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On the Spectrum of Gauge-Periodic 
Elliptic Operators 

Jochen Brüning and Toshikazu Sunada 

1. Introduction 
This note presents an extension of the results in [1] concerning the spectrum of 
symmetric elliptic operators on complete noncompact Riemannian manifolds. 
Thus consider a complete Riemannian manifold, M, of dimension ra, with a 
properly discontinuous action of a discrete group, T, of isometries; we assume 
that the orbit space is compact. Moreover, let E —> M be a hermitian vector 
bundle with a unitary representation 

U :T ^ L2(E). (1.1a 

More precisely, we assume that T acts unitarily on via 7*, and put 

Uyf (p) :=y*f(y-1(p)). (1.16) 

Thus each IJ1 maps C^[E) to itself. Finally, let D be a symmetric elliptic 
differential operator on CQ°(E). In [1] we have assumed that D is, in addition, 
periodic in the sense that it commutes with all (77 on CQ°(E). NOW we bring 
in a second unitary representation, the gauge, 

V : T -> C°° End£ , , x 

(1.2) 
VI I Ep is unitary for all 7 E T, p E M, 

which induces a unitary representation on L2(E). This representation will 
also be denoted by V. In general, 

W1 := ^ 7 i7 7 (1.3) 

will not define a representation any more, since [Vyi, Ul2] maybe nonzero. But 
frequently we have a good substitute namely 

C / 7 l K y 2 = X ( 7 l , 7 2 ) K y 2 C / 7 l , (1.4a) 

S. M. F. 
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where 
^(7i572) is in C°°(EndE), unitary on each fiber, and 

a character of T in each variable separately. 
(1.46) 

Moreover, we want that 

X(7,7) = 1 for all 7 E T . (1.4c) 

The operator D is called gauge-periodic if 

[W7,D]=0 onC0°°(£). (1.5) 

The periodic case is obviously contained with V, X trivial. An interesting 
example with nontrivial gauge is provided by the Schrodinger operator with 
constant magnetic field in R2. This will be our main application which we 
deal with in greater detail below. 

Assuming (1.5) we associate a C*-algebra with D as follows. Fix a fun­
damental domain, X>, for T and introduce the isometry 

*:L2(E)-+L2(r,L2(E\V)), 

* / (7 ) :=r i>oW7( / ) , 
(1.6) 

where r-p denotes restriction L2(E) —> L2(E | V) =: H. Let Ry, L7 be right 
translation by 7 and left translation by 7-1 in L2(F), respectively, and define 
the unitary operator X~ in L2(T) for 7 G T by 

X7a(5):=X(5,7)a(5). (1.7) 

Then it is easy to compute that 

Ry := $iy7$~1 = X7i?7 ® / . (1.8) 

Since X is a bicharacter, it is also readily seen that 

[X71L71 ® /,^72] - 0 for all 71,72 G T. (1.9) 

We will see that this is satisfied in our main example (and probably in many 
other cases). Then we abbreviate L7 =: X7L7 and introduce the C*-algebra 
Cw(r) which is generated by (L7)7€r in C{L2(T)). With K = 1C(H), the ideal 
of compact operators on H = L2(E | V), we introduce, as in [1], 

Civ(I\/C) :=Cw(r)®/C. (1.10) 
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On this algebra we can again define a natural trace trp (to be described in 
Sec. 3), such that all spectral projections of D have a finite trace. We say that 
Cw(I\/C) has the Kadison property if there is a constant C > 0 such that 

t r r P > C , (1.11) 

for all nonzero orthogonal projections P G Cw(I\ K). The largest constant in 
(1.11) will be called the Kadison constant of Cw(I\ /C), to be denoted CW(T). 

We can show that D has a unique self-adjoint extension, D, with spectral 
resolution 

D = 
+00 

— oo 
XdE\ . 

Quite analogously to [1] we then obtain 

Theorem 1 If Ai > A2 G R\spec D then EXl-EX2 G C w (I\ K). IfCw(T) 
has the Kadison property then the spectrum of D has band structure in the 
sense that the intersection of the resolvent set with any compact interval of 
real numbers has finitely many components. 

