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Equivariant cohomology with generalized
coefficients

Shrawan Kumar and Michele Vergne

Introduction

In the text of this article, definitions, propositions, theorems, lemmas, examples,
corollaries are numerated in the same sequential order. Formulas follow an
independent sequential order.

Let G be a real Lie group with Lie algebra g and let M be a smooth manifold
on which G acts. Let A(M) = ¥ ; A'(M) be the space of smooth differential
forms on M and let A.,,(M) be the subspace of forms with compact support.
Let us recall (Cartan ;[10]) that the G-equivariant de Rham complex of M is
by definition the differential Z ,-graded algebra

Aa(M) = (S(¢) @ A(M))"

endowed with the tensor product graded algebra structure (where elements of
g are assigned degree 2) together with the equivariant de Rham differential
dy of degree 1 (see section 2, Formula 5). Its cohomology denoted H¢ (M) is
called the G- equivariant de Rham cohomology of M. Alternatively, an element
a € Ag(M) can be thought of as a differential form a(X) on M depending
polynomially on X € g, such that « is equivariant:

a(g-X)=g-ao(X),

forall g € G.
The complex A (M) admits a subcomplex

Aan6(M) = (S(g') ® Au(M))%,

and its cohomology is called the G-equivariant de Rham cohomology with com-
pact support H, (M).

Sometimes, it is natural to consider the space A (M) of equivariant forms
a(X) on M depending smoothly on X € g. The differential d; extends to this

space and the cohomology of the complex (A (M), dy) is denoted by HZ (M).
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This cohomology HZ(M) is studied in the preceding article of this volume
(notation differs slightly from the ones used in the preceding article. In partic-
ular, the dual vector space of g is denoted here by g’ instead of g*, the space
denoted here by AX (M) (resp. HF(M)) was denoted by A¥(g, M) (resp.by
HZ(g,M))). In some situations, it is also important to consider the space
A (M) of equivariant forms depending in a generalized way on the variable
X € g (cf. section 2, Definition 3 for a precise definition). The differen-
tial dy still has a meaning on A;*(M) and the cohomology of the complex
(Ag™(M),dy) is denoted by H;*(M). ( The space A;*(M) and its coho-
mology Hg*(M) were introduced in [12].) One similarly defines H_;%(M).
When M is a point, H;°(point) is equal to the space C~°(g)¢ of G-invariant
generalized functions on g. There is a natural map HZ(M) — Hz*(M).

If M is compact and G-oriented, integration over M gives us a map from
H;®(M) to C~>(g)¢. More generally if p : M — B is a G-equivariant fibra-
tion, with G-oriented fibers, then there is defined an integration along the fiber
map

pe : Hyla(M) — Hy(B)

(cf. Formula 8).

If M is non compact, and if a(X) is an equivariant form on M depending
smoothly on X € g, the integral of a(X) over M may sometimes exist in a
generalized sense: after integrating a(X) against a test function ® on the Lie
algebra g, the form (a, ®) := J; o(X)®(X)dX may become integrable over M
and we can define [, @ € C~*°(g)“ by

(/M o, ®) = /M(a,q>).

Many important examples of generalized functions on g arise this way. For
instance, characters of representations of G attached to a generic coadjoint
orbit M are given by the integral of an equivariant form over M (see [21],
[12]). If G is compact, the formula of [20] for the index of a G-transversally
elliptic operator D on a compact G-manifold B is given by the integration (in
the generalized sense) over M = T*B of a G-equivariant form a(c)(X) on M
(depending smoothly on X € g) attached to the symbol o of D.

It will thus be useful to understand the space H;*°(M). The aim of this
article is to start a systematic study of the cohomology space H;*(M) .

Now we describe some of the results we prove in this article.

We first prove (in section 2) that for a G-equivariant real vector bundle
p : V — B, the canonical pull-back map p* : H;*(B) — Hz*(V) is an
isomorphism (cf. Proposition 8). In particular, for a real representation V' of
G, H;®(V) =2 C~>°(g)¢. Similarly, we prove the Thom isomorphism; asserting
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that if G is compact and the fibers of p are G-oriented, then the integration
along the fiber map
ps Hopo(V) — Ho 7%(B)
is an isomorphism (cf. Proposition 11).
Let K C G be a closed subgroup . Let x = xg/k : K — {£1} be the
character of K defined by x(k) = signdetgpk, for all k € K . Let M be a
K-manifold and let Hx% (M) be the cohomology of the complex

(A3 (M), dy) := (CT(¢, A(M))X, &)

(cf. Definition 49). Fix an orientation o on g/¢. Consider the space G xx M,
fibered over G/K with fiber M. In section 5, we define a cochain map

Indgk o : AR(M) — AGZ(G xx M)

(cf. Proposition 50) and prove that if K is compact, Indg/k, induces an
isomorphism in cohomology (cf. Theorem 52). This is one of the central results
of this article. The proof of this result relies on a study of the homology of
the perturbed Koszul complexes defined in sections 3 and 4. This technique
is already used in [13] for the study of G-equivariant cohomology with smooth
coefficients.

Taking M = point, we get the isomorphism

C~°(e)* = H;®(G/K)

where C™°(8)X := {f € C~=(8); k- f = x(k)f, forallk € K}.

The explicit description of the isomorphism (cf. Proposition 43) indicates
the analogy between [ /K Indgk.f and characters of induced representations
(cf. Proposition 44).

Recall [13] that HZ(G/K) is canonically isomorphic to C*°(8)%X. We deter-
mine the canonical map

C=(v)" = HE(G/K) — C=(v)* = Hz=(G/K),

coming from the natural map HZ(G/K) — H;z*(G/K), in Proposition 53.

From now on in the introduction, the notation K will be reserved to denote
a compact connected Lie group with maximal torus T and Weyl group W. The
Lie algebras of K, T are denoted by &, t respectively.

In section 6, we prove a Kiinneth theorem: Let D be a compact K-manifold
such that Hg(D) is free over Hy (point) (e.g. D = K /U, for a closed subgroup
U C K of the same rank, cf. Lemma 65). Then, for any K-manifold M, the
canonical Kiinneth map

m—oo . H]((D) ®HK(paint) HI:OO(M) — HI?OO(D X M)
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is an isomorphism (cf. Theorem 61). In fact Theorem 61 is true without the
assumption on K to be connected, but then we need to add the assumption
that the evaluation map Hg (D) — H(D) is surjective. In particular for any
such D, taking M to be a point, we get

Hg=(D) =2 C~>(&)* @@« Hg(D)

(cf. Corollary 64).

Using Kiinneth theorem and the Induction isomorphism, we obtain in Propo-
sition 66 an extension of Chevalley’s theorem. Let C~>°(t)¢ be the space of all
the generalized W-anti-invariant functions on t. Then the multiplication of
generalized functions on t by polynomial functions induces an isomorphism

C=°(t)° @sqyw S(t) = C~(¥).

By the same technique, we obtain the Reduction Theorem asserting that for
any K-manifold M, we have a canonical isomorphism

Hp>=(M)" = Hi>(M),

where Hy (M)W refers to the W-invariants under the canonical action of W
on Hz*°(M) (cf. Theorem 74). The proof of this reduction theorem is inspired
by the proof of Theorem 4.2 in Atiyah [1].

Again combining the Kiinneth theorem and the Induction isomorphism, we
obtain an isomorphism of Hy(point)-modules

Hy(point) @Hy (pointy Hg™ (M) & HL_,;OK/L(M)’

for any closed subgroup L C K of the same rank and any K-manifold M (cf.
Theorem 70). In particular, taking M = K/U (for any closed subgroup U of
K), we obtain

Hrs,  (K/U) = S(N)E ®@gyn (C(u)Xxrv).

If M is a T-manifold, we give a homology spectral sequence (in section 10)
with
E? = Tor]")(C~(t), Hp(M))

converging to the cohomology Hy (M), where S(t') acts by multiplication on
C~°(t) (cf. Theorem 102). We show that this spectral sequence degenerates
at the E2-term for any homogeneous space M = K'/U (U any closed subgroup
of K) (cf. Proposition 106).

In section 9, we study free actions. Let P be a principal G-bundle (for any
Lie group G) and let ¢ : P — P/G be the quotient map. Assume that the fibers
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of ¢ admit a G-orientation 0. Then we prove (cf. Theorem 89) that H;*°(P) is
a free module over H;(P) & H(P/G) with a generator v,. We determine this
generator explicitly (cf. Proposition 80). Consider, for example, the free action
of T on P = K by right translations. Then the space H;*(P) is a vector space
of dimension |W| over R. We use the description of H;*(K) to conclude that
the canonical map H$(K) — H;*(K) is identically 0 (cf. Corollary 96).

More generally, we consider the case of a manifold P with a right action of
a Lie group G and where we assume that a normal closed subgroup N of G
acts principally on P (cf Definition 75). In addition, assume that the principal
N-bundle gy : P — P/N admits a G-invariant connection and that the fibers
of gv admit a G-orientation o. We then construct a map

m, : Hgjn (P/N) — Hg™(P),

and show that m, is an isomorphism if G is compact (cf. Theorem 91).

In section 11, we prove a Localization theorem for any compact oriented
T-manifold M. We first need to take a T-equivariant embedding of M in a
representation space V' of T. This gives rise to a certain non-zero polynomial
P € S(¥). Now we determine

P(X) /M a(X) € C~=(4),

for any @ € H;®(M), in terms of the restriction of o to MT and of the
equivariant Euler class of the normal bundle of the submanifold MT C M (cf.
Theorem 107). One striking difference from the smooth case is that it is possible
to have [, a(X) # 0, for « € H7®(M), even though MT may be empty. In
fact, we prove that [, : Hr*(K) — C~*(t) is injective, where T acts on K by
right multiplication (cf. Proposition 95, section 9).

Finally in the appendix, we prove that if M is a paracompact manifold,
then the de Rham differential d admits a continuous splitting on the space of
exact differential forms on M. This result seems to be new and interesting on
its own. In a similar way, we prove that the equivariant de Rham differential dg
for the action of a compact Lie group G on a paracompact manifold M admits a
continuous splitting. We were motivated to prove this result, as this enables us
to obtain the spectral sequence of section 10 for any paracompact T-manifold.
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1 Notation

By a manifold M, we shall always mean a paracompact C* real manifold with-
out boundary (unless otherwise stated). We denote by C°(M) the space of
C*°- (real-valued) functions on M. We denote by C~>°(M) the space of gener-
alized (real-valued) functions on M. By definition, C~*°(M) is the continuous
dual of the space of smooth compactly supported densities on M under the
C*-topology. The space C°(M) is canonically a subspace of C~>°(M) and
C~*(M) is a module over C*(M).

We denote the space of smooth differential forms on M (with real coeffi-
cients) by A*(M). We denote the subspace of compactly supported differential
forms by A, (M). The exterior derivative is denoted by dy or simply by d. If
£ is a vector field on M, we denote by ¢(£) : A*(M) — A*~1(M) the contraction
by the vector field £&. We denote by L£(§) : A*(M) — A*(M) the Lie derivative
action of £. The operators d,¢(£), L(£) on A(M) satisfy the Cartan relation :

(1) du(€) + 1(6)d = L(€).

If M is oriented, for @ € Aqu(M) = @M AL (M), we note [y o the
integral of the component of  in ALTM(M).

Let G be a real Lie group. By a G-manifold, we mean a manifold on which
G acts smoothly. Let g be the Lie algebra of G. If X € g, we denote by Xy
(or simply X, if no confusion is likely) the vector field on M such that

(Xp - 9)(x) = %cp((exp —£X)x)|e=0

for p € C*°(M), z € M.

Unless otherwise stated, vector spaces are over R, and the dual Homg(V,R)
of a vector space V is denoted by V. If E‘)1 < ¢ < n is a basis of a n-
dimensional vector space V, E; denotes the dual basis of V".

Tensor products without subscripts will mean over R. Unless otherwise
indicated, cohomology of a manifold is taken to be the de Rham cohomology
(with real coefficients).

In this article, Z/2-graded objects will carry a superscript o, while Z-graded
objects will carry a superscript x. A vector space with a Z/2-grading will often
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be called a superspace. In defining actions on the tensor product V @ W of
two Z/2-graded vector spaces V, W, we will respect usual rules of signs. For
example, an odd endomorphism A of the Z /2-graded vector space W is extended
to an endomorphism still denoted by A of V® W by defining

(2) Alv@w) =v® Aw ifveVee" weWw.

(3) Av@w) = -vQ® Aw ifve Ve weWw.

Any Z-graded object C* can of course be thought of as a Z /2-graded object
C* by defining u
ceven — C2n, Codd — CZn+1.
Lie algebra of any real Lie group will be denoted by the same lower case
German letter.
If a group G acts on a set E, we denote by E® the subset of invariants.

2 G-equivariant cohomology with generalized
coefficients - Basic definitions

Let G be a Lie group and let M be a G-manifold. Let us recall the definition
of the G-equivariant de Rham cohomology H}(M) of M:

Let S(g') be the symmetric algebra of g’ . Consider the Z,-graded space
S(g') ® A(M), where the degree of an element P ® o, P € S?(g'),a € AY(M)
is defined by
(4) deg(P®a)=2p+q.

We refer to this degree as being the total degree.

Let E* be a basis of g and let E; € g’ be the dual basis. Define the operator

dg of degree 1 on S(g') ® A(M) by:

dg(PQa)=PQ@dya—Y EP®Ej)a

for P € S(g'),a € A(M). This expression is independent of the choice of the
basis E, as the element ¥°; E;® E* € g'®g is the canonical element I € End(g),
where I is the identity element of End(g).

We often will identify S(g') with the space of polynomial functions on g.
Writing X € g as X = Y z;E’, we identify E; with the linear coordinate
function z;. An element a of the space S(g') ® A(M) can be viewed as a
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polynomial map X — o(X) from g to A(M) and then the operator dg is given
by the formula:

() (dga)(X) = dp (X)) — ¢(Xar)((X))
or by .
(6) (dg)(X) = dyr(a(X)) = 3 zit(Bpg) (X))

Consider the action of G on S(g') induced from the adjoint representation of G
on g and the action of G on A(M) induced from the action of G on M. Let

Ag(M) = (S(g) ® AM))°

be the space of G-invariants in S(g') ® A(M). In other words, an element o
of Ag(M) is an equivariant polynomial map (i.e.a(g - X) =g - (a(X))) from g
to A(M). The operator d; commutes with the tensor product action of G on
S(g') ® A(M), thus dg preserves Ag(M). The Cartan relation (1)

L(Xp)=du(Xn)+ (Xn)d

implies (dZa)(X) = —L(Xp)((X)). Thus (dZa)(X) =0 for a € Ag(M) and
thus (Ag(M),dy) is a complex.

Definition 1 Define:
Za(M) = {a € Aa(M), dya = 0},
Bg(M) = {a € Ag(M),a = dy3,for somef € Ag(M)}

and

Ho(M) = Za(M)/Bo(M).

The space Hg(M) is called the G-equivariant de Rham cohomology of M.
The cohomology Hg(M) inherits the Z,-grading from Ag(M). The graded
algebra S(g')¢ of invariant polynomial functions on g acts by multiplication
on Ag(M). This action commutes with the differential d;. Thus H;(M) is a
Z-graded S(g')%-module.

In particular for G reduced to the identity element, the space Zg(M) C
A(M) is the subspace Z(M) of closed differential forms on M, the space
Bg(M) C A(M) is the space B(M) of exact differential forms and Hg(M)
is the usual de Rham cohomology H*(M) with real coefficients.

If K is a closed subgroup of G, the restriction to € of a function defined on
g induces a map from H} (M) to Hj(M). In particular, evaluation at 0 € g:
a +— a(0) induces a map from HE(M) to H*(M).
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The complex Ag(M) has a subcomplex
Acna(M) = (S(g) ® Aqu(M))°.

The compactly supported G-equivariant de Rham cohomology Hy,, c(M) of
M is defined as the cohomology of the complex (A}, g, dg)-

We may also consider the space C*(g, A(M)) of C*-maps from g to A(M).
The group G acts naturally on C*(g, A(M)). The operator d is defined by the
same formula (5) on C*(g, A(M)). The space C*(g, A(M)) has a Z/2-grading
given by parity of differential forms. The operator dg is an odd operator on this
superspace. However it is impossible to define a Z-grading on C*(g, A(M)),
such that d; would be of degree 1.

We denote by

AZ(M) = C(g, AM)),
the space of G-equivariant C*° maps from g to A(M). The Cartan relation
implies again d? = 0 on AZ(M).

Definition 2 Define:
25 (M) = {o € AZ(M), dya = 0},
B (M) ={a € AZX(M),x =dz8 forsomef € AF (M)}

and
HE(M) = 2 (M)/BE(M).

Introduce (as in [12]) the space C~*°(g, A(M)) of generalized functions on g
with values in the space A(M). This is, by definition, the space of continuous R-
linear maps Hom(D(g), A(M)) from the space of smooth compactly supported
densities D(g) on g to the space A(M), where D(g) and A(M) are both endowed
with the C'°-topologies. Thus, if « is an element of C~*°(g, A(M)) and if P is a
smooth compactly supported density on g, then («, ®) is a differential form on
M denoted by [; o(X)d®(X). A compactly supported C* density on g will be
called a test density (on g). A compactly supported C* function on g will be
called a test function. We write dps for the operator on C~*(g, A(M)) defined
by

(dpo, @) = dpr(a, D), for ® a test density,

and ¢ for the operator defined by

(1, ®) =Y (B} ) (o, ;D).

Then define the operator dg on C~*°(g, A(M)) by

dgov = dprov — 1.
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Observe that for o € C>(g, A(M)) C C~*°(g, A(M)), the operator dg coin-
cides with the operator dy introduced above. We thus will also write informally

(dgo)(X) = dpr(e(X)) = D wit(Epy) (X))

for a € C~(g, A(M)).
The group G acts naturally on C~*(g, A(M)):

(90,9) =g (o, 97" - ®).

It can be easily seen that the operators d and ¢ commute with the action of G.
Define
AGe (M) = C™(g, A(M))"

as the space of G -equivariant C~*°-maps from g to A(M). An element of the
space Az (M) will be called a G-equivariant form with generalized coefficients,
or simply an equivariant form. If ® is a test function on g, we denote by ®9
the function ®9(X) = ®(gX). Let dX be an Euclidean measure on g. For
a € Ag™(M) and g € G, we have

(M | det(9)|( | a(X)2(X)aX) = 7" - (| a(X)B(X)dX).

g

The operator dy preserves Ag™(M) and the Cartan relation (1) implies
again d? =0 on A;>(M).

Definition 3 Define:
2g>(M) = {a € AG®(M),dga = 0},

Bg® (M) ={a € A= (M),a = dyf forsome § € Az™(M)}
and

Hg™(M) = Z5(M)/Bg>=(M).

An equivariant form in Zg5*°(M) (resp. B> (M)) is said to be closed (resp.
ezact).

Observe that the parity of the exterior degree on A(M) induces a Z /2-degree
on the preceding spaces. We denote them by

Zg=(M)", B=(M)*, Hg>=(M)".

The ring S(g')€ of invariant polynomial functions on g acts by multiplication
on A;*(M). This action commutes with the differential dg. Thus H;*°(M)*
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is a S(g')%-module. In fact H;*°(M) is a module for HZ (M) under left multi-
plication.

If M is a point, then, from the definition, it is clear that Hg(point) = S(g')¢,
HZ (point) = C*(g)¢ and H;*®(point) = C~>(g)°.

There is a natural map

HZ (M) — H;>(M).

Define similarly (A_(M),d;) as the subcomplex of (Az*(M),dy), con-
sisting of all o € A5 (M) such that (a, ®) € A,(M), for all test densities ®,
and define H_;% (M) as the cohomology of this subcomplex.

If ¢: N - M is a G- equivariant map between two G-manifolds, then the
pull-back of differential forms induces a cochain map

¢": (Ag= (M), dg) — (AGT(N), dg),
in particular a map in cohomology (again denoted by)
¢* : H;(M) — H;*(N).

Thus the correspondence M +— H;*(M) is a contravariant functor from the
category of G-manifolds and G-equivariant maps to the category of Z/2-graded
S(g')%-modules.

Similarly the correspondence M + H_f% (M) is a contravariant functor
from the category of G-manifolds and G-equivariant proper maps to the cate-
gory of Z/2-graded S(g')“-modules.

Definition 4 Let p : M — B lbe a G-equivariant fibration of G-manifolds.
Then the map p s said to have G-oriented fibers if the fibers of p are oriented
with an orientation varying continuously and if the G-action on M preserves
the orientation of all the fibers.

If p:V — B is a G-equivariant real vector bundle and if p has G-oriented
fibers, we will just say that the vector bundle V is G-oriented. We say that a
G-manifold B is G-oriented if the tangent bundle of B is G-oriented.

If ]WGis G-oriented, integration over M defines a map [y, from A_3%(M) to
C™>(g)":

(/ a,®) := / (v, @), for any test density ® on g.
M M

This map induces a map from H_ 2% (M) to C~*(g)°.
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If p: M — B is a G-equivariant fibration of G-manifolds with G-oriented
fibers, then the integration over the fibers gives a cochain map denoted by [,/
or by p, from A_7 (M) to A_:(B):

8 [ @®):=[ (@), foranytestdensity@ong.
(8) (M/Boz ) M/B(oz ) or any test density @ on g

In particular, we get an induced map in cohomology (again denoted by) p. or
Jup (depending on the choice of a G-orientation):

Px Hc_p‘t”G(M) — Hc';);’,"G(B).

Similarly if, in addition, p is a proper map, we get the integration map
pv s Hg™(M) — Hg™(B).

Observe that if « € Hy, (M), € Hz™(B), then a Ap*B € H (M) and we
have

(9) p(aAp*B) = poa AP,

(Our sign convention for p, is as in [3], chapter 1.)

If £ — M is a G-equivariant real vector bundle, we introduce the manifold
Mp: An element of M is a couple (m, 0), where m € M and o is an orientation
of the fiber £,,. Then M, has a canonical G-manifold structure. Define a G-
equivariant diffeomorphism of Mg by €(m,0) = (m, —0). As in section 5 of [13],
we may also consider the £-twisted cohomology group Hg(M)g, which is by
definition the cohomology of the complex

Ag(M)e == {a € Ag(Me);e- a = —a}.

We define similarly the £-twisted groups Hz (M) and H, ;?G(M Ye. I p:
M — B is a G-equivariant fibration with vertical tangent bundle V, then we
get the integration map

y H;??G(M)v - ch;?,oG(B)-

If TM — M is the tangent bundle, the manifold Mrys is denoted by M,
the TM-twisted group Hg(M)rp is denoted by Hg(M), and the compactly
supported twisted group by Hg(M);. If M is G-oriented, the space Hg(M),
is canonically isomorphic with Hg(M). In general Hg(M); is a module over
Hg(M). Taking the fibration p : M — point, we get

pe= [+ Houa(M).— S(8)°
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even if M is not oriented. We thus can form the bilinear map (,) : Hg(M) x
Hp (M), — S(g')¢ defined by: for « € Hg(M) and 8 € Hepr (M),

(o, 8) = /M af.

If G = e, the bilinear form above (over R) is non-degenerate. For lack of
reference we include a proof of the following proposition.

Proposition 5 Let G be a compact Lie group and let M be a G-manifold. If
the evaluation map Hg(M) — H(M) is surjective, then

1. the evaluation map Hpy g(M); — Hep(M), is surjective
2. the spaces Hg(M) and H,, (M), are free modules over S(g')¢

3. of M s compact, the bilinear form (., .) induces an isomorphism of Hg(M),
with Homggne (Hg(M), S(g')%).

Remark 6 Let G be a compact connected Lie group and let M be a G-manifold
such that Hg(M) s a free Hg(point)-module. Then the Eilenberg-Moore spec-
tral sequence (see [16], chapter 3, section 1) degenerates at the E*-term. In
particular, the evaluation map Hg(M) — H(M) s surjective. Observe that the
assumption that G is connected can not be dropped here. Consider for example

G = 0(3) and M = 0(3)/0(2).

