $\beta=0, \varepsilon=\frac{1}{2}$ of Theorem 0.1 is formulated (see [He] th. 8-12 d)).

Finally we want to compare our results with the work [G] of Grauert. He studied domains of type Ω defined by (0.2), where instead of condition (iii) the following stronger hypothesis is used :
(iii)' There is a fixed ($q+1$)-dimensional subspace T of \mathbb{C}^{n} such that, for all $j=1, \ldots, N$ and $z \in G$, the Levi form φ_{j} is positive definite on T.

Under this hypothesis, Corollary 0.2 follows from Satz 1 in [G]. Note that the conclusion of Satz 1 in [G] is essentially stronger than the conclusion of our Corollary 0.2 : we can solve $\bar{\partial} u=f$ only on the smaller set $\Omega \cap B_{r}(\xi)$ if f is given on Ω, whereas Grauert proves the existence of a basis of Stein neighborhoods U of ξ such that, if f is given on $\Omega \cap U$, the equation $\bar{\partial} u=f$ can be solved on the same set $\Omega \cap U$. In the smooth case ($N=1$) such a solution without shrinking of the domain is possible also with estimates as in Theorem 0.1 (see Theorem 14.1 in [$\mathrm{He} / \mathrm{Le} 2]$). On the other hand, it is not clear whether one can solve (even without estimates) the $\bar{\partial}$-equation without shrinking of the domain in the situation of Theorem 0.1 if $N \geqslant 2$. Note also that the statement of Theorem 0.1 under the stronger condition (iii)' and without estimates and with shrinking of the domain can be obtained also from Satz 1 in [G].

1. Preliminaries

1.1. - For $z \in \mathbb{C}^{n}$ we denote by z_{1}, \ldots, z_{n} the canonical complex coordinates of z. We write $\langle z, w\rangle=z_{1} w_{1}+\cdots+z_{n} w_{n}$ and $|z|=\langle z, z\rangle^{1 / 2}$ for $z, w \in \mathbb{C}^{n}$.
1.2. - Let M be a closed real C^{1} submanifold of a domain $\Omega \subseteq \mathbb{C}^{n}$, and let $\zeta \in M$. Then we denote by $T_{\zeta}^{\mathbf{C}}(M)$ the complex, and by $T_{\zeta}^{\mathbb{R}}(M)$ the real tangent space of M at ζ. We identify these spaces with subspaces of \mathbb{C}^{n} as follows: if $\rho_{1}, \ldots, \rho_{N}$ are real C^{1} functions in a neighborhood U_{ζ} of ζ such that $M \cap U=\left\{\rho_{1}=\cdots=\rho_{N}=0\right\}$ and
$d \rho_{1}(\zeta) \wedge \cdots \wedge d \rho_{N}(\zeta) \neq 0$, then

$$
T_{\zeta}^{\mathbf{C}}(M)=\left\{t \in \mathbf{C}^{n}: \sum_{\nu=1}^{n} \frac{\partial \rho_{j}(\zeta)}{\partial \zeta_{\nu}} t_{\nu}=0 \text { for } j=1, \ldots, n\right\}
$$

and

$$
T_{\zeta}^{\mathbf{R}}(M)=\left\{t \in \mathbb{C}^{n}: \sum_{\nu=1}^{2 n} \frac{\partial \rho_{j}(\zeta)}{\partial x_{\nu}} x_{\nu}(t)=0 \text { for } j=1, \ldots, n\right\},
$$

where $x_{1}, \ldots, x_{2 n}$ are the real coordinates on \mathbb{C}^{n} with $t_{\nu}=x_{\nu}(t)+i x_{\nu+n}(t)$ for $t \in \mathbb{C}^{n}$ and $\nu=1, \ldots, n$.
1.3. - Let $\Omega \subseteq \mathbb{C}^{n}$ be a domain and ρ a real C^{2} function on Ω. Then we denote by $L_{\rho}(\zeta)$ the Levi form of ρ at $\zeta \in \Omega$, and by $F_{\rho}(\cdot, \zeta)$ the Levi polynomial of ρ at $\zeta \in \Omega$, i.e.

$$
L \rho(\zeta) t=\sum_{j, k=1}^{n} \frac{\partial^{2} \rho(\zeta)}{\partial \bar{\zeta}_{j} \partial \zeta_{k}} \bar{t}_{j} t_{k}
$$

$\zeta \in \Omega, t \in \mathbb{C}^{n}$, and

$$
F_{\rho}(z, \zeta)=2 \sum_{j=1}^{n} \frac{\partial \rho(\zeta)}{\partial \zeta_{j}}\left(\zeta_{j}-z_{j}\right)-\sum_{j, k=1}^{n} \frac{\partial^{2} \rho(\zeta)}{\partial \zeta_{j} \partial \zeta_{k}}\left(\zeta_{j}-z_{j}\right)\left(\zeta_{k}-z_{k}\right)
$$

$\zeta \in \Omega, z \in \mathbb{C}^{n}$. Recall that by Taylor's theorem (see, e.g., Lemma 1.4.13 in [He/Le 1])

$$
\begin{equation*}
\operatorname{Re} F_{\rho}(z, \zeta)=\rho(\zeta)-\rho(z)+L_{\rho}(\zeta)(\zeta-z)+o\left(|\zeta-z|^{2}\right) . \tag{1.1}
\end{equation*}
$$

1.4. - Let $J=\left(j_{1}, \ldots, j_{\ell}\right), 1 \leqslant \ell<\infty$, be an ordered collection of elements in $\mathbf{N} \cup\{*\}$. Then we write $|J|=\ell, J(\hat{\nu})=\left(j_{1}, \ldots, j_{\nu-1}, j_{\nu+1}, \ldots, j_{\ell}\right)$ for $\nu=1, \ldots, \ell$, and $j \in J$ if $j \in\left\{j_{1}, \ldots, j_{\ell}\right\}$.
1.5. - Let $N \geqslant 1$ be an integer. Then we denote by $P(N)$ the set of all ordered collections $K=\left(k_{1}, \ldots, k_{\ell}\right), \ell \geqslant 1$, of integers with $1 \leqslant k_{1}, \ldots, k_{\ell} \leqslant N$, and by $P(N, *)$ the set of all ordered collections $K=\left(k_{1}, \ldots, k_{\ell}\right), \ell \geqslant 1$ such that either $K \in P(N)$ or for a $\nu \in\{1, \ldots, \ell\}, k_{\nu}=*$ and $K(\hat{\nu}) \in P(N)$ as well as $K=(*)$. We call $P^{\prime}(N)$ the subset of all $K=\left(k_{1}, \ldots, k_{\ell}\right) \in P(N)$ with $k_{1}<\cdots<k_{\ell}$ and $P^{\prime}(N, *)$ the subset of all $K=\left(k_{1}, \ldots, k_{\ell}\right)$ where either $K \in P^{\prime}(N)$ or $1 \leqslant k_{1}<\cdots<k_{\ell-1} \leqslant N$ and $k_{\ell}=*$, i.e. $K_{(\hat{\ell})} \in P^{\prime}(N)$ and $K=K_{(\hat{\rho})}$, as well as $K=(*)$.
1.6. - Let $J=\left(j_{1}, \ldots, j_{\ell}\right), 1 \leqslant \ell<\infty$, be an ordered collection of integers with $0 \leqslant j_{1}<\cdots<j_{\ell}$. Then we denote by Δ_{J} (or $\Delta_{j_{1} \cdots j_{\ell}}$) the simplex of all sequences $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ of numbers $0 \leqslant \lambda_{j} \leqslant 1$ such that $\lambda_{j}=0$ if $j \notin J$ and $\Sigma \lambda_{j}=1$. We orient Δ_{J} by the form $d \lambda_{j_{2}} \wedge \cdots \wedge d \lambda_{j_{\ell}}$ if $\ell \geqslant 2$, and by +1 if $\ell=1$.

Further $\Delta_{J_{*}}$ (or $\Delta_{j_{1} \cdots j_{\ell^{*}}}$) will be the simplex of all sequences $\left\{\lambda_{j}\right\}_{j=0}^{\infty} \cup\left\{\lambda_{*}\right\}$ of numbers $0 \leqslant \lambda_{j} \leqslant 1,0 \leqslant \lambda_{*} \leqslant 1$ such that $\lambda_{j}=0$ if $j \notin J$ and $\sum_{j=0}^{\infty} \lambda_{j}+\lambda_{*}=1$. We orient $\Delta_{J *}$ by the form $d \lambda_{j_{2}} \wedge \cdots \wedge d \lambda_{j_{\ell}} \wedge d \lambda_{*}$.

We set also $\Delta_{\emptyset}=\emptyset$.
1.7. - We denote by $\stackrel{\circ}{\chi}$ a fixed C^{∞} function

$$
\stackrel{\circ}{\chi}:[0,1] \longrightarrow[0,1]
$$

with $\stackrel{\circ}{\chi}(\lambda)=0$ if $0 \leqslant \lambda \leqslant 1 / 4$ and $\stackrel{\circ}{\chi}(\lambda)=1$ if $1 / 2 \leqslant \lambda \leqslant 1$.
1.8. - Let $N \geqslant 1$ be an integer and $K=\left(k_{1}, \ldots, k_{\ell}\right) \in P^{\prime}(N, *)$. Then, for $\lambda \in \Delta_{O K}$ with $\lambda_{0} \neq 1$, we denote by \AA_{λ} the point in Δ_{K} defined by

$$
{\stackrel{\circ}{\lambda_{k_{\nu}}}}=\frac{\lambda_{k_{\nu}}}{1-\lambda_{0}} \quad(\nu=1, \ldots, \ell)
$$

and for $\lambda \in \Delta_{K *}$ with $\lambda_{*} \neq 1$, we set $\stackrel{*}{\lambda}$ the point in Δ_{K} defined by

$$
\stackrel{*}{\lambda}_{k_{\nu}}=\frac{\lambda_{k_{\nu}}}{1-\lambda_{*}} \quad(\nu=1, \ldots, \ell)
$$

If $\lambda \in \Delta_{O K *}$ with $\lambda_{0} \neq 1$ we set $\dot{\lambda}_{*}=\frac{\lambda_{*}}{1-\lambda_{0}}$ and if moreover $\lambda_{*} \neq 1$ we define $\stackrel{*}{\lambda} \in \Delta_{K}$ by

$$
\stackrel{\circ}{\lambda}_{k_{\nu}}=\frac{\stackrel{*}{\lambda}_{k_{\nu}}}{1-\lambda_{0}}
$$

1.9. - Let $D \subset \subset \mathbb{C}^{n}$ be a domain. D will be called a C^{k} intersection, $k=1,2, \ldots, \infty$, if there exist a neighborhood $U_{\bar{D}}$ of \bar{D} and a finite number of real C^{k} functions $\rho_{1}, \ldots, \rho_{N}, \rho_{*}$ in a neighborhood of $\bar{U}_{\bar{D}}$ such that

$$
D=\left\{z \in U_{\bar{D}}: \rho_{j}(z)<0 \text { for } j=1, \ldots, N, *\right\}
$$

and

$$
d \rho_{k_{1}}(z) \wedge \cdots \wedge d \rho_{k_{\ell}}(z) \neq 0
$$

for all $\left(k_{1}, \ldots, k_{\ell}\right) \in P^{\prime}(N, *)$ and $z \in \partial D$ with $\rho_{k_{1}}(z)=\cdots=\rho_{k_{\ell}}(z)=0$. In this case, the collection ($U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}$) will be called a C^{k} frame for D.
1.10. - Let $D \subset \subset \mathbb{C}^{n}$ be a C^{1} intersection and $\left(U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}\right)$ a frame for D. Then, for $K=\left(k_{1}, \ldots, k_{\ell}\right) \in P(N, *)$, we set

$$
S_{K}=\left\{z \in \partial D: \rho_{k_{1}}(z)=\cdots=\rho_{k_{\ell}}(z)=0\right\}
$$

if k_{1}, \ldots, k_{ℓ} are different in pairs, and

$$
S_{K}=\emptyset
$$

otherwise. We orient the manifolds S_{K} so that the orientation is skew symmetric in k_{1}, \ldots, k_{ℓ}, and

$$
\begin{equation*}
\partial D=\sum_{j=1}^{N} S_{j}+S_{*} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial S_{K}=\sum_{j=1}^{N} S_{K j}+S_{K *} \tag{1.3}
\end{equation*}
$$

for all $K \in P(N, *)$.
1.11. - Let f be a differential form on a domain $D \subseteq \mathbb{C}^{N}$. Then we denote by $\|f(z)\|, z \in D$, the Riemannian norm of f at z (see, e.g., Sect. $\mathbf{0 . 4}$ in [He/Le 2]).
1.12. - If M is an oriented real C^{1} manifold and f is a differential form of maximal degree, then we denote by $|f|$ the absolute value of f (see, e.g., Sect. 0.3 in [He/Le 2]).
1.13. - Let $D \subset \subset \mathbb{C}^{n}$ be a domain. Then we shall use the following spaces and norms of differential forms :
$C_{*}^{0}(D)$ is the set of continuous forms on D. Set

$$
\begin{equation*}
\|f\|_{0}=\|f\|_{O, D}=\sup _{z \in D}\|f(z)\| \tag{1.4}
\end{equation*}
$$

for $f \in C_{*}^{0}(D)$.
$C_{*}^{\alpha}(\bar{D}), 0 \leqslant \alpha \leqslant 1$, is the set of forms $f \in C_{*}^{0}(D)$ whose coefficients admit a continuous extension to \bar{D} which are, if $\alpha>0$, even Hölder continuous with exponent α on \bar{D}. Set

$$
\begin{equation*}
\|f\|_{\alpha}=\|f\|_{\alpha, D}=\|f\|_{O, D}+\sup _{\substack{x, \zeta \in D \\ z \neq \zeta}} \frac{\|f(z)-f(\zeta)\|}{|\zeta-z|^{\alpha}} \tag{1.5}
\end{equation*}
$$

for $0<\alpha \leqslant 1$ and $f \in C_{*}^{\alpha}(\bar{D})$.
$B_{*}^{\beta}(D), \beta \geqslant 0$, is the set of forms $f \in C_{*}^{0}(D)$ such that, for some constant $C>0$,

$$
\|f(z)\| \leqslant C[\operatorname{dist}(z, \partial D)]^{-\beta}, \quad z \in D
$$

where $\operatorname{dist}(z, \partial D)$ is the Euclidean distance between z and ∂D. Set

$$
\begin{equation*}
\|f\|_{-\beta}=\|f\|_{-\beta, D}=\sup _{z \in D}\|f(z)\|[\operatorname{dist}(z, \partial D)]^{\beta} \tag{1.6}
\end{equation*}
$$

for $\beta \geqslant 0$ and $f \in B_{*}^{\beta}(D)$.
If $\Lambda_{p, r}(D)$ is the space of forms of bidegree (p, r) on D, then we set
and

$$
\begin{aligned}
& C_{p, r}^{0}(D)=C_{*}^{0}(D) \cap \Lambda_{p, r}(D) \\
& C_{p, r}^{\alpha}(\bar{D})=C_{*}^{\alpha}(\bar{D}) \cap \Lambda_{p, r}(D) \\
& B_{p, r}^{\beta}(D)=B_{*}^{\beta}(D) \cap \Lambda_{p, r}(D), \\
& C_{p, *}^{0}(D)=U_{0 \leqslant r \leqslant n} C_{p, r}^{0}(D), \\
& C_{p, *}^{\alpha}(\bar{D})=\cup_{0 \leqslant r \leqslant n} C_{p, r}^{\alpha}(\bar{D}), \\
& B_{p, *}^{\beta}(D)=U_{0 \leqslant r \leqslant n} B_{p, r}^{\beta}(D)
\end{aligned}
$$