As noted in [1], the proof of Theorem 1 gives some quantitive information 
which we exploit in connection with the magnetic Schrôdinger operator in IR2. 
Recall that this operator is defined on Co°(IR2) by 

DA := 
2 

E 
¿=1 

1 
i=1 

a 
dxi + ai 2 

+ v (1.12) 

where ai,v G C°°(IR2). The magnetic field is assumed to be constant, 

b(x) := 
da2 

dxi -
dai 
ÔX2 

x = 6(0) =:&, 

and we assume moreover that v is Z2-periodic. b is also equal to the magnetic 
flux over a unit cell, 

b = 
0<Xi,X2<l 

b(xiIX2)dxidx2 =: 2-KO . (1.13) 

This operator fits into our framework as follows. Since the magnetic field is 
constant we may assume that 

a\{x) = bx2/2, a2 (x) = —bxi / 2 . 
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With u) the standard symplectic form in R 2 , we define for z E Z 2 

Uzf(x) :=f(x-z), 

Vzf(x) := e ^ 1 6 / 2 ^ * - * ) / ^ ) . 
(1.14) 

Then it follows that 
X{z1,z2) = e - / = ï b ' 2 ^ z ^ (1.15) 

and 
f f — b u>(z2,z1)f f 

1-/ZiljZ2 — e J-JZ2ljZi • 
(1.16) 

Now we regard the quantity b as a parameter restricted by |6| < Ci, say. It is 
known that the precise band structure of spec DA in a given interval [Ai, A2] 
depends rather subtly on the arithmetic nature of 9 in (1.13). We will prove 

Theorem 2 Assume that 9 — p/q G Q with (p,q) = 1, and that Ai > 
A2 E R \ spec DA- There is a constant C depending only on C\, Ai, A2 ? and 
v such that 

G(DA, Ai, A2) := }({ gaps in spec DA H [A2, Ai]} 

satisfies the estimate 

G{DA, AI, A2) < C(Ci, Ai, A2, v) g. (1.17) 

The proof of this result uses the fact that the Kadison constant of CW(r) sat­
isfies CV(r) > q~1. This degeneration then allows the possible development 
of Cantor structures if 9 approaches irrational numbers. It has been shown 
in [3] that, for suitable G also has a similar lower bound. Crucial for this 
result was a thorough study of Harper's equation, a discrete approximation 
to DA> Using only the structure of the rotation algebras (which are brought 
in by (1.16)) it has been shown in [2] that the maximum number of gaps is 
realized by Harper's operator. One might thus hope that our approach, which 
links all gauge-periodic operators with the rotation algebra, opens a way to 
bypass the discrete approximation and to establish directly that "sufficiently 
complicated" operators in the rational rotation algebra will indeed have the 
maximum number of gaps. Of course, this need not be so for every operator 
as illustrated by the case v = 0. Since CV(r) = 0 for irrational 9, we also see 
that for a vanishing Kadison constant no general conclusion concerning the 
structure of the spectrum is possible. 

We are indebted to Victor Guillemin and Johannes Sjôstrand for some 
enlightening discussions. 
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2. Parametrix construction 
We follow essentially the outline of [1, Sec. 2]. Since T acts properly discon-
tinuously the sets 

T(K) := { 7 e r I Kn-yK^®} (2.1) 

are finite for all compact K c M. It follows that for any sequence (tuWr C 
L2(E) with supp uy C jK for some compact K and all 7, u := E 

7^r 
1¿7 is well 

defined. Moreover, we find the norm estimate 

ЫЬ(Е) < ПК) E 
7^r 

I W I i 2 ^ ) • (2.2) 

In particular, the convergence of the right hand side implies u € L2(E). 
On the other hand, if ipu ip2 6 C£°(M) and B e C(L2(E)) and if we put, 

for u € L2(E)), 

B^u := W^iBfoWJu =: ipllW1BW*tp2lu, (2.3) 

then we can easily prove the estimate 

E 
7 

H^llì^u?) ^ sup 
M 

w2

1 SUp 2̂ 
M 

•ttr U supp U supp 2̂ P I I 2 N I W 

(2.4) 
Now consider a gauge-periodic operator D with domain CQ°(E) in L2(E). 