Proof: Let n =dimM. For a € S(g') ® A(M) we define the exterior degree
of a to be the smallest integer £ such that a € S(g') ® ( ko A(M )) and we
write & = Y5 agy with o € S(g') @ AY(M).

Let us prove (1). As Hg(M) surjects on H(M) under evaluation at 0, the
group G acts trivially on H(M) and (by Poincaré duality) also on H,(M);.
Let [a] € Hi(M), and let o be an element of Z.(M){ representing the
(G-invariant) cohomology class [a]. Assume « to be homogeneous. Let & be a
homogeneous (for the total degree given by formula 4) element of Ay (M), :=
(S(9') ® Acpe(M))€ such that &(0) = o. Let 8 = dy&a. As da = 0, 3(0) = 0.
Let k be the exterior degree of 3. Let v € Zg(M) be homogeneous of total
degree (n — k). Since ¥ is dg-closed,

(7,8) = /M B = /M P (dg) = 0.

As only the terms of exterior degree n of 70 contribute to the integral, we
obtain that the polynomial (#(0), By)) is 0. If By = X Pif;, where P; € S(g')
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are linearly independent and 3; € A*(M), we obtain 3°; P; f,, 7(0)3; = 0. Thus
Ja 7(0)B; = 0 for all homogeneous elements 7 € Zg(M) of total degree n — k.
Since the evaluation map Hg(M) — H(M) is surjective, this implies that
B; € Bepe(M), ( by Poincaré duality). Thus S € (S(g') ® Bep(M ))¢. As G is
compact, we can choose f) = dw with homogeneous w € (S(g') ® Aep(M),)¢
of exterior degree (k — 1) and such that w(0) = 0. Thus v := @ — w is still
such that y(0) = a and dg(7y) is of exterior degree strictly less than k. By
induction on k, we can construct a dg-closed form & such that x£(0) = a. Thus
the evaluation map at 0 gives a surjective map from Hy g(M); to Hep(M),.

Let us prove (2): Let z, be a homogeneous basis of H(M) over R and let a,
be any homogeneous elements of Zg(M) such that [a,(0)] = z,. Let us prove
that the cohomology classes of the elements o, form a system of generators
for Hg(M) over S(g')¢. Let H C Z(M)C be the subspace generated by the
elements a,(0). We have Z(M) = H®B(M). Take a € Zg(M) (say of exterior
degree k). Then

apy € (S(¢') ® Z(M))? = S(¢)° @ H & (S(g') ® B(M))°.

Arguing as in the proof of (1), we see that the cohomology class of « is congruent
to an element 3 + Y, P,a, with P, € S(g')¢ and 8 € Zg(M) of exterior
degree strictly less than k. By induction on k, this proves that the equivariant
cohomology classes of the elements a, form a system of generators for Hg(M).
Let us prove that they are independent over S(g')¢. Let 8 = ¥, Paa, € Zg(M)
be such that 3 is 0 in Hg(M). Let k be the maximum of the exterior degrees
of those a,’s such that P, # 0. Then for every v € Z,; ¢(M); homogeneous of
total degree (n — k), the polynomial

(B,v) = ¥ P [ (au(0))(0)

is equal to zero. By (1) the evaluation map Hepy (M )y — Hep (M), is surjective.
Thus the polynomial map Y. ., =« Pu%. from g to H(M) is identically 0. But
the elements z, being linearly independent, this implies that the elements P,
for which z, is of exterior degree k are identically 0. This is in contradiction
with the definition of k. This prove that {a,} are linearly independent over
S(g')¢. One can similarly prove that H,, (M), is a free module over S(g')¢.

Proceeding in a similar way and using Poincaré duality we can construct (
if M is compact) a basis o® € Hg(M), such that (aq,ab) = 8. This proves
3). n

Definition 7 If Q is a continuous operator on A(M), we still denote by Q the
operator on C~>(g, A(M)) defined by

Q- -a,®)=Q (o, D), for all test densities® on g.
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We will often write the above as (Qa)(X) = Q - (a(X)) and say that Q is
the pointwise extension of Q to C~>(g, A(M)).

We start to compute the space H;* in some elementary situations.
Let p : V — B be a G-equivariant real vector bundle over B. Let ¢ : B — V
be the inclusion from B to V as the zero section.

Proposition 8 The canonical maps

it Hz=(V) — Hz™(B)
and

p': Hg™(B) — HG=(V)
are inverses to each other. In particular, both of them are isomorphisms.
Proof: The proof is similar to the Poincaré lemma for the de Rham complex.
Let R be the vertical Euler vector field on V. Extend the operator £(R) point-
wise to C~°(g, A(V)). Extend similarly the operator «(R) to C~>(g, A(V)).
As ((E)(R) + «(R)u(E*) = 0, for all i, Cartan relation implies

L(R) =dgt(R) + 1(R)dy
on C~(g, A(V)). As R commutes with the action of G, the operators L(R),

t(R) preserve Az™(V). Let hy(v) = tv. Let 3 € A(V). Then h;3 = fort =1,
while ;3 = p*i*3 for t = 0. We compute

d .\ .
ZhiB =1 L(R)MB.

(As R vanishes at 0, the right hand side depends smoothly on ¢ € R). Clearly,
the same relation persists for differential forms with parameters. Thus for

B € Az>(V), we have

d
ah; =t"1L(R)N;B =t («(R)dg + dge(R))h; 5.

Define H : AZ®(V) — AZ2(V) by
Hp = [ KRBt
Then we obtain
fptith= [ Chipdt = (dH + Hig)s,

for all B € Az (V). Thus we see that p*i* = I in cohomology, where I is the
identity operator. Of course, pi = I, in particular *p* = I. This proves the
proposition. I

Considering the case of a vector space V, we have
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Corollary 9 Let G be a Lie group and V' be a finite dimensional real represen-
tation space for G, then

HG=(V) = C™=(g)%.

We now prove the Thom isomorphism for compactly supported cohomology
of vector bundles.

Definition 10 Let G be a compact Lie group and let p : V — B be a G-
equivariant G-oriented vector bundle over a compact base B.

An element u € Hpy (V) such that p,u =1 in Hg(B) will be called a Thom
class.

Given a G-orientation o on V, recall [18] that there exists a unique Thom class

u, € Hep (V). Multiplication by u, induces a map m,: my(a) = u, A p*a

from Hg(B) to Hepy (V) and the map m, is an isomorphism. Similarly, as

u, € Hepc(V), we can define the map m,(a) = u, A p*a from Hg;*(B) to
A

Proposition 11 . Let G be a compact Lie group and let V — B be a G-
equivariant G-oriented real vector bundle over a compact base B. Then the
maps

m, : Hg™(B) = Heig(V)
and

pv: Hyo(V) — Hg™(B)

are inverses to each other. In particular both of them are isomorphisms.

Remark 12 In the above proposition, we have assumed the base B to be com-
pact, just in order to simplify notation. If B s not necessarily compact, the
same proof will lead to isomorphism of H_iw(B) with HoiG(V). It 1s also
clear that a ssimilar Thom isomorphism will hold between H;*(B) and the co-
homology H, ¢ (V) of the complex of equivariant forms on V with compact

support along the fibers.

Proof: The proof is similar to the proof of the Thom isomorphism in equiv-
ariant cohomology given in [19]. For a € A(V), we denote by & the image of
under the automorphism z +— —z of V. Let us consider the bundle V @ V over
B and let o(z,y) = (y, —z) be the automorphism of V@ V. Denote by o4, € R
the transformation

oi(z,y) = ((cost)z + (sint)y, —(sint)x + (cost)y)
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of the fibers of V @ V. Then oy is the identity, while o,/; is equal to 0. Let

—( C’t)

be the vector field on V @ V induced by the group of transformations o;. We
have

L(S) = du(S) + ¢«(S)d
on .Acpt (V @ V)
Extending these transformations pointwise to C~(g, At (V @ V)) (cf. Def-
inition 7 ) we obtain the relation:

L(S) = dgi(S) + 1(S)d,

on C~°(g, Aept(V @ V)). The transformations o; commute with the action of
G. Thus ¢(S) and £(S) preserve A_i%(V @ V).
Define H : A_7(V@ V) — AL76(V @ V) by

/2
Hy = / (o7u(S)v)dt.
0
We obtain, as in the proof of the preceding proposition (8)
o'v —v = (dgH + Hdy)v

for any v € A5(V O V).

Let p; : V&V — V,i = 1,2 be the natural maps obtained by projections
on the first or second component respectively. Consider a € Agy; (V) and
B € ALic(V). Then pia Ap;f is a well defined element of AZF(V @ V). If
a, 3 are closed equivariant forms, then pja A p3f3 is closed and is in the same
cohomology class as o*(pia A p3f3) = pia A pif. Let us integrate over the
fibers of py. It is clear that (p2).(pi A p38) = p*(p«)B. Thus the equality in
cohomology

PaAp,f = pa /\plﬂ
implies (if NV is the rank of V, and |a| € {0,1} is the parity of a):

pr(pea) A B = (=1)NIDa A p*(p,B)

in cohomology. In particular let @« = w, be the equivariant Thom class of
V — B, which is of parity V. We obtain the relation

B = u, Ap*p.3

in H_#%(V). Thus, we see that m,p, = I in cohomology. Of course p,m, = I.
This proves the proposition. §
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We finish this section by giving an example of a non-trivial closed equivariant
form with generalized coefficients.
We need a notation.

Let V be a real vector space of dimension n. Let »’ be a non-zero element
in A"V'. We denote by || 716y the element of C~°°(V) defined by

(10) /V [V|716v(X)®(X)dX = &(0), for any test function ®on 'V,

where dX is the Euclidean density on V determined by v/.
We denote by 6y, € C~°(V) ® A"V’ the element:

(11) 6V,o = |1/’|_16V ® I/l.
The element 6y, depends only on the orientation o of V' determined by »/'.

Let G be a Lie group. Consider the action of G on itself by left translations.
Let n = dim G. Fix an orientation o on g. Let v/ € A™g’' be a positive element.
Let dg be the unique left invariant form of maximal degree on G such that
(dg)e = V', where e is the identity element of G.

Lemma 13 The form
aGo(X) = [V|7185(X) @ | det gg|dg
s a closed equivariant form on G, which depends only on the choice of o.

Proof: The form ag, is equivariant, as go - (|¢'|7185) = | det gg0|(|'|71é4) and
|det 4(g5"g)| = | det ggo| | detgg|. It is immediate to see that ag, depends
only on 0. As ag, is of maximal degree, dog, = 0. Also, as the generalized
function || =14 is annihilated by multiplication by all the coordinates functions
on g, we see that tag, =0. 1

We will prove in section 5 that H;*(G) = Rag,

3 Koszul complexes

Our main aim in sections 4 and 5 will be the study of the cohomology of
“perturbed” Koszul complexes. Thus, in this section, we recall some well-known
facts on Koszul comnplexes.

Let V be a finite dimensional real vector space of dimension n with basis
e',1 < i < n and dual basis ¢; € V'. Let S(V’') be the ring of polynomial
functions on V. Let L he a S(V')-module. We still denote by e; the action
of e; € V' on L. We denote by /(e') : A*V' — A*~'V"' the contraction by the
vector e! € V.
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Counsider the space
Lo AV

which is Z ,-graded by the exterior degree. On this space, the operator

(12) ji = ée; ® 1(e))

is an operator of degree —1 and its square is zero. We denote by H(ji) the
homology space of jr. It is a Z,-graded vector space. If L = S(V') (considered
as a S(V')-module under multiplication), we denote the operator ji by jv. We
denote:

A* =SV AV
The following proposition is basic

Proposition 14 Consider the operator jy on A*. We have:

1. Ifi > 0,H;(jy) = 0.

2. If i =0, the map ¢ — ¢(0) from A® = S(V') to R induces an isomorphism
from Hy(jv) with R.

Even though this proposition is well known, we give a proof as we will use the
explicit homotopy given below in the rest of the article.

Proof: = We identify the space A* = S(V') ® A*V' with the space of
differential forms with polynomial coefficients on V. We write an element z € V
as T = Y ;x;¢', so that e;(x) = x;. If I = (iy,ip,...,4) is a multi-index:
1 <4 < < <n, we identify e; Ae;,---Ae; € AV' with the k-form
dey = dzx; dx;, - - - dx;, .

Consider the partial derivative J in the direction of ¢! € V. Let Ey be the
Euler vector field Ey = 3, ;0'. We denote the contraction operator ¢(e) on
AV’ by «i. Thus

Jv =Y it =u(Ey).

We denote by €; the multiplication by dx;. Let dy = ;0" ® ¢€; be the de
Rham differential on A*. Let Ly be the Euler operator on S(V') ® AV’ given
by the Lie derivative action of Ey .

Ly(fdry A+ Nday,) = (Y20 f + kf)dey, A--- Adzy,,

for f € S(V").

Then, Cartan relation implies Ly = dyjy + jydy.
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Consider the subcomplex Aj of A* such that Af = A*, if k& > 0, while
A) = {¢ € S(V'),9(0) = 0}. The operator Ly keeps A} stable and induces an
invertible operator of degree 0 on Aj. We can give an integral formula for the
inverse Fy of the Euler operator Ly: Define Fy on A by

1. If fde; € A%, k >0,

Fv(fd.’l)]) = (/01 f(t.’l))tk—ldt)d:t[.

2. If f € A
1
Fyf = / f(tz)tdt.
0
It is well defined as f(tz) vanishes for t = 0.

It is immediate to see that FyLy¢ = ¢ for every ¢ € Aj. The operator
Fy = L' commutes with jy and dy.
Let hy := Fydy, then, if ¢ € A;,

¢ = (hvijv + jvhv)é.

This formula clearly implies the proposition. g

Let L, N be two S(V')-modules. The tensor product space (over R) LQN is
given a structure of S(V')-module by defining the action of an element f € V'
tobef-(m®n)=fmn—-mQ fn.

Consider the operator jrgy on LN @ AV'. The homology space Hy(jrgn)
in degree 0 is the quotient of L ® NV by the subspace spanned by elements of the
form fm ® n —m® fn, for f € V'. This quotient is by definition L ®sy+) N:

Hy(jron) = L ®svy N.
If N is a S(V')-module, denote by N° the space N with the trivial action of V".

Lemma 15 Let N be a S(V')-module. The operator R :=exp¥_; 0' ® e; gives
an isomorphism of the S(V')-module S(V') @ N with the S(V')-module S(V')®
NO.

Proof: It is sufficient to check this assertion when V is a 1-dimensional vector
space, where it is checked easily. 1

Corollary 16 If L is a free S(V')-module, then L @ N 1is also free; hence
Hi(jron) =0 ifi > 0.
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Lemma 17 For any S(V')-modules L and N, the homology space of the oper-

ator jren on the compler
LRN®AV'

is equal to the torsion group TorS(V)(L,N), i.e.,
Hi(jren) = Tor; (L, N).
Proof: Let us consider the complex

0— S(V)@ N@ A"V 3N .58 gy g N V!
VPN gY@ N BN 0

where the last map is the surjective map m : S(V')Q N = N : m(¢ ®n) = ¢n.
By the preceding corollary, this complex is exact. Furthermore if we endow the
space S(V')® N ® AV’ with the S(V') module structure S(V') ® (N ® AV")?,
the homomorphisms jsvnen and m are S(V')-module morphisms. Thus the
complex above is a free resolution of N as a S(V')-module. We may calculate the
torsion group T'orS(V))(L, N) using this resolution. The space L ®swn S(V') ®
(N®A*V")? is isomorphic with L® N @ A*V". The operator I ®sv (jsven)
under this isomorphism becomes the operator jigx. This proves the lemma. §
We now introduce another vector space P considered as a parameter space.
Let W =V @ P. We write an element w € W asw =z +y, withz € V,y € P.
Let us consider the space

A%* = CP(W) @ AV

The multiplication by the coordinate function z; is an operator on C*°(W).
Thus the operator j° := Y | 7; ® ¢(e') is an operator of degree —1 on A>*
and (j3°)2 = 0. Let rp : C°(W) — C>=(P) be the restriction map.

Proposition 18 Consider the operator j3° on the complex A>*. We have
1. Ifi> 0, Hy(j®) = 0.
2. If i =0, the map rp from A = C°(W) to C*°(P) induces an isomor-
phism from Hy(j3°) with C(P).

Proof: The method of proof is identical to the proof of Proposition 14. For
simplicity, we denote j3° by jy. Let

(13) dvy =) 0 ®e¢
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be the partial de Rham differential in the direction of V' on the complex A%*.
Let Ly be the Euler operator on A>* with respect to the variables z;, dz;:

Ly(fdzy A---Ndxy) = (O 20 f + kf)day, A--- Ada,

if f € C=(W).

Then, Ly = dvjv +jvdv.

Let A" be the subcomplex of 4°* defined by AS* = A%* if k > 0 and
AP = {$ € C®(W);rpg = 0}.

The Euler operator Ly induces an operator of degree 0 on Ap>*, which is
invertible. Its inverse Fy is given explicitly by an integral formula as in the
proof of Proposition 14:

*

Definition 19 Let us consider the operator Fy of degree 0 on A" defined by

1. If fdz; € A", k>0,

Fy(fdxy) = (/01 f(tx +y)tt~1dt)dz,.

2. If f € AP, .
Fyf =/ f(tx +y)t~"dt.
0

It is well defined as f(tx + y) vanishes for t = 0.

The operator Fy commutes with dy, jy. It is easy to prove

FvLyp=¢
for every ¢ € Ag>". Thus if
(14) hyv = Fydy,
¢ = (hvijv + jvhv)e, for¢ € AT

Thus hy is a homotopy for the complex Ay™*. The existence of hy implies
that the subcomplex Ay™* is exact. This in turn implies the proposition. &

Observe that if f € Cgy(W)® AV’ is compactly supported, then Fy f is not
necessarily compactly supported.
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Remark 20 If a Lie group G acts linearly on 'V and P, the operator j3° com-
mutes with the action of G. Thus (A%*)¢ is a subcomplez of A>*. The ho-
motopy hy, that we have constructed above, commutes with the action of G.
It results that the homology of the subcomplex (A®*)C of A®* exists only in
degree 0 and in degree 0 is isomorphic to C*(P)¢.

Now, consider the space:
AT =C™°(W) @ A*V".

The operator j;,*° is similarly defined on A™**. The complex j,* : A7%* —
A~>*=1 jg called the Koszul complez with C'~*-coefficients (with the space P
as a parameter space).

Choose an orientation o on V. By Formula (11) of section 2, this determines
an element dy, of C~°(V) @ A"V'. If f € C~>°(P) is a generalized function on
P, the product dy,(x)f(y) is in C~°(W) @ A"V,

It is easy to identify the homology of j,°° in top degree.

Lemma 21 The kernel of j;° on A" = C~°(W) ® A"V’ is equal to the
space by, @ C~°(P).

Proof: As z;6v,(z) = 0 for all 7, the subspace dy,(2) RC~®(P) of C~*°(W)®
A™V' is in KNer(j,;*°). Reciprocally if f ® v/ € C~°(W) ® A"V’ is such that
v (f @ V') =0, we see that a;f(z +y) = 0 for all s. Thus f is the product
of the é- function on the transverse subspace V with a generalized function on
P. 1

Proposition 22 We have
L Ifi #n, H(jy™) =0,

2. H,(jv™°) = bv,, 20 C™°(P)

Remark 23 Let I be a compact group acting linearly on W and preserving the
direct sum decomposition W =V @ P. Thus the group I\ acts on A~°* and the
operator jy commutes with the action of K. Hence (A=>*)X is a subcompler of
A~*. Let x(k) := dety (k). Then, I being compact, x(k) = £1 and moreover
k-bv, = x(k)bv,. By averaging over I\ the equation o = j;*°(3, we see that
the homology of the subcompler (A=>*)N of A=%* 4s also equal to 0, except
in top degree n, while in top degree H,((A=°*)X) = 6y, ® C~°(P)X, where
C~(P)X={f € C~(P);k- f =x(k)f,forallk € K'}.
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We now give a proof of Proposition 22.

Proof: Let us consider the subcomplex L* = C_75, (W) ® A*V' of A=>7,
where C_;5 (W) denotes the space of generalized functions ¢ on W, with sup-
port contained in a set of the form F' @ P where F is a compact subset of V' (
F depending upon the generalized function ¢) .

Lemma 24 The inclusion L* — A~>"* induces an isomorphism in homology.

Proof: Let us denote the operator j;* by jy. Choose a scalar product
on V and an orthonormal basis e’ of V. Let e; € V' be the dual basis and
let us denote by ¢; the exterior multiplication by e; on AV’. Let ey be the
operator of degree +1 on A™°* defined by ey = Y, z;¢;. It is easily verified
that eviv + jvey = |.’B|2I

Let x be a smooth function on V' such that x(z) = 1 for |z| < 1/2 and x(z) =
0 for |z| > 1. Extend x to a smooth function on W by setting x(z +y) = x(z).
The multiplication by the function xy on A™*° commutes with jy. It sends A=
to L. The function (1 — x(z))(|z|?)~! is a C* function on V, thus on W. We
write for ¢ € C~°(W) @ AV’

¢ = ¢o + ¢
with ¢9 = x¢ and
— €T 1-— x
¢ = 1|x—>|<z(r)|af|2¢ = —F%(L)(jvév +eviv)e.

If jv¢ = 0, both elements ¢y and ¢; are annihilated by jiy. Furthermore ¢, is
in the image of jy. Thus each element of H(A™>°) has a representative in the
subcomplex L and hence the natural map H(L) — H(A™*) is surjective. Now
let ¢ € L be such that ¢ = jya with @ € A7°. We can find a C* function
0 on W such that it is equal to 1 on the support of ¢ and such that o € L.
Thus ¢ = 0¢ = jy(fa) and the homology class of ¢ in H(L) is zero. Thus the
natural map H(L) — H(A™*) is injective. 1

ffeveliefeCy (W), we can define I(f ®v') € C~°(P) by
[1G @) sy = [ fay)ew)dady
where dz is the positive density on V associated to v'. If £ = by ,(x)g(y), then
I(f) = g. We denote by L} the subcomplex of L* such that LE = L* if k # n,

while L§ = {¢ € L",I(¢) = 0}. We will construct an explicit homotopy for
Jv°° on the subcomplex Lg.
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Consider the complex R* = Cg, p(W) ® A*V', where Cg, p(W) denotes
the space of smooth functions on W, with support contained in a set of the
form V @ F where F is a compact subset of P. Define the subcomplex R by
Rt := R* if k > 0, while R} := {¢ € R% rp¢ = 0}, where rp is the restriction
map from C®°(W) to C*°(P). The operator Fy given in Definition 19 preserves
R}. Thus the homotopy hy = Fydy of A7 is also a homotopy for R§.

Let us choose a Lebesgue measure dy on P. The pairing (,) between the
complexes L* and R"*™* defined by

(¢dar, fdus) = [ 6(c+y)f(x+y)(des Aday)dy

is a non degenerate pairing. The space Ly is the orthogonal of the subspace
1®Cg,(P) of functions on W constant in the z € V' variables. Thus (, ) induces
a non degenerate pairing between Lj and Rg™".

The operator jy satisfies

Gva, B) + (=1)™(a,jv8) =0

for o € L*,3 € R™™*.
Thus we can transpose the homotopy for Ry and obtain a homotopy for Lj.
More explicitly, define the operator Uy of degre 0 on Lg by

(Uva, B) = (a, Fy )

for o € L, B € Ry~". We extend the partial de Rham differential dy from A®*
to A7°* (again denoted by dy) by the same formula (13). The operator dy
also satisfies

(dva, B) + (=1)I*I(a,dy3) = 0.
Thus dy L"~! C L} and dy is an operator of degree 1 on L}. The operator
Uy commutes with dy. Let ky = Uydy = dyUy. Then, for a € Ly, 8 € Ry,
(kva, B) + (=1)"(a, hy ) = 0.
Thus, for a € Ly,
o = (]“'VjV +jvk'v)a/
as follows from the transpose relation 8 = (hyjv + jvhv)p.