2. Local q-concave wedges

In this section n and q are fixed integers with $0 \leqslant q \leqslant n-1$. Denote by $M O(n, q)$ the complex manifold of all complex $n \times n$-matrices which define an orthogonal projection from \mathbb{C}^{n} onto some q-dimensional subspace of \mathbb{C}^{n}.
2.1. Definition. - A collection $\left(U, \rho_{1}, \ldots, \rho_{N}\right)$ will be called a q configuration in \mathbb{C}^{n} if $U \subseteq \mathbb{C}^{n}$ is a convex domain, and $\rho_{1}, \ldots, \rho_{N}$ are real C^{3} functions on U satisfying the following conditions :
(i) $\left\{z \in U: \rho_{1}(z)=\cdots=\rho_{N}(z)=0\right\} \neq \emptyset$;
(ii) $d \rho_{1}(z) \wedge \cdots \wedge d \rho_{N}(z) \neq 0$ for all $z \in U$;
(iii) If $\lambda \in \Delta_{1 \cdots N}$ (see Sect. 1.6) and

$$
\rho_{\lambda}:=\lambda_{1} \rho_{1}+\cdots+\lambda_{N} \rho_{N},
$$

then the Levi form $L_{\rho_{\lambda}}(z)$ (see Sect. 1.3) has at least $q+1$ positive eigenvalues.
2.2. Definition. - A local q-concave wedge $(E, D), 0 \leqslant q \leqslant n-1$, is a C^{3} intersection D such that one can find a frame $\left(U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}\right)$ (see Sect. 1.9) with $E=\left\{z \in U_{\bar{D}}: \rho_{1}(z)=\cdots=\rho_{N}(z)=0, \rho_{*}(z)<0\right\}$ satisfying
(i) if $K=\left(k_{1}, \ldots, k_{\ell}\right) \in P^{\prime}(N)$ and $U \frac{K}{D}=\left\{z \in U_{\bar{D}}: \rho_{k_{1}}(z)=\cdots=\rho_{k_{\ell}}(z)\right\}$ then $d \rho_{k_{1}}(z) \wedge \cdots \wedge d \rho_{k_{\ell}}(z) \neq 0$ for all $z \in U \frac{K}{D} ;$
(ii) ρ_{*} is convex and if $U_{\bar{D}}^{K}=\left\{z \in U_{\bar{D}}: \rho_{k_{1}}(z)=\cdots=\rho_{k_{\ell}}(z)=\rho_{*}(z)\right\}$ then $d \rho_{k_{1}}(z) \wedge \cdots \wedge d \rho_{k_{\ell}}(z) \wedge d \rho_{*}(z) \neq 0$ for all $z \in U \frac{K^{*}}{}{ }^{*} ;$
(iii) there exist a $C^{\infty} \operatorname{map} Q: \Delta_{1 \cdots N} \rightarrow M O(n, n-q-1)$ and constants $\alpha, A>0$ such that

$$
-\operatorname{Re} F_{\rho_{\lambda}}(z, \zeta) \geqslant \rho_{\lambda}(z)-\rho_{\lambda}(\zeta)+\alpha|\zeta-z|^{2}-A|Q(\lambda)(\zeta-z)|^{2}
$$

for all $\lambda \in \Delta_{1 \cdots N}$ and $z, \zeta \in U_{\bar{D}}$.
2.3. Lemma. - Let $\left(U, \varphi_{1}, \ldots, \varphi_{N}\right)$ be a q-configuration in $\mathbb{C}^{n}, 0 \leqslant q \leqslant n-1$. Then for each $\xi \in U$ with $\varphi_{1}(\xi)=\cdots=\varphi_{N}(\xi)=0$, there exists a number $R_{\xi}>0$ such that for all R with $0<R<R_{\xi}$, if
and

$$
D=\left\{z \in U: \varphi_{j}(z)>0, j=1, \ldots, N\right\} \cap\left\{z \in \mathbb{C}^{n}:|z-\xi|<R\right\}
$$

$$
E=\left\{z \in U: \varphi_{1}(z)=\cdots=\varphi_{N}(z)=0\right\} \cap\left\{z \in \mathbb{C}^{n}:|z-\xi|<R\right\}
$$

then (E, D) is a local q-concave wedge.

$$
\text { If } U_{\bar{D}}=\left\{z \in \mathbb{C}^{n}:|z-\xi|<R_{\xi}\right\}, \rho_{j}=-\varphi_{j} \text { for } j=1, \ldots, N, \rho_{*}(z)=|z-\xi|^{2}-R^{2}
$$

then ($U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}$) is a frame for D.

Proof. - It is sufficient to repeat the proof of Lemma 2.4 in [L-T/Le] using $-\rho_{\lambda}=-\left(\lambda_{1} \rho_{1}+\cdots+\lambda_{N} \rho_{N}\right)=\lambda_{1} \varphi_{1}+\cdots+\lambda_{N} \varphi_{N}$ at the place of ρ_{λ}^{R}.
2.4. Definition. - We shall say that a local q-concave wedge (E, D) is defined by a q-configuration if there exists a frame $\left(U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}\right)$ for (E, D) such that ($U_{\bar{D}},-\rho_{1}, \ldots,-\rho_{N}$) is a q-configuration.
2.5. Remark. - It is easy to see, using Lemma 2.3 and Lemma 2.2 in [L-T/Le], that if $\xi \in \mathbb{C}^{n}$ is a fixed point and $\varphi_{1}, \ldots, \varphi_{N}$ are real C^{3} functions in a neighborhood V of ξ such that the following conditions are fulfilled
(i) $d \varphi_{1}(\xi) \wedge \cdots \wedge d \varphi_{N}(\xi) \neq 0$;
(ii) $\varphi_{1}(\xi)=\cdots=\varphi_{N}(\xi)=0$;
(iii) set $Y_{j}=\left\{z \in V: \varphi_{j}(z)=0\right\}$ for $j=1, \ldots, N$ and $\varphi_{\lambda}=\lambda_{1} \varphi_{1}+\cdots+\lambda_{N} \varphi_{N}$ for $\lambda \in \Delta_{1 \cdots N}$, then for all $K=\left(k_{1}, \ldots, k_{\ell}\right) \in P^{\prime}(N)$ and $\lambda \in \Delta_{K}$ (see sects 1.5 and 1.6), the Levi form $L_{\rho_{\lambda}}(\xi)$ restricted to $T_{\xi}^{\mathbb{C}}\left(Y_{k_{1}} \cap \cdots \cap Y_{k_{\ell}}\right)$ (see Sect. 1.2) has at least

$$
\operatorname{dim}_{\mathbb{C}} T_{\xi}^{\mathbb{C}}\left(Y_{k_{1}} \cap \cdots \cap Y_{k_{\ell}}\right)-n+q+1
$$

negative eigenvalues;
then there exists a number $R_{\xi}>0$ such that, for all R with $0<R \leqslant R_{\xi},(E, D)$, where $E=Y_{1} \cap \cdots \cap Y_{N} \cap\left\{z \in \mathbb{C}^{n}:|z-\xi|<R\right\}$ and $D=\left\{z \in V: \varphi_{j}(z)<0\right\} \cap\{z \in$ $\left.\mathbb{C}^{n}:|z-\xi|<R\right\}$, is a local q-concave wedge defined by a q configuration.
2.6. Remark. - It is clear that in the case of a local q-concave wedge defined by a q-configuration we can choose the constant α of Definition 2.2 (iii) such that for each $\lambda \in \Delta_{1 \ldots N}, z \in U_{\bar{D}}$, the Levi form $L_{\tilde{\rho}_{\lambda}}(\zeta)$ of $\tilde{\rho}_{\lambda}(\zeta)=\rho_{\lambda}(\zeta)-\rho_{\lambda}(z)+\frac{\alpha}{2}|\zeta-z|^{2}$ has at least ($q+1$) negative eigenvalues on $U_{\bar{D}}$.

3. A Leray map for local q-concave wedges

Let $D \subset \subset \mathbb{C}^{n}$ be a C^{3} intersection, ($U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}$) a frame for D, and let S_{K} be the corresponding manifolds introduced in Sect. 1.10.
3.1. Definition. - A Leray map for D or, more precisely, for the frame $\left(U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}\right)$ is a map ψ which attaches to each $K \in P^{\prime}(N, *)$ a \mathbb{C}^{n}-valued map

$$
\psi_{K}(z, \zeta, \lambda)=\left(\psi_{K}^{1}(z, \zeta, \lambda), \ldots, \psi_{K}^{n}(z, \zeta, \lambda)\right)
$$

defined for $(z, \zeta, \lambda) \in D \times S_{K} \times \Delta_{K}$ such that $\left\langle\psi_{K}(z, \zeta, \lambda), \zeta-z\right\rangle=1$.
Now let (E, D) be a local q-concave wedge and ($\left.U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}\right)$ the associated frame.

Since ρ_{*} is a convex function, if we set

$$
w^{*}(\zeta):=2\left(\frac{\partial \rho_{*}}{\partial \zeta_{1}}(\zeta), \ldots, \frac{\partial \rho_{*}}{\partial \zeta_{n}}(\zeta)\right)
$$

for $\zeta \in U_{\bar{D}}$ and

$$
\psi^{*}(z, \zeta)=\left\langle w^{*}(\zeta), \zeta-z\right\rangle
$$

for $(z, \zeta) \in \mathbb{C}^{n} \times U_{\bar{D}}$, then there exists $\varepsilon, \gamma>0$ such that

$$
\begin{equation*}
\operatorname{Re} \psi^{*}(z, \zeta) \geqslant \rho_{*}(\zeta)-\rho_{*}(z)+\gamma|\zeta-z|^{2} \tag{3.1}
\end{equation*}
$$

for all $(z, \zeta) \in \mathbb{C}^{n} \times U_{\bar{D}}$ with $|\zeta-z| \leqslant \varepsilon$.
It follows that $\psi^{*}(z, \zeta) \neq 0$ for all $(z, \zeta) \in D \times S_{*}$.
Since $\rho_{1}, \ldots, \rho_{N}$ are defined and of class C^{3} in a neighborhood of $\bar{U}_{\bar{D}}$, we can find C^{∞} functions $a_{\nu}^{k j} \quad(\nu=1, \ldots, N ; k, j=1, \ldots, n)$ on $U_{\bar{D}}$ such that

$$
\left|a_{\nu}^{k j}(\zeta)-\frac{\partial^{2} \rho_{\nu}(\zeta)}{\partial \zeta_{k} \partial \zeta_{j}}\right|<\frac{\alpha}{2 n^{2}}
$$

for all $\zeta \in U_{\bar{D}}$, where α is as in Definition 2.2.
Set $\rho_{\lambda}=\lambda_{1} \rho_{1}+\cdots+\lambda_{N} \rho_{N}$ and $a_{\lambda}^{k j}=\lambda_{1} a_{1}^{k j}+\cdots+\lambda_{N} a_{N}^{k j}$ for $\lambda \in \Delta_{1 \cdots N}$. Then

$$
\begin{equation*}
\left|\sum_{k, j=1}^{n}\left(a_{\lambda}^{k j}(\zeta)-\frac{\partial^{2} \rho_{\lambda}}{\partial \zeta_{k} \partial \zeta_{j}}(\zeta)\right) t_{k} t_{j}\right| \leqslant \frac{\alpha}{2}|t|^{2} \tag{3.2}
\end{equation*}
$$

for all $\zeta \in U_{\bar{D}}, t \in \mathbb{C}^{n}$ and $\lambda \in \Delta_{1 \cdots N}$. Set

$$
\widetilde{F}_{\rho_{\lambda}}(z, \zeta)=2 \sum_{j=1}^{n} \frac{\partial \rho_{\lambda}}{\partial \zeta_{j}}\left(\zeta_{j}-z_{j}\right)-\sum_{k, j=1}^{n} a_{\lambda}^{k j}(\zeta)\left(\zeta_{k}-z_{k}\right)\left(\zeta_{j}-z_{j}\right)
$$

for $(z, \zeta, \lambda) \in \mathbb{C}^{n} \times U_{\bar{D}} \times \Delta_{1 \cdots N}$. Then it follows from (3.2) and condition (iii) in Definition 2.2 that

$$
\begin{equation*}
-\operatorname{Re} \tilde{F}_{\rho_{\lambda}}(z, \zeta) \geqslant \rho_{\lambda}(z)-\rho_{\lambda}(\zeta)+\frac{\alpha}{2}|\zeta-z|^{2}-A|Q(\lambda)(\zeta-z)|^{2} \tag{3.3}
\end{equation*}
$$

for all $(z, \zeta, \lambda) \in U_{\bar{D}} \times U_{\bar{D}} \times \Delta_{1 \cdots N}$.
Denote by $Q_{k j}(\lambda)$ the entires of the matrix $Q(\lambda)$, i.e.

$$
Q(\lambda)=\left(Q_{k j}(\lambda)\right)_{k, j=1}^{n} \quad(k=\text { column index })
$$

If $(z, \zeta, \lambda) \in \mathbb{C}^{n} \times U_{\bar{D}} \times \Delta_{1 \cdots N}$, then we set

$$
\left\{\begin{array}{l}
v^{j}(z, \zeta, \lambda)=2 \frac{\partial \rho_{\lambda}}{\partial \zeta_{j}}(\zeta)-\sum_{k=1}^{n} a_{\lambda}^{k j}(\zeta)\left(\zeta_{k}-z_{k}\right)-A \sum_{k=1}^{n} \overline{Q_{k j}(\lambda)\left(\zeta_{k}-z_{k}\right)} \tag{3.4}\\
v=\left(v^{1}, \ldots, v^{n}\right) \\
\varphi=\langle v(z, \zeta, \lambda), \zeta-z\rangle
\end{array}\right.
$$

Since $Q(\lambda)$ is an orthogonal projection, we have

$$
\begin{equation*}
\varphi(z, \zeta, \lambda)=\tilde{F}_{\rho_{\lambda}}(z, \zeta)-A|Q(\lambda)(\zeta-z)|^{2} \tag{3.5}
\end{equation*}
$$

for all $(z, \zeta, \lambda) \in \mathbb{C}^{n} \times U_{\bar{D}} \times \Delta_{1 \ldots N}$ and it follows from estimates (3.3) that

$$
\begin{equation*}
-\operatorname{Re} \varphi(z, \zeta, \lambda) \geqslant \rho_{\lambda}(z)-\rho_{\lambda}(\zeta)+\frac{\alpha}{2}|\zeta-z|^{2} \tag{3.6}
\end{equation*}
$$

for all $(z, \zeta, \lambda) \in U_{\bar{D}} \times U_{\bar{D}} \times \Delta_{1 \cdots N}$.
Now we set for $(z, \zeta, \lambda) \in U_{\bar{D}} \times \mathbb{C}^{n} \times \Delta_{1 \cdots N}$.

$$
\left.\begin{array}{rl}
w^{j}(z, \zeta, \lambda) & =v^{j}(\zeta, z, \lambda) \tag{3.7}\\
\psi(z, \zeta, \lambda) & =\varphi(\zeta, z, \lambda)
\end{array}\right\}
$$

It follows from estimate (3.6) that $\psi(z, \zeta, \lambda) \neq 0$ if $(z, \zeta, \lambda) \in D \times S_{K} \times \Delta_{K}$ for some $K \in P^{\prime}(N)$.

Therefore, by setting

$$
\begin{equation*}
\psi_{K}(z, \zeta, \lambda)=\frac{w(z, \zeta, \lambda)}{\psi(z, \zeta, \lambda)} \tag{3.8}
\end{equation*}
$$

for $(z, \zeta, \lambda) \in D \times S_{K} \times \Delta_{K}, K \in P^{\prime}(N)$ and

$$
\begin{equation*}
\psi_{K *}(z, \zeta, \lambda)=\stackrel{\circ}{\chi}\left(\lambda_{*}\right) \frac{w^{*}(\zeta)}{\psi^{*}(z, \zeta)}+\left(1-\stackrel{\circ}{\chi}\left(\lambda_{*}\right)\right) \frac{w(z, \zeta, \stackrel{*}{\lambda})}{\psi(z, \zeta, \stackrel{*}{\lambda})} \tag{3.9}
\end{equation*}
$$

for $(z, \zeta, \lambda) \in D \times S_{K *} \times \Delta_{K *}, K \in P^{\prime}(N)$, we obtain a family $\psi=\left\{\psi_{K}, \psi_{K *}\right\}_{K \in P^{\prime}(N)}$ of \mathbb{C}^{n}-valued C^{1} maps. Obviously, ψ is a Leray map for the frame ($U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}$).
3.2. Definition. - A map f defined on some complex manifold X will be called k-holomorphic if, for each point $\xi \in X$, there exist holomorphic coordinates h_{1}, \ldots, h_{n} in a neighborhood of ξ such that f is holomorphic with respect to h_{1}, \ldots, h_{k}.