To show that D is essentially self-adjoint we consider u G L2(E) with 

D*u = V^îu. 

Since 16 G HfOC(E), p := ord£>, by elliptic regularity we have ip^u G HQ{E) 
for ^ G Cg°(M). Now pick ^ such that 

E 
7€r 

^ 7 = 1. (2.5) 

Then we compute 

0 = (u, (D* - \ / - L » 

= 
E 
7,7' 

(ф-уЩ Dtpyu) + V^Ill^H2 

= E 
7,7' 

( 7̂n, Dijjyu) + >/^T||tz||2 , 
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which implies u = 0, as desired. 
We identify D with its closure in L2(E). Assuming next D > 0 and 

p > m we construct a local paramatrix for the heat operator dt + D as in 
[1, Lemma 1]. Using the same notation, we define the global fundamental 
solution by 

Ttu := E 
76f 

W^<pFtil>w;u, (2.6) 

and the remainder term by 

Rtu : = E 
7er 

W^{dt + D)<pFtil>w;u, (2.7) 

where ip satisfies (2.5) and (p G C^{M) equals 1 near supp ip. Going through 
the proof of [1, Lemma 2] we obtain the analogous result (using (2.2) and 
(2.4)) i.e. 

Lemma 1 Fix T > 0. 
1) Uniformly in t G (0, T], we have 

\\Ft\\L2(E) + WR>t\\L*(E) < C2 . 

2) For u G L2(E), the functions Ttu and TZtu are continuous in (0, T] with 

lim 
1—0 

Tt и = и. 

3) Tu is differentiable in (0, T], has values in V(D), and satisfies the equation 

(dt + D)Ttu = 1Ztu. 

As in loc. cit. we can now derive the Neumann series 

exp(-tD) = 
oo 

E 
3=0 

(-1)j (F*j R)t, (2.8) 

where 

(F*°n)t := ft, (F*i+lK)t = 
•t 

o 
{F *j n)t-uTludu. (2.9) 

The kernel estimates in [1, Lemma 1] then lead, as before, to the following 
result. 
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Lemma 2 exp(-tD) has a smooth kernel (with respect to the given L2-
structures), 

Kt(p,q) e Ep®E*q, * > 0 , (p,q)eMxM. 

This kernel satisfies the estimate 

ÌKt(p,q)ÌEp®E; < C 3 r^exp ( -C 4 dM (p , g ) p / ( p - 1 ) r 1 / (P - i ) ) , (2.10) 

uniformly in (0, T] x M x M; here dM denotes the Riemannian distance. 
Moreover, as t \ 0 we have the asymptotic relation 

TTEpKT(P,P)~T-™/?A(P), (2.11) 

with an explicitly computable function A(p) (cf. [1, (0.1)]). 

3. C*-algebras 
Following the outline of [1] further, we have to introduce the trace trp on 
Cw(r, /C), defined in (1.10). To do so we introduce the commutant of (7£ 7) 7 Gr, 

Mw(T) := {A E C(L2(T,H)) I [ 4 , £ 7 ] = 0 for 7 e T} . (3.1) 

Then we define the Fourier coefficients of A G Mw(T) by 

i ( 7 ) ( « ) :=7M(5?)(1) , (3.2) 

where 7 G I\ v G H (such that ^(7) G £(#) ) , and Of G L 2(r, if) is given by 

¿1(7) - v 7 = 1 , 
0 otherwise. 

(3.3) 

The following properties are easily checked. 

Lemma 3 1 ) For 7 G T, K G K(H) wc have 

L 7 ® K( 7 ' ) = K, 7 = 7'. 
0 otherwise. 

2) For AGMW(T) a n d r e L 2 ( r , f f ) , 7 G r , 

ì4t(7) = E 
y'Er 

X( 7 ' , 7 ) i (77 ' - 1 ) ( r (7 / ) ) -
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3 ) F o r A e M w ( r ) , i e r T 

J4*( 7) = ( i ( 7 - 1 ) ) * . 

4) Far A,B e MwF), i €T 

AB(7) = E 
7' 

X ( 7

, , 7 ) i ( 7 7 / - 1 ) 5 ( 7 ' ) , 

in particular 
A*A(1) = E 

7 

A ( 7 ) * i ( 7 ) . 