The complex Lj is thus exact and this implies the proposition. §

Let us now censider a Lie group G with Lie algebra g. Recall the definition of
the Koszul differential ¢, on the space T* = LQA*g calculating the cohomology
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of a g-module L: For « € L ® A’g’, c;ox € L ® APTg’ is defined by

(15) (CLCY)(Xl, "'7XP+1) =
Z(-—l)“'lXi . (}'()&’17 ...,X,‘, "'7Xp+1)
+ 3 (=DM a([Xi, X;], X1y e Xiy ooy Xy ooy Xp1),

i<y

where Xj,...,X,41 are elements of g.

Consider ¢«(X) : T* — T*~!, the contraction by an element X € g and £(X)
the action of g by tensor product on T'. It is not difficult to verify the relation
L(X) = cpt(X) + «(X)cr. The space Ag' acts by exterior multiplication on T'
and ¢, satisfies the Leibniz’s rule: cp(af) = c(a)¢ + (=1)lacy(¢), where c in
this formula denotes the Koszul differential of the complex Ag' (corresponding
to the trivial one dimensional representation L).

Let K be a Lie subgroup of G. Assume that L is a (g, ')-module. Consider
the subspace

Ty = (Lo A(g/8))"

of L ® Ag'. From the relation £(X) = cp¢(X) + ¢«(X)cr, it is easy to see that
(T, cr) is a subcomplex of (L ® A*g',cr). The cohomology of the subcomplex
(Tf,cr) is by definition the relative Lie algebra cohomology H*(g, I{, L) of the
(g, K)-module L.

Consider the algebra D(g) of differential operators on g with polynomial
coefficients. Then the adjoint action of g on g determines a Lie algebra homo-
morphism 7 from g into D(g). If L is a D(g)-module, then L is a g-module,
via the adjoint action. Furthermore, as D(g) contains S(g'), the module L is a
S(g')-module.

Let € be a basis of g, e; € g the dual basis. We consider the element
Q =3, e7(e') of D(g)

Lemma 25 The element 2 € D(g) s identically 0.

Proof: For X € g, denote by dx the constant coefficient vector field on g
equal to X. The adjoint vector field 7(e') is given by: 7(e') = — ;20 ¢i)

and hence
N=- z .’IYi.l'ja[eiyej]
1,j

which is equal to zero, as the vector field —3=; ; z;x;0i 0s is the vector field
equal at the point X € g to [X,X]=0. 1
Let L be a D(g)-module. Consider the space

A*:=L®Agd.
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As L is a S(g')-module, we can consider the operator j = ji : A* — A*~! given
(as in Formula (12)) by j = ¥, e; ® t(e').

On the other hand, the g-module structure on L gives rise to the Koszul
differential ¢ : L* — L**!.

Lemma 26 . Let L be a D(g)-module. The operator j + c satisfies
(j+¢)=0

Proof: As j2 =0, ¢ = 0, we have to verify that jc + cj = 0. We have,
(setting ' = ¢(e')) and using the Leibniz’s rule:

jetcj = (eifctcen’) = e(det+a’)+ ) cle) =) eil(ef)+ > (e
The action L£(e?) is by the tensor product action 7(e) ® I + I ® L, (e'), where
L(e') is the action of g on Ag’ induced from the adjoint representation. Thus,
as Y°; e;7(e') = 0 from the preceding lemma, it remains to see that 3°; e; £ (e*)é+
Sic(e)é = 0 for £ € Ag'. Writing £ as a product of elements o € ¢, it is
sufficient to prove this relation for £ € g’ where this is checked easily. 1

The spaces L = C**°(g) have natural D(g)-module structures. Thus on LQAg’,
the operators j and ¢ are defined and satisfy (j +c)? = 0. We will see in section
5 that we obtain this example of perturbed Koszul complex when computing
the G-equivariant cohomology of a Lie group G provided with the free action
of G on itself given by left translation. We compute the cohomology of slightly
more complicated complexes in the next section.

4 Induction of equivariant differential com-
plexes

Let (A, d) be a differential complex, i.e. a Z/2-graded vector space over R, with
a differential d of odd degree. We will assume that A is a Fréchet space and
that d is continuous. (In most of the applications, A will be the space of smooth
differential forms on a G-manifold M.) Let G be a Lie group acting on A. We
assume that the action of G on A is differentiable. As in H.Cartan [10], we say
that (A, d) is a G-differential compler, if

1. The action of G preserves the Z/2-grading and commutes with d.

2. There are given continuous contraction operators ¢(X), X € g of odd de-
gree satisfying ¢(X):(Y) +¢(Y):(X) =0 for all X,Y € g and g¢(X)g™! =
t(gX),forall g€ G, X € g.
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3. The Lie derivative action £(X) of the action of G on A satisfies L(X) =
de(X) +¢(X)d, for all X € g.

If A is a G-differential complex, define the space Ap,,¢ of G-horizontal
elements to be

Aporg ={a € A4;(Y)a=0, forallY € g}.

The space Apsg of G-basic elements is by definition the space of elements
of A which are G-invariant and horizontal:

G
AbaSG = AhorG'

Remark that the differential d leaves the space Ap.,.g stable.
Let (A, d) be a G-differential complex. We call (A, d) a G-differential algebra
if, in addition, A has a Z/2-graded algebra structure satisfying the following:

1. The action of any g € G on A is by algebra automorphisms.

2. The operator d and the operators «(X), X € g, are odd derivations of the
algebra A.

If G acts smoothly on a manifold M, then A*(M) = A" (M) & A% (M)
is a G-differential algebra. If L is a differentiable G-module, the tensor product
G-module L ® Ag' together with the Koszul differential ¢; and the contraction
operators I ® ¢«(X) is a G-differential complex. In particular, taking L to be
the trivial one dimensional G-module, Ag' is a G-differential complex, in fact a
G-differential algebra.

The tensor product (over R) of two G-differential complexes is canonically
a G-differential complex. Thus, for any G- differential complex A, we can form
the G-differential complex A ® Ag’. We write an element @« € A ® Ag' as
a = 3 apy with o € A®AFg'. We denote by r : A® Ag' — A the projection
of an element o € A ® Ag' on its component o of exterior degree 0.

Lemma 27 Let A be a G-differential complex. The map r : AQ Ag' — A
induces an isomorphism from (A ® Ag')norg to A.

Proof: For X € g, we denote by ¢;(X) the tensor product contraction on
A®Ag. If a € (A®Ag)hora is such that apg) = 0, it is easy to see by induction
on the exterior degree that @ = 0. Let us prove that r is surjective: Let E* be a
basis of g with dual basis E; € g'. Denote by ¢; the exterior multiplication by E;
on A®Ag from theleft. Let h; = I —¢;1,(E"). It is easy to see that the operators
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h; commute with each other. In particular, the operator h = [[;(I — €;.:(E*))
acting on AQAg’ is well defined, i.e. it does not depend upon the order in which
the product is taken. We verify : «;(E*)h; = 0,t(E?)h; = hiu(E?) for i # j.
Thus h is a projector from AQAg' to the set (AQAg )hore- lf a € A = AQA,
the element h(a) = a — (=1)1"1 ¥, ((E*)a ® E; + - - - is a horizontal element of
A® Ag with component of exterior degree 0 equal to a. Thus r is surjective. §

Definition 28 The operator h := [[;(I — €;t;(E*)) on A ® Ag' is called the
horizontal projection.

By the preceding lemma, if @ € A ® Ag/, the element () is the unique hori-
zontal element of A ® Ag' whose component of exterior degree 0 is oy

If (A,d,) is a G-differential complex, we can define the spaces A*¥® :=
C*>(g,A). We denote both of them by A when there is no need to indicate
precisely the smoothness properties of a function f : g — A that we assume.
The space A inherits a Z/2-graded structure from that of A.

For any FE € g, the contraction operator ¢(F) is extended to A pointwise:

((E))(X) = «(E)(f(X)).
Similarly the differential d4 is extended on A by
(daf)(X) = da(f(X)).
Thus we can define on A the operator
g =Y xt(E’)
ie. (1gf)(X) = i 2:(1(EV) £(X)) and the operator
dg =da — tg.

When g is understood, we will just write ¢ for ¢5. If we take A = A(M), for
a G-manifold M, then A*> was introduced in section 2 and dy here coincides
with the operator d; of section 2.

Lemma 29 The operator dy is odd and satisfies (13 =0 on
AG = CF%(g, A)C.
More generally if x is a character of G trivial on its connected component, then
(AE%, dg) = (C*®(g, A)X, dg)
15 a complex, where

C*>(g,A)X :={f € C*®(g,A) : g f = x(9)f, forallg € G}.
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Proof: It is easy to see that > = 0. So to prove that d? of = 0 for
fe Ai°° it suffices to show that (dat + tda)f =0. Now ((dat + sz)f)(X) =
i x,EA(E')(f(X)) where £4(E") is the Lie derivative action on A of the ele-
ment E' € g. The invariance condition on an element f € C*>(g, A)X implies
that L4(E*)(f(X)) = £ f(X + €¢[E’, X]). Thus, for f € C*=(g, A)X, we obtain
in the notation of Lemma 25 (section 3)

((dat+ ¢da) f)(X) = Z:r, f(X 4 €[E}, X)) = Zx z;0i g f(X) =

|
Let G be a Lie group and let I be a closed subgroup of G. Let (A,d,4) be
a K-differential complex. Let

L:I:oo — Cim(g,A).

As for A, we denote both of these by L, when there is no need to indicate
the precise smoothness assumption. The Z/2-graded structure on A induces
a Z/2-structure on L. Counsider on L the structure of G-module, defined by
(g )X) = f(g7' - X), for f € C*=(g, A). This structure of G-module of
course induces a structule of g-module on differentiation. Thus on L ® Ag’, we
can define the Koszul differential ¢ (associated to this g-module structure on
L). However, we take in account sign rules in defining c: ¢ coincides with the
Koszul differential cpeven (see Formula 15 of section 3) on L™ @ Ag', while we
define ¢ = —cjoaa on Lo @ Ag' .

We extend the operator d4 pointwise on L: (daf)(X) = da(f(X)). We still
denote by d4 the operator dy @ I on L & Ag'.

Let E‘ be a basis of g. We extend the operator 14 (E*) to L ® Ag' following
the sign rules ( 2), (3) given in section 1.

Consider the operator

j = wun(EY)

on L ®Ag'.
Lemma 30 The operator cg := dy + ¢+ j satisfies ¢z = 0.

Proof: The g-module structure on L is induced from its D(g)-module struc-
ture via the adjoint representation. It follows from Lemma 26 of section 3 that
we have (¢ + j)? = 0. Furthermore, as can be easily seen, we have (¢ 4 j)da +

The space L is equipped with the operators still denoted by 14(F), E € €,
defined pointwise by their action on A.
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Total contraction operators +,(Y),Y € ¢, are defined by the tensor product
contraction on L ® Ag'. Let us consider the action of I on L by

(k- X)) =k f(k71X)

and the action on L ® Ag' by tensor product. We denote by £,(Y),Y € &, the
corresponding infinitesimal action of Y € &.

We define (L @ Ag')horx = {@ € LR Ag';1,(Y)a = 0, forall Y € t}. The
subspace (LQAg )pas ik of K-basic elements is the subspace of elements of L@ Ag’
which are horizontal and invariant under K

(L ® Ag/)lmsl( = ((L 02 Agl)harl()K-

Lemma 31 The operators cs :== c+d, and j preserve the subspace of K -basic
elements.

Proof: The operator j clearly preserves the space of horizontal elements. It
commutes with the action of I\, thus it preserves the space of K basic elements.

Using the relation «,(Y)ca + cat(Y) = L4(Y), we see that the space of
I -basic elements is stable under c4. 1

Definition 32 Let A be a K -differential complex. Define the induced complex
I ndé‘ﬁ(A from K to G of the K -differential complex A to be the space

Ind£ss A = (C*(g, 4) ® Ag Juer
with the differential cg = c+ds+ 5.
If (A,da) = (R,0), then Ind5R = (C*(g) ® A(g/t)")* with differential

cg = ¢+ j, where ¢ is the Koszul differential of the (g, i')-module C*>(g).
Our aim is to compute the cohomology of the complex (I nd(i;ﬂ-A,cg) in

terms of the cohomology of the complex (CE®(k, A)X, dy).
The cohomology of the complex Indg) A is determined in [13]. Recall the
results:

Theorem 33 The restriction map
re: C%(g, A) 0 Agl — C(k, A)
gien by
(rea)(Y) = a(Y") forov € C(g,A),Y € ¢
(1pv) =0 if « € C®(g,A) @ A2'yg

defines a cochain map from (Indg) . (A),cq) to (C>(t, A)X dy). Furthermore
if the principal bundle G — G/ possesses a G-invariant connection, then the
restriction map 1 induces an isomorphism in cohomology.
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In particular, if A = R, we obtain a map ry : Indg/ kR — C>(€)X and this
map is an isomorphism in cohomology when K is compact.

Remark here that the restriction map does not extend to Indg7%(A) as
generalized functions cannot usually be restricted to a subspace.

The assumption that G — G/I possesses a G-invariant connection is sat-
isfied for example when K is a reductive Lie group, in particular when K is a
compact subgroup.

We now consider Indg7i A. Let v = g/t We identify v with = {fe
g,fle=0}. Let n = dlmt Consider the character xg/x(k) = szgn(det k) of
K. As G and K are fixed, we denote g,k simply by x. Let v/ € A" be a
nonzero element. The element v/ determines an Euclidean measure |dv'| and
an orientation o on v. If dX is an Euclidean measure on g, we denote by dY
the Euclidean measure on ¢ such that dX = |dv'|dY.

Remark that, as n = dim g/¥, the space A¥ ® A"t is naturally embedded as
a subspace of Ag'. Consider the horizontal projection operator (see Definition
28) hg : A — (A® A¥)0r k. Thus, for a € A, the element hg(a) A V' belongs
to (A ® Agl)horK-

Definition 34 Let f € AR = C™(¢, A)X. Choose V' a nonzero element of
A™Y. We define Indg/k, f € In(l(/I\A (C™(g,A4) @ Ag )pusk by

(Indg/kw f,®dX) = hK(/Pf(Y)Q(Y)(IY) AV, for any test function® on g
(with dX = dY |dv'|).

It is easy to see that the map Indg/, depends only on the orientation o of
g/t determined from v'. Thus we write I'ndg/k, for Indq/k . Remark that
the map Indg,k,, is injective.

Proposition 35 The map Indg, is a cochain map of parity degree equal to
dim G/ K from the Z /2 -cochain complex (AL%,dr) to the Z[2-cochain complex
(Indz5 Ay ).

Proof: Let L = C~(g,A) and let L' C L be the subset of elements
F € L satisfying k- F = (det k)F. If F € L, define hg(F) € L ® A¥ by
hg(F)(X) = hg(F(X)). Themap F — hg(F)Av' sends L to (LQAE )i AV
It sends L9t to (L Q@AY )pusk = In(lg.‘f}(A.

Lemma 36 For every F € LY, we have cx(hxgF Av') = hg(d4aF) AV, where
ca 18 the operator on Indg7g- A defined in Lemma 31.
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Proof: We compute cq(hg(F)Av') for F € L. Let K* be a basis of & with
dual basis K. It is easy to see that c¢(v') = — ¥ ;(Tr (ad. K*))K; Av'. Thus, by
Leibniz’s rule,

calhk(F)AV)ELQ(Ag AV')=LQ (A¥ AY).

As ¢y preserves K -basic elements (cf. Lemma 31), c4(hg(F)AV') is K-basic,
in particular is horizontal. The space (L ® (Ag' A v'))hork is isomorphic with
L by the map a Av' — apq) € L for o € L ® Ag', where o) is the component
of o in the zeroth exterior degree. Thus, if c4(hgx(F) A V') = G AV, then
CA(hK(F) A l/’) = hK(G[o]) AV,

We have G = dA(h]((F))+C(h](F)+(—1)|F|+1hKF/\Z,-(TTadtIS’i)I(;. Look-
ing at the term of zeroth-exterior degree, it follows that Gg) = d4F. This proves
the lemma. g

For f € C~>(%, A)X, the element F' € C~>(g, A) defined by (F,®dX) =
L f(Y)®(Y)dY belongs to LI and Indg/k.f = hx(F) Av'. The preceding
lemma implies cqIndg/rof = Indg/kodaf. Proposition 35 is now a conse-
quence of the following

Lemma 37
JIndgkof) = —Indg ko (tef)-

Proof: Let E' be a basis of g such that the first elements form a basis of
t. Let E; be the dual basis. Then the last n coordinates z; vanish on &. We
denote by y;,1 < ¢ < dim € the coordinates on ¢ corresponding to the basis of
' dual to the basis E' of . We have then

dim¢t

((Indg/kof), @dX) = 3 (1a(E*)hic( /P FYV)y@(Y)dY)) A v

i=1

As hg is a projector on the I-horizontal elements for the tensor product con-
traction, it satisfies for E* € ¢ and a € A, 1A(E*)(hga) +ta(E)(hga) = 0. But
ta(EYhg = hgta(E?), and we obtain the lemma. §
The proof of this lemma completes the proof of Proposition 35. §

If Ais a K-differential algebra, then C~°°(€, A)X is a module over C*(€, A)X.
Similarly Indg7g A is a module over Indg) - A. Remark the following relation
between the maps ry and Indg,p ,

Lemma 38 Ifa € Ind) A and s € C~(¢, A)X, then
alnde/k o8 = Indg g o((rea)s).

The main result of this section is the following

141



S. KUMAR, M. VERGNE

Theorem 39 Assume that the group I is compact. Then the map Indg /i, :
(A5 de) = (1 ndg i A, cg) induces an isomorphism in cohomology.

Proof: We can choose a K-invariant decomposition:
g=tdr

To this direct sum decomposition is associated the tensor product decomposi-
tion Ag' = At ® Av.

Let hg : L — L ® A¥ be the projection on K-horizontal vectors for the
tensor product contraction (see definition 28). The map

Ww®E) =hg(v)AE

for v € L and £ € AY is an isomorphism from the space L @ Av' to the space
(L ® Ag)hork. The map W commutes with the action of ' and allows us to
identify the space

— (L @ AI'I)K

with the space
Indg55 A= (C(g,A) © Ag )iusc-

On the space Tk, we will use the Z -gradation given by the exterior degree
T = EB,,_OTK = Dp_o(L ® ArY)K,

Let R’ be a basis of v with dual basis R; and let K7 be a basis of £ with dual
basis K;. We write X € gas X =Y + R, with R=Y, 2R, Y =% y; .

The operator 1 = 3; yjta(hV) is defined on L = C~=(g,A). Let j :
L®A*Y — L ® A*"'t be given by j. = ¥, 2;04(R?). It is easy to see that ¢
and j, commute with the action of ' on L @ Av.

Lemma 40 For all « € L & AV,
JW(a) = W(jerv — 1pav).
Proof: We have, for v € L and £ € AY,

J(hgv AE) ZT AA(R)(hgv A€) +Z'/; (ta(B7) g (v)) AE.

Further, for KV € & ix(K)hp(v) + hy(1a(h7)e) = 0, and we obtain the
lemma. 1§

Lemma 41 If o € TV, then W~'c W (o) € Th o it @ THF2.
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Proof: This is obvious since, € being a subalgebra, c(A7¥ @ APY) C (ATH1¥ ®
APY) @ (A% @ APTIY) @ (A8 @ APF2Y). g

Let us now prove Theorem 39. By the map W, we identify I nd&?‘;{A with
Tk and write still ¢; for the operator W=lc,WW on Tx. As we have seen in
Proposition 22 and Remark 23 ( of section 3 ), the homology groups of the
operator j, : Ti — T3 ! are equal to zero except in maximal degree n = dimr.
Furthermore, if o € T} is such that jia = 0, then a = 6 ,(z) ® f(y) for some
f € C~(¢, A)X by Lemma 21 and Remark 23 ( of section 3). But then, by
definition of Indg/k o, we obtain a = Indg/k . f.

Now, if o € T} is such that cyar = 0, writing this equation componentwise,
we see that o satisfies the relation jio = 0 . Thus « is of the form Indg/k . f
. As cgIndg i of = Indg/k.def ( by Proposition 35), we see that f € Kerd,,
since Indg/Kk , is an injective map. Consider now an element v = 3", o in
the kernel of c;. From the degree consideration, we see that its component of
minimal exterior degree kg is annihilated by j.. If k¢ is less than n, there exists
an element § € T such that a[x,] = JeB. The element o — cy/3 is in the same
cohomology class as o and all its non-zero exterior degree components are of
degree strictly greater than k¢. By induction, a has a representative in Tg and
we see that the map Indg,n, is surjective in cohomology.

Suppose now that Indg/k.f = cg with 8 = ¥y, Ou)- Writing this
equation component wise, we see that j.0x, = 0. If kg < n, changing 3 to
B' =B —cgy with v € T,"\'—”'*1 and jey = Op,), we still have Indg/kof = cgf'.
By choice, 8" = Y51, /3{L,]. Hence, by induction, we obtain an element 8 € 4

such that Indg/k,.f = 09/3. From degree consideration, j,B = 0. But then ﬁ =
Indg/k g for some g € C~°(¢, A)X. The equation cgIndg kg = Indg/kof
reads as Indg/kodvg = Indg/k of . But Indg) i, being an injective map, we get
drg = f. This proves that the map Indg/k , is injective in cohomology, thereby
completing the proof of Theorem 39. 1§

As a particular case, if ' is compact and if (4,d4) = (R, 0), we obtain that
the map Indg,f , induces an isomorphism from C~*°(£)X to the cohomology of
the complex ((C~>(g) © A(g/€))",j + c).

We apply these calculations in the next section to the calculation of the
equivariant cohomology of fiber bundles over homogeneous spaces.

5 Equivariant cohomology of homogeneous
spaces

Let G be a Lie group and let ' be a closed subgroup of G. Let D = G/K.
Let ¢ € D be the base point of D. We identify the tangent space of G at
a point ¢ € G with g by sending X € g to the tangent vector to the curve
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gexpeX in G. Let n = dimD. Let v = g/t. The tangent space T.D
at e € D is identified with v. If ¢ € G, we again denote by L, the map
T.D — T4.D induced from the left multiplication map L, : D — D. For
a € C*°(g, A(D)) := £9mP C*=(g, A*(D)), oy is the p-th component of o.
If x € D and &, -+, € T.D, then (af))s(€1,---,&p) is a function (maybe
generalized) on g given by X — (ag;(X))z(€1,- - -, &)

Let a € AEZ®(D) = C*~(g, A(D))®. Let R',..,.RP € t, X € gand g € G.
As « iz an equivariant form

a(Ad(9)(X)) g LyRY, . .., L,R?) = ap(X)e(RY, ..., RP).

Let &(X) = a(X).. Thus & is a function on g with values in Av' and the
map o — & is an isomorphism from the space AZ®(D) to the space Tx =
(C*>°(g) ® AV)X, where the action of I on both C**(g) and Av' is induced
from the adjoint representation.

Let R’ be a basis of v = g/, with dual basis R; € v. Let z; = R;(X). Let
Je be the operator on Tk given by

jr = Z .’Ifil.A(Ri).

Let ¢ be the Koszul differential on Tk (see Formula 15 of section 3). From
[13], we have

Lemma 42 For a € AZ®(D), we have ((l;a) = (c+ jo)a.

For example, the complex A;*(G) becomes isomorphic, under evaluation
at e, to C~°(g) ® Ag’ and the differential d; becomes the perturbed differential
c+7J.

In the notation of the preceeding section, if (4,d4) = (R,0), we have
AL*(D)=1 ndé‘ﬁ((R), as cochain complexes.

Let xg/k(k) := sign(det.k). As G and I are fixed in this section, we denote
Xa/k by x. Recall the definition ( see Theorem 33 and Definition 34 of section
4) of the maps

re s Indg) i (R) — C= ()"

and
Indgjgo: C™(8)F — In(lg.ﬁ\,.(]R).