We deduce immediately from (3.4), (3.7) and Lemma 3.3 in [L-T/Le] that :
3.3. Lemma. - For every fixed $(z, \lambda) \in U_{\bar{D}} \times \Delta_{1 \ldots N}$ the map $w(z, \zeta, \lambda)$ and the function $\psi(z, \zeta, \lambda)$ are $(q+1)$-holomorphic in $\zeta \in \mathbb{C}^{n}$.

4. An integral formula in local q-concave wedges

We denote by $\widehat{B}(z, \zeta)$ the Martinelli-Bochner kernel for (n, r)-forms, i.e.

$$
\widehat{B}(z, \zeta)=\frac{1}{(2 \pi i)^{n}} \operatorname{det}(\overbrace{\frac{\bar{\zeta}-\bar{z}}{|\zeta-z|^{2}}}^{1} \overbrace{d \frac{\bar{\zeta}-\bar{z}}{|\zeta-z|^{2}}}^{n-1}) \wedge d z_{1} \wedge \cdots \wedge d z_{n}
$$

for all $z, \zeta \in \mathbb{C}^{n}$ with $z \neq \zeta$ (for the definition of determinants of matrices of differential forms, see, e.g., Sect. 0.7 in [He/Le 2]). If $D \subset \subset \mathbb{C}^{n}$ is a domain and f is a continuous differential form with integrable coefficients on D, then we set

$$
B_{D} f(z)=\int_{\zeta \in D} f(\zeta) \wedge \widehat{B}(z, \zeta), \quad z \in D
$$

(for the definition of integration with respect to a part of the variables, see, e.g., Sect. 0.2 in [He/Le 2]).

Let $D \subset \subset \mathbb{C}^{n}$ be a C^{3} intersection, ($U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}$) a frame for D, and let S_{K} be the corresponding manifolds introduced in Sect. 1.10.

Further, let ψ be a Leray map for the frame ($U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}$). Then we set

$$
\begin{equation*}
\psi_{O K}(z, \zeta, \lambda)=\stackrel{\circ}{\chi}\left(\lambda_{0}\right) \frac{\bar{\zeta}-\bar{z}}{|\zeta-z|^{2}}+\left(1-\stackrel{\circ}{\chi}\left(\lambda_{0}\right)\right) \psi_{K}(z, \zeta, \stackrel{\circ}{\lambda}) \tag{4.1}
\end{equation*}
$$

for $K \in P^{\prime}(N, *)$ and $(z, \zeta, \lambda) \in D \times S_{K} \times \Delta_{O K}$. Note that $1-\stackrel{\circ}{\chi}\left(\lambda_{0}\right)=0$ for λ in the neighborhood $\Delta_{O K} \backslash \Delta_{O K}$ of Δ_{0} and therefore $\psi_{O K}$ is of class C^{2}. For $K \in P^{\prime}(N, *)$ we introduce the differential form

$$
\hat{R}_{K}^{\psi}(z, \zeta, \lambda)=\frac{(-1)^{|K|}}{(2 \pi i)^{n}} \operatorname{det}(\overbrace{\psi_{O K}(z, \zeta, \lambda)}^{1}, \overbrace{d \psi_{O K}(z, \zeta, \lambda)}^{n-1}) \wedge d z_{1} \wedge \cdots \wedge d z_{n}
$$

defined for $(z, \zeta, \lambda) \in D \times S_{K} \times \Delta_{O K}$, and the differential form

$$
\widehat{L}_{K}^{\psi}(z, \zeta, \lambda)=\frac{1}{(2 \pi i)^{n}} \operatorname{det}(\overbrace{\psi_{K}(z, \zeta, \lambda)}^{1}, \overbrace{d \psi_{K}(z, \zeta, \lambda)}^{n-1}) \wedge d z_{1} \wedge \cdots \wedge d z_{n}
$$

defined for $(z, \zeta, \lambda) \in D \times S_{K} \times \Delta_{K}$ (here d denotes the exterior differential operator with respect to all variables z, ζ, λ). If f is a continuous differential form on \bar{D}, then, for all $K \in P^{\prime}(N, *)$, we set
and

$$
R_{K}^{\psi} f(z)=\int_{(\zeta, \lambda) \in S_{K} \times \Delta_{O K}} f(\zeta) \wedge \widehat{R}_{K}^{\psi}(z, \zeta, \lambda), \quad z \in D
$$

$$
L_{K}^{\psi} f(z)=\int_{(\zeta, \lambda) \in S_{K} \times \Delta_{K}} f(\zeta) \wedge \widehat{L}_{K}^{\psi}(z, \zeta, \lambda), \quad z \in D
$$

Then, for each continuous (n, r)-form f on $\bar{D}, 0 \leqslant r \leqslant n$, such that $d f$ is also continuous on \bar{D}, one has the representation

$$
\begin{align*}
(-1)^{n+r} f=d B_{D} f-B_{D} d f & +\sum_{K \in P^{\prime}(N)}\left(L_{K}^{\psi} f+d R_{K}^{\psi} f-R_{K}^{\psi} d f\right) \\
& +\sum_{K \in P^{\prime}(N) \cup \emptyset}\left(L_{K *}^{\psi} f+d R_{K *}^{\psi} f-R_{K *}^{\psi} d f\right) \text { on } D . \tag{4.2}
\end{align*}
$$

This formula is basic for the present paper. It has different names and a long history (see Proposition 1.3.1 in $[\mathrm{Ai} / \mathrm{He}]$, Sect. 3.12 in $[\mathrm{He} / \mathrm{Le} 2]$ and the notes at the end of ch. 4 in [He/Le 1], we call it Cauchy-Fantappie formula.
4.1. Cauchy-Fantappie formula for a local q-concave wedge. - Let (E, D) be a local q-concave wedge, $0 \leqslant q \leqslant n-1$, ($\left.U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}\right)$ the associated frame satisfying conditions (i), (ii) and (iii) in Definition 2.2 and ψ the Leray map constructed in Section 3 for the frame ($U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}$).

We set

$$
T^{\psi}=B_{D}+\sum_{K \in P^{\prime}(N)} R_{K}^{\psi}+\sum_{K \in P^{\prime}(N) \cup \emptyset} R_{K *}^{\psi}
$$

and

$$
\begin{aligned}
L^{\psi} & =\sum_{K \in P^{\prime}(N)} L_{K}^{\psi}+\sum_{K \in P^{\prime}(N) \cup \emptyset} L_{K *}^{\psi} \\
L_{*}^{\psi} & =\sum_{K \in P^{\prime}(N) \cup \emptyset} L_{K *}^{\psi} .
\end{aligned}
$$

With this notation, for each continuous (n, r)-form f on $\bar{D}, 0 \leqslant r \leqslant n$, such that $d f$ is also continuous on \bar{D}, (4.2) can be written

$$
\begin{equation*}
(-1)^{n+r} f=d T^{\psi} f-T^{\psi} d f+L^{\psi} f \quad \text { on } D \tag{4.3}
\end{equation*}
$$

4.1.1. Theorem. - If $0 \leqslant r \leqslant q-N$, for each continuous (n, r)-form f on \bar{D} such that df is also continuous on \bar{D}

$$
(-1)^{n+r} f=d T^{\psi} f-T^{\psi} d f+L_{*}^{\psi} f \quad \text { on } D
$$

Proof. - In view of the Cauchy-Fantappie formula (4.3) it is sufficient to prove that for $0 \leqslant r \leqslant q-N, K \in P^{\prime}(N), L_{K}^{\psi} f=0$.

Let us denote by $\left[\widehat{L}_{K}^{\psi}\right]_{\operatorname{deg}} \bar{\zeta}=k$ the part of the form \widehat{L}_{K}^{ψ} which is of type $(0, k)$ in ζ. Then, by Lemma 3.3, $\left[\widehat{L}_{K}^{\psi}\right]_{\operatorname{deg} \bar{\zeta}=k}=0$ for $K \in P^{\prime}(N)$ and $k \geqslant n-q$.

Since f is of type $(n, r), \operatorname{dim} \Delta_{K}=|K|-1, \operatorname{dim} S_{K}=2 n-|K|$ and $|K| \leqslant N$ we obtain, by definition of $L_{K}^{\psi} f$, that $L_{K}^{\psi} f=0$ for $0 \leqslant r \leqslant q-N$ and $K \in P^{\prime}(N)$.
4.1.2. Remark. - In fact we can prove that, for $K \in P^{\prime}(N), L_{K}^{\psi} f=0$ if $r \leqslant q-|K|$.
4.2. The manifolds Γ_{K}. - As we want to obtain an integral formula for forms which are not necessarily defined on ∂D, we are going to replace the integrals over the manifolds S_{K} in (4.2) by integrals over certain submanifolds Γ_{K} of D.

For $K=\left(k_{1}, \ldots, k_{\ell}\right) \in P(N, *)$ we set

$$
U \frac{K}{D}=\left\{\zeta \in U_{\bar{D}}: \rho_{k_{1}}(\zeta)=\cdots=\rho_{k_{\ell}}(\zeta)\right\}
$$

if k_{1}, \ldots, k_{ℓ} are different in pairs, and $U \frac{K}{D}=\emptyset$ otherwise. By conditions (i) and (ii) in Definition 2.2 each $U_{\bar{D}}$ K is a closed C^{3} submanifold of $U_{\bar{D}}$. We denote by $\rho_{K}, K \in P(N, *)$, the function on $U \frac{K}{D}$ which is defined by

$$
\rho_{K}(\zeta)=\rho_{k_{\nu}}(\zeta) \quad\left(\zeta \in U \frac{K}{D} ; \nu=1, \ldots, \ell\right) .
$$

Now, for all $K \in P(N, *)$, we define

$$
\Gamma_{K}=\left\{\zeta \in U \frac{K}{D}: \rho_{j}(\zeta) \leqslant \rho_{K}(\zeta) \leqslant 0 \text { for } j=1, \ldots, N, *\right\}
$$

Then it is easy to see that all Γ_{K} are C^{3} submanifolds of \bar{D} with piecewise C^{3} boundary, and that

$$
\bar{D}=\Gamma_{1} \cup \cdots \cup \Gamma_{N} \cup \Gamma_{*}
$$

and

$$
\partial \Gamma_{K}=S_{K} \cup \Gamma_{K 1} \cup \cdots \cup \Gamma_{K N} \cup \Gamma_{K *}, \quad K \in P(N)
$$

We choose the orientation on Γ_{K} such that the orientation is skew symmetric in the components of K, and the following conditions hold :
$\Gamma_{1}, \ldots, \Gamma_{N}, \Gamma_{*}$ carry the orientation of \mathbb{C}^{n}, and if $\left.\begin{array}{l}K \in P(N, *) \text { and } 1 \leqslant j \leqslant N \text { with } * \notin K, \text { resp. } j \notin K, \text { then } \\ \Gamma_{K *}, \text { resp. } \Gamma_{K j} \text { are oriented just as }-\partial \Gamma_{K}\end{array}\right\}$
As in [L-T/Le], we obtain the following lemmas :
4.2.1. Lemma. - If Γ_{K} are the above manifolds, then

$$
\partial \Gamma_{K}=S_{K}-\sum_{j=1}^{N} \Gamma_{K j}-\Gamma_{K *}
$$

for all $K \in P(N, *)$.
4.2.2. Lemma. - If Γ_{K} are the above manifolds and $\Delta_{K}, \Delta_{O K}$ are oriented simplices introduced in Sect. 1.6, then
$\sum_{K \in P^{\prime}(N, *)}(-1)^{|K|} \partial\left(\Gamma_{K} \times \Delta_{O K}\right)=$

$$
\begin{align*}
& \bar{D} \times \Delta_{O}+\sum_{K \in P^{\prime}(N, *)}(-1)^{|K|} S_{K} \times \Delta_{O K}-\sum_{K \in P^{\prime}(N, *)} \Gamma_{K} \times \Delta_{K} \tag{4.4}\\
& \sum_{K \in P^{\prime}(N, *)} \partial\left(\Gamma_{K} \times \Delta_{K}\right)=\sum_{K \in P^{\prime}(N, *)} S_{K} \times \Delta_{K} \tag{4.5}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{K \in P^{\prime}(N) \cup} \partial\left(\Gamma_{K *} \times \Delta_{K *}\right)=\sum_{K \in P^{\prime}(N) \cup \emptyset} S_{K *} \times \Delta_{K *}+\sum_{K \in P^{\prime}(N)} \Gamma_{K *} \times \Delta_{K} \tag{4.6}
\end{equation*}
$$

4.3.The operators L and M. - Let $w^{*}(z, \zeta), \psi^{*}(z, \zeta), w(z, \zeta, \lambda)$ and $\psi(z, \zeta, \lambda)$ be the maps defined in paragraph 3 . We set
and

$$
\begin{aligned}
\Phi^{*}(z, \zeta) & =\psi^{*}(z, \zeta)-2 \rho_{*}(\zeta) & & \text { for }(z, \zeta) \in \mathbb{C}^{n} \times U_{\bar{D}} \\
\Phi(z, \zeta, \lambda) & =\psi(z, \zeta, \lambda)+2 \rho_{\lambda}(\zeta) & & \text { for }(z, \zeta, \lambda) \in \mathbb{C}^{n} \times U_{\bar{D}} \times \Delta_{1 \ldots N}
\end{aligned}
$$

Then it follows from (3.1), (3.6) and (3.7) that $\Phi^{*}(z, \zeta) \neq 0$ for $(z, \zeta) \in D \times \bar{D}$ and $\Phi(z, \zeta, \lambda) \neq 0$ for $(z, \zeta, \lambda) \in D \times \bar{D} \times \Delta_{1 \cdots N}$.

So we can define the C^{2} maps

$$
\tilde{\psi}_{K}(z, \zeta, \lambda)=\stackrel{\circ}{\chi}\left(\lambda_{*}\right) \frac{w^{*}(\zeta)}{\Phi^{*}(z, \zeta)}+\left(1-\stackrel{\circ}{\chi}\left(\lambda_{*}\right)\right) \frac{w(z, \zeta, \stackrel{*}{\lambda})}{\Phi(z, \zeta, \stackrel{*}{\lambda})}
$$

for all $(z, \zeta, \lambda) \in D \times \bar{D} \times \Delta_{K}, K \in P^{\prime}(N, *)$. Notice that $\tilde{\psi}_{K}(z, \zeta, \lambda)=\psi_{K}(z, \zeta, \lambda)$ when $(z, \zeta, \lambda) \in D \times S_{K} \times \Delta_{K}$.

