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Geometric structures and characteristic forms

Masahide Kato

On complex manifolds, we consider various holomorphic geometric struc-
tures such as affine structures, projective structures and conformal structures.
When they admit such geometric structures, then their Chern classes satisfy
certain formulae. For compact Kéahler manifolds, these formulae were first
found in the affine case by Atiyah [A], in the projective case by Gunning [G],
and in the conformal case by Kobayashi-Ochiai [KO]. In the following, we
shall introduce new characteristic forms defined by projective Weyl curvature
tensors and conformal Weyl curvature tensors, and study their relations with
the Chern forms. As byproducts, we obtain generalizations and refinements
of the formulae quoted above. Details of this note will be found in [K1] and
[K2].

Notation
QP(FE) : the sheaf of germs of holomorphic p-forms with

values in a holomorphic vector bundle F,
O(E) ~Q°E) : the sheaf of germs of holomorphic sections of
a holomorphic vector bundle F,
© : the sheaf of germs of holomorphic vector fields,
T : the sheaf of germs of differentiable vector fields,
A"(G) : the sheaf of germs of differentiable r-forms with
values in a differentiable vector bundle G,
AP4(G) : the sheaf of germs of differentiable (p, ¢)-forms with
values in a differentiable vector bundle G.

1 Affine structures

Let X be a complex manifold of dimension n > 1. Take a locally finite open
covering U = {U,} of X such that on each U,, there is a system of local
coordinates z, = (z},22,...,2"). Put
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-1
Pa3 = 2a 02y

and
Tos = the Jacobian matrix of ¢, ;.

On U, NUj, we consider an n X n-matrix-valued holomorphic 1-form
— -1 d
Qni3 = T3 ATo 3.

It is well-known and easy to check that the set {a,;} define an element of
H'(X,QY(End®)).

Definition 1.1 The cohomology class
ax = {a.3} € H'(X,Q'(End®))

ts called the obstruction to the existence of holomorphic affine connections of

X.

Definition 1.2 For a complez manifold X with ax = 0 there ezists a (holo-
morphic) 0-cochain {a,} such that §{a,} = {a.;}, which is called a holomor-
phic affine connection of X. If X has a holomorphic affine connection, we also
say that X admits an affine structure. There always exists a C™ 0-cochain
such that 6{a,} = {a.3} in the natural sense, where the a, is an element of
['(U,, AY°(EndT)). The 0-cochain is called a C> affine connection.

Let 6 = {aa} be a C* affine connection. Then we have
Aoy = ag — T(:}aﬂrn,, on U,NU,;.
The curvature form of the C* affine connection
O, =da, +a, Na,
satisfies the equation
0, = T(;;leuT(h; on U, NU;.

Let t be an indeterminate and A be an n x n matrix. Define polynomials ¢,
(plv"'7(pnby 1
det(I — —tA) = Si_ (A,
2w

The Chern forms are defined by
64(9) = ‘Pq(@n)-

The following is a well-known fundamental fact.
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GEOMETRIC STRUCTURES AND CHARACTERISTIC FORMS

Theorem 1.1 For any q¢ = 0,1,...,n, the Chern form c,(0) is a d-closed
C™> 2q-form. The corresponding de Rham cohomology class [cy(0)] is real and
independent of the choice of the connection 6.

Corollary 1.1 [A] If a compact complex manifold with dimension n > 1 ad-
mits a holomorphic affine connection then all q-th Chern forms with 2¢ > n
vanish. If , further, the manifold is of Kdhler then all q-th Chern classes,
q>1, are zero.

Proof. Note that the Chern forms defined by a holomorphic affine connection
are holomorphic. Therefore if 2¢ > n then the ¢g-th Chern form vanishes. Note
that d-closed holomorphic n-form represents a real de Rham cohomology class
only if it represents a zero class. Hence the n-th Chern class vanishes. If the
manifold is of Kahler then any holomorphic form is harmonic. Since the Chern
classes are real, they vanish by Hodge theory. 1

2 Projective structures

In this section, we assume that n = dim X > 2. We use the notation of section
1. On U, NU;, we define a scalar-valued holomorphic 1-form

003 = (n+1)"'dlog(det 7, ;) = (n + 1) *Trace(r,,; d7o;)
and an n X n matrix-valued holomorphic 1-form p,; by

(pa 3 )i = 0,4 Jl'dz,jiv

where
_ )
Ond = U«\J.jd‘*_}v

and (A) indicates the (4, k)-component of the matrix A. Put
Pas = Qa3 — Pad — I- T3, (1)

where [ is the identity matrix of size n. The 1-cochain {0, ;} is a cocycle of
HY(X,Q'), and {p,s} and {p,s} are cocycles of H'(X,Q'(End®)).