Using the identification o +— &, we get maps again denoted by ry and
IndG/[(,oZ

s AZ(D) — C(B)F

and
I’rl(l(;/[(y,, : C—OO(E)X - AE,OO(D)
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Let us describe explicitly these maps.
The point e is a K-stable submanifold of D. The successive restriction maps
AZ(D) — AR(D) — AR(e) are well defined. The composed map AF (D) —
2(e) = C°(8)X coincides obviously with the map re:

(rea)(Y) = (oqq)e(Y)

forY € ¢t

We now describe the map Indg/k,, from C~=(8)X to Az*(G/K). Let V' €
A™Y be a non-zero element. The element v/ determines an orientation o and an
Euclidean measure |dv/| on g/¢. If dX is an Euclidean measure on g, we denote
by dY the Euclidean measure on ¢ such that dX = |dV/'|dY.

We identify the space A(G/K) with C=(G,Av)X.

Proposition 43 The map Indg/k, : C~* (&)X — A;™(G/K) is given, for
f e (e, by

(16) (| (Indeycof)(X)O(X)dX)(g) = deta(o)|( | F(¥)b(g¥ )Y ),

where ¢ 1s any test function on g and g € G.
Moreover, for any f € C~(€)X, the equivariant form Indg/k.(f) is dg-
closed.

Proof: It is easy to verify that Indg/k.f defined by the Formula 16 is indeed
an element of A;*°(D). It obviously coincides with the map given in Definition
34 of section 4 (denoted also by Indg/k,) at g = e. The fact that Indg/k . f
is dg closed follows from Proposition 35 of section 4. It is also easy to check it
directly. 1

Assume that G/K is compact and G-oriented. Thus y = 1. We can in-
tegrate over G/K an equivariant cohomology class and we obtain then a G-
invariant generalized function on g. The next formula is just the integration
over G/K of the formula given in Proposition 43 for Indg/k,.f. However, it
indicates the analogy between [, /K Indg k. f and characters of induced repre-
sentations.

Proposition 44 Assume G/K compact and G-oriented. Let f € C~(¥)K.
Then

/L e ndoyiof ®dX) = [ [dety(g)]( [ FOV)@(gY)aY )dg/ k.

)

for any test function ® on g and compatible choices of the left-invariant Haar
measure dg on G, of the G-invariant measure dg/dk on G/K and of the Eu-
clidean measure dY on &.
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We still denote by re the map HZ(G/K) — C=(€)* induced from the map
7y at the cohomology level and by Indg,, the map C~*(£)X — H;*(G/K)
induced from the map Indg/k,, at the cohomology level.

As a particular case of [13] (see Theorem 33 of section 4), we have the
following

Proposition 45 Assume that K is compact. Then the map ¢ gives an iso-
morphism from HP(G/K) with C~(¢)X.

Further Theorem 39 of section 4 gives as an immediate corollary the follow-
ing

Theorem 46 Assume that K is compact. Then the map Indg/k, gives an
isomorphism from C~(8)X with H;*(G/K). The map Indg/k, s of even
(resp. odd) degree if dim G /I is even (resp. odd).

When K is compact, let us give a formula for the map Indg,k , in terms of
generalized functions.
Choose a K-invariant decomposition

g=tPpr

and let pry (resp. pr) be the projection of g on £ (resp. on t) determined by
this decomposition.

With the notation of Formula 10 of section 2, we have (by Proposition 43),
for f € C~>°(b)X,

(17) (Indg/k,of(X))(e) = [V 6e(preX) f(pre X )V,

where we have identified the space A(G/L) with C*(G, Av)X.
Consider the case where K is the trivial subgroup. Recall that we have
defined the element

aGo(X) = V|7 84(X) ® | det gg]dg

in Lemma 13 of section 2. From Formula 17, we see that it is also equal to the
element Indg,1. Thus we obtain from Theorem 46:

Lemma 47 Let G be a Lie group acting on itself by left translations, then

HG_OO(G) & RO’G‘O.
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A more general result is proved in Theorem 89 in section 9.

Now we are going to generalize Proposition 45 and Theorem 46 as follows.
Let M be a I{-manifold. Consider the product manifold G x M . The group K
acts freely on the right on G x M by (g, m)k = (gk,k~'m). Consider the fiber
space M = G x g M of orbits of the I{-action. The group G acts on the left on
M. When M is a point, the space M is D = G/K. The projection (g,m) + g
induces a map M — D. Thus the space M is a fiber space over D with fiber
M.

If o € AM) C A(G x M), and g € G, then a(yg) is an element of (Ag' ®
A(M))hork, where g’ is identified with left invariant 1-forms on G.

Thus )

AM) = C=(G, (Ag| ® A(M))orr)

where I\-invariants are taken with respect to the action of K by right multipli-
cation on G, left action on M and adjoint action on Ag'.

If a(X) € AM), then (X)) := «(X). € (Ag @ A(M))hork -

By G-invariance, the space AZ®(M) is thus identified with

In(l??;\ (1\/[)) = (C:I:oo(g’ -A(M)) ® Ag,)basK~

Let A = A(M) be our IK-differential complex, then I ndéﬁ{(A) is provided
with a differential c;j. As before, the map a — & is an 1somorphism from
AE=(G x g M) to IndES, ;i (A4) and the following lemma ([13]) iz a generalization
of Lemma 42.

Lemma 48 For any o € A;7(M),
(l;(v = cg0r.

Thus (AE>(M),d,) is identified with the complex (Ind: Tk (A(M)), cq) of
section 4. The complex (C*°(¢ A)*,dy) defined in section 4 is the complex
(AR(M),d) of the I-equivariant cohomology of M. As x is trivial on the
connected component of I\', the operator dp on C~>°(¢, A(M))X still satisfies
d¢ = 0, as follows from Lemma 29 of section 4.

Definition 49 Let us denote by A% (M) the space C~(¢, A(M))X. We de-
fine H (M) to be the cohomology of the complex (C~> (8, A(M))X, dy).

Recall the definition of the maps

re s Indg) g (A(M)) — AR(M)
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and
Indg/k,o : AN (M) — Indggy (A(M))

from section 4. Using the identification o +— &, we get maps again denoted by
re and Indg)k o

et AF (M) — AR (M)
and

I’ndg/](yo . A;{?;(M) - Aaoo(M)

Let us describe explicitly these maps.

The fiber of M — D over the point e € D is canonically identified with
M and is a K-stable submanifold of M. The successive restriction maps
AZ(M) = AR(M) — AR(M) are well defined. Obviously, the composed
map AF (M) — AR(M) coincides with the map re.

The following proposition gives an explicit description of the map Indg/k,
generalizing Proposition 43, whose proof is identical (and hence is omitted).

Proposition 50 For any f € AL (M), Indg/kof € Ag™ (M) is given by

(Indg/kof, ®dX)(9) = |(let9g|h1((/tf(Y)<I>(gY)dY) N

where ® is any test function on g and dX = dY|dV'|.

We still denote by r the map from HZ (M) to H (M) induced from the map
¢ at the cohomology level. As a generalization of Proposition 45, we have the
following Theorem ([13]), (got from Theorem 33 of section 4 ):

Theorem 51 Let K be a compact subgroup of a Lie group G and let M be a K -
manifold. Then the map 1y gives an isomorphism from HZF (M) with Hg(M).

We still denote by Indg/k,, the map from H,‘(f’;’(M ) to Hz®(G x g M) induced
from the map Indg,k , at the cohomology level. As a corollary of Theorem 39

of section 4, we get the main result of this section which generalizes Theorem
46.

Theorem 52 Let K be a compact subgroup of a Lie group G and let M be
a K-manifold. Then the map Indg/k, gwes an isomorphism in cohomology
from HS (M) to Hz™(G xg M). This map is of even (resp. odd) degree, if
dim(G/K) is even (resp. odd).

When K is compact, let us write the map Indg/k,, in terms of generalized
functions. We identify A(M) with the subspace of K-basic elements of A(G X
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Choose a K-invariant decomposition
g=Etdr

and let pry (resp. pre) be the projection of g on & (resp. on t) determined
by this decomposition. Let v/ € A™Y be a positive element. With the help of
the decomposition g = €@ t, we consider v/ as an element of A"g’. With the
notation of Formula 10 of section 2, we have by Proposition 50, for any m € M
and f € A (M),

(18)  ((Inde/kof)(X))(em) = V|7 6e(preX ) (b (f(preX)))m A V'

Assume that K is compact. Choose an orientation o on v. Then there are
canonical isomorphisms

re : HY(G/K) 2 C(8)K

and
Indgk,: C™(8)* =2 H;*(G/K)

guaranteed by Proposition 45 and Theorem 46 respectively.
The natural map HZ(G/K) — H;*°(G/K) thus gives rise (using the above
two identifications) to a map

M, : C=(£)K — C-=(#)x.

Comparing the Z /2 degree of the maps, we see that this map is identically zero

if G/K is not of even dimension. The orientation o determines a polynomial
square root Y — (let;%ﬁ()’) of the polynomial function Y + dety/(Y) on €.
The normalization of this square root is as in ([12], Formula 12).

Proposition 53 If f € C®(€)X, then
M(f)(Y) = (=2m) " CHOderfy (V) F(Y)
forY €t

(If dim G/K is odd, then the function dety is identically 0.)
Proof: The map M, is a morphism of C*(£)X-modules by Lemma 38 of
section 4. It is thus sufficient to prove that

o~ I’Il(l(.'/l(,o((—27r)‘““‘(G/1")/2(let;ﬁ'o)
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in H;*(G/K).

We will prove this relation using the method of the proof of Proposition 31 of
[12]. As K is compact, we can choose a G-invariant metric < .,. >on D = G/K.
Let X € g. Let w(X) be the 1-form on D given by w(X)(§) =< Xp,& > for
any vector field £ on D. We denote by w the G-equivariant form on D given by
X — w(X). We have

d w w
Z(e46°) = dy(wetlo”).

Integrating this relation from ¢t = 0 to T', we obtain
Td T
e —1= dg(/ we's“dt).
0

Let n = dimG/K. Let us show that, when 7 — oo, the form eT%“ tends
to Indg/K,,,((—-277)“/2(let;§:o) in A;°(D) while o(T) = [ we*s“dt also has a
limit in the space A;*(D).

By G-invariance, it is sufficient to compute at the base point e € G/IK.
Choose a K-invariant decomposition g = €@ v (as in the proof of Theorem 52).
The elements e*s“ and we'’s* evaluated at the base point e are elements of
C*>(g) ® ArY. The G-invariant Riemannian metric on D gives us a I{-invariant
scalar product < .,. > on r. We choose an oriented orthonormal basis E* of
t with dual basis F, € v. Let us write any X € g as X = X + X; with
Xo € tand X; € . We write X; € v as X; = Y, z,(X)E*. The function
X + z4(X) is a linear function on g. Let E; be the homogeneous basis of At/
indexed by subsets I of {1,2,...,n}. In particular, E{15 .3 = E1 A--- A E,.
Then w, € C*(g)RAY is given by the formula w, = - Y, ¢, ® E,. We compute
dgw using Lemma 42 of Section 5. For any X € g, we have j.(w)(X) = ||.X1||?
and c(w,)(X) = k(X) where £(X) is the element of A% given by

K(X)(v,v") =< [v, X]1,v" > = < [v', X]1,v >+ < Xy, [v,0] > .

In particular, if Xy, € & x(Xo)(v,v") = =2 < (ad:Xy) - v,v' >. We write
f(t) = (e'¥*),. We have

f(t, Xo,X1) = e~IXIF ZPI(XO,Xl)t”WEI
T

where P; is a homogeneous polynomial of degree |I|/2 on g. It is easy to see
that Pp 2. q3(Xo) = (—2)"/2det;ﬁ'o(Xo). Let us show that f(t, X, X;) has a
limit when t — oo, as a generalised function on g with values in Av'. For a test

function ¢ on g

/,, ft, X)$(X)dX = 3 ( /g eHIXiIP 12 py (X, X1)¢(X0,X1)dX0dX1) Er.
I
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-1/2

The change of variable X, — t~'/2X; shows that this is also equal to:

3 glil/2=n/2 ( / eI P X, 12X, )¢(X0,t“/2X1)(1X0dX1) E;.
I ]

Thus the limit when t — oo of [, f(#, X)#(X)dX € Av' exists. Furthermore,
when t — 00, the coefficient of E; tends to zero except when I = {1,2,...n}, and
the coefficient of E(; 5 . .} tends to f e‘||X1IlzP{l,zym,n}(Xo,0)¢(X0,0)dXodX1.
Computing the constants, we obtain that the form e'?s“ tends to

I"(l(;/]\"o((—27r)dim(G/K)/2 det;;EO)

when t — oc.

It remains to show that a(T) = [ we'ds“dt also has a limit in the space
AzZ(D).

Remark that w(X) is homogeneous of degree 1 in the variable X;. Let
g(t) = (wet®s*),. We have

g(t, X) =3 (7020, Pr(Xo, X1)) Eu A Ey.
al

Here all the subsets I occuring in this sum are such that |I| < n — 2. Now

/ 9t X)P(X)AX =Y ( / =N 1120 (X, ’l)qb(Xo,Xl)dXoXm) E.AEL.
8 g

a,l

The same change of variable (as earlier) shows that this is equal to

Z tll|/2_1/2_n/2 (/ (,’—”XI ”Z.T“P]()((), t_1/24Y1)¢(X0, t—1/2X1)dXodX1) Ea AN E].
a,l 8

In particular, as |I| < (n — 2), this function of ¢ is uniformly bounded when
t — oo by O(t=%2). Thus the function ¢ — [, g(t, X)¢(X)dX is integrable on
[0,00]. This shows that o(T) = [;f we¥s“dt has a limit in A;®°(G/K) when
T — oo. This concludes the proof. 1§

We now turn to the question of the explicit determination of the inverse of
the map Indg/k .

Definition 54 Define the Chern-Weil map
wa : C(O)N — HP(G/K)

as the inverse of the map 1.
Define the map
Se: H;(G/K) — C™=(#)X

as the inverse of the map Indg/k ,.
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We denote wg,k simply by w if G and K are understood. An explicit formula for
wg/k can be given in terms of the curvature of the principal bundle G — G/K,
see [21]. On the other hand we are not able to give an explicit expression for
S, in general. We are able to do it only under some restrictive assumptions
or on some particular subspaces. Lemma 38 of section 4 implies that, if o €

H;>(G/K) and p € C=(8)K,
(19) So(w(p)a) = pSo(a).

It follows from proposition 53 that S,a = (—27)dim(G/K)/ 2(det;ﬁo) rea for a €
HZ(G/K). '

We can improve this result as follows. Let o € A;*(G/K). Then a, €
C~>=(g) ® AY. We say that a. admits a restriction to ¢ if each component
of a, admits a restriction to ¢ (see [12]). We can then define rear = (a)gle-
Then rpa € C~(€)X is a generalized function on & This definition extends the
definition of ry : AZ(G/K) — C>(B)X.

Proposition 55 Let o € A;>(G/K) be a closed equivariant differential form
on G/K. Assume that o, admits a restriction to €. Then

Seax = (—277)‘““‘(("'/"")/2((let;ﬁo) TeQv.

Proof: Using notation of the proof of Proposition 53, we have a & aetds®.
Then using the same arguments as in the proof of Proposition 53, we obtain the
desired result. Indeed, if f is a generalized function on g admitting a restriction
ref to &, then for any test function ¢ on g, the limit when ¢t — co of

£1/2 / e_t”)(ll'zf(XO,XI)QS(AXOyXl)dXO(le
8

is 0 if |I| < n while for |I| = n this is (7)"/2 fy(ref)(Xo)p(Xo0)dXo. 1

Remark 56 Proposition 31 of [12] becomes then a consequence of Proposition
44 and Proposition 55 above.

Let ¢* : C~°(g)“ — H;*(G/K) be induced from the map ¢ : G/K —
point. Thus we get a map (still denoted by) S,

S, : C7(g)% — C™(e)

taking f to S,(¢*f). The map S, exists under the only assumption that I
is compact, and extends the map f — (—2n)dim(@/K)/ z(det;;:o) ref, defined on
generalised functions f admitting a restriction r¢f to €. On the open set where
det gtY # 0, the G-orbits are transverse to €. Thus the restriction to € of an
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invariant generalized function on g has a meaning on this open set. By the
same proof as Proposition 36, we see that S,(f) coincides with

(—2m) G/ R/2(detl/2 )y f

on this open set, for any f € C~>(g)®. However, we are able to compute the
map S, : C~>(g)¢ — C~*°(¥)X on arbitrary invariant generalised functions and
on the full space £ explicitly only when G itself is compact.

Let G be a compact connected Lie group. We also assume that y = 1 so
that G/ K is orientable (this is only for convenience). We choose the orientation
on G/K given by o.

Definition 57 If ® € C>°(¢)X, define C,(®) € C=(g)¢ by
Co(@)(X) = [ (wd)(X)

G/K,o

where w is the Chern-Weil homomorphism.
Define )
F,:C™>(g)¢ — C~=(&)¥

as the transpose of the map C,:
vol(G/K,dg/dk) /! Fy(f)(Y)B(Y)dY = /‘, F(X)Co(®)(X)dX

for any ® € C,(8)%, and where the measures dX on g, dY on t and dg/dk on
G/K are chosen in a compatible way.

It is easy to see that C, sends invariant compactly supported functions on £ to
invariant compactly supported functions on g, hence the map F, is well defined.

Lemma 58 If f € C*(g)%, then F,(f)(Y) = (—2m)im(G/ K2 det )2 (V) f(Y),
forY et

Proof: The integral formula ([12], page 43) for equivariant cohomology
classes gives the lemma. §

Proposition 59 Assume that G is a compact connected Lie group and K a
closed subgroup of G such that G/K is oriented. Then for every f € C~*°(g)¢
and p € C(¥)X,

fw(p) ~ Indg/ko(Fo(f)p)
in H;*(G/K).
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Proof: Using Formula 19, it is sufficient to prove the formula of this proposi-
tion when p = 1.

Let ® be a G-invariant test function on g and let p’ € C°(&)X. Let us
compute

//G/Ko X)f(X)w(@')(X)dX = /(I) FX)C,(p)(X)dX.

If ¢*f & Indg/k ou, for u € C~°(8)X, then fw(p') = Indg/k,.(p'u) by Lemma
38 of section 4. Thus, using Proposition 44, we have:

/g/G/K,o 2(X)f(X)w(p)(X)dX = /B/G/K,o O(X)(Indgko(p'u))(X)dX
/G/K,o(/g ®(X)Indgko(p'u)(X)dX)

= /(,'/1\',0(/8(I)(g),)pl(Y)u(y)dy)dg/(lk

Let p' be compactly supported. Taking & with sufficiently large support,
we obtain

/f (X)Co(P ) (X)X = vol(G/K,dg/dk) /p Ju(Y)dY

which is what we needed to prove. 1

The preceding proposition determines the inverse S, of the map Indg/k ,
on the subspace of H;*(G/K) spanned by elements of the form fo where
f € C~(g)¢ and o € HP(G/LK). We will see in section 6 that this space is
equal to H;®(G/K) provided that G and K have equal rank.

We compute even more explicitly the map F, when G is a compact connected
Lie group and I =T is a maximal torus of G.

Let W be the Weyl group of the pair (g,t). Let C*>(t) be the space of
W -anti-invariant smooth functions (resp. anti-invariant generalized functions )
on t. Recall the definitions of the maps C, and F, from Definition 57.

Lemma 60 The restriction of the map C, to C®(t)" gives an isomorphism
between C*(t)¢ and C>(g)“.

Furthermore the image of F, is contained in C~*°(t)" and the map F, gives
an isomorphism between C~°(g)" and C'~°(t)".

Proof: If ¢ € C=(t), then ¢ is divisible by det, /t(,(Y)‘/2 and the restriction
of C,¢ to tis equal to |W|(=2m)"/2 det g/,,(Y)™/2¢(Y), where n := dim(G/T).
Thus the first assertion follows hom Chevalley’s theorem for C*°-functions, see
for example [12]. The second is a consequence of the first, as C, preserves the
subspace of compactly supported functions. #
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Let us describe F,f, when f is the é-function: Let 645(X) (resp. 6,(Y")) be
the 6 function on g (resp. on t), given with respect to the Euclidean measure
on g (resp. t) associated to the Killing form. Let o € it be a root . Using
the identification of t with t' determined by the Killing form, we can consider
the differential operator [],sq Jia on t, where the product is taken over all the
positive roots of g for an order compatible with the orientation o as defined in
[12]. Then F,é; = [Taso Diadt-

6 Kinneth formula and applications

Let K be a Lie group. Let D and M be I-manifolds. Consider the com-
plex Ak (D) of K-equivariant forms on D with polynomial coefficients and its
cohomology Hk(D) = Zr(D)/Bg(D) defined in section 2, Definition 1. Re-
call that these spaces are Z -graded. The evaluation map E at zero taking
a +— a(0) gives a map from Hp (D) to the usual De Rham cohomology H(D)
of D. Consider the map m from Ag(D) @ Ax(M) to Ax(D x M) given by
m(a ® B)(X) = o(X) A B(X). It induces a map (still denoted by m) from
Hig(D)® Hi (M) to Hi (D x M).

Similarly, we can also consider the map m~™> from Ag(D) ® A (M) to
A (D x M) given by m™(a® )(X) = a(X) A B(X): this is well defined as
we can multiply a generalized function by a polynomial function. It induces a
map (still denoted by m™) from Hg(D)® H™(M) to H™(D x M).

Theorem 61 Let I be a compact Lie group. Let D be a compact K-manifold.
Assume that the evaluation map E : Hy (D) — H(D) s surjective. Then, for

any I\V-manifold M, the multiplication map m~> induces an isomorphism

m-°: HI\(D) Qe (point) HI:OO(Af) = HROO(D X M)

Remark 62 Proposition § implies that H (D) s free over Hg(point). As is
well known, from the Kiinneth spectral sequence (see [16]; Proposition 6.1, page
50), the map m induces an isomorphism

m: Hl\(D) Cfall,\-(]»t>ilzf) Hl\(]\/[) = Hl\'(D X M)

under the hypothesis of the theorem. (This also follows from the same argument
as that for m= gwen below.)

Proof: We can assume D to he oriented. Indeed let us consider the two-fold
cover Dy of D defined in section 2 hefore Proposition 5. An element of D,
is a couple (m,o0), where m € D and o is an orientation of T,,D. Thus the

manifold D, is canonically oriented. Consider the map €(m,0) = (m,—o0) and
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its action on Hg(D;). We have Hx(D;) = Hg(D) ® Hk (D), where Hi(D)
is isomorphic to the eigenspace with eigenvalue 1 for the action of €, while
Hg (D), is by definition the eigenspace of eigenvalue —1 for the action of e.
Furthermore by Proposition 5, the manifold D, also satisfies the hypothesis
that the evaluation map Hg(D;) — H(D) is surjective. The map

M™% 1 Hg(Dt) @y (pointy Hg™ (M) — Hg™=(D; x M)

clearly commutes with the action of €. So if we show that m ™~ is an isomor-
phism for the oriented manifold D;, by taking the eigenspace of eigenvalue 1
for ¢ we will obtain the desired isomorphism

™ - Hy(D) ®poing He*(M) 2 Hg™(D x M).

Let A®)(D x M) =T(D x M,A*T'D ® AT'M), where T' denotes the space
of smooth sections and 7'M denotes the cotangent bundle of M.

We write A(D x M) = @xP AP(D x M). The total exterior differen-
tial dpxy on A(D x M) breaks up into the sum dp + dp of partial exterior
differential dp along D

dp : AP (D x M) —» AP*V)(D x M)
and partial exterior differential d), along M
dy : AP(D x M) — AP(D x M).

Let us consider the complex Ax™(D x M) = C~>°(¢, A(D x M))¥. We
write

B = C~*(¢, AP(D x M))X.