We set for $(z, \zeta, \lambda) \in D \times \bar{D} \times \Delta_{K}$

$$
\widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda)=\frac{1}{(2 i \pi)^{n}} \operatorname{det}(\overbrace{\tilde{\psi}_{K}(z, \zeta, \lambda)}^{1}, \overbrace{d \tilde{\psi}_{K}(z, \zeta, \lambda)}^{n-1}) \wedge d z_{1} \wedge \cdots \wedge d z_{n}
$$

and one has $\widehat{L}_{K}^{\tilde{\psi}}=\widehat{L}_{K}^{\psi}$ on $D \times S_{K} \times \Delta_{K}$.
We set also for $(z, \zeta, \lambda) \in D \times \bar{D} \times \Delta_{K}$

$$
\widehat{M}_{K}^{\tilde{\psi}}(z, \zeta, \lambda)=\frac{1}{(2 i \pi)^{n}} \operatorname{det}(\overbrace{d \tilde{\psi}_{K}(z, \zeta, \lambda)}^{n}) \wedge d z_{1} \wedge \cdots \wedge d z_{n}
$$

4.3.1. Remark. - It comes from the properties of determinants that if $K \in P^{\prime}(N)$

$$
\widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda)=\frac{1}{(2 i \pi)^{n} \Phi^{n}(z, \zeta, \lambda)} \operatorname{det}(\overbrace{w(z, \zeta, \lambda)}^{1}, \overbrace{d w(z, \zeta, \lambda)}^{n-1})
$$

for $(z, \zeta, \lambda) \in D \times \bar{D} \times \Delta_{K}$, where $w(z, \zeta, \lambda)$ is ($q+1$)-holomorphic in ζ.
Now let us define the operators L, L^{*}, M and M^{*} on $C_{n, r}^{0}(D), 0 \leqslant r \leqslant n$, by

$$
\begin{aligned}
L f(z) & =\sum_{K \in P^{\prime}(N, *)} \int_{\zeta \in \Gamma_{K} \times \Delta_{K}} f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda), \quad z \in D \\
L^{*} f(z) & =\sum_{K \in P^{\prime}(N) \cup \emptyset} \int_{\zeta \in \Gamma_{K *} \times \Delta_{K *}} f(\zeta) \wedge \widehat{L}_{K *}^{\tilde{\psi}}(z, \zeta, \lambda), \quad z \in D \\
M f(z) & =\sum_{K \in P^{\prime}(N, *)} \int_{\zeta \in \Gamma_{K} \times \Delta_{K}} f(\zeta) \wedge \widehat{M}_{K}^{\tilde{\psi}}(z, \zeta, \lambda), \quad z \in D \\
M^{*} f(z) & =\sum_{K \in P^{\prime}(N) \cup \emptyset} \int_{\zeta \in \Gamma_{K * \times \Delta_{K}}} f(\zeta) \wedge \widehat{M}_{K *}^{\tilde{\psi}}(z, \zeta, \lambda), \quad z \in D
\end{aligned}
$$

for $f \in C_{n, r}^{0}(D)$.
For $f \in C_{n, r}^{0}(D)$, the forms $L f, L^{*} f, M f$ and $M^{*} f$ are continuous on D.
4.3.2. Lemma. - Let f be a continuous (n, r)-form on \bar{D}. If we set

$$
\Lambda f(z)=\sum_{K \in P^{\prime}(N) \cup \emptyset} \int_{\Gamma_{K *} \times \Delta_{K}} f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda), z \in D
$$

then $\Lambda f \equiv 0$ when $0 \leqslant r \leqslant q-N$.
Proof. - By remark 4.3.1, $\left[\hat{L}_{K}^{\tilde{\psi}}\right]_{\operatorname{deg} \bar{\zeta}=k}=0$ for $K \in P^{\prime}(N)$ and $k \geqslant n-q$. Using that $\operatorname{dim} \Gamma_{K *}=2 n-|K|$ and $|K| \leqslant N$, the result follows easily from the definition of Λ.
4.3.3. Proposition. - Let f be a continuous (n, r)-form on \bar{D} such that df is also continuous on \bar{D}, then

$$
L^{\psi} f=\sum_{K \in P^{\prime}(N, *)} L_{K}^{\psi} f=L d f-d L f+(-1)^{r+n} M f
$$

and, if $0 \leqslant r \leqslant q-N$

$$
L_{*}^{\psi} f=\sum_{K \in P^{\prime}(N) \cup \emptyset} L_{K *}^{\psi} f=L^{*} d f-d L^{*} f+(-1)^{r+n} M^{*} f
$$

Proof. - As $\widehat{L}_{K}^{\tilde{\psi}}=\widehat{L}_{K}^{\psi}$ on $D \times S_{K} \times \Delta_{K}$, we have for $z \in D$

$$
\sum_{K \in P^{\prime}(N, *)} L_{K}^{\psi} f(z)=\sum_{K \in P^{\prime}(N, *)} \int_{\zeta \in S_{K} \times \Delta_{K}} f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda) .
$$

Then using (4.5) in Lemma 4.2.2, we get

$$
\begin{aligned}
\sum_{K \in P^{\prime}(N, *)} L_{K}^{\psi} f(z)= & \sum_{K \in P^{\prime}(N, *)} \int_{(\zeta, \lambda) \in \partial\left(\Gamma_{K} \times \Delta_{K}\right)} f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda) \\
= & \sum_{K \in P^{\prime}(N, *)}\left[\int_{(\zeta, \lambda) \in \Gamma_{K} \times \Delta_{K}} d f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda)\right. \\
& \left.+(-1)^{n+r} \int_{(\zeta, \lambda) \in \Gamma_{K} \times \Delta_{K}} f(\zeta) \wedge d_{\zeta, \lambda} \widehat{L}_{K}^{\psi}(z, \zeta, \lambda)\right]
\end{aligned}
$$

by Stokes'theorem.
As $d_{\zeta, \lambda} \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda)=-d_{z} \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda)+\widehat{M}_{K}^{\tilde{\psi}}(z, \zeta, \lambda)$, then we get

$$
\sum_{K \in P^{\prime}(N, *)} L_{K}^{\psi} f(z)=L d f-d L f+(-1)^{r+n} M f
$$

In the same way, using (4.6) in Lemma 4.2.2 and Lemma 4.3.2, we obtain the second relation in Proposition 4.3.3.
4.4.The operator H. - Using Φ^{*} and Φ (see Sect. 4.3), we can define the C^{1} map

$$
\eta(z, \zeta, \lambda)=\stackrel{\circ}{\chi}\left(\lambda_{0}\right) \frac{\bar{\zeta}-\bar{z}}{|\zeta-z|^{2}}+\left(1-\stackrel{\circ}{\chi}\left(\lambda_{0}\right)\right)\left[\stackrel{\circ}{\chi}\left(\stackrel{\circ}{\lambda_{*}}\right) \frac{w^{*}(\zeta)}{\Phi^{*}(z, \zeta)}+\left(1-\stackrel{\circ}{\chi}\left(\stackrel{\circ}{\lambda_{*}}\right)\right) \frac{w(z, \zeta, \stackrel{\circ}{\lambda})}{\Phi(z, \zeta, \stackrel{\circ}{\lambda})}\right]
$$

for all $(z, \zeta, \lambda) \in D \times \bar{D} \times \Delta_{01 \cdots N *}$, with $z \neq \zeta$ (for the definitions of $\stackrel{\circ}{\chi}, \stackrel{\circ}{\lambda}_{*}$ and $\stackrel{\circ *}{\lambda}$ see Sect. 1.7 and 1.8). Note that

$$
\begin{align*}
& \eta(z, \zeta, \lambda)=\frac{\bar{\zeta}-\bar{z}}{|\zeta-z|^{2}} \text { if } 1 / 2 \leqslant \lambda_{0} \leqslant 1 \tag{4.7}\\
& \eta(z, \zeta, \lambda)=\stackrel{\circ}{\chi}\left(\stackrel{\circ}{\lambda}_{*}\right) \frac{w^{*}(\zeta)}{\Phi^{*}(z, \zeta)}+\left(1-\stackrel{\circ}{\chi}\left(\stackrel{\circ}{\lambda}_{*}\right)\right) \frac{w(z, \zeta, \stackrel{\circ}{\lambda})}{\Phi(z, \zeta, \stackrel{\circ}{\lambda})} \text { if } 0 \leqslant \lambda_{0} \leqslant 1 / 4 \\
& \eta(z, \zeta, \lambda)=\stackrel{\circ}{\chi}\left(\lambda_{*}\right) \frac{w^{*}(\zeta)}{\Phi^{*}(z, \zeta)}+\left(1-\stackrel{\circ}{\chi}\left(\lambda_{*}\right)\right) \frac{w(z, \zeta, \stackrel{*}{\lambda})}{\Phi(z, \zeta, \stackrel{*}{\lambda})} \text { if } \lambda_{0}=0
\end{align*}
$$

In particular, for all $K \in P^{\prime}(N, *)$ we have the relations

$$
\begin{equation*}
\eta(z, \zeta, \lambda)=\psi_{O K}(z, \zeta, \lambda) \quad \text { if } \quad(\zeta, \lambda) \in S_{K} \times \Delta_{O K} \tag{4.8}
\end{equation*}
$$

(see (4.1) for the definition of $\psi_{O K}$) and

$$
\begin{equation*}
\eta(z, \zeta, \lambda)=\tilde{\psi}_{K}(z, \zeta, \lambda) \quad \text { if } \quad(\zeta, \lambda) \in \Gamma_{K} \times \Delta_{K} \tag{4.9}
\end{equation*}
$$

Now for $(z, \zeta, \lambda) \in D \times \bar{D} \times \Delta_{01 \cdots N *}$ with $z \neq \zeta$ we introduce the continuous differential forms
and

$$
\widehat{G}(z, \zeta, \lambda)=\frac{1}{(2 i \pi)^{n}} \operatorname{det}(\overbrace{\eta(z, \zeta, \lambda)}^{1}, \overbrace{d \eta(z, \zeta, \lambda)}^{n-1}) \wedge d z_{1} \wedge \cdots \wedge d z_{n}
$$

$$
\widehat{H}(z, \zeta, \lambda)=\frac{1}{(2 i \pi)^{n}} \operatorname{det}(\overbrace{d \eta(z, \zeta, \lambda)}^{n}) \wedge d z_{1} \wedge \cdots \wedge d z_{n}
$$

where d is the exterior differential with respect to all variables z, ζ, λ.
Then it is easy to see that

$$
\begin{equation*}
d \widehat{G}=\widehat{H} \tag{4.10}
\end{equation*}
$$

It follows from the definitions of the kernels $\widehat{B}, \widehat{R}_{K}^{\psi}, \widehat{L}_{K}^{\tilde{\psi}}$ and from the relations (4.7), (4.8) and (4.9) that

$$
\begin{align*}
\left.\widehat{G}\right|_{D \times \bar{D} \times \Delta_{0}} & =\widehat{B} \tag{4.11}\\
\left.\widehat{G}\right|_{D \times S_{K} \times \Delta_{0 K}} & =(-1)^{|K|} \widehat{R}_{K}^{\psi} \quad \text { for all } \quad K \in P^{\prime}(N, *) \tag{4.12}\\
\left.\widehat{G}\right|_{D \times \Gamma_{K} \times \Delta_{K}} & =\widehat{L}_{K}^{\psi} \quad \text { for all } \quad K \in P^{\prime}(N, *) \tag{4.13}
\end{align*}
$$

Like in [L-T/Le] we can describe the singularity of \widehat{G} and \widehat{H} at $z=\zeta$.
4.4.1. Lemma. - Denote by $[\widehat{G}(z, \zeta, \lambda)]_{\operatorname{deg} \lambda=k}$ and $[\hat{H}(z, \zeta, \lambda)]_{\operatorname{deg} \lambda=k}$ the parts of the forms $\widehat{G}(z, \zeta, \lambda)$ and $\widehat{H}(z, \zeta, \lambda)$, respectively, which are of degree k in λ. Then the following statements hold :
(i) The singularity at $z=\zeta$ of the form $[\widehat{G}(z, \zeta, \lambda)]_{\operatorname{deg}} \lambda=k$ is of order $\leqslant 2 n-2 k-1$;
(ii) The singularities at $z=\zeta$ of the first-order derivatives with respect to z of the coefficients of $[\widehat{G}(z, \zeta, \lambda)]_{\operatorname{deg} \lambda=k}$ are of order $\leqslant 2 n-2 k$;
(iii) The singularity at $z=\zeta$ of the form $[\hat{H}(z, \zeta, \lambda)]_{\operatorname{deg} \lambda=k}$ is of order $\leqslant 2 n-2 k+1$.

As (E, D) is a local q-concave wedge, the map w is ($q+1$)-holomorphic in ζ (Lemma 3.3) and therefore
4.4.2. Lemma. - If $f \in C_{n, r}^{0}(\bar{D})$ with $r \leqslant q-N+1$, then

$$
\int_{(\zeta, \lambda) \in \Gamma_{K} \times \Delta_{K}} f(\zeta) \wedge \widehat{G}(z, \zeta, \lambda)=0
$$

for all $K \in P^{\prime}(N)$ and $z \in D$.

Proof. - Let us remark that for $K \in P^{\prime}(N)$

$$
\left.\widehat{G}\right|_{D \times \Gamma_{K} \times \Delta_{K}}=\frac{1}{(2 i \pi)^{n}} \frac{1}{\Phi^{n}} \operatorname{det}(w(z, \zeta, \lambda), \overbrace{d w(z, \zeta, \lambda)}^{n-1}) \wedge d z_{1} \wedge \cdots \wedge d z_{n}
$$

where w is $(q+1)$-holomorphic in ζ. Therefore $[\widehat{G}(z, \zeta, \lambda)]_{\operatorname{deg}} \bar{\zeta}=k=0$ for $K \in P^{\prime}(N)$, $(z, \zeta, \lambda) \in D \times \Gamma_{K} \times \Delta_{K}, k \geqslant n-q$.

Since f is of type $(n, r), \operatorname{dim} \Delta_{K}=|K|-1, \operatorname{dim} \Gamma_{K}=2 n-|K|+1$ and $|K| \leqslant N$, we get

$$
\int_{(\zeta, \lambda) \in \Gamma_{K} \times \Delta_{K}} f(\zeta) \wedge \widehat{G}(z, \zeta, \lambda)=0
$$

when $r \leqslant q-N+1$ and $K \in P^{\prime}(N)$.
Let $f \in B_{n, *}^{\beta}(D), 0 \leqslant \beta<1$ (see Sect. 1.13). Then, for all $K \in P^{\prime}(N, *)$, we define

$$
\begin{equation*}
H_{K} f(z)=\int_{(\zeta, \lambda) \in \Gamma_{K} \times \Delta_{O K}} f(\zeta) \wedge \widehat{H}(z, \zeta, \lambda), \quad z \in D \tag{4.14}
\end{equation*}
$$

It follows from Lemma 4.4 .1 (iii) that these integrals converge and the so defined differential forms $H_{K} f$ are continuous on D. We set

$$
H f=\sum_{K \in P^{\prime}(N, *)}(-1)^{|K|} H_{K} f
$$

for $f \in B_{n, *}^{\beta}(D), 0 \leqslant \beta<1$.
Now let $f \in B_{n, r}^{\beta}(D), 0 \leqslant \beta<1,0 \leqslant r \leqslant n$. Since $\hat{H}(z, \zeta, \lambda)$ is of degree $2 n$ and contain the factor $d z_{1} \wedge \cdots \wedge d z_{n}$ and since $\operatorname{dim}_{\mathbb{R}} \Gamma_{K} \times \Delta_{O K}=2 n+1$, then only such monomials of $\widehat{H}(z, \zeta, \lambda)$ contribute to the integral in (4.14) which are of degree ($n+1-r$) in (ζ, λ) and hence of bidegree ($n, r-1$) in z. This implies that $H_{K} f=0$ if $r=0$ or $n+1-r<|K|=\operatorname{dim}_{\mathbf{R}} \Delta_{O K}$.

Hence, for $f \in B_{n, r}^{\beta}(D), 0 \leqslant \beta<1,0 \leqslant r \leqslant n$, we have

$$
\left.\begin{array}{l}
H f=\sum_{\substack{K \in P^{\prime}(N, *) \\
|K| \leqslant n+1-r}}(-1)^{|K|} H_{K} f, \tag{4.15}\\
H f=0 \text { if } r=0, \text { and } H f \in C_{n, r-1}^{0}(D) \text { if } 1 \leqslant r \leqslant n .
\end{array}\right\}
$$

4.4.3. Theorem. - Let (E, D) be a local q-concave wedge, $0 \leqslant q \leqslant n-1$ and $f \in B_{n, r}^{\beta}(D)$ an (n, r)-form, $0 \leqslant r \leqslant n, 0 \leqslant \beta<1$ such that $d f \in B_{*}^{\beta}(D)$. Then

$$
f=d H f+H d f+M f \quad \text { on } D
$$

Let $\left(U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}\right)$ the frame associated to (E, D) in Definition 2.2, then, if $0 \leqslant r \leqslant q-N$,

$$
f=d H f+H d f+M^{*} f \quad \text { on } D
$$

In particular, if $r=0, f=H d f+M^{*} f$ on D.