5) For A € MwiX) we have 

PII < E 
7€T 

\\Ml)\\-

Proof Properties 1) through 4) follow by straightforward computations. 
5) follows from the arguments in [1, Lemma 3]. 

Thus we arrive at the crucial 

Lemma 4 If D is a gauge-periodic symmetric elliptic differential operator 
in L2(E), of even order p > m. then 

e~D eC w ( I \ /C) . 

Proof We have e~D G MwiX) by assumption, and it is easily computed 
that for v G H = L2(E \ £>), p G £>, and A := $ e - D $ _ 1 one has 

A(y) (v)(p) = 
D 

e (p,iqh*v(q)dvolM(q) • (3.4) 

Thus all Fourier coefficients are compact. 
In T we introduce the minimal word length with respect to a fixed finite 

set of generators; this defines a translation invariant metric, dp5 on T x T. 
Then there is a constant, C5, such that 

dr (71*72) < Cs inf 
p,q E D 

dM(7iP,72<?) + 1). (3.5) 

Now we put r(j) := dr(7,1) and observe that 

tf{7 e r I r ( 7 ) <R}< C6eC7R. 
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Then the estimate (2.10) implies that 

E 
7^r 

||i( 7)||<oo. 

Combining this with Lemma 3, 1) and 5), we reach the desired conclu­
sion. 

It remains to define trr. We put, for A € Mw(?)+ '•— the positive part of 
Mw(T), 

tvr A := trH Â(l). (3.6) 

It follows from Lemma 3, 4) that trr is a faithful trace on Ai\y(T), hence 
on Cw(r,/C). Now if Ai > A2 are real numbers, and D is a gauge-periodic 

symmetric elliptic operator with spectral resolution D = +00 
—00 

XdEx, then 
E\x — E\2 is an integral operator with smooth kernel [4]. It follows as in (3.4) 
that 

trr(EXl -Ex2) = 
v 

t r £ p ( £ A l - EX2)(p,p)dvo\M(p) • (3.7) 

Thus we arrive at 

Lemma 5 For any gauge-periodic symmetric elliptic operator D and real 
numbers Ai > A2 we have an estimate 

0 < t r r ( £ A l -Ex2)<C(\u\2,D). (3.8) 

The dependence on D is only through the coefficients and their derivatives in 
an arbitrary neighborhood off). 

4. Proof of Theorem 1 and Theorem 2 
The proof of Theorem 1 now follows from Lemmas 4 and 5, precisely as the 
proof of [1, Theorem 1]. 
Proof of Theorem 2 Fix Ai > A2 not in spec DA, and restrict the mag­
netic field to |6| <C\. Then we obtain from Lemma 5 

t r r (£ A l -Ex2) <C(Ai ,A 2 ,Ci) . (3.9) 

The theorem will thus be proved if we can show that 

CW(T) > l/q, (3.10) 

if b — 2TT0 and 8 — p/q, (p, q) = 1. To prove (3.10) we introduce the (universal) 
rotation algebra Ae, with generators u, v satisfying 

vu — e2ny^euv =: /i uv . (3.11) 
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Recall that As admits a canonical action of T2 = S1 x S1 3 (wi,W2) —'• 
w •—> ctw G Aut.4# such that awu = w\U, awv = W2V. We will also need a 
distinguished irreducible representation, 

II : A0 M(A, C), 

n(u) = diag (1, / i , / i 9 x ) , 7r(i;) cyclic permutation of 
the standard basis. 

(3.12) 

Finally, denote by tp : A$ x /C —> Cvy (r) the representation sending n ® X to 
Lei ® if and ̂  ® if to L e 2 ® if. Then we claim that for all A G Ae ® if with 
trp <£>(̂4) finite we have 

tr r (p(A) = q 1 

T2 

trc<7®# (7Г ®Ioaw® I)(Ä)dw , (3.13) 

where dw is normalized Haar measure on T2. To prove (3.13) we only have 
to observe that 

¥>(A)(0,0) = 
T2 

(aw ®I){A)dw. 

Since is an isomorphism, (3.13) implies (3.10) and the proof is complete. 
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