The operator dp can be written as a sum of homogeneous operators dy =
dl + 7o + r_i, with

dy: B> — BP*! ry: B — B* r_; : B — B!

We have dy = dp, ro = dyy — ¥; 2:4(EYy), and 1y = — ¥, z;.(E}), where E* is
a basis of &. We write d = dp.

Let us choose a K-invariant metric on D and consider D as a Rieman-
nian manifold. This endows the space A(D) with an inner product. Let
d* : A?(D) — AP~Y(D) be the adjoint operator to d = dp. Let H(D) =
Ker(d) N Ker(d*) be the space of harmonic forms on D. It is a K-invariant
finite dimensional space of d-closed forms on D. The map H(D) — H(D) is
an isomorphism. Recall that we do not necessarily assume K to be connected.
However as the evaluation map at 0 is surjective, K acts trivially on H(D)
(this would be automatic if K were connected ). Thus every element of H (D)
is K-invariant.
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Lemma 63 For any oy € HP(D), there exists o € Zg (D) such that

ap — a(X) € Y A/(D), forevery X € &.

J<p

Proof: Our hypothesis implies that if ag € AP(D) is d-closed, we can find
v € AP7}(D) and A € Zk(D) such that ag—dy = A(0). If ap is K-invariant, we
may assume (eventually after averaging this equation by the action of K) that y
is K-invariant. Take o = A+dyy, then a € Zg(D) and o(0) = . The complex
Ak (D) is Z,-graded by its total equivariant degree. We may thus assume that
a is of total degree p. Thus a(X) — a(0) € AP"%(D) ® A*~*(D) @ ---. This
proves the lemma. 1§

We continue with the proof of Theorem 61.

Let P be the orthogonal projection of A(D) onto H(D). We have Pd =
dP =0. Let G : A?(D) — AP~!(D) be the Green kernel. It satisfies Gd+dG =
I — P. We can extend the operator P, by the formula P(a)(X) = P(a(X)), to
an operator still denoted by P,

P:B" - H'(D)® Ay < (M).
Similarly we can extend pointwise the operator G
G: B — B!,

Let r = r9 + r_; and let N = Gr + rG. The operator N decreases strictly the
exterior degree in D . Let v € B = ¥ ; B’. The equation Gd +dG =1 - P
gives the perturbed equation

Gdw + dyGv =v — (P — N)v.

Assume dp = 0. Let us write v = ¥, v;, with v; € B’. We will prove by
induction on p that v has a representative in Zx (D) ® Zz=°(M). The equation
above implies that v & v’ := (P—N)v. We have v, = Py, € H?(D)® A™(M).
Let us write the equation dy’ = 0 component by component. We obtain,
in particular, the equation rov, + dv,_; = 0. Applying P, we get Prov, +
Pdy, ; = 0. As Pd = 0, this implies that P'r'ou;, = roPv, = rov, = 0. Thus
v, € HP(D) ® Zg™(M). The preceding lemma allows us to find an element
£ € Zg(D) ® Zg™(M) such that ' — £ € ¥;., B’. Thus the map m™ is
surjective.

Let us prove that /m~> is an isomorphism. It suffices to show that m~=>
is injective: Recall from Proposition 5 that Hg(D) is free over Hy(point).
Furthermore we can find a basis PP for the Hy(point)-module Hg(D) and a
basis P, for the Hy (point)-module Hg (D), such that f,, PPP, = 63. We can
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write an element o € Hy (D) Qg (pointy Hi™ (M) uniquely as a = 3, P* ® v,.
Let v € Hg™(D x M). For any fixed a, consider the map v — [, P,(X)v(X)
. This is a well defined map from H*(D x M) — Hg>*(M). We have

[ P20 a)(X) = v ().
Thus if m™°(a) =0, v,(X) =0, for all a, and hence 7~ is injective §

Applying Theorem 61 to the case where M is a point, we obtain the following

Corollary 64 Let K be a compact Lie group. Let D be a compact K -manifold
. Assume that Hg(D) surjects on Hg(point). Then

Hg™(D) = C~=(8)* ®swyx Hx(D).

Recall from [14] that if K is a compact connected Lie group acting on a
compact symplectic manifold D in an Hamiltonian way, then Hg (D) is free over
Hg (point). In particular, the following well-known lemma gives some examples
of compact K-manifolds D such that Hg (D) is free over Hy (point) = S(¥¢)X.

Lemma 65 Let K be a compact connected Lie group and let L be a closed
subgroup of K. Then Hi(K/L) is free over Hy(point) if and only if K and L

have the same rank.

Proof: Let D = K/L. Recall that the equivariant cohomology Hg (D) is iso-
morphic to Hr (point) = S(I')f by the map r(, induced from the inclusion of the
base point e € K/L. The restriction of polynomial functions on ¢ to polynomial
functions on [ gives a homomorphism from S(¥)X to S(I')L. If Hy (K/L) is free
over Hy (point), then in particular the homomorphism S(¥)% — S(I')? is injec-
tive. This implies that K and L have the same rank. Conversely, suppose now
that L is a closed subgroup of K with equal rank. Let T be a maximal torus of
L (and hence of K. Let W = Ng(T)/T, W = Ni(T)/T be the respective Weyl
groups of (K,T) and (L,T). By Chevalley’s theorem, S(I')* is isomorphic to
S(¥)"z, while the ground ring S(¥)¥ is isomorphic to S(t)". Further S(t)"«
is a free module over Hy(point) = S(¢)V. 1

The case where D = K/T is a particularly important example. Considering this
case we will see that we obtain as a consequence of Theorem 61 the following:

Proposition 66 Let K be a compact connected Lie group with mazimal torus
T and Weyl group W. Let C~>(t)¢ be the space of W -anti-invariant generalized
functions on t. Then the map from

S(t) @suyw C™2(t) = C™(¢)
gwen by PQ f +— Pf, for P € S(t), f € C™°(t)¢, is an isomorphism.
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Proof: Let us consider D = K/T and M = point in Theorem 61. We thus
obtain an isomorphism

(20) i Hi(K/T) Oty C(OF — Hz=(K/T).
We have Hy(point) & S(t)". Recall the isomorphisms
(21) WK/T * S(t’) — HK(I&’/T)

where wg/r is the Chern-Weil homomorphism (see Definition 54 of section 5),
the isomorphism F;, proved in Lemma 60

(22) F,:C™(®)% = C™>(1)f,
and the isomorphism (cf. Theorem 46)
(23) Indgr,: C™(t) = Hg™(K/T).

Using the above identifications, the isomorphism (20) gives an isomorphism,
again denoted by

(24) m= : S() @gyw C™°(H) — C™(¢).
By Proposition 59 of section 5, we have for a € S(t'), f € C~(£)K

’(U[(/T((L)f = I‘rl(l(,'/l(,o((ngf).

Hence we obtain our proposition. 1

7 Equivariant cohomology and subgroups

Let K be a compact connected Lie group and let M be a K-manifold. If L is
a compact subgroup of K" of equal rank, then Hy (K/L) is free over H (point)
. In this section, we will use Theorem 61 to compare H;*°(M) and H;*(M)
(and also Hi (M) and Hy(M)).

Let D = K'/L. The space Hg (D) is isomorphic to Hy(point) = S(I')L by
the Chern-Weil isomorphism:

(25) wp : Hy(point) = S(I\Y — Hy (D).

Consider the natural restriction map r; : Hg(M) — Hp(M) of a K-
equivariant form on M to a L-equivariant form on M.

Let us recall the following proposition (see [16]; page 38). We include a
proof for completeness.
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Proposition 67 Let K be a compact connected Lie group and let M be a K-
manifold. Let L be a compact subgroup of K of equal rank. Then the map

Ing: HL(point) Q Hp (point) HK(M) — HL(M)
given by
PQww— P(riw)
for P € Hi(point) and w € Hi (M) is an isomorphism.
In particular, H (M) is generated by r; Hx (M) over Hp(point) = S(I')L.
Proof: Consider the manifold M = K x; M. By Theorem (51), the

restriction map induced from the inclusion iy, s of the fiber M at e € D in the
fibered space 7 : M — D induces an isomorphism

Consider the map p : [k, m] — km from K x; M to M. The map t = (7 x )
given by t([k,m]) = (kL,k - m) is a K-equivariant isomorphism from M to
D x M, where K acts on D x M as the diagonal action. Thus we have an
isomorphism
(27) t*: Hg(D x M) — Hg(M).

As follows from Theorem 61 and Lemma 65, the multiplication map m is
an isomorphism:

(28) m : Hg(D) ®p e (point) Hx(M) — Hg(D x M).
Using the isomorphisms (25) -( 28), we obtain an isomorphism
(29) I: HL (p()i”t) @H,\»(pnint) H]\(M) — HL(M)

It remains to show that I is equal to I;. For this, we have to compute for
Pe St and w € Hi(M)

iz‘M(W*(wDP) Ap'w) = ip ym (wpP) A Gy it w
= PArpw.
This proves the proposition. 1
In particular, consider M = K /U for a closed subgroup U of K. Then the

equivariant cohomology space H (M) is equal to Hy (point) via the Chern-Weil
homomorphism wy; and we obtain :
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Proposition 68 Let K be a compact connected Lie group. Let L be a closed
subgroup of K of same rank. Let U be a closed subgroup of K. Then the map
P®Aw P(rp(wpA)) for P e S(I)E, A€ S(w)V determines an isomorphism:

(30) S()F ®sqeyx SW)Y = Hy (K/U)

Remark that by our hypothesis, Hy (K/L) = S(I')L is free over S(¥)X with
rank equal to dim H(K/L). Thus as a vector space

Hy(K/U)= H(K/L) ®g S(u')Y.

Corollary 69 If U also has the same rank as K, then HL(K/U) is a free (
finitely generated) Hy(point)-module.

Proof: As S(w)V is free over S(¥)X, the S(I')¥ -module S(I')F ®s@)x S(w')Y
is free with rank equal to dim H(K'/U). 1

We turn now to the determination of the equivariant cohomology H; *°(M)
in the case where M is a K-manifold. We denote by x /. the character of L
with values in +1 given by 7 — dety/y. Recall the definition of HL S, (M)
from Definition 49 of section 5.

Theorem 70 Let K be a compact connected Lie group and let M be a K-
manifold. Let L be a compact subgroup of I of equal rank. Choose an orienta-
tion o on €/l. Then, there us a natural isomorphism of Hp(point)-modules:

IA—I?: : HL(pOint) ®HK(])m'nt) HI:OO(AI) — HL_;OK/L (M)
In particular, for M = K /U, we obtain
H;,;OK/L (Al) = S([’)L @S(EI)K C_Oo(u)XK/U.

Proof: The proof is almost the same as the proof of Proposition 67. Using
the same notation, we use the chain of isomorphisms:

(31) Indg;p, : HL"":;\,/L(]\/[) — H™(M).
The isomorphism ¢ of M with D x M induces an isomorphism
(32) t*': Hg™(D x M) — Hg™(M).

As follows from Theorem 61 and Lemma 65, the multiplication map m~>
is an isomorphism:

(33) 7% : Hye(D) @t goint) Hi>(M) — H™(D x M),

161



S. KUMAR, M. VERGNE

Using the isomorphisms (25), (31)-( 33), we obtain an isomorphism

(34) I35 - Hi(point) gy (point) H™ (M) — (M).

L—,(;(OK/L
The description of I;/% is as follows: for P € Hy(point) = S()* and w €
Hi>™(M), the element a = I3 (P ® w) is the unique element in Hy Y (M)
such that Indg,; ,a = 7*(wpP) A p*w. It follows from Lemma 38 of section 4
that
W*(szQ)IndK/LYoa = IndK/L,oQa

for any Q € Hp(point). Hence I,/ is an isomorphism of Hp(point)-modules.
The last statement in Theorem 70 follows easily from Theorem 46. 1§

The isomorphism I, is not so easy to determine explicitly as the isomor-
phism Ips. We determine it as much as we can.

Consider Hgz®(M) as a Hg(M)-module and HE,;OK/L(M) as a Hp(M)-
module.

Lemma 71 Ifa € Hx(M) and 3 € Hg™(M), then
L1 ®ap) =In(1® o)l 5 (1R 6).

Proof: If I};°(1 ® ) = w, we have u*3 = Indg/p,w. Then p*a A p*f =
Indg/po(rra)w by Lemma 38 of section 4. This proves the lemma. §

We assume that K/L is orientable so that xx/;; = 1. Recall the map
F,:C~(®)% — C~>(I)! given in Definition 57 of section 5. Then

Lemma 72 Let f € C~°(8)K, a € Hx(M), then I;5(1® fa) = (Fof)rpa.

Proof: This follows immediately from Proposition 59 of section 5. 1§

Thus we know I3 on the subspace S(I')Y @, (pointy C~ (&) Hx (M) of
S(V)" @y (pointy Hg™ (M)

If M is compact and Hg (M) is a free module over Hg (point), then H* (M)
is equal to C~°(&)% ®p (pointy Hx (M) (cf. Corollary 64 of section 6). Thus in
this case, the isomorphism I}/ is entirely determined by the knowledge of F'.

8 Reduction to the maximal torus

Let K be a compact connected Lie group and let T be its maximal torus. Let
W = N(T)/T be the Weyl group.

Let M be a K-manifold. It is well known (cf. [16]; chapter 3, section 1,
Proposition 1) that the natural restriction map Ag(M) — Ar(M) induces an
isomorphism between Hy (M) and Hr(M)Y. In this section, we prove a similar
statement for the generalized K-cohomology Hx>(M).

162



EQUIVARIANT COHOMOLOGY WITH GENERALIZED COEFFICIENTS

We first need to define a map from H7*(M) to H*°(M): Choose a non-
zero K-invariant form ' on K'/T of maximal exterior degree. In particular,
V' determines an Euclidean measure |d'| on €/t and an orientation o. For
f € C™>(t, A(M)), define A,(f) € C~=(¢, A(K x M)) by: If ® is a test

function on &
(Aol ), ®AX )y 1= ¥/ A (k- ([ (V) B(k-Y)dY)).

where dY is the Euclidean measure on t which is quotient of dX by |dv'| on &/t.
In particular A, depends only on the orientation o on K/T associated to v'.

Lemma 73 Let D = K/T. Consider D x M as a K-manifold under the
diagonal action. Then the map A, defines a cochain map from (AT (M), d,)
to (Ag™(D x M), dy).

Proof: It is not difficult to check that if f is T -invariant, then A,(f) is in
A(D x M). Now, as 1/ is of maximal degree, we see that dpyy(A4.(f)) =
A,(dp f). Tt is also easy to prove that A,(f) = Ao(ef)- 1

Consider the projection 7 : D x M — M with fiber D. We denote the map
et AR (D x M) — A™(M) by [p (cf. Formula 8 of section 2).

Define B(f) € Az™(M) by

B(f)= [ Adf),
Do
where the orientation on D is the orientation o. In particular, we see that B
does not depend on o. If we denote by dk/dt the positive density on K/T
associated to ', we have for f € Ar*(M) and @ a test function on &,

/t B(f)(X)®(X)dX = /K/T k- ( /t FY)®(k - Y)dY)dk/dt.

The map B is a cochain map from (A7*°(M),d;) to (A™®(M),ds). The
Weyl group W canonically acts on Az®(M) = C~*(t, A(M)T).

Theorem 74 Let I be a compact connected Lie group and let T be its mazimal
torus. Let W be the Weyl group of K.

The restriction of the cochain map B to A7™°(M)W induces an isomorphism
wn cohomology

b: Hp(M)Y — Hg>(M).

Proof:  Again, this theorem is an easy consequence of Theorem 61 of
section 6. As in the proof of Theorem 70, we consider M = K x7 M and we
use the isomorphism (cf. Theorem 52 of section 5):
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(35) Indgr,o - Hr™(M) — Hg™(M).
Composing this with the isomorphism (see Formula 32 of section 7):
(36) " Hg®(D x M) — Hg>®(M),

we obtain an isomorphism
(37) () ' oind g7, : HF®(M) — Hg®(D x M).

It is not difficult to see that (t*)~'Indgr,.f = A.f, for f € H;®(M),

Let € be the character of W given by e¢(w) = det,(w). Let r be the action
of W on K/T x M given by w - (kT,m) = (kw™'T,m). This action commutes
with the diagonal action of K and hence induces an action still denoted by r
on Hg®(D x M). Under the isomorphism (37), the natural action of W on
H;*°(M) becomes the action r @ e.

The K-equivariant cohomology H (D) = S(t') of D is free over
Hg (point) = S(¥)". Hence, as follows from Theorem 61, the multiplication
map m~* is an isomorphism:

(38) m=> HK(D) ®H,‘—(point) HKW(M) - HI—;OO(D X M)

For the action of the group W on Hg(D), induced by the action of W
by right translation on D = K/T, the subspace Hg (D) of Hi (D) is a free
Hg (point) -module of rank one, in fact Hy(D)¢ = Hg(point)wp(x), where
wp(x) € Hi(D)" is the image under the Chern-Weil homomorphism wp of the
W -anti-invariant polynomial function

X(Y) = (2m) " D2~ det /2 (V)Y € t.

We have [, wp(x)(X) =1, for all X € ¢. The space Hg (D) is isomorphic to
Hg (point) under a — [, «(X). Thus, by (38), the map o — [ « induces an
isomorphism (depending on the choice of an orientation on D)

Hi=(D x M) = Hz™(M).

and hence, by (37),
Hp=(M)Y = Hp>=(M).

The above isomorphism is given by the restriction to Hz®(M)" of the map
B = [p,A,. Thus we obtain the formula of the theorem. 1

In particular, when M = point, the isomorphism given by Theorem 74 is
the well known isomorphism b : C~(t)" — C~°(£)X given by:

(0(f), ®dX) = vol(K/T, (lk/(h‘,)(/tf(Y)@(Y)(IY)

if ® is a K-invariant test function on E.
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9 The case of a free action

Let G be a Lie group. Let P be a right G-manifold (i.e. G acts on P from the
right). (Of course any left G-manifold can be thought of as a right G-manifold
under z-g:=g~!-z,forr € Pand g € G.)

Definition 75 Let P be a right G-manifold. We will say that the action of G
on P is principal (or that G acts principally on P) if the orbit space P/G is a
smooth manifold such that P — P/G s a smooth principal G-bundle.

If G is compact, then a right action is principal if and only if the action is free.

Let P be a right G-manifold. If G acts principally on P, it is known [11] that
the G- equivariant de Rham cohomology of P is isomorphic to the de Rham
cohomology of the quotient space P/G. In this section, we prove similarly that
the space H;*°(P) is isomorphic to H(P/G). We also consider the following
more general situation:

(S):Let G be a Lie group and let N be a closed normal subgroup of G. Let
P be a right G-manifold. Assume that the subgroup N acts principally on P.

We ask the question: Under what hypothesis are Hg>(P) and Hgiy(P/N)
isomorphic. In this section, we prove this affirmatively when G is compact
connected. On the other hand when N = G, we need no compactness hypothesis
on G to prove the isomorphism H;*°(P) = H(P/G) and the proof for this case
is comparatively easy. The reader only interested in the case where N = G can
go directly to the proof of Theorem 89.

An important example of this situation (S) is the following:

Example 76 Let U and K be two Lie groups and let G := U x K be the direct
product. Let L be a U x K- manifold. For convenience, we assume that U acts
on the left and I on the might. Assume the right action of K on L 1is principal.
Let M be a K-manifold and let P :== L x M. Define the action of an element
g=(uw,k) €eG=UxK on P by :(x,m) - (u, k) = (v~ 'zk,k~'m), forz € L,
m € M. Then the action of the (normal) subgroup K of G is principal on P.
The quotient manifold (L x M)/ 1is the left U-space M = L xxg M fibered
over L/ K with fiber M.

Consider the quotient map ¢ : P — P/N under the situation (S). Recall
Definition 4 of a G-equivariant fibration with G-oriented fibers. Later in the
section, we will need to impose the following conditions (77) and (78)

Condition 77 There ezists a G-orientation o for the fibers of q.
This condition (77) is satisfied, for example, when det ,g > 0, for all g € G. In

particular this is satisfied if G is connected.
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Condition 78 There exists a G-invariant connection w for the principal N-
bundle ¢ : P — P/N.

This condition (78) is always satisfied when G is compact.

It is proved in [13] that the canonical map ¢* : Hg)y(P/N) — HZ(P) is
an isomorphism, when the condition (78) is satisfied. Furthermore, an explicit
formula for the inverse of ¢* is given in terms of the equivariant curvature of
w. The reader should however be warned that the natural map ¢* is sometimes
equal to zero when applied to the equivariant cohomology with generalized
coeflicients.

Whenever the conditions (77) and (78) are satisfied, we will construct a
natural map (cf. Proposition 82)

m, : Hg N (P/N) — Hg™(P)
and will show that m, is an isomorphism, if either V = G or G is compact.

We begin by constructing a natural element v, € H;*°(P) (assuming the
validity of conditions (77) and (78)):

Let B := P/N be the space of N-orbits. Consider the projection q : P — B
. The vertical tangent bundle V is a G-equivariant real vector bundle over P.
By assumption, the bundle V' is a G-orientable vector bundle. As the group N
acts principally, the bundle V is a trivial bundle over P canonically isomorphic
to P xn. The isomorphism is obtained by sending (x, X') € P xn to the vertical
tangent vector (Xp), . The action of an element g € G on V = P X n is given
by (z,Y)-g = (zg,97'-Y) for € P,Y € n. (Observe that if det ,(g) > 0, for
all ¢ € G, then any choice of orientation of n gives rise to a G-orientation of
the vector bundle V', i.e., in this case the condition (77) is satisfied.)

Let us choose a G-invariant connection form w € (A'(P) ® n)¢. Using w,
we obtain a G-invariant decomposition

TP=V&H

of the tangent bundle as sum of vertical and horizontal subbundles.
Similarly, using w, we have an isomorphism

(39) U:Pxg— Pxnxg/n

given by U(z,X) = (z,Y,Q), where Q € g/n is the projection of X € g and
where Y = w,(Xp) € n.

Consider the dual bundle V' = P x n’ to the vertical tangent bundle V.
The projection TP — V', given by the connection w, determines a G-invariant
injection s,, of V' in the cotangent bundle 7"P. Consider the canonical 1-form
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« on the manifold T P. Let a, := s € A}(V"). It is a G-invariant differential
form on V'. The form

B = e € AZ(V') @r C

is a closed G-equivariant differential form. Consider the projection p : V! — P.
We will prove below that if @ is a test function on g, then f; 8,(X)®(X)dX is
a differential form on V' = P x n’ rapidly decreasing in the direction n’. Thus,
as the vector bundle V' is G-oriented, we may define p., as an element of
C~>(g, A(P)) ®r C by setting:

/g (p+) (X)B(X)dX = p.( / Bu(X)®(X)dX)

(the map p, depends on the choice of o).

A representative of the element v, will be defined as the integral of 3, over
the fibers of p, normalized in order that ,(X) is a differential form on P with
real coefficients.

Proposition 79 Let p : V' — P le the projection as above. Let us choose a
G-orientation o on the vector bundle V'. Let n = dimn. Letc, = 1, if n is
even, and ¢, = —i if n is odd. Define

Yoo i= Cn(27) " pa(eih5),
Then 7, is an element of A;™(P) and s dg-closed.

The cohomology class of Y., in H;*°(P) is independent of the choice of the
G-invariant connection w. It depends only on the G-orientation o. We denote

it by v,.