Proof. - The proof of this theorem is analogous to that of Theorem 4.11 in [L-T/Le]. For the convenience of the lecturer we will repeat it here

First consider a form $g \in C_{n, j}^{0}(\bar{D})$. Then by (4.10)

$$
d_{\zeta, \lambda}(g \wedge \widehat{G})=d g \wedge \widehat{G}-d_{z}(g \wedge \widehat{G})+(-1)^{n+j} g \wedge \widehat{H}
$$

and it follows from Stokes'formula (which can be applied in view of Lemma 4.4.1) that

$$
\int_{\partial\left(\Gamma_{K} \times \Delta_{O K}\right)} g \wedge \widehat{G}=\int_{\Gamma_{K} \times \Delta_{O K}} d g \wedge \widehat{G}+d \int_{\Gamma_{K} \times \Delta_{O K}} g \wedge \widehat{G}+(-1)^{n+j} H_{K} g
$$

for all $K \in P^{\prime}(N, *)$. In view of (4.4) this implies that

$$
\begin{aligned}
\int_{D \times \Delta_{0}} g \wedge \widehat{G} & +\sum_{K \in P^{\prime}(N, *)}(-1)^{|K|} \int_{S_{K} \times \Delta_{O K}} g \wedge \widehat{G}-\sum_{K \in P^{\prime}(N, *)} \int_{\Gamma_{K} \times \Delta_{K}} g \wedge \widehat{G} \\
& =\sum_{K \in P^{\prime}(N, *)}(-1)^{|K|}\left(\int_{\Gamma_{K} \times \Delta_{O K}} d g \wedge \widehat{G}+d \int_{\Gamma_{K} \times \Delta_{O K}} g \wedge \widehat{G}+(-1)^{n+j} H_{K} g\right)
\end{aligned}
$$

Taking into account (4.11) and (4.12) as well as the definitions of T^{ψ} and H, this can be written

$$
\begin{align*}
T^{\psi} g & -\sum_{K \in P^{\prime}(N, *)} \int_{\Gamma_{K} \times \Delta_{K}} g \wedge \widehat{G} \\
& =\sum_{K \in P^{\prime}(N, *)}(-1)^{|K|}\left(\int_{\Gamma_{K} \times \Delta_{O K}} d g \wedge \widehat{G}+d \int_{\Gamma_{K} \times \Delta_{O K}} g \wedge \widehat{G}\right)+(-1)^{j+n} H g \tag{4.16}
\end{align*}
$$

Now we consider a form $f \in C_{n, r}^{0}(\bar{D})$ with $0 \leqslant r \leqslant n$ such that $d f$ is also continuous on \bar{D}. Setting $g=d f$ in (4.16), we obtain that
$T^{\psi} d f=\sum_{K \in P^{\prime}(N, *)}(-1)^{|K|} d \int_{\Gamma_{K} \times \Delta_{O K}} d f \wedge \widehat{G}+(-1)^{r+1+n} H d f+\sum_{K \in P^{\prime}(N, *)} \int_{\Gamma_{K} \times \Delta_{K}} d f \wedge \widehat{G}$.
Setting $g=f$ in (4.16), applying d to the resulting relation, we obtain that

$$
d T^{\psi} f=\sum_{K \in P^{\prime}(N, *)}(-1)^{|K|} d \int_{\Gamma_{K} \times \Delta_{O K}} d f \wedge \widehat{G}+(-1)^{r+n} d H f+\sum_{K \in P^{\prime}(N, *)} d\left(\int_{\Gamma_{K} \times \Delta_{K}} f \wedge \widehat{G}\right)
$$

Using (4.13) and Proposition 4.3.3, these two relations imply that

$$
d T^{\psi} f-T^{\psi} d f+L^{\psi} f=(-1)^{r+n}(d H f+H d f+M f)
$$

and hence by (4.3)

$$
\begin{equation*}
f=d H f+H d f+M f \tag{4.17}
\end{equation*}
$$

If moreover $0 \leqslant r \leqslant q-N$, then by Lemma 4.4.2, we obtain

$$
d T^{\psi} f-T^{\psi} d f=(-1)^{r+n}(d H f+H d f)+\sum_{K \in P^{\prime}(N)}\left[d\left(\int_{\Gamma_{K *} \times \Delta_{K *}} f \wedge \widehat{G}\right)-\int_{\Gamma_{K *} \times \Delta_{K *}} d f \wedge \widehat{G}\right]
$$

It follows from Theorem 4.1.1, Proposition 4.3.3 and (4.13) that

$$
\begin{equation*}
f=d H f+H d f+M^{*} f \tag{4.18}
\end{equation*}
$$

Now we consider the general case. Let $f \in B_{n, r}^{\beta}(D), 0 \leqslant \beta<1,0 \leqslant r \leqslant n$, such that also $d f \in B_{*}^{\beta}(D)$. Choose $\varepsilon>0$ with $\beta+\varepsilon<1$. Then, by local shifts of f and a partition of unity argument, we can find a sequence of forms $f_{\nu} \in C_{n, r}^{0}(\bar{D})$ such that also the forms $d f_{\nu}$ are continuous on \bar{D} and

$$
f_{\nu} \longrightarrow f \text { and } d f_{\nu} \longrightarrow d f
$$

in the space $B_{*}^{\beta+\varepsilon}(D)$. By Lemma 4.4.1 (iii), then

$$
H f_{\nu} \longrightarrow H f \text { and } H d f_{\nu} \longrightarrow H d f
$$

uniformly on the compact subsets of D. Moreover the kernels \widehat{M}_{K}^{ψ} are of class C^{1} in $D \times \bar{D} \times \Delta_{K}$ and therefore

$$
M f_{\nu} \longrightarrow M f \text { and } M^{*} f_{\nu} \longrightarrow M^{*} f
$$

uniformly on the compact subsets of D. Since, by (4.17) and (4.18),
and

$$
f_{\nu}=d H f_{\nu}+H d f_{\nu}+M f_{\nu}
$$

$$
f_{\nu}=d H f_{\nu}+H d f_{\nu}+M^{*} f_{\nu}, \text { if } 0 \leqslant r \leqslant q-N
$$

this implies that

$$
\begin{aligned}
& f=d H f+H d f+M f \\
& f=d H f+H d f+M^{*} f, \text { if } 0 \leqslant r \leqslant q-N
\end{aligned}
$$

5. Homotopy formula and solution of the $\bar{\partial}$-equation

in local q-concave wedges

Let (E, D) be a local q-concave wedge, $0 \leqslant q \leqslant n-1$, $\left(U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}\right)$ the associated frame satisfying conditions (i), (ii) and (iii) in Definition 2.2.
5.1. Lemma. - Let ξ be a fixed point in E, then there exists a neighborhood W of ξ in \mathbb{C}^{n} such that for each $f \in B_{n, r}^{\beta}(D), 0 \leqslant \beta<1,0 \leqslant r \leqslant n$, the differential form $M^{*} f=\sum_{K \in P^{\prime}(N)} \int_{\Gamma_{K * \times \Delta_{K *}}} f(\zeta) \wedge \widehat{M}_{K *}(\cdot, \zeta, \lambda)$ is of class C^{1} in W and $D \subset W$. Moreover M^{*} is a bounded operator from $B_{n, *}^{\beta}(D)$ into $C_{n, *}^{1}(W)$.

Proof. - Recall that $\widehat{M}_{K *}(z, \zeta, \lambda)=\frac{1}{(2 i \pi)^{n}} \operatorname{det}\left(d \tilde{\psi}_{K *}(z, \zeta, \lambda)\right)$ where

$$
\tilde{\psi}_{K *}(z, \zeta, \lambda)=\stackrel{\circ}{\chi}\left(\lambda_{*}\right) \frac{w^{*}(\zeta)}{\Phi^{*}(z, \zeta)}+\left(1-\stackrel{\circ}{\chi}\left(\lambda_{*}\right)\right) \frac{w(z, \zeta, \stackrel{*}{\lambda})}{\Phi(z, \zeta, \stackrel{*}{\lambda})}
$$

for $(z, \zeta, \lambda) \in D \times \bar{D} \times \Delta_{K *}$.
Moreover, we know from (3.1) and the definition of Φ^{*} in Section 4.3 that

$$
\begin{equation*}
\Phi^{*}(z, \zeta) \neq 0 \text { for all }(z, \zeta) \in\left\{x \in U_{\bar{D}} / \rho_{*}(x)<0\right\} \times\left\{y \in U_{\bar{D}} / \rho_{*}(y) \leqslant 0\right\} \tag{5.1}
\end{equation*}
$$

From (3.6), (3.7) and the definition of Φ in Section 4.3 we get
$\operatorname{Re} \Phi(z, \zeta, \lambda) \leqslant \rho_{\lambda}(z)+\rho_{\lambda}(\zeta)-\frac{\alpha}{2}|\zeta-z|^{2}$ for all $(z, \zeta, \lambda) \in U_{\bar{D}} \times U_{\bar{D}} \times \Delta_{K}$.
Set $\delta=\operatorname{dist}\left(\xi, \Gamma_{1 \cdots N *}\right)$, if $z \in B(\xi, \tau \delta), \tau<1$, and $\zeta \in \Gamma_{K *}$, then $|z-\zeta|>(1-\tau) \delta$.
 neighborhood of ξ, which contains $D \cap B(\xi, \tau \delta)$.

We set $W=\left[\left(\bigcup_{\tau<1} W_{\tau}\right) \cup D\right] \cap\left\{z \in U_{\bar{D}} \mid \rho_{*}(x)<0\right\}, W$ is a neighborhood of ξ in \mathbb{C}^{n}, which contains D. We deduce from (5.1) and (5.2) that $\Phi^{*}(z, \zeta) \neq 0$ and $\Phi(z, \zeta) \neq 0$ for $(z, \zeta, \lambda) \in W \times \Gamma_{K *} \times \Delta_{K *}$.

Consequently $\widehat{M}_{K_{*}}$ is a C^{1} differential form on $W \times \Gamma_{K *} \times \Delta_{K *}$, which defines a bounded operator M^{*} from $B_{n, *}^{\beta}(D)$ into $C_{n, *}^{1}(W)$.
5.2. Lemma. - Let $f \in B_{n, r}^{\beta}(D)$ a (n, r)-differential form, $0 \leqslant \beta<1$, such that $d f \in B_{*}^{\beta}(D)$. Then if $0 \leqslant r \leqslant q-N-1, d M^{*} f=M^{*} d f$ on W.

Proof. - We consider first the case, where $f \in C_{n, r}^{0}(\bar{D})$ and $d f$ is also continuous on \bar{D}. If $z \in W$

$$
d M^{*} f(z)=(-1)^{r+1} \sum_{K \in P^{\prime}(N) \cup \emptyset} \int_{(\zeta, \lambda) \in \Gamma_{K *} \times \Delta_{K *}} f(\zeta) \wedge d_{\zeta, \lambda} \widehat{M}_{K *}(z, \zeta, \lambda)
$$

since $d \widehat{M}_{K *}=0$ by definition of $\widehat{M}_{K *}$.
Therefore, using Stokes'theorem and (4.6) we get

$$
\begin{aligned}
d M^{*} f(z)=M^{*} d f(z) & -\sum_{K \in P^{\prime}(N) \cup \cup} \int_{(\zeta, \lambda) \in S_{K *} \times \Delta_{K *}} f(\zeta) \wedge \widehat{M}_{K *}(z, \zeta, \lambda) \\
& -\sum_{K \in P^{\prime}(N)} \int_{(\zeta, \lambda) \in \Gamma_{K *} \times \Delta_{K}} f(\zeta) \wedge \widehat{M}_{K *}(z, \zeta, \lambda)
\end{aligned}
$$

But we have $\left.\widehat{M}_{K *}\right|_{S_{K *} \times \Delta_{K *}}=d \widehat{L}_{K *}^{\tilde{\psi}}=0$, then

$$
\begin{equation*}
d M^{*} f(z)=M^{*} d f(z)-\sum_{K \in P^{\prime}(N)} \int_{(\zeta, \lambda) \in \Gamma_{K *} \times \Delta_{K}} f(\zeta) \wedge \widehat{M}_{K *}(z, \zeta, \lambda) \tag{5.3}
\end{equation*}
$$

Since $\left.\widehat{M}_{K *}\right|_{\Gamma_{K *} \times \Delta_{K}}=\left.d \widehat{L}_{K}^{\tilde{\psi}}\right|_{\Gamma_{K * \times \Delta_{K}}}$, we have

$$
\left.\begin{array}{rl}
\int_{(\zeta, \lambda) \in \Gamma_{K *} \times \Delta_{K}} f(\zeta) \wedge \widehat{M}_{K *}(z, \zeta, \lambda)=\int_{(\zeta, \lambda) \in \Gamma_{K * \times \Delta_{K}}} f(\zeta) \wedge d_{z, \zeta, \lambda} \widehat{L}_{K}^{\psi}(z, \zeta, \lambda) \\
= & (-1)^{r} d_{z}\left(\int_{(\zeta, \lambda) \in \Gamma_{K * \times \Delta_{K}}} f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda)\right) \\
& +(-1)^{r+1} \int_{(\zeta, \lambda) \in \Gamma_{K * *} \Delta_{K}} d f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda) \tag{5.4}\\
& +(-1)^{r} \int_{(\zeta, \lambda) \in \Gamma_{K * \times \Delta_{K}}} d_{\zeta, \lambda}\left(f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda)\right)
\end{array}\right\}
$$

By Lemma 4.3.1 we get that, if $0 \leqslant r \leqslant q-N$,

$$
\begin{equation*}
\int_{(\zeta, \lambda) \in \Gamma_{K *} \times \Delta_{K}} f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda)=0 \tag{5.5}
\end{equation*}
$$

and if $0 \leqslant r \leqslant q-N-1$ or $d f=0$

$$
\begin{equation*}
\int_{(\zeta, \lambda) \in \Gamma_{K *} \times \Delta_{K}} d f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda)=0 \tag{5.6}
\end{equation*}
$$

One can easily prove that

$$
\begin{equation*}
\sum_{K \in P^{\prime}(N)} \partial\left(\Gamma_{K *} \times \Delta_{K}\right)=\sum_{K \in P^{\prime}(N)} S_{K *} \times \Delta_{K} \tag{5.7}
\end{equation*}
$$

Then, from Stokes'theorem and (5.7) we deduce

$$
\begin{align*}
& \sum_{K \in P^{\prime}(N)} \int_{(\zeta, \lambda) \in \Gamma_{K *} \times \Delta_{K}} d_{\zeta, \lambda}\left(f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda)\right) \\
&=\sum_{K \in P^{\prime}(N)} \int_{(\zeta, \lambda) \in S_{K *} \times \Delta_{K}} f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda) \tag{5.8}
\end{align*}
$$

Using $\left[\widehat{L} \bar{L}_{K}^{\tilde{\psi}}\right]_{\operatorname{deg} \bar{\zeta}=k}=0$ for $K \in P^{\prime}(N), k \geqslant n-q$, and $\operatorname{dim} S_{K *}=2 n-|K|-1$ for $K \in P^{\prime}(N)$, we obtain that

$$
\begin{equation*}
\int_{(\zeta, \lambda) \in S_{K *} \times \Delta_{K}} f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda)=0 \quad \text { if } \quad 0 \leqslant r \leqslant q-N-1 \tag{5.9}
\end{equation*}
$$

Therefore using (5.3), (5.4), (5.5), (5.6), (5.8) and (5.9) the lemma is proved for $f \in C_{n, r}^{0}(\bar{D})$ such that $d f$ is continuous on \bar{D}.