Definition 2.1 The cohomology class
Px = {p(ni} c Hl()(, Ql(Elld@))

is called the obstruction to the existence of holomorphic projective connections

of X.

141



Definition 2.2 For a complex manifold X with px = 0 there exists a (holo-
morphic) 0-cochain {p,} such that 6{p.} = {pas}, which is called a holomor-
phic projective connection of X. If X has a holomorphic projective connec-
tion, we also say that X admits a projective structure. There always exists a
C> 0-cochain {p,} such that 6{p,} = {pas} in a natural sense, where p, is an
element of I'(U,, A*°(End®©)). The 0-cochain {p,} is called a C* projective
connection.

Let m = {p,} be a C* projective connection on X, that is, on each U, there
is an n X n matrix-valued C* (1, 0)-form p, such that

P3 = Pagt Ta—/jlp(yTaH on U(\ NU;. (2)

We write the (7, k)-component of p, and p,; as

(Pa )i = P('nkdsz

(pﬂ/i){c = P(Iwikdzfi-

By the definition (1), we have piu,k, = ,', sir- Therefore it is easy to see that
the n x n matrix-valued 1-form g, defined by

(9a )i = P{;kidz:x

is also a projective connection. Hence {27'(p, + q.)} is also a projective
connection. Therefore we may assume that

Pakt = Pai (3)
holds. Since Trace(psz) = 0, it follows from (2) that
Trace(py) = Trace(py).

Since {p, — n"'Trace(p,)I} is also a projective connection, we may assume
that _

Pén;,‘ =0 (4)
holds. The projective connection satisfying (3) is said to be normal. The
projective connection satisfying (4) is said to be reduced. Thus any complex
manifold admits a normal reduced C* projective connection. As we see eas-
ily from the above argument, if a complex manifold admits a holomorphic
projective connection, the manifold admits also a normal reduced holomorphic
projective connection. In the following in this section, we consider only normal
reduced (holomorphic or C*) projective connections.

The projective Weyl curvature tensor {W,} associated with a (normal re-
duced) C*> projective connection 7 = {p,} is defined by
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1
Wo = dp(w + Pa A\ Pa + ;L_:'i'Xa

where

(Xo)i = Xowdzl AdZ!,
_ Opa

823 + p;slp::kr'

Aokl

The projective Weyl curvature tensor satisfies the equation
W, = (:}W(,Tm; on U,NUj;. (5)
Thus we have

Proposition 2.1 The projective Weyl curvature tensor {W,} is an element
of T(X, A*(EndT)). If the projective connection is holomorphic, then the
associated projective Weyl curvature tensor is an element of ['(X, 2?(End®)).

We define C* 2¢-forms, P/(7), ¢ = 0,1,...,n, associated with the normal
reduced projective connection m by

Pq(”) = @ (Wa).
In view of (5), the P,(m) are indeed defined on the whole X.

Theorem 2.1 [K1] i) P/(w) is a d-closed smooth 2q-form.
i1) The de Rham cohomology class [P,(7)] is a real cohomology class and is
independent of the choice of the normal reduced C™ projective connection .

Definition 2.3 [K1] The d-closed smooth 2k-form Py, = Py(w) is called the
g-th projective Weyl form associated with the normal reduced C™ projective
connectlion .

Since 7 is reduced, we have
P1(7T) =0.

Theorem 2.1 follows immediately from the property of the Chern forms and
the following formula.
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Theorem 2.2 [K1] Let X be a complex manifold of dimension n > 2. Let
be any normal reduced C™® projective connection. Then there is a C™> affine
connection 0 on X which satisfies the following equality;

n q
0)t! = (1 + at)"™ <7r( ),
S a0 = £ (1w

or, equivalently

> P(mtt = (1= at)™ Y e (0) (=)

q=0 ¢=0 1—at
where
c,(0) = the q-th Chern form associated with
_ 1 0)
= n+ lcl( ’

P,(m) = the g-th projective Weyl form associated with .