Proof: Writing 3, = €' we compute p,[3,.
Let E’ be a basis of n with dual basis E;. We write an element of n' as
y=2; y'E;. Let
w=) wB e (A(P)®n)
J

be the connection form. By definition (wy, E») = &, and w of course by defini-
tion vanishes on the horizontal vectors. Under the identification V! &2 P x n/,

the 1-form
o, = Z Y wj.
J
Define, as in ([3], chapter 7), the moment p € g ® C®(P) ® n of the
connection w by setting, for any X € g

W(X) = —w(Xp).
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Thus p(X), is an element of n and (X +Y), = u(X), — Y for all Y € n and
z € P. Let us compute
dxa, = (dga,)(X).
We obtain . .
dxay = (y, 1(X)) + Do (dy'w; + o' dw;).
J

We have eidx% = ¢{®#X) A(y, dy,w, dw), where A is a polynomial expression
in ¥, dy’,w;,dw;. If ® is a test function on g, the integral

/ e‘(”'“(x))(I)(X)dX
8

is a function on V' rapidly decreasing over the fiber n’. This can be seen as
follows: Consider the isomorphism (39) of P x g with P x n x g/n.
For z € P, let
4. = {X € giw.(Xp) = 0}.

Thus g, is isomorphic to g/n under the natural projection g — g/n and

We fix x € P, and write q, = q. Let X € g. Using the decomposition g =
ndq, we write X =Y + Q, with Y € n,Q € q. We have (y, (X)) = —(y,Y).
Writing ®(X)dX = ®(Y,Q)dQdY , we get

[e@rDe(x)ax = [ e 0wy,
) n
where ¥(Y) = [ ®(Y,Q)dQ. Clearly ¥(Y) is a C-function with compact
support on n. As Fourier transform of test functions are rapidly decreasing, it
follows that

/ elxowd( X)X = Ay, dy,w, dw) / e VIY(Y)dY
g n

is a form on V' rapidly decreasing over the fiber n' of the projection V' — P.

This proves that p,f, exists, as an element of C~*(g, A(P)) ®g C. It is
clearly G-invariant, so that p.3, € A;*(P) ®g C. Furthermore p,f3, is dg-
closed:

((lgp*ﬁw» (I)(].\’) = p*((lglgun Q([X) = O

If w; is a one-parameter smooth family of G-invariant connections, we denote
Ay By by @4,0¢ Tespectively. We have

d d

idgevs . d
Eﬁt = W(e lg )= z(lg((%(_y,) A BY).
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The integral of (£ A 8;) over the fiber n' exists in the sense of generalized
functions and

d ) d
(41) %P*ﬂt = “lgp*(aat A ﬁt)

Thus the cohomology class of p.f; is independent of the choice of the connection
Wt.

We now compute explicitly the element 7, , defined in Proposition 79 and
show, in particular, that -, ,(X) is a differential form with real coefficients.

Let us fix € P. The orientation o on the vector bundle V' gives rise to an
orientation o, on n (which may depend on the connected component of € P).
Let E7 be an ordered basis of n. We will say that this order is o-compatible,
if this basis is of orientation o,. The exterior product w; A wy A --- A w, of
the components w; of the connection w is a vertical form on P of maximum
dimension.

Let v/ € A™’ be such that (', E' A--- A E") = 1. The element v also
determines an Euclidean measure dY on n and a §- function |[v'|716,(Y) €
C~>(n) (cf Section 2, Formula 10 ).

We can also write

Iull—lén(y) — (27T)—(limn/

ei(yyY)dy’
nl

where dy is the measure on n’ dual to the Euclidean measure dY on n. Let
Q = dw+ }[w,w] be the curvature of the connection w. Thus 2 € (A*(P)@n)°.
We write
Q= Z Q,E.
J

Define the equivariant curvature of w (as in [3], chap 7) by
QUX) =pu(X)+Q.

To simplify notation, we will use +' to identify generalized functions and
distributions and write é, instead of |v//|~16,.

Let us show that the generalized function 6,(2(X)) € C~>(g, A(P)) is well
defined. We describe, at each point 2 € P, 6,(2(X)), as a generalized function
on g with values in the vector space AT,P. In the decomposition g = n @ q,
given by formula 40, we write X =Y + Q. Then QY + Q). = =Y + Q, and
we define 6,(2(X)). by its Taylor expansion:

5a(Q(X))e = 6u(=Y) + Z Q;(0psi6n)(=Y) + - -
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Proposition 80 Let z € P and let E? be an ordered basis of n, with an order
compatible with the orientation o,. Then

Yoo (X))o = [V[716(QUX))e A (Wi Awg A+ Awy)se

Proof: The highest degree component of e = i(dw)+i(v.d) in dy.’s is equal
to
clrdyy Adya A+ Adyp Awy Awy A -+ - A wpel®49)

The curvature Q is equal to dw modulo terms in w;. Thus
(9%} A Wo A---A wnei(y’d“)) =w; /\w2 A A Wn A ei(y,Q)
and

Pefu(X): = c;l(/ WD BN A (W) Awg A= Awp)s
“I

= ' 2m)" V| (UX))e(wi Awa Ao - Awy)g.

This proves the proposition. 1
In particular, we see that v, , indeed belongs to A;*(P) and we obtain Propo-
sition 79. §

Remark 81 It is easy to check directly from the formula of the above proposi-
tion that v, , s dg closed.

Fix z € P and consider the decomposition g = n & q given by (40). The
space q is isomorphic to g/n. The generalized function v, ,(X), iz constant in
the direction q: 7, 0(Y+Q)r = Yu,0(Y).. Thus, if f(Q) is a generalized function
on g/n, we can multiply 7,,,(Y ). by f(Q) and we obtain a generalized function
on g with values in AT, P.

Define the map

Mo : AZ(PIN) = AG=(P)

by setting
M o) = ¢ (V) Ao,

for a € A7V (P/N).
The above discussion shows that i, , is well defined. It is a cochain map
of differential complexes

Mo+ (Agyn(P/N), dgpn) = (AG™(P), dg)-
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Proposition 82 The induced map in cohomology
Hg/y(P/N) — HG™(P),

from the cochain map
M o(@) = ¢°(@) A Yoo

does not depend upon the choice of the G-invariant connection w on the principal
N-bundle ¢ : P — P/N. We will denote it by m,,.

Proof: This follows easily from Formula 41 on the variation of p.3,. 1

We describe now the properties of m,,, in relation to the AZ(P)-module
structure on A5>(P).
If @ € AZ(P), we can define § € A¥(P), by setting

B(X) = a(X + Q(X)).

Explicitly, forr € P,Y €n, Q€ q, X =Y +Q, then X + QX)) =Y +Q +
Q, —-Y =Q+Q,, thus 8(X), = o(Q + ), is defined by its Taylor expansion

CM(Q + Q)J‘ = (Y(Q)-r + Z Q](aEJa)(Q)r +---

Thus (X +Y), = B(X),, for X € g,Y € n. Hence § € C>°(g/n, A(P)).

Let I' C A(P) be the subspace of horizontal forms. The group G acts on I'.
The connection w defines a horizontal projector I : A(P) — I" which commutes
with the action of G. Define, for o« € AF(P),

W (0)(X) = h(a(X + Q(X))).

As Woa = h(B), W,(a) € C>®(g/n,T'). The G-invariance implies that
W,(a) € C=(g/n,T)%. As N is a normal subgroup of G, N acts trivially on
g/n, in particular W, (a) € C*(g/n,T'V). The space I'V is the space of forms
on B := P/N, and we think of W, (a) as an element of C*(g/n, A(B)). The
G-invariance implies that W («) € .A°G°/N(P/N ). Thus we have obtained a map

W, : A (P) — AZ/n(P/N).

Remark 83 . The map W, is a generalization of the Chern-Weil map: If N =
G, let ¢ € C=(g)° and consider $(X)1 € AF(P). Then W,(¢(X)1) = ¢()
is the characteristic form on PG associated to ¢ by the classical Chern-Weil
homomorphism.
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Proposition 84 If a € AF(P), then
AN Yo = ¢ (Wo) Ao = Muo(We(a)).
In particular, for 3 € Aa?j’v(P/N),
a Amyo(B) = myo(Woa A f).

Proof: The proof follows easily from our formula given in Proposition 80 for
Yuo- We have, forz e P, X =Y +Q,Y €n,Q €q

A(X)e AYwo(X): = (Y +Q)ebn(Q=Y) (w1 Awa A= Awy),
= a(Q+Q)bn(Q =Y ) (w1 Awa A+ Awy),
= (X + X))z AYoo(X)s

As v, , is already of top degree in the vertical directions, we see that
O‘(X + Q(X)),. A ’Yw,O(X):r = h(O/(X + Q(X)))r A %J,D(X)m

which is the formula we want. 1§
The following proposition is proved in [13]. We give another proof, which is
an easy application of Proposition 84.

Proposition 85 Let G be a Lie group and let N C G be a closed normal
subgroup of G. Let P be a right G-manifold such that the action of N is prin-
cipal. Assume that the principal N-bundle ¢ : P — P/N admits a G-invariant
connection w. Then the map

W, : AZ(P) = AZy(P/N)
defined above is a cochain map:
W.dg = dg/nW..
Furthermore, if B € AZy(P/N) then
Wog'B=p.

Proof: The last equation follows from the definition of W, as a(Y + Q), =
(¢*B)(Q) is independent of the variable Y € n, thus a(Q2 + Q). = 0,(Q) and is
horizontal.

Let us prove that W, commutes with differentials. Let o € AZ(P) and
write 7 instead of 7, , and W instead of W,,. Let us compute dg(a A 7y):
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As v is dg-closed, we obtain from Proposition 84,

dg(a Ay) =dga Ny = ¢*(W(dga)) A.

We also have
dy(a Ay) = dy(¢"W(a) A7)
= dy(¢"W(a)) Ay
= ¢ (dgnW(a)) A7
Thus

Mo,o(W(dg@)) = 1 o(dg/uW (a))-

But the map m,, is easily seen to be injective and hence we obtain
W(dga) = dgnW(a).

|
We also have ([13])

Theorem 86 Let the notation and assumptions be as in the above proposition
(85). Then the cochain map

¢ A& n(P/N) — AG(P)

nduces an 1somorphism in cohomology.
As Woq* = I, where I is the identity operator, the map W, provides an
ezxplicit inverse for ¢* in cohomology.

Let us consider example 76 for the following special case: The manifold L is
equal to the Lie group U and LI\ is a closed subgroup of U. The manifold L = U
is a U x K manifold, where the action of (u,k) € U x I on x € L is given by
z-(u,k) =ulzk. Let G =U x K and P =U x M, for a K-manifold M. The
action of both of the (normal) subgroups U and K of G on P are principal.

Consider first the action of U. The space P/U is our K-manifold M we
started with. Consider the canonical Maurer-Cartan connection wy € (AY(U)®
u)¥ defined by wy(Xy) = X for every X € u. Here Xy is the vector field
associated to the action of U on L by left translation, i.e (Xy), is the tangent
vector to the curve exp(—eX)x. We have wy(Y;), = —z-Y,forz € L,Y € ¢,
as I\ acts by right translations on L. The connection wy extends trivially to a
(U x I¥)-invariant connection wyy®1 for the principal U-bundle gy : UxM — M.

As before, trivialize the vertical bundle Vi 2 P x u ( for gy) by the map
defined by sending the vertical tangent vector (Xyxar)em to (z,m,X), for z €
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Um € M,X € u. Choose an orientation o, on u. We obtain a U-invariant
orientation oy on Vy, by setting (oy), m = sign(det,z)o,. This orientation is
U x K invariant, if and only if det ;& > 0, for every £ € K. Thus, under this
condition, we get a map

Mo, : Hg™(M) — Hysx (U x M).

Consider now the action of K. The quotient space U x M by the action of
K is the induced space
M=Ux K M

with left action of U, that we considered in section 5. Assume there exists a U-
invariant connection w € (A(U)Y @ €)X for the principal K-bundle U — U/K.
Then the form w®1 on U x M is a U-invariant connection form for the principal
K-bundle g : U x M — U xx M. Assume that det¢k > 0 for every k € K.
Choose an orientation o on €, then the fibration ¢x has a unique U x K -invariant
orientation og given by o, ., = oy for each point m € M, where e is the identity
of U. Thus, under these conditions, there exists a map

Moy : Hy®(U xx M) = H;% (U x M).

Given orientations o,, 0y of u, € respectively, they determine an orientation o on
u/t. We have det ik > 0 for all k € K, as both numbers det .k and det ¢k are
> 0, by assumption. Recall the map

IndU/K_O : HI:OO(M) — HEOO(U XK M)
from Section 5, Proposition 50

Lemma 87 Let U be a Lie group and let K be a closed subgroup of U, such that
the principal K-bundle U — U/K admits a U-invariant connection. Assume
detyk > 0, det yk > 0 for all k € K. Let oy, 0,0 be compatible orientations on
u, b, u/t then

mou = mOK IndU/](,O'

Proof: First, we explicitly compute the map m,,. Consider the canonical
connection wy. Its curvature is 0. The equivariant curvature of wy is given, for
the identity element e of U, m € M, X € u,Y € &, by

Qu(X,Y)(e,m) =-X+Y.

Let £ = dimU. Let v;; € A% be a positive element (with respect to the
orientation oy). Let dz be the unique left U-invariant form on U, such that
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dr). = v'. Then v, determines a §-function |v},|~16, on u, and for X € u,
L ¢
Y et
7wu,0U(X’ }f)(c,m) = l’/bl_léu(y - X)(dx)e

Thus, for o € A (M),
(M 05 )X, Y ey = Wy 8u(Y = X)(a(Y) A ) em)-

More explicitly, for ®; a test function on u, ®, a test function on &,
([ (7100 @) (X, Y )1 (X) @Y )AXAY Y1y =

([ a(¥)21(Y)2(Y)dY) A de)(erm

where dX is the Euclidean density on u determined by v/'.

Now let us analyse the action of K on U x M. Let £k = dimK, n =
dim(U/K). Let E' be an oriented basis of & with dual basis E; € ¥. Let
Vi = Ey A--- ANE;. The connection w determines a K-invariant decomposition
u = €tdr. Thus E; can be thought of as an element of u' vanishing on t.
If w = Y;wE, the form w; is the unique left U-invariant 1-form on U such
that (w;)e = E;. Let pry (resp. pr.) be the projection from u to & (resp. t)
determined by w.

Consider the connection @ := w®1 for the principal K-bundle g : UxM —
Uxg M. Let Q € A2(U) ® t be the curvature of w. The equivariant curvature
of @ at the point (e,m) € U X M is given, for X € u,Y € ¢ by

Q(‘X,Y)(evm) = (I)TQX - Y) + Q..
Thus the element ~; ,, is given by
(Va0 ) (X Y ) (emy = V5|71 0e((pre X = Y) + Q) (wi A ... A wp)e.

Let p' € A™ Dbe such that ' A vy = vy. Let dr be the unique left U-
invariant n-form on U such that (dr). = y/. The element x' determines also
a 6-function |p'|~!é, on the vector space r. Let o € Ax™(M). By definition,
for X € u, (Indy;k,0®)(X)(e,m) is the projection (on the horizontal elements for
the diagonal K-action) of |1'| ™ 6c(pre X )(a(preX ) Adr)e,m). AS Yz o 1s already
of top vertical dimension in the direction I, we have

((Ma,ox Indyx,00)(X,Y))(e;m) =
11|78 (pre X ) (a(preX) Adr A V| 16(pre X =Y) + Q) Awi AL A W) (¢.m)-
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Now dr Aw; ... Awy is the form dx of top degree on U and ( is a form on
U, so that dz A &((preX —Y) + Q) = da A be(pre X — Y). Thus, if ®; is a test
function on u and ®, a test function on &, we obtain

( L (M0 Induac0) (X, Y) 21 (X) @Y )AX Y oy =
( /t oY) B, (Y)®o(Y)dY) A d) (o).

Comparing with the preceding calculation, we obtain the equality, for X €
uYetbmeM,

(mwu,oUOl)(X,Y)(e,m) = (m&;,oKIndU/K,oa’)(X,Y)(e,m)-

By U-invariance we obtain the equality at each point (z,m) € U x M and the
lemma is proved. 1§

Proposition 88 Let U be a Lie group. Let I be a compact subgroup of U such
that det k = 1, detyk = 1 for all k € K. Then for any K-manifold M, the
maps

Moy * Hi™(M) — Hy (U x M)

and
Moy Hy®(U xx M) — Hysu (U x M),

(defined earlier) are both isomorphisms.

Proof: Let G = U x K. The space P = U x M is also the induced space
G Xa(k) M, where K is embedded in G = U x K by the diagonal map A. It
is easy to see from the explicit calculation above that the map m,, coincides
with the map Indg/k,. As K is compact, Theorem 52 of section 5 implies that
My, is an isomorphism. As Indy, g, is also an isomorphism, Lemma 87 gives
us the proposition. §

Let us return to the general situation (S) of a right G-manifold P, with
principal action of a normal subgroup N of G, satisfying Conditions (77) and
(78). Then the map m, : Hgjy(P/N) — Hg™(P) is defined. Although it
would be desirable to know that m, is always an isomorphism, we are able to
prove it only under additional hypotheses.

First consider the case where G = N. Thus Hg 3 (P/N) is simply equal to
H(P/G) = H(B). As P — B = P/G is a principal bundle with group G, we
can find a (G-invariant) connection w for the bundle P — B. We assume that
this fibration has G-oriented-fibers. Thus we can construct a canonical element
(up to the G-orientation o) v, € Hz*(P) and the map m,.
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Let Q be the curvature of the connection w for P — P/G. If ¢(X) €
C>=(g)%, then ¢(?) € H(B) and is independent of the choice of w. We thus
define a structure of C*°(g)®-module on H(B) via the Chern -Weil homomor-
phism: ¢- 3 = ¢(Q) A B3, for ¢ € C>(g)¢ and 3 € H(B).

Theorem 89 Let G be a Lie group acting principally (from the right) on a
manifold P. Assume further that the quotient map q : P — P/G has G-oriented
fibers under an orientation o. Then the map

m, : H(P/G) — Hz*(P)
gwen by m,(a) = ¢*a A, is an isomorphism of C*°(g)%-modules.

Proof: The fact that m, is a morphism of C*°(g)®-modules, follows readily
from Proposition 84.

It remains to see that m, is an isomorphism of vector spaces:

If P = G x B is the direct product of G and B, with the action of an
element go € G given by (g,m) - go = (g95'g,m), for g € G,m € B, then by
Proposition 88 (for U = G, K = e, M = B), the equivariant cohomology
H;*(P) is isomorphic with H(B) under the map m,. Thus our theorem is
true when the fibration P — B is trivial. (Remark: a trivial principal G-
bundle is usually trivialized as G x B, where the action of G is on the right
(g,m)-go = (990, m). We can use the isomorphism (g,m) — (¢g~*,m) to change
this usual trivialization to the trivialization used above.)

Let us now return to the general situation . Choose a (G-invariant) connec-
tion form w for the principal G-bundle ¢q. Consider the element vy, € H;*(P)
given in Proposition 79 (with respect to the given G-orientation o). Let U
be an open subset of B. Denote by yy the restriction of v, to ¢~}(U). We
denote by my : H(U) — Hg*(q"'(U)) the map m, restricted to ¢~'(U):
my(a) = ¢ a A .

Lemma 90 Let U andV be two open subsets of B. Assume that the maps my,
my, myay are tsomorphisms, then myyy s an tsomorphism.

Proof: This lemma is proved by a standard Mayer-Vietoris argument: Both
the sequences

0— AU UY)) - AU) B AV) » AUNV) =0,

0— AZ*(q ' (UUV)) = A=(¢7'(U)) @ A™(¢71(V))
= Ag=(¢'(UNV)) =0
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are exact. The surjectivity of the last map can be seen as follows: Choose a
partition of unity fy, fy for U UV subordinate to U, V. Then the functions
q* fu,q* fv are G-invariant functions. If 3 € Az®(¢"'(U NV)), then 3 is the
image of (—(q" fv)8, (0" fv)8) € Az=(q"}(U)) ® A=(¢ (V).

Thus the above Mayer-Vietoris sequences induce the long exact sequences
in cohomology. The lemma follows from the five lemma. &

Now Theorem 89 follows by recalling that there is a finite open cover U; of
the base B such that the bundle ¢='(U;) — U; is trivial. 1

We now return to the general situation (S) . Assume now that G is compact.
Then the condition (78) on the existence of a G-invariant connection for the
map q : P — P/N is always satisfied. We prove the following theorem

Theorem 91 Let G be a compact Lie group and let P be a right G-manifold.
G. Let N be a closed normal subgroup of G acting freely on P. We assume
furthermore that the fibers of ¢ : P — P/N admit a G-orientation o. Then the
map

m, : Hg?,‘(,(P/N) — H;*(P)
is an wsomorphism.

Proof: We choose a G-invariant connection form w € (A!}(P) ® n)¢ and
use notation of the proof of Proposition 79. Let I' C A(P) be the space of
horizontal forms. The action of G on A(P) preserves the subspace I'. Let us
consider the algebra homomorphism C' : An’ — A(P), determined by sending
E; € v to w;. We still denote by

C:T'®An' — A(P)

the map given by C(a @) = a AC(€), for a € I, € Aw'. The map C is an
isomorphism. Furthermore C' commutes with the action of G.

Recall the isomorphism (11) U : Pxg — P xnxg/n. Let us explicitly write
U, using coordinates. Let n = dimn. Choose a basis Q¢, n < a < dimg, of
g/n. We choose a basis G of g such that the first n-vectors are the vectors E’
and the last ones are representatives of Q. Let Q = ¥;5, 2;Q' be an element
of g/n. Define, for p € P,

kj(]), Q) = (w,,(z .T,'Gi)P, Ej)

i>n

Then @ — k;(p, Q) is a linear function in @ varying smoothly in p. Let X =
Y ; ;G*. In these coordinates = (x;), we have

Up, X) = (p,Y(2),Q(2))
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with R
Q) =Y 2:Q Y (2) = 3 (; + ki(p, Q(2)) B
i>n j=1
We denote by U* the isomorphism

U*:C™(n@ g/n,C=(P)) = C~*(g,C>(P))

given by (U*s)(X,p) = s(U(p, X)), for s € C=(n & g/n,C>(P)).
Formula above shows that U*s is indeed smooth in p and generalized in X.
Let
A=C""ndg/n,T)QAn'.

With the help of U and C, we can define an isomorphism
T:A—C™(g,A(P))
by the following formula: For s € C~°(n @ g/n,C*(P)), a € I' ® An/,
T(sa) = (U*s)C(a).

The group G acts on A by the action induced by the adjoint representation
of G on n,g/n, and its natural action on I'.  We denote by Ag the space of
G-invariants in A. Then T commutes with the action of G and induces an
isomorphism still denoted by T between Ag and Agz™(P).

Consider the Z-gradation on A

A*=C""ndg/nT) @A,

We still denote by d the operator on the space A obtained from the operator
dg on C~*(g, A(P)) under the isomorphism T

We write Y € nas Y = Y y; E’. Let «(E?) be the contraction on An’ by the
vector E’. Let j, be the operator of degree —1 on A given by

Jn= Z yj"(Ej)-
J

The components 2; of the curvature Q are horizontal forms. Thus exterior
multiplication by 2; is an operator on I'. We can consider the operator f acting
on C~®°(n® g/n,I') ® An' given by

f = ZQJ ® I(E])

The operator f is homogeneous of degree —1.
Let us write, using the Z,-grading of A, the operator d; on A as a sum of
homogeneous operators d; of degree i.
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Lemma 92 We have
dg=d_1+do+d;

with d_y = —jn + f.

Proof: Let Q° be a basis of g/n. Let p € P. At the point p € P, consider the
decomposition

g=ndq,

given in ( 40). We write @, € q, for the unique element of g, above Q* € g/n.
We have w,(Q%) = 0. The contraction by @% produces an operator ¢* on
the space of horizontal forms I'. Let @ = ¥, ¢.Q* € g/n. The coordinate
function ¢, acts on C~*°(g/n) by multiplication. The operator tg/n = 3 gqt® is
an operator of degree 0 on C~*°(n® g/n, ') ® An'.

It is easy to see that the operator ¢ = ¢z on C~*(g, A(P)) becomes the
operator tg/, @ ju on A under the isomorphism 7.