Now, let $f \in B_{n, r}^{\beta}(D), 0 \leqslant \beta<1,0 \leqslant r \leqslant q-N-1$, such that also $d f \in B_{*}^{\beta}(D)$. Choose $\varepsilon>0$ with $\beta+\varepsilon<1$. Then as in the proof of Theorem 4.4.3, we can find a sequence of forms $f_{\nu} \in C_{n, r}^{0}(\bar{D})$ such that the forms $d f_{\nu}$ are also continuous on \bar{D} and

$$
f_{\nu} \longrightarrow f \quad \text { and } \quad d f_{\nu} \longrightarrow d f
$$

in the space $B_{*}^{\beta+\varepsilon}(D)$.
As the kernels $\widehat{M}_{K *}$ are of class C^{1} in $W \times \Gamma_{K *} \times \Delta_{K *}, K \in P^{\prime}(N) \cup \emptyset$, $M^{*} f_{\nu} \rightarrow M^{*} f$ and $M^{*} d f_{\nu} \rightarrow M^{*} d f$ for the C^{1} topology in the open set W. Since $d M^{*} f_{\nu}=M^{*} d f_{\nu}$ by the first part of the proof we get that $d M^{*} f=M^{*} d f$ for $0 \leqslant r \leqslant q-N-1$.
5.3. Theorem. - Let (E, D) be a local q-concave wedge, $0 \leqslant q \leqslant n-1$, ($U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}$) the frame associated to (E, D) in Definition 2.2 and ξ a fixed point in E. Then there exists a real $R, R>0$, such that for each $f \in B_{n, r}^{\beta}(D), 0 \leqslant \beta<1$, $1 \leqslant r \leqslant q-N-1$, with df $\in B_{*}^{\beta}(D)$ we have

$$
f=S d f+d S f \quad \text { on } \quad D \cap B(\xi, R)
$$

where $S=H+T M^{*}, T$ being the Henkin operator for solving the $\bar{\partial}$-equation in $B(\xi, R)$.

Proof. - In Theorem 4.4.3, we have proved that, if $1 \leqslant r \leqslant q-N$, we have

$$
\begin{equation*}
f=d H f+H d f+M^{*} f \quad \text { on } \quad D \tag{5.10}
\end{equation*}
$$

Let W be the neighborhood of ξ defined in Lemma 5.1. Then, there exists, $R>0$, such that $\bar{B}(\xi, R) \subset W$ and $M^{*} f$ is a C^{1} differential form on $\bar{B}(\xi, R)$.

Let T be the operator defined by Corollary 1.12 .2 in [$\mathrm{He} / \mathrm{Le} 1]$ with the Leray map associated to $B(\xi, R)$ (see Definition 2.1.2 and Corollary 2.1.4 in [He/Le 1]). Then we have

$$
\begin{equation*}
M^{*} f=d T M^{*} f+T d M^{*} f \quad \text { on } \quad B(\xi, R) \tag{5.11}
\end{equation*}
$$

Setting $S=H+T M^{*}$, (5.10), (5.11) and Lemma 5.2 imply

$$
f=d S f+S d f \quad \text { on } \quad D \cap B(\xi, R)
$$

5.4. Lemma. - Let us suppose that (E, D) is a local q-concave wedge defined by a q-configuration, ξ a fixed point in E and W the neighborhood of ξ defined in Lemma 5.1 using a constant α satisfying the properties of Remark 2.6. Then for each $(z, \lambda) \in W \times \Delta_{1 \cdots N}$ there exists a strictly q-convex domain G such that
a) $S_{1 \cdots N *} \subset \subset G$;
b) $U_{\bar{D}}$ is a q-convex extension of G;
c) $\left[\widehat{L}_{1 \cdots N}^{\psi}\right]_{\operatorname{deg}} \bar{\zeta}=n-q-1$ is a $\bar{\partial}$-closed form on a neighborhood of \bar{G}.

Proof. - Set $\tilde{\rho}_{i}(\zeta)=\rho_{i}(\zeta)-\rho_{i}(z)+\frac{\alpha}{2}|\zeta-z|^{2}, i=1, \ldots, N$ and for $\varepsilon>0$, sufficiently small

$$
\tilde{\varphi}=\max \left(-\tilde{\rho}_{1}, \ldots,-\tilde{\rho}_{N}, \rho_{*}-\varepsilon\right)
$$

By definition of W, if $z \in W$, we have

$$
S_{1 \cdots N *} \subset \subset\left\{\zeta \in U_{\bar{D}} \mid \tilde{\varphi}(\zeta)<0\right\}
$$

Consequently there exists $\beta>0$ such that

$$
S_{1 \cdots N *} \subset \subset\left\{\zeta \in U_{\bar{D}} \mid \tilde{\varphi}^{\beta}(\zeta)<0\right\}
$$

where $\tilde{\varphi}^{\beta}=\max _{\beta}\left(-\tilde{\rho}_{1}, \ldots,-\tilde{\rho}_{N}, \rho_{*}-\varepsilon\right)$.
Since $\tilde{\rho}_{\lambda}$ is strictly $(q+1)$-convex for each $\lambda \in \Delta_{1 \cdots N}$ and ρ_{*} is convex, the function $\tilde{\varphi}^{\beta}$ is strictly $(q+1)$-convex on $U_{\bar{D}}$. Without loss of generality, we can assume that ρ_{*} is an unbounded exhausting function for $U_{\bar{D}}$. Then also $\tilde{\varphi}^{\beta}$ is an unbounded exhausting function for $U_{\bar{D}}$.

Since $-\operatorname{Re} \psi(z, \zeta, \lambda)>\tilde{\rho}_{\lambda}(\zeta)$ for $(z, \zeta, \lambda) \in U_{\bar{D}} \times U_{\bar{D}} \times \Delta_{1 \cdots N}$, for each $(z, \lambda) \in$ $W \times \Delta_{1 \cdots N}, \widehat{L}_{1 \cdots N}^{\psi}(z, \cdot, \lambda)$ is defined on $\left\{\zeta \in U_{\bar{D}} \mid \tilde{\varphi}^{\beta}(\zeta)<0\right\}$.

Using the ($q+1$)-holomorphy of ψ and the definition of $\widehat{L}_{1 \cdots N}^{\psi}$ we get

$$
\left[L_{1 \cdots N}^{\psi}\right]_{\operatorname{deg} \bar{\zeta}=n-q}=0 \quad \text { and } \quad d_{z, \zeta, \lambda} L^{\psi}=0
$$

therefore

$$
\bar{\partial}_{\zeta}\left[L_{1 \cdots N}^{\psi}\right]_{\operatorname{deg} \bar{\zeta}=n-q-1}=-\left(\partial_{\zeta}+d_{z, \lambda}\right)\left[L_{1 \cdots N}^{\psi}\right]_{\operatorname{deg} \bar{\zeta}=n-q}=0
$$

For $(z, \lambda) \in W \times \Delta_{1 \cdots N}, \widehat{L}_{1 \cdots N}^{\psi}(z, \cdot, \lambda)$ is $\bar{\partial}$-closed on $\left\{\zeta \in U_{\bar{D}} \mid \tilde{\varphi}^{\beta}(\zeta)<0\right\}$ and for sufficiently small $c>0, G=\left\{\zeta \in U_{\bar{D}} \mid \tilde{\varphi}^{\beta}(\zeta)<-c\right\}$ has the required properties.
5.5. Lemma. - Under the hypothesis of Lemma 5.4, let $f \in B_{n, q-N}^{\beta}(D)$ an $(n, q-N)$ differential form, $0 \leqslant \beta<1$, such that $d f=0$ then

$$
d M^{*} f=0 \quad \text { on } \quad W
$$

Proof. - First let us assume that f is continuous on \bar{D}. Using (5.3), (5.4), (5.5), (5.6) and (5.8) we get for $z \in W$

$$
d M^{*} f(z)=\sum_{K \in P^{\prime}(N)} \int_{(\zeta, \lambda) \in S_{K *} \times \Delta_{K}} f(\zeta) \wedge \widehat{L}_{K}^{\tilde{\psi}}(z, \zeta, \lambda) .
$$

Since on $W \times S_{K *} \times \Delta_{K}, \widehat{L}_{K}^{\bar{\psi}}=\widehat{L}_{K}^{\psi}$ and $\left[\hat{L}_{K}^{\bar{\psi}}\right]_{\operatorname{deg} \bar{\zeta}=k}=0$ for $K \in P^{\prime}(N), k \geqslant n-q$, we obtain

$$
\begin{align*}
d M^{*} f(z) & =\int_{(\zeta, \lambda) \in S_{1 \cdots N *} \times \Delta_{1 \cdots N}} f(\zeta) \wedge\left[\widehat{L}_{1 \cdots N}^{\psi}\right]_{\operatorname{deg} \bar{\zeta}=n-q-1}(z, \zeta, \lambda) \\
& =\int_{\lambda \in \Delta_{1 \cdots N}}\left(\int_{\zeta \in S_{1} \cdots N *} f(\zeta) \wedge\left[\widehat{L}_{1 \cdots N}^{\psi}\right]_{\operatorname{deg} \bar{\zeta}=n-q-1}(z, \zeta, \lambda)\right) \tag{5.12}
\end{align*}
$$

We fix $(z, \lambda) \in W \times \Delta_{1 \cdots N}$, by Lemma $5.4\left[\widehat{L}_{1 \cdots N}^{\psi}\right]_{\operatorname{deg}} \bar{\zeta}=n-q-1$ is a $\bar{\partial}$-closed form on a neighborhood of a strictly q-convex domain G containing $S_{1 \cdots N *}$. Moreover U is a q-convex extension of G and by Corollary 12.12 (ii) in [He/Le 2] we can approach [$\left.\widehat{L}_{1 \cdots N}^{\psi}\right]_{\operatorname{deg} \bar{\zeta}=n-q-1}$ uniformly on \bar{G} by a sequence $\left(F_{j}\right)_{j \in N}$ of $\bar{\partial}$-closed form on U. Therefore we have

$$
\int_{\zeta \in S_{1} \cdots N^{*}} f(\zeta) \wedge\left[\widehat{L}_{1 \cdots N}^{\psi}\right]_{\operatorname{deg} \bar{\zeta}=n-q-1}(z, \zeta, \lambda)=\lim _{j \rightarrow \infty} \int_{\zeta \in S_{1} \cdots N *} f(\zeta) \wedge F_{j}(\zeta)
$$

Since $S_{1 \cdots N *}$ is the boundary of $S_{1 \cdots N}$ and $f(\zeta) \wedge F_{j}(\zeta)$ is closed on $S_{1 \cdots N}$ we obtain

$$
\int_{\zeta \in S_{1 \cdots N *}} f(\zeta) \wedge\left[\widehat{L}_{1 \cdots N}^{\psi}\right]_{\operatorname{deg} \bar{\zeta}=n-q-1}(z, \zeta, \lambda)=0
$$

and consequently using (5.12) $d M^{*} f=0$ on W.
This proves the lemma when f is continuous on \bar{D}. The same argument as in the proof of Lemma 5.2, implies this lemma when $f \in B_{n, q-N}^{\beta}(D)$.
5.6. Theorem. - Let (E, D) be a local q-concave wedge defined by a q configuration (see Definition 2.4), $1 \leqslant q \leqslant n-1, \xi$ a fixed point in E and N the real codimension of E in \mathbb{C}^{n}.

Then there exists a real $R, R>0$, such that for each $f \in B_{n, q-N}^{\beta}(D), 0 \leqslant \beta<1$, $q-N \geqslant 1$, with $d f=0$ on D we have

$$
f=d S f \quad \text { on } \quad D \cap B(\xi, R)
$$

where $S=H+T M^{*}, T$ being the Henkin operator for solving the $\bar{\partial}$-equation in $B(\xi, R)$.

Proof. - From Theorem 4.4.3, we know that

$$
\begin{equation*}
f=d H f+M^{*} f \quad \text { on } \quad D \tag{5.13}
\end{equation*}
$$

Let W be the neighborhood of ξ defined in Lemma 5.1. Then there exists $R>0$ such that $\bar{B}(\xi, R) \subset W$ and $M^{*} f$ is a C^{1} differential form on $\bar{B}(\xi, R)$. Moreover by Lemma 5.5, $M^{*} f$ is $\bar{\partial}$-closed on $B(\xi, R)$.

Let T be the operator defined by Corollary 1.12 .2 in [$\mathrm{He} / \mathrm{Le} 1]$ with the Leray map associated to $B(\xi, R)$ (see Definition 2.1.2 and Corollary 2.1.4 in [He/Le 1]).

Then we have

$$
\begin{equation*}
M^{*} f=d T M^{*} f \quad \text { on } \quad B(\xi, R) \tag{5.14}
\end{equation*}
$$

Setting $S=H+T M^{*}$, (5.13) and (5.14) imply

$$
f=d S f \quad \text { on } \quad D \cap B(\xi, R)
$$

5.7. Theorem. - Let (E, D) be a local q-concave wedge, defined by a q configuration, $1 \leqslant q \leqslant n-1, N$ the real codimension of E and ξ a fixed point in E. Let us suppose that $q-N \geqslant 0$, then there exists a neighborhood W of ξ in $\mathbb{C}^{n}, D \subset W$, such that each holomorphic function in D has an holomorphic extension to W.

Proof. - Let f be a holomorphic function in D and $\varepsilon>0$ a real number. We set $\rho_{j}^{\varepsilon}=\rho_{j}+\varepsilon, j=1 \cdots N, *$. For ε sufficiently small, the frame $\left(U_{\bar{D}}, \rho_{1}^{\varepsilon}, \ldots, \rho_{N}^{\varepsilon}, \rho_{*}^{\varepsilon}\right)$ defines a new local q-concave wedge, denoted by ($E_{\varepsilon}, D_{\varepsilon}$), which has the same properties than (E, D). Let $d_{\varepsilon}=\operatorname{dist}\left(\xi, E_{\varepsilon}\right)$ and $\xi_{\varepsilon} \in E_{\varepsilon}$ a point such that $\left|\xi-\xi_{\varepsilon}\right|=d_{\varepsilon}$.

Set $\tilde{f}(\zeta)=f(\zeta) d \zeta_{1} \wedge \cdots \wedge d \zeta_{n}, \tilde{f}$ is a d-closed ($n, 0$)-form which is continuous in \bar{D}_{ε}. Since $q \geqslant N$, Theorem 4.4.3, applied to \tilde{f} and D_{ε}, implies that

$$
\tilde{f}=M_{\varepsilon}^{*} f \quad \text { in } \quad D_{\varepsilon} .
$$

As in the proof of Lemma 5.1 we have to consider the functions Φ^{*} and Φ_{ε} associated to $\left(E_{\varepsilon}, D_{\varepsilon}\right)$.

If $\zeta \in \Gamma_{K *}^{\varepsilon}$, then $\Phi^{*}(z, \zeta) \neq 0$ for all $z \in U_{\bar{D}}$ such that $\rho_{*}^{\varepsilon}(z)<0$, i.e. $\rho^{*}(z)<-\varepsilon$.
On the other hand, for all $(z, \zeta, \lambda) \in U_{\bar{D}} \times U_{\bar{D}} \times \Delta_{K}$

$$
\operatorname{Re} \Phi_{\varepsilon}(z, \zeta, \lambda) \leqslant \rho_{\lambda}^{\varepsilon}(z)+\rho_{\lambda}^{\varepsilon}(\zeta)-\frac{\alpha}{2}|\zeta-z|^{2}
$$

where the constant α depends only on the second derivatives of $\rho_{\lambda}^{\varepsilon}$ and consequently is independent of ε.