The projective Weyl forms are holomorphic for holomorphic projective con-
nections. Therefore by the same reasoning as the proof of Corollary 1.1, we
have

Corollary 2.1 [K1] If a compact (not necessarily Kihler) complex manifold
with dimension n > 2 admits a holomorphic projective connection, then all
q-th projective Weyl forms with 2q > n vanish. If, further, it is of Kdhler,
then all q-th projective Weyl forms with ¢ > 1 vanish.

Theorem 2.2 and the corollary above give a refinement of [KO, Theorem 3.1].

Remark. Let D be a reduced effective divisor on X with only normal
crossing singularities. With respect to the logarithmic pair (X, D) [1], we can
consider the logarithmic projective connection and its associated logarithmic
projective Weyl curvature tensor and get a logarithmic analogue of Theorem
2.2. See [K3| for the detail.

3 Conformal structures

In this section, we assume that n = dim X > 3. We use the notation of
sections 1. The symbols o, ; and p, ; in this section are different from those in

n+1
section 2 by a constant multiple . On U, NU;, we define a scalar-valued

holomorphic 1-form

0os =n"'dlog(det 7, ;) = n"l’I‘race(tT}dT,, 5)-
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and a n x n matrix-valued holomorphic 1-form p,;3 by
(po.f){- = Umfkdz{'i

where
a3 = o'nﬂjdz‘z]i’

Definition 3.1 We say that a complex manifold X of dimensionn > 1 admits
a holomorphic conformal structure if the structure group of the tangent bundle
reduces as a holomorphic bundle to the conformal group CO(n,C).

Let S C GL(n,C)/C* be the set of non-singular symmetric matrices factored
by the non-zero scalar matrices. We form a holomorphic fibre bundle

Z=<%JU”><S)/~

on X with the typical fibre S by identifying (z,,s,) € U, X S with (z4,54) €
U;x S ifand only if z, = z; and s; = '7,, 38,70 4. Let m : Z — X be the natural
projection. That X admits a holomorphic conformal structure is equivalent
to saying that 7 admits a holomorphic section. A holomorphic section g of 7
is also called a holomorphic conformal structure of X.

Suppose that X admits a holomorphic conformal structure g. On each U,,
g is represented by a holomorphic symmetric (2, 0)-form

9o = g(,ijdzf}dz{;
such that
gz = fj(rgu on U(v N Ufa (6)

where f;, is a nowhere vanishing holomorphic function defined on U, N U;
and
det(gaij(z)) # 0 for all z € U,,.
Let F be the holomorphic line bundle on X formed by the 1-cocycle {f,;}.
Then {g,} can be regarded as an element of I'(X,S*(Q') ® F'), where S?(Q!)
indicates the 2nd symmetric power of Q!. Note that two sections {g,} and
{ho} in ['(X,S8%(Q!) ® F) represent the same conformal structure if and only
if on each U, there is a nowhere vanishing holomorphic function f, such that
9o = foh,. Put
Go = (9aij),

where the (¢, j)-component is given by g,;;. By (6), we have

G35 = f.inguij(rn,i){»(rn 1):{ on [Jn N (J‘I-

We have easily the following
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Lemma 3.1 [KO|] nci[F]+ 2¢,(X) =0.
Now we shall define the conformal Weyl curvature tensor associated with the
holomorphic conformal structure g = {g,}. We put
p:y;'} = _G,;”PmiG;i

or ' .

(p:;H)JL = _g:"ir(pa/}):giisk,
where g{;k is the (j, k)-component of G}l. Then, on U, NU;3;NU,, we have

Py = Ty PagTiy + Pl
This implies that the set {p},;} defines a 1-cocycle in Z'(X, Q' ® End®). We
define a 1-cocycle {c,3} by

Caf = Gap — Paj — Pay — Tasl,

which is also an element of Z'(X,Q' ® End®). As we see by the following
argument that the cohomology class represented by {c,3} turns out to be zero.
By means of the representative {g,} of g, we can construct explicitly a 0-
cochain {c,} € C°(U,N! ® End®) whose coboundary coincides with the 1-
cocycle {cqs}, ie.,

€3 = Cap + Taj CaTas-

The 0-cochain {c,} is called a holomorphic conformal connection of X. We

define the Christoffel symbols {Zy} associated with the symmetric tensor g,
on U, by

[43

oz 9z}, 9zk
The conformal connection {cn} associated with the conformal structure {g,}

is defined by

{ } 1 lk (agaik 8gajk _ Bgm'j)

!
Ca = (C(u‘) )
U J
Cai = m] dz

1 a
I o .
Caij - { } n{a]} n{az} + gagﬂﬂ.l{ab}u'
The following lemma can be proved by calculatlons.