Let us now analyse the differential dp under the isomorphism 7. If I = {1 <
i1 < d2... < ix < n} is an ordered multiindex, we write wy = w;; A... A w;,.
Let s € C~*°(n @ g/n,C>®(P)),a € I'. We compute dp((U*s)a Awy). As dp is
a derivation, we analyse the exterior differential of each term of this product.

As dw + 1w, w] = Q, where  is horizontal, we see that the differential dw;
of the component w; of the connection w is the sum of an element of C'(A%n’)
and of Q; € T.

The differential dp does not necessarily keep the space I' of horizontal forms
stable, but dp(a) eTHT @ W, for a € I

Finally, for s(Y,Q,p) € C~*(n® g/n,C*(P)), we have, with Y = ¥, y; F7,

T7'dpTs =dps+_ 8,,s(Y,Q,p)dpk;(p, Q).
J

Combining all these observations, we see that dp becomes a sum of the
homogeneous operators f_; + fo + fi under the isomorphism 7". Furthermore
the term f_; is the operator f. Hence we obtain the lemma. &

We now prove Theorem 91 by an induction argument similar to the argument
of the proof of Theorem 39. Actually we will make use of the bigrading

AR = C=°(n@ g/n, ) ® Ak,

where I'? refers to the Z*-grading on I' given by the exterior degree.

Each of the spaces A*9 is stable by G, since N is a normal subgroup of G.
As the group G is compact, the proof of Proposition 22 and Remark 23 (of
section 3) implies that the homology groups of the operator j, : Ag? — AG ™
are equal to zero, except in maximal degree n = dimn.
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Let a € A;™(P) be such that dgor = 0. We first show that o is homologous
to an element § divisible by ~,,. We work with Az and write again o for the
element T7!(a) € Ag. Let a = Yisp, ax with ax € Ag. From the degree
consideration (cf. Lemma 92), we see that (j, — f)ox, = 0.

Write Now i, = S y>q0 Xkarg) With ok, ) € A¥9. The operator f sends
Akod to Ak—19+2 Thus, we see again from degree considerations in ¢ that
Jn(0kq,q0) = 0. Soif kg < n, there exists 3 € ART19 such that oy, 4 = juf. The
element a 4 dg3 is homologous to « and its term of degree kg is in 3 4 Akosg,
(Of course a + dgf8 has no term of degree strictly less than ko.) By successive
approximations, we thus see that we can construct a representative of a in
AZ. Now, let @ € AZ be such that dya = 0. In particular, (j, — f)(a) = 0.
We can write at the point p € P a(Y,Q), = MY, Q,p)(w1 A ... Aw,), where
MY, Q,p) € C™(n® g/n) ® AH;, where H, is the space of horizontal vectors.
Let us write Y = 3, y;E7. For every j,1 < j < n, the equation (j, — f)a =0
implies

(y; — )AY,Q,p) =0.
It is not difficult to see (using for example the translation A(Y, @, p) — A(Y +

Q,Q,p)) that A(Y,Q,p) = éu(=Y + Q)5(Q,p) where 3(Q,p) is a generalized
function on g/n with values in AH;. This way, we construct an element 3 €
C~(g/n,T). As a € Ag is G-invariant, 8 € (C~*(g/n,I'))¢. As N is normal,
the group N acts trivially on g/n. Thus, we see that 8 € (C~°(g/n,T'V))¢/N =
cn(P/N) and a = "8 A v, 0.

The equation dgor = 0 and the injectivity of the map m,,, at the cochain
level (cf. Proof of Proposition 85) implies that dg/n8 = 0. Thus 3 is closed and
the map m, is surjective. The injectivity is proved by a similar argument. §

Let K and U be compact subgroups of a Lie group L. Then L can be
thought of as a U x K-manifold under z - (u,k) = u'zk, for z € L, u € U and
k € K. If M is a K-manifold, we consider the U x K manifold P = L x M,
with twisted action as in Example 76.

Thus, specializing Theorem 91 to this example, we obtain

Proposition 93 Let I',U be compact subgroups of a Lie group L. Assume
that there exists a U x K -invariant orientation o for the principal K-bundle
gk :LXM — L xig M . Then the map

Mo, : Hy®(L xg M) — H;3 (L x M)
18 an isomorphism. In particular, when M = point,

Hy™(L/K) = Hy 3 (L)-
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In the case of a free action, we have seen that H;*°(M) is isomorphic to
Hg (M) under the multiplication by v,. However it may happen that the natural
inclusion Hg(M) — Hg*°(M) is identically 0. This is for example the case for
the action of G on itself, at least when G is compact: The element 1 € Hg(G) =
R has integral zero over G, while the integral of v, € Hg;*(G) is equal to
vol(G, dg)d4(X), as follows from the explicit formula for v, given above.

Assume that M is compact and oriented. Thus [;,; defines a map from
H;™(M) to C~>°(g)“. 1t is clear from the formula, given in Proposition 80 for
the generator v, that if o = 8 Ay, with 8 € Hg(M), then [,, a is a derivative
P(0)64 of the é4- function on g. Moreover, the order of the derivative is less
or equal that of dim(B)/2. We will determine explicitly this map in a special
case.

Let K be a compact connected semi-simple Lie group and let T be its maxi-
mal torus. Let W be the Weyl group of (K,T). Let S(t)" be the subalgebra of
W-invariants in S(t). Let I be the ideal in S(t) generated by all the invariants
of positive degree. Similarly, let S(¥)" be the subalgebra of W-invariants in
S(¥)" and let J be the ideal in S(t') generated by all the invariants of positive
degree. Let 6; be the 6 function on t determined by the Euclidean measure on
t associated to the Killing form.

If f € C™°(t) and Q € S(t), then the derivative Q(9)f of f by the constant
coefficient differential operator Q(0) is well defined.

Similarly, if P € S(t) is a polynomial function on ¢ and @ € S(t'), we can
define Q(6)P. An element P € S(t) is called harmonic, if Q(6)P = 0, for all
Q € J. We denote by H the set of harmonic elements of S(t).

Lemma 94 Let
J={feC™),Pf=0,forallP € J}

be the set of generalized functions on t annihilated by all the W -invariant func-
tions P without constant terms under multiplications. Then J s equal to

J ={Q(0)é; Q € H}.

Proof: Choose a W-invariant norm |z| on t. If f € J, then f is annihilated
by the invariant polynomial function |z|?. Hence f is supported at the origin
and there exists a Q € S(t) such that f = Q(9)-6;. The equation J-Q(0)-6; =0
implies, by Fourier transform, that @) is harmonic. &

Let ¢ = t ® t be the T-invariant decomposition of ¢ and let n = dimr.
Choose compatible orientations og, 0, 0¢ on & t,t. Let &', 4,2 be the forms of
maximal degree on &, t, t respectively, associated to the Killing form (,) and our
choice of orientations . We denote also by &' the left K-invariant form on K
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coinciding with &’ at the identity e of K. Similarly, we extend v/ (resp. p') as
a left K-invariant dim t-form (resp. dimt-form) on K coinciding with v’ (resp
') at e.

: Let A € t. The bilinear form on v given by B)(X,Y) = (A,[X,Y]) is an
element of A%Y. Let A = {a € it'} be the set of roots of (¢t). Choose an
order on A compatible with the orientation o, as in ([12], page 40). Let U
be the polynomial function U(A) = [[450(A,é). Then U € H and the map
P € S(t) — P(9)U induces an isomorphism from S(t)/J to H. Furthermore
it is easy to see that B:\'/2 = ((n/2)HYUAN)p'.

Consider the free action of T on M = K by k-t = kt. The space Hr(K) is
isomorphic to H(K/T). The Chern-Weil map W : S(¥) — H(K/T) is surjec-
tive, with kernel J. Thus we identify Hr(K) with the S(t)-module S(t')/J.

Proposition 95 The map

Hp®(K) — C™°(t)

N

s an isomorphism from Hp°(K) to J. Furthermore, we have

/K o = (=100l () U () - 6,

where n = dim K.

Proof: Consider the curvature Q of X' — K /T, determined by the T-invariant
decomposition &€ = tdr. It is an element of A2 @t. Let us compute exp (2 in the
algebra AY ® S(t). The component of exp Q of exterior degree n is given by the
formula (exp Q) = ¢ ® U. The term of exterior degree n of 6,(2 — X)) is thus
equal to (—1)"/%4' ® U(0)é,. Formula for v, € A7°(K) given in Proposition 80
shows that the term of maximal exterior degree of 7, is

(Vo) aim k1 (X) = (=1)2(U(D) - 6)(X)~'.

Integrating over I{', we obtain the formula for [, 7, given in the proposition.
As Hp(K) is generated by 1 over S(t'), we obtain the equality Hr*(K) =

(S(¥)/J)7o. Furthermore, as seen by Fourier transform, the map P — P(U(9)-

6y) induces an isomorphism from S(t')/J to J and we obtain our proposition. 1§

Corollary 96 The natural map Hp(K) — Hp*(K) is identically 0.

Proof: Elements of Hr(K) = H(I/T) come from the base, thus have integral
zeroon K. 1
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Remark 97 If a torus acts on a compact oriented manifold M without fized
points, every ( equivariant) cohomology class in Hp(M) is of integral equal to
zero, as follows from the localization formula (see [3], chap 7). The preceding
example (i.e T acting on I by right translations) gives a striking case of an
action of T without fized points, where any non-zero equivariant cohomology
class with generalized coefficients has a non-zero integral.

10 A spectral sequence for T-equivariant co-
homology

Let K be a compact connected Lie group and M a K- manifold. Let T be
a maximal torus of K. In section 8, we have seen that the K-equivariant
cohomology Hg*(M) of M can be computed in terms of the T-equivariant
cohomology of M. In this section, we will establish a spectral sequence relating
the S(t')- modules Hr(M) and H;*°(M).

Let T be an abelian Lie group (not necessarily compact) and let M be a
T-manifold Let t be the Lie algebra of T. Then, as T is abelian,

Ar(M) = S(t) @ A(M)T.

Similarly
AT® (M) = C~(t, A(M)T).s

We can then consider A7*°(M) as obtained from the space Ar(M) by “ex-
tension” of coefficients.
Let us consider the space:

Q=C"tAM)T) @ S{H) At
Z-graded by its exterior degree with respect to At', i.e.
P =CtAM)T)®S({)® APY.

Let E' be a basis of t with dual basis E; of ¢. An element X € t is written as
X =Y ; z;E'. We can consider an element of

V=C"tAM)") e S(t)

as a form a(X,Y) € A(M)T depending in a generalized way on the first
variable X € t and in a polynomial way on the second variable Y € t.

We consider on V' the Z/2-grading given by the parity of an element in
A(M)T. Consider the S(t)-module structure on the space V defined by (E; -
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a)(X,Y) = (z; —y)o(X,Y), ie. E(0®@P) =200 P —60QyP, for § €
C—>(t, A(M)T) and P € S(t).

Let j be the Koszul differential of degree —1 on @ =V ® At', got from the
S(t)-module V' (cf. Formula 12 of section 3), i.e.

j= Z(xi — ;) @ ta(E").

(As usual, in extending ¢4 (E") to the tensor product of the two superspaces
V and At, we respect the sign rules (2) and (3) of section 1).

If o(X,Y)=6(X)® P(Y) € V, the restriction a(X, X) = 6(X)P(X) of «
to the diagonal is well defined. Thus, for any § € €, the restriction (X, X) of
B to the diagonal is an element of C~>(t, A(M)T) ® At'. Let us denote by r(3)
the component of exterior degree zero of #(X,X). Thus the map r is a map
from Q to A7°(M).

We can also write
Q=C"(,Ar(M)) ® At
where by definition

(1, Ar(M)) = Y- C7(t, Ap(M))

p>0

and AL (M) refers to the Z -grading of Ap(M) defined in section 2.
We extend pointwise the differential d; of Ar(M) to C~*°(t, Az(M)) b,
defining (d,f)(X) = d,(f(X)). Consider the operator

do=d;®1I

of degree 0 (with respect to the Z-grading of At') on .

The operators j and dy satisfy j2 =0, d3 =0, jdo + doj = 0.

Consider the Z/2 grading on  given by the parity of forms on A(M)T
together with the Z-grading of At'. Then dy and j are odd operators. Define
the operator

D = j+d,.
The operator D is an odd operator on 2 of square equal to 0.

Let H(Q, D) be the cohomology space of D. It is a Z/2-graded space.

Proposition 98 The map r : Q@ — A;*°(M) satisfies rD = dyr. Moreover r
wnduces an iwsomorphism in cohomology. Thus the cohomology of the complex

(Q, D) s isomorphic to Hp*(M).
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Proof: Since rj = 0, and r(6(X) ® y;(Ei)P(Y)) = zu(Ei)(0(X)P(X))
if 6(X) € C~>°(t) and P(Y') € Ap(M), the first assertion is immediate,. Let
n = dimt. AsV is a tensor product of the free module S(t') by C=>°(t, A(M)T),
the space V is a free S(t')-module (cf. Corollary 16 of section 3). Thus by
Proposition 14 the Koszul complex

00" L L4005 A(M) =0

is exact at all the levels ') for all i > 0. Exactness at 2° is easy to check.

Let Q' be the exact complex for j defined by Q" = Q' if i > 0 and Q° =
Kerr. Choose any homotopy h of ' of degree 1 i.e. hj + jh = Ig.. Consider
N = hdy + doph. Then N is an operator of degree 1 on . We have hD + Dh =
I+ N on (Y, and N is a nilpotent operator commuting with D. Let us prove that
r is surjective in cohomology: Let § € A7°°(M) be such that d;# = 0. We lift 0
as a form in two variables ©(X,Y) = §(X) constant in Y, i.e © = @ 1. Then
r(DO) =01i.e DO = dy© € . Thus (I + N)DO = (hD + Dh)D© = DhDO
i.e. D(©—(I+N)"'hD®) = 0. The element w(©) := © — (I + N)"'hDO still
satisfies r(w(©)) = 6, and is a cocycle for D.

Similarly, we prove that r is injective: Let a € § be such that Da = 0
and r(a) = dif. Then « := o — DO satisfies Do’ = 0 and ro/ = 0. Then
o« = D(I + N)~'ha' is a boundary. This proves the proposition. 1

We give below a more explicit way to construct a representative in H(Q, D)
of an element in H;*(M).

If Y € t, we define as in section 4 the tensor product contraction ¢(Y) =
t(Yar) + ¢a(Y) on Q. The horizontal space Q. is then defined as

Qor = {0 € Q,1,(Y)or = Oforall Y € t}.

The space Q4,, is stable by D. There is a canonical projection map (see Defi-
nition 28 of section 4) from 2 to Q. given by

h = H(I — eu(EY))

where ¢; denotes the multiplication by E; on At'.

We denote by w : A7®°(M) — Q the map w(f) = h(0O), where O is the lift
of 6 constant in Y.

We have

w(f) =0 + (-1)" z ((Ei;)© &) E; — Z ’(E;\J)’(Eﬁ)@ QEANE;+---

i<y

Lemma 99 The map w satisfies: wd# = Dw6. Further w induces an isomor-
phism in cohomology, inverse to the map in cohomology induced by .
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Proof: Both terms of this equation belong to Q... Thus, to prove that
they are equal, we need only to compute their terms of zeroth exterior degree.
The element wdf has zero-exterior degree term equal to the lift of (di6)(X) =
dyb(X) — ¥; zi(Ei )0(X), constant in Y.

The element Dwé has zero-exterior degree term

duf(X) = 3 yat(Ep)0(X) + 3 _(vi — z:)ia(E") (e (((Eip)0(X)))

ilj

which is equal to

dub(X) — Z z;u(E}y)0(X).

It is clear that 7w = 1. But since the map r induces an isomorphism in
cohomology, we get that w also induces isomorphism in cohomology inverse to
that of r. 1§

The complex (2, D) admits an increasing filtration F = {F, }o<p<dimt by
the exterior degree in At' i.e . F, = ®<, 0. This canonically gives rise to a
convergent homology spectral sequence E” converging to H({2, D).

Lemma 100 Assume that T s compact abelian and M is a paracompact T-
manifold, such that Hj(M) is finite dimensional in each degree. Then

E, =C™®(t)® Hr(M) ® APY.

Proof: By definition

E; = H(]:l'/]:ll—la D)
= H(]:I‘/]:I'—17 (IO) Since_j(}'p) C ]: 1,
= H(C™™(t, Ap(M)) ® At dy)

H(C™(t, Ap(M)), dy) @ APY.

It is easy to see that Ner(d,) = C~*°(t,Zy(M)) and moreover Im(d,) C
C~(t, Bp(M)). Further, by Theorem 117 (of the Appendix), we get a contin-
uous splitting of the map

AN (M) % B (M),

and hence Im(d,) = C~(t, By(M)). Also Hp(M) being finite dimensional,
the projection Z3(M) — H7 (M) admits a continuous splitting. From this we
easily conclude that

H(C™™(t, A7(M)), d) = C™(t, Hy(M)).

This proves the lemma. §
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Remark 101 IfT is compact and H*(M) is finite dimensional in each degree
then so is Hy(M). This follows from the Serre spectral sequence for the fibration
M — E(T) xr M — B(T). In particular, for compact M, Hy(M) is finite
dimensional in each degree.

The differential d' : E} — E,_; of degree —1 induced by D = dy + j on
E' = C~>°(t) ® Hr(M) ® At is the Koszul differential j associated to the
canonical S(t')-module stuctures on C~*(t) and Hr(M). Hence, combining
Proposition 98, Lemma 100 and Lemma 17 we obtain the main result of this
section.

Theorem 102 Let T be a compact abelian Lie group and let M be a manifold
such that Hp(M) is finite dimensional in each degree. Then the cohomology
group Hz (M) has an increasing Z-filtration H,, and a convergent homology
spectral sequence with

E? = Tory)(C~(t), Hp(M))
and
EX =H,[H, ,,
where C~>°(t) and Hy (M) have their canonical S(t')-module structures.

This spectral sequence is functorial with respect to the T-equivariant smooth
maps. Further the total Z/2-grading given by the standard Z, degree on
H; (M) together with the p index in Tor is compatible with the Z /2-grading of
Hry*>(M).
We obtain a number of corollaries:

Corollary 103 Let M,N be T-manifolds such that H3 (M) s finite dimen-
stonal in each degree, with a T- equivariant smooth map f : M — N. Assume
that the induced map f* : Hp(N) — Hy(M) s an isomorphism in T- equivari-
ant cohomology . Then the induced map

f* Hi®(N) = Hy™=(M)
15 also an isomorphism.

Proof: It follows immediately from the above spectral sequence. &
The following corollary was obtained in section 6 for compact T- manifolds
as a consequence of Theorem 61 (cf. Corollary 64).

Corollary 104 For any T-manifold M such that Hy(M) is a projective finitely
generated S(t')- module, the canonical map

Brm : C™(t) @y Hr(M) — Hp™ (M)

s an 1somorphism.
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Proof: Since Hp(M) is S(¥)-projective, the spectral sequence of Theorem
102 has Eg = 0, unless p = 0. In particular the spectral sequence degenerates
at the E%-term itself. Also

E? = Tory“)(C~(t), Hp(M)) = C™=(t) @s() Hr(M).

This proves the corollary. 1

Let T be an abelian Lie group and let M be a T-manifold. The T-equivariant
de Rham complex with generalized coefficients admits a graded subcomplex
obtained by forming the algebraic tensor product

A7°(M) := C~ () @ AM)T.

This subcomplex is stable by the action of S(t'). We denote the cohomology of

this subcomplex by H;*°(M). We have the following comparison:

Proposition 105 Let T be a compact abelian Lie group and let M be a T-
manifold such that Hp(M) s finite dimensional in each degree. Then the
canonical map Hy®(M) — Hz(M), induced from the inclusion Az®(M) —
A7® (M), is an isomorphism.

Proof: Recall the definition of the complex (§2, D) and define a subcomplex
Q:=C"t) @ AM)T® S({)® At.

The cochain map r : @ — C~>°(t, A(M)T) restricts to a cochain map (de-
noted by) 7 : @ — C~°(t) ® A(M)T. By the same proof as that of Proposition
98, we can easily see that 7 induces isomorphism in cohomology.

Thus the augmented complex

Q5 A72(M)
maps by the natural inclusion ¢ into the augmented complex
Q5 A7>(M).

The filtration {F,} of Q gives rise to the filtration {F,:=F,NnQ}of Q. In
particular, we get the induced map E; — E7, where EJ is the spectral sequence

corresponding to the filtration {F,}. We have E! = C~()® Hr(M)®@A?t. In
particular, E; — E is an isomorphism, and hence the inclusion Q — Q induces

isomorphism in cohomology. But then the map i : A7®(M) — A7>°(M) also
induces an isomorphism in cohomology. 1

The spectral sequence obtained in Theorem 102 may sometimes be used to
determine the torsion groups Tor5()(C~(t), Hp(M)). For example, if K is a
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compact connected Lie group with maximal torus T and if M is a K-manifold
such that Tor; ") (C=>(t), Hp(M )) is equal to zero except for i = ¢y (for some
ip), then from the degenerate spectral sequence of Theorem 102 and Theorem
70,

Tory/(C(t), Hr(M)) = S(t) @s@yx Hg™(M).

As we next show, this hypothesis is valid when M is homogeneous under K.
Let U be a closed subgroup of K. Let us choose a maximal torus Ty of U and
let T' be a maximal torus of K containing Ty .

Proposition 106 Let M = K/U, where K is a compact connected Lie group
and U a closed subgroup. Let x : U — +£1 be the character x(u) := detyu.
Then the group

Tor?)(C~(t), Hr(M)) =0  fori # d := dim(T/Ty)

and
Tor;")(C~(t), Hr(M)) = S(¥) ®@s)x C~(u)X.

Proof: Let ty be the Lie algebra of Tyy. Let Wiy C GL(ty) be the Weyl group
of the pair (U,Ty) (i.e.Wy = Ny(Ty)/Ty ). If P € S(t)" is a W-invariant
function, its restriction to ty is Wy invariant (to see this, use Chevalley’s the-
orem to conclude that P is the restriction to t of a K-invariant polynomial on
t) . From Proposition 68 of section 7, we have Hr(M) = S(t) ®swyw S(ty)"".
Thus

TorSt)(C=*(t), Hp(M)) = Tor*")(C°(t), S({) @syw S(ty)"V).

Consider N := S(t') Qsuyw S(ty) as a (S(t'), Wy)-module by the action of
S(¥) on the left and the action of Wy on the right factor. Then N"v =
S(¥) ®swyw (S(ty)"v). The space Tor5)(C=*°(t), N) thus carries a canonical
structure of (S(t'), Wy )-module and moreover by the standard averaging process

TorS®)(C°(t), Hr(M)) = Tor5")(C~(t), N)"v.

Thus, to prove the vanishing part, we prove that Torf (‘I)(C ~°(t), N) = 0 except
for i =d.

Let t; = t/ty, so that ¢{ C t. Consider the partial Koszul complex j; =
Jy : S(Y)® AY, — S(ty). This gives a S(t')-free resolution of S(t;). As S(t') is
free over S(¥)", the complex S(t) ®syw (S(Y) ® At}) with differential I ® j;
gives a S(t')-free resolution of S(t') ®swyw S(ty). Thus TorS)(C~=(t),N) is
the homology of the complex

() @s(e) (S() ey (S(¢) ® A)) 2 C(8) Ds(eyw (S(t) ® AL)
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i.e. of the complex
(42)

0 — C™=(t) ®syw (S(t) ® A') L5 C™(8) ®s(yw (S(¥) ® AT
B CTR(H) @seyw (S() @ ) 2 C™() @seyw S(t) — 0.