Following the proof of Lemma 5.1, if $\delta_{\varepsilon}=\operatorname{dist}\left(\xi_{\varepsilon}, \Gamma_{1 \ldots N_{*}}^{\varepsilon}\right)$ set $W_{\tau, \lambda}^{\varepsilon} \underset{\tau}{*}=\{z \in$ $\left.B\left(\xi_{\varepsilon}, \tau \delta_{\varepsilon}\right) \left\lvert\, \rho_{\lambda}^{\varepsilon}<\frac{\delta_{\varepsilon} \alpha(1-\tau)}{2}\right.\right\}$, then $W_{\tau}^{\varepsilon}=\bigcap_{\lambda \in \Delta_{K *}} W_{\tau, \lambda}^{\varepsilon}{ }_{*}$ is a neighborhood of ξ_{ε}.

We shall prove that for some τ and for sufficiently small ε, then W_{τ}^{ε} is a neighborhood of ξ.

Since $\Gamma_{1 \cdots N *}^{\varepsilon}=\Gamma_{1 \cdots N *} \cap D_{\varepsilon}$, we have $\delta_{\varepsilon} \geqslant \delta-d_{\varepsilon}$. Choose $\varepsilon_{0}>0$ such that for all $\varepsilon<\varepsilon_{0}, \delta-d_{\varepsilon}>\frac{\delta}{2}$ and τ such that $d_{\varepsilon_{0}}<\frac{\tau \delta}{2}$.

Then if $\varepsilon<\inf \left(\frac{\alpha}{4}(1-\tau) \delta, \varepsilon_{0}\right)$, the point ξ belongs to $\left\{\left.z \in B\left(\xi_{\varepsilon}, \tau \frac{\delta}{2}\right) \right\rvert\, \rho_{\lambda}^{\varepsilon}<\right.$ $\left.\frac{\delta_{\varepsilon} \alpha(1-\tau)}{2}\right\}$ and therefore $\xi \in W_{\tau}^{\varepsilon}$ and $\Phi_{\varepsilon}(z, \zeta, \lambda) \neq 0$ on $W_{\tau}^{\varepsilon} \times \Gamma_{K *} \times \Delta_{K *}$.

Choose such an ε, it follows from the definition of M_{ε}^{*} that $M_{\varepsilon}^{*} \tilde{f}$ is a $C^{1},(n, 0)$-form in W_{τ}^{ε}, moreover by Lemma $5.5 d M_{\varepsilon}^{*} \tilde{f}=0$.

Finally the ($n, 0$)-form \tilde{h} defined by $\tilde{h}=\tilde{f}$ on D and $\tilde{h}=M_{\varepsilon}^{*} \tilde{f}$ on W_{τ}^{ε} defined a holomorphic function h on $W=W_{\tau}^{\varepsilon} \cup D$ such that $h=f$ on D.

6. Estimates

In this section we denote by (E, D) a local q-concave wedge, $0 \leqslant q \leqslant n-1$, and by ($U_{\bar{D}}, \rho_{1}, \ldots, \rho_{N}, \rho_{*}$) the associated frame satisfying (i), (ii) and (iii) in Definition 2.2. Let $\Gamma_{K}, K \in P(N, *)$ be the submanifolds of \bar{D} defined in Section 4.2 and $\Phi(z, \zeta, \lambda)$ the function defined in Section 4.3.

In Section 4.3, we have defined an operator H from $B_{n, *}^{\beta}(D)$ into $C_{n, *}^{0}(D)$ by

$$
H f=\sum_{K \in P^{\prime}(N, *)}(-1)^{|K|} H_{K} f \quad \text { for } \quad f \in B_{n, *}^{\beta}(D)
$$

where the H_{K} 's are given by (4.14).
Let us set $H^{\prime} f=\sum_{K \in P^{\prime}(N)}(-1)^{|K|} H_{K} f$ and $H^{*} f=\sum_{K \in P^{\prime}(N) \cup \emptyset}(-1)^{|K|+1} H_{K *} f$.
Let us recall some definitions and propositions given in [L-T/Le].
6.1. Definition. - Let $K \in P^{\prime}(N, *)$ and let s be an integer.

A form of type O_{s} (or of type $O_{s}(z, \zeta, \lambda)$) on $D \times \Gamma_{K} \times \Delta_{O K}$ is, by definition, a continuous differential form $f(z, \zeta, \lambda)$ defined for all $(z, \zeta, \lambda) \in D \times \Gamma_{K} \times \Delta_{O K}$ with $z \neq \zeta$ such that the following conditions are fulfilled :
(i) All derivatives of the coefficients of $f(z, \zeta, \lambda)$ which are of order 0 in ζ, of order $\leqslant 1$ in z, and of arbitrary order in λ are continuous for all $(z, \zeta, \lambda) \in D \times \Gamma_{K} \times \Delta_{O K}$ with $z \neq \zeta$.
(ii) Let $\nabla_{z}^{\kappa}, \kappa=0,1$, be a differential operator with constant coefficients which is of order 0 in ζ, of order κ in z, and of arbitrary order in λ. Then there is a constant $C>0$ such that, for each coefficient $\varphi(z, \zeta, \lambda)$ of the form $f(z, \zeta, \lambda)$,

$$
\left|\nabla_{z}^{\kappa} \varphi(z, \zeta, \lambda)\right| \leqslant C|\zeta-z|^{s-\kappa}
$$

for all $(z, \zeta, \lambda) \in D \times \Gamma_{K} \times \Delta_{O K}$ with $z \neq \zeta$.
(iii) There exist neighborhood $U_{0}, U_{K} \subseteq \Delta_{O K}$ of Δ_{0} and Δ_{K}, respectively, such that $f(z, \zeta, \lambda)=0$ for all $(z, \zeta, \lambda) \in D \times \Gamma_{K} \times\left(U_{0} \cup U_{K}\right)$.

The symbols $O_{s}(z, \zeta, \lambda)$ and O_{s} will be used also to denote forms of this type, also in formulas. For example :

$$
f=O, \text { means }: f \text { is a form of type } O .
$$

$O_{s} \wedge f=O_{k} \wedge g+O_{m}$ means : for each form h of type O_{s} there exist a form u of type O_{k} and a form v of type O_{m} such that $h \wedge f=u \wedge g+v$.

The equation

$$
E f(z)=\int_{(\zeta, \lambda) \in S_{K} \times \Delta_{O K}} O_{s}(z, \zeta, \lambda) \wedge f(z, \zeta, \lambda)
$$

means : there exists a form \widehat{E} of type O_{s} such that

$$
E f(z)=\int_{(\zeta, \lambda) \in S_{K} \times \Delta_{O K}} \widehat{E}(z, \zeta, \lambda) \wedge f(z, \zeta, \lambda)
$$

for all f.
6.2. Definition. - Let $m \geqslant 0$ be an integer. An operator of type m is, by definition, a map

$$
E: \cup_{0 \leqslant \beta<1} B_{n, *}^{\beta}(D) \longrightarrow C_{n, *}^{0}(D)
$$

such that there exist

- an integer $k \geqslant 0$,
- $K \in P^{\prime}(N)$,
- a form $\widehat{E}(z, \zeta, \lambda)$ of type $O_{|K|-2 n+2 k+m}$ on $D \times \Gamma_{K} \times \Delta_{O K}$ such that, for all $f \in B_{n, *}^{\beta}(D), 0 \leqslant \beta<1$,

$$
E f(z)=\int_{(\zeta, \lambda) \in \Gamma_{K} \times \Delta_{O K}} \tilde{f}(\zeta) \wedge \frac{\widehat{E}(z, \zeta, \lambda) \wedge \Theta(\zeta)}{\Phi^{k+m}(z, \zeta, \stackrel{\circ}{\lambda})}
$$

where $\tilde{f} \in B_{0, *}^{\beta}(D)$ is the form with

$$
f(\zeta)=\tilde{f}(\zeta) \wedge d \zeta_{1} \wedge \cdots \wedge d \zeta_{n}
$$

and for Θ holds the following :
if $m=0$, then $\Theta=1$;
if $m \geqslant 1$, then there exist indices $i_{1}, \ldots, i_{m} \in K$ such that either

$$
\Theta=\partial \rho_{i_{1}} \wedge \cdots \wedge \partial \rho_{i_{m}} \text { or } \Theta=\bar{\partial} \rho_{i_{1}} \wedge \partial \rho_{i_{2}} \wedge \cdots \wedge \partial \rho_{i_{m}}
$$

(for the definition of $\dot{\lambda}$, see Sect. 1.8).
6.3. Proposition. - Let us consider an operator E of type $m, m \geqslant 0$.
(i) Let $0 \leqslant \beta<1 / 2,0<\varepsilon \leqslant 1 / 2-\beta$, and $1 \leqslant r \leqslant n$. Then

$$
E\left(B_{n, r}^{\beta}(D)\right) \subset C_{n, r-1}^{1 / 2-\beta-\varepsilon}(\bar{D})
$$

and the operator E is compact as operator between the Banach spaces $B_{n, r}^{\beta}(D)$ and $C_{n, r-1}^{1 / 2-\beta-\varepsilon}(\bar{D})$
(ii) Let $1 / 2 \leqslant \beta<1,0<\varepsilon \leqslant 1-\beta$, and $1 \leqslant r \leqslant n$. Then

$$
E\left(B_{n, r}^{\beta}(D)\right) \subset B_{n, r-1}^{\beta+\varepsilon-1 / 2}(\bar{D})
$$

and the operator E is compact as operator between the Banach spaces $B_{n, r}^{\beta}(D)$ and $B_{n, r-1}^{\beta+\varepsilon-1 / 2}(D)$.

For the proof of this proposition see the proof of Theorem 4.12 in Section 8 of [L-T/Le].
6.4. Theorem. - The operator H^{\prime} is a finite sum of operators of type $m, m \geqslant 0$.

Proof. - It comes from the definition of H^{\prime} that the calculations are exactly the same than in the proof of Theorem 5.4 in [L-T/Le]. The only change is that we have exchange the roles of z and ζ in the definition of w. But using that, for all $k=1, \ldots, N, \rho_{k}$ is of class C^{3}, we get that

$$
\begin{aligned}
O_{0} \wedge W & =O_{0} \wedge \sum_{j=1}^{n} w^{j}(z, \zeta, \lambda) d \zeta_{j}=O_{0} \wedge \sum_{k \in K} \frac{\partial \rho_{k}}{\partial z_{j}}(z) d \zeta_{j}+O_{1} \\
& =O_{0} \wedge \partial \rho_{j}(\zeta)+\sum_{k \in K}\left(\frac{\partial \rho_{k}}{\partial z_{j}}(z)-\frac{\partial \rho_{k}}{\partial z_{j}}(\zeta)\right) d \zeta_{j}+O_{1} \\
& =O_{0} \wedge \partial \rho_{j}(\zeta)+O_{1}
\end{aligned}
$$

and in the same way $O_{0} \wedge d_{\lambda} W=\sum_{j \in K} O_{0} \wedge \partial \rho_{j}(\zeta)+O_{1}$ and $O_{0} \wedge \bar{\partial}_{z, \zeta} \Phi=\sum_{j \in K} O_{0} \wedge \bar{\partial} \rho_{j}(\zeta)+O_{1}$ on $D \times \Gamma_{K} \times \Delta_{O K}, K \in P^{\prime}(N)$, which are exactly the same estimates than in [L-T/Le].
6.5. Proposition. - Let ξ be a fixed point in E and W the neighborhood of ξ defined in Lemma 5.1. Then for each $f \in B_{n, r}^{\beta}(D), 0 \leqslant \beta<1,0 \leqslant r \leqslant n$ the differential form $H^{*} f$ is of class C^{1} in W and the operator H^{*} is a bounded linear operator from $B_{n, *}^{\beta}(D)$ into $C_{n, *}^{1}(W)$.

Proof. - By definition of $W, \Phi^{*}(z, \zeta) \neq 0, \Phi(z, \zeta) \neq 0$ and $|z-\zeta| \neq 0$ for $(z, \zeta, \lambda) \in W \times \Gamma_{K *} \times \Delta_{O K *}$.

Therefore the kernels, which are used to define the operator H^{*}, are C^{1} differential forms on $W \times \Gamma_{K *} \times \Delta_{O K *}$. Then it follows easily from the definition of H^{*} that H^{*} is a bounded linear operator from $B_{n, *}^{\beta}(D), 0 \leqslant \beta<1$, into $C_{n, *}^{1}(W)$.
6.6. Theorem. - Let ξ be a fixed point in E and R be a positive real number such that $\bar{B}(\xi, R) \subset W$, where W is the neighborhood of ξ defined in Lemma 5.1. Then
the operator $S=H+T M^{*}, T$ being the Henkin operator for solving the $\bar{\partial}$-equation in $B(\xi, R)$ has the following properties:
i) For $0 \leqslant \beta<1 / 2,0<\varepsilon \leqslant 1 / 2-\beta$ and $1 \leqslant r \leqslant n, S$ is a compact operator between the Banach spaces $B_{n, r}^{\beta}(D)$ and $C_{n, r-1}^{1 / 2-\beta-\varepsilon}(\bar{D} \cap \bar{B}(\xi, R))$.
ii) For $1 / 2 \leqslant \beta<1,0<\varepsilon \leqslant 1-\beta$ and $1 \leqslant r \leqslant n, S$ is a compact operator, between the Banach spaces $B_{n, r}^{\beta}(D)$ and $B_{n, r-1}^{\beta+\varepsilon-1 / 2}(D \cap B(\xi, R))$.

Proof. - Recall that $S=H^{\prime}+H^{*}+T M^{*}$. It follows from Proposition 6.3 and Theorem 6.4 that H^{\prime} satisfies the conclusions i) and $i i$) of the theorem.

By Lemma 5.1 and Theorem 2.2.2 in [He/Le 1], $T M^{*}$ is a bounded operator from $B_{n, *}^{\beta}(D), 0 \leqslant \beta<1$, into $C_{n, *}^{1 / 2}(\bar{D} \cap \bar{B}(\xi, R))$ and, by Proposition $6.5, H^{*}$ is a bounded operator from $B_{n, *}^{\beta}(D), 0 \leqslant \beta<1$, into $C_{n, *}^{1}(\bar{D} \cap \bar{B}(\xi, R))$.

Now let $0 \leqslant \beta<1 / 2$. It follows from Ascoli's theorem that the injection maps from $C_{n, *}^{1 / 2}(\bar{D} \cap \bar{B}(\xi, R))$ and $C_{n, *}^{1}(\bar{D} \cap \bar{B}(\xi, R))$ into $C^{1 / 2-\beta-\varepsilon}(\bar{D} \cap \bar{B}(\xi, R))$ are compact. This ends the proof of the theorem in the first case.

Finally, suppose that $1 / 2 \leqslant \beta<1$. By Ascoli's theorem, $H^{*}+T M^{*}$ is a compact operator from $B_{n, *}^{\beta}(D)$ into $C_{n, *}^{0}(\bar{D} \cap \bar{B}(\xi, R))$. Moreover the injection map from $C_{n, *}^{0}(\bar{D} \cap \bar{B}(\xi, R))$ into $B_{n, *}^{\beta+\varepsilon-1 / 2}(D \cap B(\xi, R))$ is bounded and the second assertion of the theorem is proved.