Lemma 3.2

C:vij =0
1o
Caij = Caji
-1
Cy = c(l.’f+T“jc()T(Lf‘ (7)
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By (7), we see that the cochain {c,} is determined by g and independent of
the choice of the representative {g,}. Put

-Flu = dc(w + Ca A Cq-
Write the (j, k)-component of F,, as

(F. )i = F,,.dz Adzs.

akrs

We set
F“'“ = (;,i'lnn
q)n = gﬁlFﬂL‘l-
Then
) . 1 . .
u/({khn = F‘r{Hm + m (6lj Fnl‘m - 6}’,,E\l.‘[)
1 -
+_—:'g}1\, (gnkmEu'/ - gnHFnrm)
n—2
1 , .
+m (8, 90kt = 81 Gatm) ®a
satisfy 4 o
lelklm = (Tn_fl)l’ W(ll'rsf(T(lvf);:'(T(hf).;(Tﬂr’)rn' (8)
Define an n X n-matrix valued holomorphic 2-form W, by
(Wa)i = Wiipdzl A dz (9)
Then (8) is written as
W'i = T(;}Wn'Tmh (10)

ie., {W,} is an element of ['( X, 2? ® End®).

Definition 3.2 The holomorphic tensor field {W,} is called the conformal
Weyl curvature tensor associated with the holomorphic conformal structure g.

We remark that the conformal Weyl curvature tensor is defined independently
of the choice of {g, } which represents g. We shall define holomorphic 2¢-forms,
C,(9), ¢=0,1,...,n, associated with the holomorphic conformal structure g
by

Cq(g) = QO,I(WO).

In view of (10), the C,(g) are indeed defined on the whole X.
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Theorem 3.1 [K2] i) C,(g) is a d-closed holomorphic 2q-form.
i) The de Rham cohomology class [C,(g)] is a real cohomology class and is
independent of the choice of the holomorphic conformal structure g.

Definition 3.3 [K2] The d-closed holomorphic 2q-form C,(g) is called the q-
th conformal Weyl form associated with the holomorphic conformal structure

g.

Theorem 3.1 follows immediately from the property of the Chern forms and
the following formula.

Theorem 3.2 [K2| Let X be a complex manifold of dimension n > 3 which
admits a holomorphic conformal structure g on X. Then there exists a C'*
affine connection 8 on X which satisfies the equality

n

3 C,(g)t" = (1 — B#2) 3" (1 — bt)"~te,(6),

q=0 q=0

or equivalently,

. (1+bt)"+2 ( t )'f
(0) = Cy(9),
q;,c‘( ) 1+2bt H\1+4bt /(9)
where
1
b = ;C](G),
c(0) = the g-th Chern forms associated with 0,
C,(g) = the g-th conformal Weyl form associated with g.

In the course of the proof of Theorem 3.2, we obtain the following as a corol-
lary.

Theorem 3.3 [K2| Let X be a complex manifold of dimension n > 3 with a
holomorphic conformal structure g. Then

n
C‘2q+1(g) =0, ¢=0,1,..., [.é]

By Theorems 3.2 and 3.3, the conformal Weyl forms are, for example,

C()(g) = ]-a
Cl(g) = 07 )
Colg) = TP 2200) 1 o0(0),
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(_"____!)("—2)3 n—2

Ca(g) = a2 al®) — c1(0)c2(8) + c3(0) = 0,
Cg) = -2 1)(';13_ E2) 40) + (n—_%_él)cf(a)cz(o)
n—3 .

————a(0)e3(6) + ().

We obtain the following from Theorem 3.2 by the same reasoning as the proof
of Corollary 1.1.

Corollary 3.1 [K2] If a compact complex manifold with dimension n > 3
admits a holomorphic conformal structure, then all g-th conformal Weyl forms
with 2q > n vanish. If, further, the manifold is of Kéihler then all g-th, ¢ > 1,
conformal Weyl classes are :zero.

Theorem 3.2 and the corollary above give a refinement of [KO, Theorem 3.20]
for n > 3.
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