Consider the isomorphism obtained in Proposition 66 of section 6
C=(t) @sqew S(¢) = C2(Y

induced from the multiplication map. Hence, the map PLQF QP — PLQF P,
gives an isomorphism of

S(tl) ®S(t’)W C—Oo(t)e ®S(U)W S(f’)

with
S(t’) ®5(V)W C_oo(t)

Thus we obtain an isomorphism of the complex (42) with the complex
S(t’) ®S((’)W (C_oo(f) ® At’l)

under the differential I ® j;7*°. By Proposition 22 of section 3, the homology of
the complex (C~>(t) ® At}, jT™) is non-zero only in degree d. As S(t') is free
over S(¥)V, we obtain the vanishing part of the proposition. Furthermore, by
the remark just before this proposition and Theorem 46 of section 5, we obtain
the assertion regarding Tory. 1

11 Localization formula

Let T be a torus, i.e. a compact connected abelian Lie group, acting on a
compact oriented manifold M. Let o € Hy™(M). The integral ©(X) :=
Jar a(X) of « is a generalized function on t. When a € H7°(M), the localization
formula (see [3], chapter 7) gives ©(X) in terms of the restriction of a to the
fixed submanifold M7 of M. As shown by Proposition 95 of section 9 ( where
MT is empty but the map [, is not zero), it is not possible to determine [, a
in terms of a|M7T in the generalized case. The main reason for the difference
between the C**-cases is that the space Hy*(point) = C~*°(t) is not torsion
free over S(t'). Indeed, for « € H;*°(M), we will find a non-zero polynomial
P € S(t) and determine P(X) [, o(X) in terms of a|M7T, as in the C*®-case.

The localization formula, we are going to give in the generalized case, in-
volves choosing a T-equivariant embedding of M in a real representation space
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V of T. This is always possible, see ([9], Chap 6, Theorem 4.1). Let V; be the
subspace of T-fixed vectors and let

V=WeWh

be the T-invariant decomposition. Thus dety,(X) is a non zero polynomial
on t. The fixed submanifold My = MT of M is given by M NV,. The space
V1 is even dimensional. Let us choose an orientation on V;i. This orientation
determines a polynomial square root of dety,(X). Using a T-invariant metric
on V, we view the normal bundle A/ of M, in M as a T-equivariant subbundle
of the trivial bundle My x Vi. The bundle A is T-orientable and is of even
rank. Let us denote by Q the supplementary bundle:

M()X‘/l—':N’@Q

The bundle Q is a T-equivariant bundle over M,. We choose orientations
of V1, N, Q in a compatible way. Let uy € Hep1(N), ug € Hep1(Q) be the
T-equivariant Thom classes (see Definition 10 section 2 ) of A/, Q respectively.
Let x(N) € Hr(M,) (resp.x(Q) ) be the equivariant Euler class of the bundle
N — M, (resp. Q). By definition (we differ here from the definition of [3],
chapter 7), the restriction of uy (resp. ug) to M, via the zero section is equal
to x(N) (resp. x(Q)). We have the following equality in Hy(M,):

(43) (—2m)~4mW/2 det 1%(X) 2 x(N)(X)x(Q)(X).

Let us fix an orientation of M and consider the compatible orientation of M.
Following is the localization formula in generalized cohomology.

Theorem 107 Let T be a torus acting on a compact oriented mansifold M. For
a € Hp*(M), we have the equality

(=2m)= ™2 det {2(X) [ a(X) = [ a(X)x(@)(X)

as elements of C~°(t).

Proof: The proof is obtained by imitating the proof in the C'*°-case given
in [2]. Consider the Thom class u;(X) € Hey (V1) of the T-vector space V;,
thought of as a T-equivariant vector bundle ¢ : V; — point. We have

(—2m)~ dimVi/2g* (det 1/2(X)) ~ us (X)

as elements of Hr(V;). Consider the map p : M — V; induced by the projection
of V=V, V; to V. Thus

(~2m)~ dimY/2 det 12 ( X) /M oX) = /M o X)p ur(X).

192



EQUIVARIANT COHOMOLOGY WITH GENERALIZED COEFFICIENTS

We can take a representative of u; ( as a cohomology class in Hep r(V1))
supported in a sufficiently small neighborhood of 0 in V;. Thus we may assume
that p*u; is compactly supported in a T-stable tubular neighborhood U of
M, = p~'(0). Let 7 be the T-equivariant projection of U — M. Let i be
the inclusion of My in M. We have seen in section 2, Proposition 8, that
the restriction a|U of a to U is equivalent to 7*i*a in Hy*°(U). As p*u, is
compactly supported in U, we obtain

[, e@rux) = [ a(X)pu(x)
- /ljn*i*a(X)p*ul(X)
= /Moa(X)ﬂ'*p*ul(X).

Let 3 = p*uy € Heer(U). It remains to show that 7,3(X) = x(Q)(X) in
Hr(M,).

The restriction of 3(X) to M is equal to (—2m)~4im"1/2 det {,{2(X). The
tubular neighborhood U of M, in M is T- equivariantly diffeomorphic to the
normal bundle A" — M. Let uy be the equivariant Thom class of A”. Then, it
is well known (see the proof of Proposition 11 of section 2) that § = (7*m.0)ux
in He, 7(U). By restricting this equality to Mo, we obtain

(=2m)™ 472 det (X)) = m B(X) X (A)(X)

in Hr(M,). As dety,(X) is a non zero polynomial, x(A)(X) is invertible on
the open set det v, (X') # 0. By Formula (43), we obtain the equality 7,8(X) =
x(Q)(X). This proves the theorem. 1§

Let us illustrate the localization formula in the simple example of M =
P (C).

Let p; be the point at infinity of M. Then U = M — {p;} is isomorphic
to C. We consider the action of T = {e} on P;(C) given by z — ez . This
action has two fixed points pg = 0 and p; = co. We write still pg, p; for the
injections of py and p, in M.

We write an element of t as X = 6J, with exp27nJ = 1. Let us first
describe the T-equivariant cohomology of M. It is a free S(t')-module with two
generators a, 5. We can normalize these two generators, by requiring

po() =1, / a=0
M

while

W@ =0 [ B=1
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Identifying X = 6J with 6, some specific representatives of & and 3 are
a=1
B6) = 2m) T (Ol=*(1 + |2[*) " +i(1 + |2[*) "2 dz A dz).
The restriction maps pj, p} : Hr(M) — S(t') satisfy
(i =) =6 [ .
Consider now H;*(M). Let 6(8) be the é function at 0. The element
v(f) = 6(0)5(6)

is in Hp*(M).
As 06(8) = 0, we have

v(0) = (=2im)~16(0)(1 + |2]*)%dz A dz.

Thus, the element v does not have component in zero exterior degree, in par-
ticular its restriction to MT = {po}U{p,} is zero. The integral [,, v(#) is equal
to 6(#) and is supported at 0. This is compatible with the localization theorem
which asserts that 6 [, v(#) = 0.

Let P = py @ p] be the map:

P H7®(M) — C~°(t) @& C~(t).

Thus v is in the kernel of P.
In fact, we have the exact sequence

0 — Cv — H7®(M) — C~°(t) & C~>(t) — 0.

The exactness of this sequence can be seen as follows: As Hp(M) is free
over S(t'), we have

Hz(M) = C~°(t)or + C~(t) 3.

Writing v = fa + g3, we see that if Py = 0, then f = 0 and §g = 0. Thus
v is proportional to v. Let us see that P is surjective. The restriction maps
Py, Py s Hp (M) — C~>°(t) still satisfy

o) (p} - 1 =a/ .

(2m)(pi = po) "

Thus we have pjv = f and (27)pjv = 0g + (27)f. As it is always possible
to divide by # in the space C~>(t), we see that P = pj @ p] is surjective.
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12 Appendix — A splitting for d;

Recall from section 1 that, for a manifold M, A*(M) denotes the Z-graded
space of smooth forms on M and d = dj; denotes the exterior derivative. Let
B*(M) (resp. Z*(M)) denote the space of exact (resp. closed) forms. As in the
earlier part of this article, we assume M to be paracompact and equip A(M)
with the C*®-topology and B(M),Z(M) are given the subspace topology. We
make the following

Definition 108 The exterior derwative d is said to admit a continuous split-
ting on M, if there exists a continuous graded linear map s : B*(M) — A*~1(M)
(of degree —1) such that dos=1.

Observe that, by virtue of Hodge theorem, d admits a continuous splitting on
any compact manifold M. In fact, we will prove in an elementary way the
following

Theorem 109 Let M be any (paracompact) manifold. Then d admits a con-
tinuous splitting on M.

Proof: The proof of the theorem will be broken into the following lemmas.

Lemma 110 For any manifold M, Z(M) and B(M) are closed subspaces of
A(M).

Proof: Being the kernel of d, Z(M) C A(M) is clearly a closed subspace. By

Poincaré duality, we have
B(M) = {o € Z(M);/ ay = 0}
M
for all v € Z.,(M),. Thus B(M) is a closed subspace of A(M). &

Lemma 111 Let M be any contractible manifold. Then d admits a continuous
splitting on M.

Proof: Choose a C™-contraction ¢ : R x M — M, i.e. ¢|(0yxpm = Iy and
Bl{1yxm = my, for some fixed point my € M. Define the map H : A*(M) —
A*~Y(M) by

1
Hw) = / o*w
0
for w € A*(M). Then H is a homotopy operator, i.e.
dHw + Hdw = w — ¢jw

for w € A*(M), where ¢, : M — M is defined by ¢; := ¢|{1}xm. Now define
s: B*(M) — A*"Y(M), by s = H|p+a). Then s gives a splitting for d. §
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Lemma 112 Let M be a manifold, and W C U be two open subsets satisfying
W C U, where W is the closure of W. Let [w] € H(M) be a cohomology class
such that [w), = 0, as an element of H(U). Then there exists a form @ € Z(M)
which satisfies:

1. &|w 1s identically zero, and

2. [@] = [w] as elements of H(M).

Proof: Choose an open subset V of M such that W Cc V. C V C U. Write
w|y = db, for some 6 € A*(U). Choose a C®-function f on M such that f =1
on W and f = 0 on M\V. Then f6 is a smooth form on the whole of M . Now
set @ = w — d(f6). Then & satisfies the requirements of the lemma. §

Lemma 113 Let U and V be two open subsets of a manifold M, such that
the exterior derivative d admits a continuous splitting on U,V and U N V.
Assume further that H(UNV') is finite dimensional. Then d admaits a continuous
splitting on the union W :=U U V.

Proof: Choose a continuous splitting s; (resp. s;) of d on U (resp. V'), and
define a splitting s : B*(U)® B*(V) — A H(U)D A* 1 (V) by s = 51D sz (i€,
s(wy + wy) = s1(w,) + s2(w, ), for w, € B*(U) and w, € B*(V)).

Consider the commutative diagram (where the upper horizontal sequence is
exact):

0 — AY(W) 2 A U)p AY(V) L5 A~ (UNV) — 0

dw l diy j dy dunv J

0— B*W) - B U)eB (V) = B(UNYV)

where 7,,7,,%, and 4, are the canonical maps. From the commutativity of the
above diagram, v,s9,(w) € Z* "} (U N V), for any w € B*(W); and moreover,
from the definition of the coboundary map 6 : H*"}(UNV) — H*(W), we get
87, %, (w)] = [w] = 0. In particular, the cohomology class [y,s%, (w)] lies in the
image F C HUNV) of HU) @& H(V) under ~,.

Now choose any linear map 8 : F*~! — Z*"Y(U) & Z*~'(V) such that
[v,8(z)] = z, for all # € F*~'. Since F is finite dimensional (H(U NV') being
finite dimensional by assumption), any such (3 is automatically continuous.
With the help of 3, we define the continuous linear map

s, : B* (W) — AW U)Y @ AH(V),
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by s,(w) = s, (w) — B[v,5%,(w)], for w € B*(W). It can be easily seen that
7,85(w) € B*"1(UNV). Choose a partition of unity { fy, fv'} subordinate to the
cover {U,V} of W and choose a continuous splitting s3 of d on the intersection
UNV. Then fy - (s37,5,(w)) € A*%(U) and fy - (s37,5,(w)) € A*%(V), for
any w € B*(W). Finally, define the continuous map 6 : B*(W) — A*"}(U) &
A*~1(V) by

B(w) = s,(w) — (du(fv - (537,5,(w))) ® dv(~fv - (5371,5,(w)))) ,

for w € B*(W).

It is easy to see that v, 06 = 0, in particular, the map @ lifts to a (continuous)
map 8 : B*(W) — A*~Y(W) and moreover the map # provides a continuous
splitting for dw, i.e., dw o 8 = I. This completes the proof of the lemma. §

Let us now prove a stabilization lemma for splittings.

Proposition 114 Let {V;}i=12, . be an open and locally finite cover of M. Set,
forany k=1,2,...,

k

ka = U ‘/z .

i=1
Also set Uy = 0. Assume that d admits a continuous splitting on Vi, and U N
Vi1 and assume that H(V}) and H(U, N Viy1) are finite dimensional for all
k> 1. Then dy admits a continuous splitting.

Proof: We proceed as in the above lemma with the pair U = U, and V = Vj 4,4,
but with a special choice of the map 3. Mayer-Vietoris long exact sequence
implies that H(Uy) is finite dimensional. Let Fy, C H(Uy N Vi41) be the image
of H(Uy) ® H(Vi41) under the map v, := 5. For i < k, let H(Uy); be the
subspace of elements of H(U,) which restrict to 0 in H(U;). We have the
following

Lemma 115 For any i, there exists k(i) > i such that for all k > k(i),
Y2 (H(Uk)i @ H(Vi1)) = Fy.

Proof: Forany k > i,let R, C H(U;) be the image of H(Uy) under the natural
restriction. As H(U;) is finite dimensional, the decreasing sequence of subspaces
Ry of H(U;) is stationary. Thus there exists an index k(7) such that for k > k(¢),
Ri. = Ry Let us show that for k > k(i), y2 (H(Uk)i ® H(Vit1)) = Fy. Indeed
let @« = v—& € F}, where v (resp. x) is the restriction to U, NV, of an element
still denoted by v € H(Uy) (vesp. & € H(Viy1)). As Ry = Ryy1, We may write
v=uvy+V |y, withvy € HU,); and v' € H(Uy41). Thus a = vy — (k — Vviyr)
isin Y2 (H(Uk)i + H(Vi41))- 1
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We continue with the proof of Proposition 114. We fix an open refinement
{W;} of {V}}, ie., W; C V; and U;W; = M. Let us choose more carefully
the map B : Fr — Z(Ui) ® Z(Vit1). Let b(k) be the largest integer i > 0
such that yo(H(Ui); ® H(Viy1)) = Fi and choose 8, = Bp @ B} valued in
Z(Uk)uk) ® Z(Vit1), where Z(Uy); is the space of closed differential forms 6 on
Ui such that [f]|y;, = 0 as an element of H(U;). Furthermore with the help of
Lemma 112, we can assume that for any w € F} the component 3p(w) vanishes
identically on the open subset Uf-'(zkl)

With this choice of (i, we get a continuous splitting s+ of d on the manifold
Uk+1- This completes the inductive procedure to construct a splitting s; of d on
the manifold Uy, for all values of k. Now define a map s : B*(M) — A*"1(M)
by

s(w) = Ahglo sk(Wyy, ), for w € B(M).

Observe that for any relatively compact open subset V' of M, there exists a
large enough ko (depending only upon V) such that (si(w),, ), = (5k, (wlvkn))W
for all ¥ > ky. In particular, the map s is well defined and continuous. It is
clear that s provides a splitting of d on the whole of M. 1

To prove Theorem 109, it is then sufficient to prove the existence of a cov-
ering of M satisfying the conditions of Proposition 114.

Lemma 116 Consider a locally finite covering of M by geodesically convex
open subsets with respect to a fired Riemannian metric on M, then this covering
satisfies the conditions of Proposition 114.

Proof: For any open subset U of M, let n(U) be the smallest number of
geodesically convex open subsets of U required to cover U (if no such finite
cover exists, we decree n(U) = co). We first prove by induction on n(U) that
dy admits a continuous splitting on any open subset U C M with n(U) < oo:
The case n(U) = 1 is taken care of by Lemma 111. Observe that for any
two convex open subsets of M, their intersection is also convex, so the general
case follows by induction on n(U) and Lemma 113 (together with [8], Chapter
1, Proposition 5.3.1). Thus a locally finite open cover M = JV;, ¢ > 1 by
geodesically convex open subsets of M satisfies the hypothesis of Proposition
114. g
This completes the proof of Theorem 109. 1

Let us generalize Theorem 109 to the equivariant case.

Theorem 117 Let G be a compact Lie group acting on a paracompact manifold
M. Then, for allp € Z, the subspaces ZV.(M) and BY,(M) are closed subspaces
of A%.(M). Furthermore the equivariant de Rham differential dy : AG(M) —
B (M), where g := Lie G, admits a continuous splitting for all p > 0.
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Proof: We start with the following preliminary lemmas.

Lemma 118 Let G be a compact group acting on a manifold M. If H(M) is
finite dimensional, then HY.(M) is finite dimensional, for allp € Z,.

Proof: Consider the filtration of Ag(M) by the subspaces

G

Ac): = (5(6) 3> A00)

i=0

of Ag(M) consisting of equivariant differential forms of exterior degree less
or equal to k. Consider the space Zg(M); of closed equivariant differential
forms with exterior degree less or equal to k. It is easy to see (as in the
proof of Proposition 5) that the map o + af) induces an injective map from
Vi = Za(M)] (Z(M)i-1 + (dgAc(M)i-1)) to (S(g') ® H*(M))¢. Clearly
Vi surjects on Hg(M)/Hg(M)i—1, where Hg(M);, is the subspace of Hg(M)
consisting of those cohomology classes with a representative in Zg(M ). This,
in particular gives that Hg (M), is finite dimensional in each Z-graded degree
and for all k. This proves the lemma.

Lemma 119 Let f : V. — W be a continuous linear map between Fréchet
spaces such that Im f us of finite codimension in W. Then Im f s a closed
subspace of W.

Proof: Let us take a vector space complement U of Im f in W, which is finite
dimensional by assumption. Also let I\’ be the kernel of f. Consider the direct
sum V @ U and define a continuous linear map f :VeoU —- W by f |v = f and
f | is the inclusion. It is a surjective linear map between Fréchet spaces, so it
is an open map (by the open map theorem). In particular, the map f gives a
( linear) homeomorphism (V/LK) @ U — W. But V/K is closed in the direct
sum (V/K) @ U, and hence its image Im f is closed in W. g
Thus we obtain

Lemma 120 If HL(M) is finite dimensional, the space BE,(M) C AL(M) is a
closed subspace, for allp € Z.

Lemma 121 Let p : V — M be a G-equivariant real vector bundle over a G-
manifold M. If dg has a continuous splitting on. M, then dg admits a continuous
splitting on V.

Proof: Consider the map ¢(t,v) = tv from R x V to V. This map commutes
with the action of G. Keeping the same notation for the operator H as in
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Lemma 32, and denoting by i the inclusion of M as the zero section of V, we
obtain
w—p'i'w = (dgH + dgH)w

for all w € Ag(V). Thus if s is a continuous splitting for d; on M, then
sy = (H + p*si*)|pg(v) is a continuous splitting for d; on V. 1

Lemma 122 Let N be a contractible manifold. Let K C G be a closed subgroup
of G. Consider the G-manifold M = (G/K) x N, where G acts by left action on
the first factor and trivially on the second factor. Then dy admits a continuous
splitting on the G-manifold M.

Proof: Note first that if N = point, i.e., M = G/K is homogeneous, then
(see section 5) Ag(M) =2 (S(g')®@A(g/e)' )X is finite-dimensional in each degree,
thus d; admits a continuous splitting on M. Proceeding as in Lemma 121, we
obtain a continuous splitting for the product (G/K) x N. 1§

We will also use the following equivariant analogue of Lemma 113, which
follows by the same proof (using a G-invariant partition of unity, which exists
since G is compact).

Lemma 123 Let G be a compact Lie group and let M be a G-manifold with
G-stable open subsets U and V. Assume that dg admits a continuous splitting
on U,V and UNV. Assume further that H.,(U N'V) s finite dimensional in
each degree p. Then dg admits a continuous splitting on the union W :=UUV.

Proposition 124 Let G be a compact Lie group and let M be a G-manifold
with a locally finite covering by G-stable open subsets V;, ¢ > 1. Let U, =
f=, Vi. Assume that dy admits a continuous sphitting on Vi, and U, N\ Vi, for
allk > 1. Assume further that HE(UyNViy1) and HE (V) are finite dimensional
wn each degree p. Then
(1) dg admits a continuous splitting on M,
(2) BL(M) is a closed subspace of AZ,(M).

Proof:  Mayer-Vietoris long exact sequence implies that H.(U;) is finite-
dimensional. We construct a continuous splitting s; for dy on U; as in the
proof of Proposition 114. Then the splittings s; stabilize to give rise to a
continuous splitting s on M. Let us prove the assertion (2). Let o € B&(M).
Since Bg(U;) is a closed subspace of Ag(U;) by Lemma 120, «|y, = dgsi(a|y,)-
By construction of s we see that s;(«|y,) € A& '(U;) stabilizes in an element
B € A1 (M) such that dg8 = a. 1

Lemma 125 Let X be a G-manifold unth exactly one orbit type. Then dg
admits a continuous splitting on X.
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Proof: Since G is compact, our assumption implies that the space of orbits
M := X/G is a manifold and that the quotient map ¢ : X — X/G is a locally
trivial fibration (see [9], Chapter 2, Theorem 5.8). Take a locally finite open
covering of M by convex open subsets V; (in particular V; being contractible, ¢
is trivial over V;) and set Vi = ¢ (V;). Now take any zy € V., then V; is G-
diffeomorphic to G - xy X V;, where G acts trivially on V; and G acts canonically
on the orbit G - zo. Thus dg admits a continuous splitting on V; by Lemma
122. Arguing as in the proof of Lemma 116, we see that the covering X = |; V;
satisfies the hypothesis of Proposition 124. Thus we obtain our lemma. &

Let M be a compact G-manifold with boundary §(M). Observe that 6(M)
is automatically G-stable. Let M° = M\6(M). We call M° the interior of M.

Lemma 126 Let M be a compact G-manifold possibly with boundary. Then dg
admits a continuous splitting on the intertor M° of M.

Proof: By [9], chapter 8, Theorem 3.13, any compact manifold has finitely
many orbit types. Let us assume by induction on the number of orbit types
n(M?) of M° that the lemma is true for all compact manifolds M ( possibly with
boundary) with 7(M°) < n and take a compact manifold M with n(M°) = n+1.
The case where n(M°) = 1 is taken care of by Lemma 125. Let G; be an
isotropy subgroup such that G, is not properly contained in any other isotropy
subgroup and let N be the set of all the elements of M° with isotropy group
Gi. Then N = (M°)“ by the maximality property of G;. Thus N is a closed
submanifold of M°. Let I{ be the normalizer of G; in G. The map (g,z) +— g-z
induces an isomorphism of G xx N on its image F. Thus F' is a G-invariant
closed submanifold of M°. Cover M° as M° = U UV where U is a G-stable
open tubular neighborhood of F and V = M°\F. Clearly (V) = n and
n(F) =1. Also U, UNV and V are interiors of compact G-manifolds with
boundary. Further the existence of a continuous splitting for the operator dg on
F (guaranteed by Lemma 125) gives rise to a splitting of d; on U, by Lemma
121. By induction hypothesis, dy admits a continuous splittingon V and UNV..
Further UNV being the interior of a compact manifold with boundary, H({UNV')
is finite dimensional and so is H.(U N'V) for every p. Now the lemma follows
by applying Lemma 123 to the open cover M°=UUV. j
Let us now prove Theorem 117. Choose a G-invariant Morse function

f:M — 0,00

for the G-manifold M in the sense of ([22], par. 4). We further assume that
f is a proper map. Let 0 < A\; < X, < A3 < ... be the complete list (possibly
infinite) of critical values of f. Choose real numbers u; < 7; such that \; <
pi < i < Aig1. Define V; := f~1(p;1,1;) (1o is set as —oo) and Uy = Ule V.
Then Vi, Ui, Ui N Vi4; are interiors of compact G-manifolds with boundaries

201



S. KUMAR, M. VERGNE

and the open cover V; of M satisfies the hypothesis of Proposition 124. This
completes the proof of Theorem 117. g
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