Combining Theorem 5.3, Theorem 5.6 and Theorem 6.6, we obtain the main result of this paper :
6.7. Theorem. - Let (E, D) be a local q-concave wedge, $0 \leqslant q \leqslant n-1$, and ξ be a fixed point in E. Then there exists a real $R, R>0$, and a linear operator S from $B_{n, r}^{\beta}(D)$ into $C_{n, r-1}^{0}(D \cap B(\xi, R)), 1 \leqslant r \leqslant n$, such that :
i) If $0 \leqslant \beta<1 / 2$ and $0<\varepsilon \leqslant 1 / 2-\beta, S$ is compact from $B_{n, *}^{\beta}(D)$ into $C_{n, *}^{1 / 2-\beta-\varepsilon}(\bar{D} \cap \bar{B}(\xi, R))$.
ii) If $1 / 2 \leqslant \beta<1$ and $0<\varepsilon \leqslant 1-\beta, S$ is compact from $B_{n, *}^{\beta}(D)$ into $B_{n, *}^{\beta+\varepsilon-1 / 2}(D \cap B(\xi, R))$.
iii) For each $f \in B_{n, r}^{\beta}(D), 0 \leqslant \beta<1,1 \leqslant r \leqslant q-\operatorname{codim}_{\mathbb{R}} E-1$ with $d f \in B_{*}^{\beta}(D)$ we have

$$
f=S d f+d S f \quad \text { on } \quad D \cap B(\xi, R)
$$

iv) If moreover the local q-concave wedge (E, D) is defined by a q-configuration and $1 \leqslant r=q-\operatorname{codim}_{\mathbb{R}} E$, then for each d-closed form $f \in B_{n, r}^{\beta}(D), 0 \leqslant \beta<1$ we have

$$
f=d S f \quad \text { on } \quad D \cap B(\xi, R)
$$

7. Globalization

Let us denote by E a holomorphic vector bundle over an n-dimensional complex manifold X, by Ω and Δ two domains in X such that $\Omega \subset \subset \Delta \subset \subset X$ and by D the domain Δ \ Ω. Further, let $C_{n, r}^{\alpha}(\bar{D}, E), B_{n, r}^{\beta}(D, E)$ etc... the Banach spaces of E-valued differential forms on D, which are obtained canonically extending the definitions of Section 1.13.
7.1. Definition. - Let q and q^{\prime} be two integers, $0 \leqslant q, q^{\prime} \leqslant n-1$. A domain $D \subset \subset X$ will be called a q-concave, q^{\prime}-convex domain of order $N, 1 \leqslant N \leqslant 2 n$, if there exist two domains $\Omega \subset \subset \Delta \subset \subset X$ such that $D=\Delta \backslash \Omega$ and satisfying the following properties :
(i) For each point $\xi \in \partial \Omega$, there exists a neighborhood U_{ξ} of ξ in X contained in a coordinate domain, such that, after identification with its image in \mathbb{C}^{n}, U_{ξ} contains a local q-concave wedge $\left(E_{\xi}, D_{\xi}\right)$ with
(a) $\xi \in E_{\xi}$;
(b) $\operatorname{codim}_{\mathbb{R}} E_{\xi} \leqslant N$;
(c) $\left(E_{\xi}, D_{\xi}\right)$ is defined by a q-configuration ;
(d) If ($U_{\bar{D}_{\xi}}, \rho_{1}, \ldots, \rho_{N_{\xi}}, \rho_{*}$) is a frame for (E_{ξ}, D_{ξ}) then $D \cap U_{\xi} \cap\{z \in$ $\left.U_{\bar{D}_{\xi}} \mid \rho_{*}(z)<0\right\}=D_{\xi}$.
(ii) Δ is a local q^{\prime}-convex domain.
7.2. Examples. - The simplest example of such domains is given by $D=$ $B\left(0, R^{\prime}\right) \backslash B(0, R), 0<R<R^{\prime}$ in \mathbb{C}^{n}, this is a ($n-1$)-concave, $(n-1)$-convex domain of order 1. Another simple example is $D=\Delta \backslash \Omega$ with Δ a C^{2} smooth q^{\prime}-convex domain and Ω a C^{3} smooth q-convex domain.

A more interesting example is given by $D=\Delta \backslash \Omega$ where Δ is a strictly pseudoconvex domain with C^{2}-smooth boundary and Ω is the union of N strictly pseudoconvex domains with C^{3}-smooth boundary, whose boundaries are intersecting transversally. Such a domain is a $(n-1)$-concave, ($n-1$)-convex domain of order N.

The case where Δ is a strictly pseudoconvex domain with C^{2}-smooth boundary and $\Omega=\Omega_{1} \cup \Omega_{2}$ with $\Omega_{i}, i=1,2$, two strictly q-convex domains with C^{3}-smooth boundary intersecting themselves transversally defined by $\Omega_{i}=\left\{z \in U_{\partial \Omega_{i}} \mid \varphi_{i}(z)<0\right\}$ and such that for each $\lambda \in[0,1]$ and $\xi \in \partial \Omega_{1} \cap \partial \Omega_{2}$ the Levi form $L_{\lambda \varphi_{1}+(1-\lambda) \varphi_{2}}(\xi)$ restricted to $T_{\xi}^{\mathbb{C}}\left(\partial \Omega_{1} \cap \partial \Omega_{2}\right)$ has at least $\operatorname{dim}_{\mathbb{C}} T_{\xi}^{\mathbb{C}}\left(\partial \Omega_{1} \cap \partial \Omega_{2}\right)-n+q+1$ positive eigenvalues, defines a q-concave, $(n-1)$-convex domain of order 2 ($c f$. remark 2.5).

7.3. Theorem. - Let D be a q-concave, q^{\prime}-convex domain of order N in X.

 We suppose that $q+q^{\prime}-N \geqslant n$. Then there exist linear operatorsand

$$
\widetilde{T}_{r}: \bigcup_{0 \leqslant \beta<1} B_{n, r}^{\beta}(D, E) \longrightarrow C_{n, r-1}^{0}(D, E)
$$

$$
K_{r}: \bigcup_{0 \leqslant \beta<1} B_{n, r}^{\beta}(D, E) \longrightarrow C_{n, r}^{0}(D, E)
$$

for $n-q^{\prime} \leqslant r \leqslant q-N$ such that the following holds:
(i) if $n-q^{\prime} \leqslant r \leqslant q-N-1$, then

$$
f=d \widetilde{T}_{r} f+\tilde{T}_{r+1} d f+K_{r} f
$$

for all $f \in B_{n, r}^{\beta}(D, E), 0 \leqslant \beta<1$, such that df also belongs to $B_{*}^{\beta}(D, E)$;
(ii) if $r=q-N$, then for all d-closed $f \in B_{n, r}^{\beta}(D, E), 0 \leqslant \beta<1$,

$$
f=d \widetilde{T}_{r} f+K_{r} f
$$

(iii) if $0 \leqslant \beta<1 / 2$ and $0<\varepsilon \leqslant 1 / 2-\beta$, then \widetilde{T}_{r} and $K_{r}, n-q^{\prime} \leqslant r \leqslant q-N$, are compact operators from $B_{n, r}^{\beta}(D, E)$ into $C_{n, r-1}^{1 / 2-\beta-\varepsilon}(\bar{D}, E)$, resp. $C_{n, r}^{1 / 2-\beta-\varepsilon}(\bar{D}, E)$;
(iv) if $1 / 2 \leqslant \beta<1$ and $\varepsilon>0$, then \widetilde{T}_{r} and $K_{r}, n-q^{\prime} \leqslant r \leqslant q-N$, are compact operators from $B_{n, r}^{\beta}(D, E)$ into $B_{n, r-1}^{\beta+\varepsilon-1 / 2}(D, E)$, resp. $B_{n, r}^{\beta+\varepsilon-1 / 2}(D, E)$

Proof. - By Definition 7.1 and Lemma 2.4 in [L-T/Le] there exists a finite number of open sets $U_{1}, \ldots, U_{m} \subset X$ such that $\bar{D} \subset U_{1} \cup \cdots \cup U_{m}$ and each $U_{j} \cap D, 1 \leqslant j \leqslant m$ is either a local q^{\prime}-convex domain or a local q-concave wedge defined by a q-configuration. The second case occurs, when $U_{j} \cap \Omega \neq \emptyset$. Moreover, we may assume that E is trivial over some neighborhood of each $\overline{U_{j} \cap D}, 1 \leqslant j \leqslant m$.

Let A_{j} be the operators which are induced in

$$
\bigcup_{0 \leqslant \beta<1} B_{n, *}^{\beta}(D, E)
$$

by the local operators in the following way : if $U_{j} \cap D$ is a local q-concave wedge $A_{j} f=S\left(\left.f\right|_{U_{j} \cap D}\right)$ where S is defined in Theorems 5.3 and 5.6 and if $U_{j} \cap D$ is a local q^{\prime}-convex domain $A_{j} f=H\left(\left.f\right|_{U_{j} \cap D}\right)$ where H is defined in Section 4 of [L-T/Le].

We choose non negative C^{∞} functions χ_{j} with compact support in U_{j} such that $\chi_{1}+\cdots+\chi_{m}=1$ in a neighborhood of \bar{D} and we set
and

$$
\widetilde{T}_{r} f=\sum_{j=1}^{m} \chi_{j} A_{j} f
$$

$$
K_{r} f=\sum_{j=1}^{m} d \chi_{j} \wedge A_{j} f
$$

for $n-q^{\prime} \leqslant r \leqslant q-N, f \in B_{n, r}^{\beta}(D), 0 \leqslant \beta<1$.
Up to the end of this part we will suppose that $X=\mathbb{C}^{n}$.
7.4. Definition. - A q-concave, q^{\prime}-convex domain of order $N, 1 \leqslant N \leqslant 2 n$, D contained in \mathbb{C}^{n} will be of special type if $D=\Delta \backslash \Omega$ where Δ is a local q^{\prime} convex domain and Ω is the union of N strictly q-convex domains $\Omega_{i}, 1 \leqslant i \leqslant N$, with C^{3} smooth boundary intersecting themselves transversally, defined by $\Omega_{i}=\{z \in$ $\left.U_{\partial \Omega_{i}} \mid \varphi_{i}(z)<0\right\}$ and such that for each multi-index $K \in \mathcal{P}(N)$, each $\lambda \in \Delta_{K}$ and each $\xi \in \bigcap_{k_{\nu} \in K} \partial \Omega_{K_{\nu}}$ the Levi form $L_{\lambda_{1} \varphi_{k_{1}}+\cdots+\lambda_{\ell} \varphi_{k_{\ell}}}(\xi)$ restricted to $T_{\xi}^{\mathbb{C}}\left(\partial \Omega_{k_{1}} \cap \cdots \cap \partial \Omega_{k_{\ell}}\right)$ has at least $\operatorname{dim}_{\mathbb{C}} T_{\xi}^{\mathbb{C}}\left(\partial \Omega_{k_{1}} \cap \cdots \cap \partial \Omega_{k_{\ell}}\right)-n+q+1$ positive eigenvalues.
7.5. Proposition. - Let $D \subset \subset \mathbb{C}^{n}$ be a q-concave, q^{\prime}-convex domain of order N and of special type and suppose that $q+q^{\prime}-N \geqslant n$. If f is a continuous (n, r)-form in some neighborhood $U_{\bar{D}}$ of $\bar{D}, n-q^{\prime} \leqslant r \leqslant q-N$, such that $\bar{\partial} f=0$ in $U_{\bar{D}}$, then there exists a form $u \in \bigcap_{\varepsilon>0} C_{n, r-1}^{1 / 2-\varepsilon}(\bar{D})$ such that $\bar{\partial} u=f$ in D.

Proof. - This proposition is the analogous in the case of q-concave, q^{\prime}-convex domains of Lemma 2.3.4 in [$\mathrm{He} / \mathrm{Le} 1]$. Using Theorem 7.3 at the place of Lemma 2.3.1 ([He/Le 1]) we can repeat the proof of Lemma 2.3.4 in [He/Le 1]. We have only to remark that there exists a q-concave, q^{\prime}-convex domain of order N and of special type G such that $D \subset \subset G \subset \subset U_{\bar{D}}$.

Let us consider $\Omega_{i, \alpha}=\left\{z \in U_{\partial \Omega_{i}} \mid \varphi_{i}(z)>\alpha\right\}$. For $\alpha>0$, sufficiently small it is easy to verify that $\Omega_{\alpha}=\bigcup_{i=1}^{N} \Omega_{i, \alpha}$ has the same properties than Ω. Moreover if $\Delta=\left\{z \in U_{\bar{\Delta}} \mid \rho_{j}<0, j=1, \ldots, N\right\}$ then $\Delta_{\beta}=\left\{z \in U_{\bar{\Delta}} \mid \rho_{j}<-\beta, j=1, \ldots, N\right\}$ is also a local q-convex domain for sufficiently small $\beta>0$. Then it suffices to take $G=\Delta_{\beta} \backslash \Omega_{\alpha}$ for some small α and β.

Following the same methods than in part 2.3 of [$\mathrm{He} / \mathrm{Le} 1]$, we get the following theorem on the resolution of the $\bar{\partial}$-equation in q-concave, q^{\prime}-convex domains with estimates up to the boundary.
7.6. Theorem. - Let $D \subset \subset \mathbb{C}^{n}$ be a q-concave, q^{\prime}-convex domain of order N and of special type such that $q+q^{\prime}-N \geqslant n$ and for $0 \leqslant \beta<1$, let $f \in B_{n, r}^{\beta}(D)$ be a $\bar{\partial}$-closed form on $D, n-q^{\prime} \leqslant r \leqslant q-N$.
(i) if $0 \leqslant \beta<1 / 2$, there exists $u \in \bigcap_{\varepsilon>0} C_{n, r-1}^{1 / 2-\beta-\varepsilon}(\bar{D})$ such that $\bar{\partial} u=f$ and for each $\varepsilon>0$ there exists also a constant C_{ε} such that

$$
\|u\|_{1 / 2-\beta-\varepsilon} \leqslant C_{\varepsilon}\|f\|_{-\beta} ;
$$

(ii) if $1 / 2 \leqslant \beta<1$, there exists $u \in \bigcap_{\varepsilon>0} B_{n, r-1}^{\beta+\varepsilon-1 / 2}(D)$ such that $\bar{\partial} u=f$ and for each $\varepsilon>0$ there exists also a constant C_{ε} such that

$$
\|u\|_{1 / 2-\beta-\varepsilon} \leqslant C_{\varepsilon}\|f\|_{-\beta}
$$

Proof. - As in the proof of Theorem 2.3.5 in [He/Le 1], we deduce the existence of the solution u from Proposition 7.5 by the bumping method. The estimates are a consequence of the Banach's open mapping theorem and of Theorem 7.3 (cf. [He/Le 1] appendix 2).

Bibliography

[Ai/He] Airapetjan r.a., Henkin g.m. - Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions, Usp. Mat. Nauk 39 (1984), 39-106, [Engl. trans. Russ. Math. Surv., 39 (1984), 41-118], and : Integral representations of differential forms on CauchyRiemann manifolds and the theory of $C R$-functions II ,Matem. Sbornik 127 (169) (1985), 1, [Engl. trans. Math. USSR Sbornik 55 (1986), 1, 91-111].
[G] Grauert h. - Kantenkohomologie, Compositio Math. 44 (1981), 79-101.
[He] Henkin g.m. - The method of integral representations in complex analysis (russ.). In : Sovremennge problemy matematiki, Fundamentalnye napravlenija, Moscow Viniti 7 (1985), 23-124, [Engl. trans. in : Encyclopedia of Math. Sci., Several complex variables I, Springer-Verlag, 7 (1990), 19-116].
[He/Le 1] Henkin g.m., Leiterer J. - Theory of functions on complex manifolds, Akademie-Verlag Berlin and Birkhäuser-Verlag Boston, 1984.
[He/Le 2] Henkin g.m., Leiterer J. - Andreotti-Grauert theory by integral formulas, Akademie-Verlag Berlin and Birkhäuser-Verlag Boston (Progress in Math. 74), 1988.
[Li] Lieb i. - Beschränkte Lösungen der Cauchy-Riemannschen Differentialgleichungen auf q-konkaven Gebieten, Manuscripta Math. 26 (1979), 387409.
[L-T/Le] Laurent-Thiebaut c., Leiterer J. - Uniform estimates for the CauchyRiemann equation on q-convex wedges, Prépublication de l'Institut Fourier n° 186, Grenoble, 1991.
[R/S] Range r.m., Siu y.t. - Uniform estimates for the $\bar{\partial}$-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325-354.

Ch. LAURENT-THIÉBAUT INSTITUT FOURIER Université de GRENOBLE 1 BP 74 38402 St Martin d'Hères Cedex (France)
J. LEITERER FACHBEREICH MATHEMATIK der HUMBOLDT-Universität 0-1086 Berlin (Germany)

