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ON NONLINEAR SCATTERING OF STATES 
WHICH ARE CLOSE TO A SOLITON 

V.S.Buslaev and G.S.Perelman 

1 So l i tons 

Consider the nonlinear Schroedinger equation 

(1.1) tyt = -V>x* + F{\^\2)^, ip = V>(*, t) e C, 

t e R. Assume that 
i)F is a given smooth (e C°°) real function bounded from below, 
ii)the point £ = 0 is a (sufficiently strong) root of the function F: 

(1.2) F(0 = F1?(l + O(0),P>0. 

Further consider the function 

(1.3; U(<l>,a) 
1 

8 
A 2 

1 

2 

r<t>2 
F(ê)d£. 

If a / 0 this function is negative for sufficiently small 0. The next assumption 
on F will be given in a sligtly implicit, but absolutely elementary form: 
iii)for a from some interval, a G A c R+, the function 0 —* J7(0,a) has a 
positive root; if <f>o(= (/>o(ot)) is the smallest positive root then U^^o^a) > 0. 

Under all these assumptions there exists the unique even positive solution 
y —> <p{y) of the equation 

(1.4) 4>yy = -Uà = 
1 
4 

a2<f> + F(<t>2)<p 

vanishing at infinity. More precisely 

(1.5) <f> = <j>(y\a) ~ <j)ooexp( 
1 
2 

aik/D,?/ oo. 

The following functions of x can be called the soliton states: 

(1.6) w(x\a) — exp -i/3 + i 
1 

2 
•vx)(/>(x — 6|a), 

S. M. F. 
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here 
(1.7) er = (ß,üJ,b,v),u> = 

r 
4 

[v2 - a2), 

/3,w,i) , t ;GR,aG A. The set of the allowable a will be denoted by E. If a is 
a solution of the Hamiltonian system: 

(1.8) 0/ = U;,Ü/ = O,&' = v y = 0. 

the function w(a;|cr(£)) is a solution of the equation (1.1) called the soliton. 

2 The linearization of equation (1.1) 

Consider the linearization of the equation (1.1) on the soliton w(x\a(t)): 

(2.1) iXt = -Xxx + F(\w\2)x + F'(\w\2)w(wx + wx). 

Instead of x introduce the function / : 

(2.2) y(x,t) = exp(m f(y,t),$ = -3(t) 
1 

E 
vx,y — x — b(t). 

The function / obeys the following equation: 

(2.3) ift = L(a)f, 

where 

(2.4) L(ot)f = -fm + 
1 

4 
a'f + F^f + F'i^if + f), 

0 = <p(y\a). Equation (2.3) is only a real-linear equation. Introduce its com 
nlexifìr.ation: 

(2.5) ift = H(a)fJ= f 
f 

(2.6) H(a) = Htt(a) + V(a),Ha(a) = -dl 
1 

4 
a2)cr3, 

(2.7) V(a) = \F((t>2) + F'{4?)4?] as + îF'(02)02a2, 

02,0z are the standard Pauli matrices: 

(2.8) 02 = 
0 
i 

—i 
0 

,<73 = 
1 
0 

0 
- 1 
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ON NON LINEAR SCATTERING 

3 Properties of the operator H{a) 

The operator H(a) can be treated as a linear operator in L»2(R —> C2). Define 
it on the domain where H0(a) is self-adjoint. It possesses the properties: 

(3.1) a3H = H*a3,a2H = -H*a2,aiH = -Hav 

As a result the spectrum of H is invariant with respect to the following 
transformations: E —> E,E —> —E. 

The continuous spectrum consists of two half-axis [2?o, oo) and (—00, — 2?o], 
£0 = \ot2- Its multiplicity is equal to 2. 

Owing to the exponential decay of the potential term V(a) at infinity the 
discrete spectrum of H(a) contains only a finite number of eigenvalues and 
the corresponding root subspaces have only finite dimension. 

The point E — 0 is always a point of the discrete spectrum. One can 
indicate two eioen functions 

(3.2) 6 = U] , 6 = 
3̂ 

u3 1 

where 
(3.3) ux = -i<b(y\a),uz = -(f)y, 

and two adjoint functions: 

(3.4) 6 = 
«2 
u2 

Ì4 = 
7/>i 
г¿4 

where 
(3.5) 2̂ = 

2 

a Фа, Щ 
2 
9 JÓ. 

They obey the relations: 

(3.6) Hb = Hb = 0, Hb = ib, НЬ = гб. 
Actually, the spectrum of H(a) can lie only in the real axis and in the imag­
inary axis of the S-plane, see [Wc2], for example. It is known also that the 
spectrum of H(a) is real and the root subspace corresponding to the point 
E — 0 is generated by the vectors ^1,̂ 2,̂ 3,̂ 4 if and only if 
(3.7) daUW2 > 0-

Consider the resolvent R(E) = (H — E)~l. Its kernel R(y,y'\E) is an 
analytic function in the extended £-plane: it admits an analytic continuation 
through the continuous spectrum as a meromorphic function. The resolvent 
kernel goes to infinity when E tends to the branch points =p2?o if the equation 
H(a)ip — T^oty, treated as a differential equation, has nontrivial solutions 
bounded at infinity. In this case the points =f£?o will be called resonances. 
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4 Nonlinear equation 

Consider the Cauchy problem for equation (1.1) with the initial data 

(4.1) гЬ(х.О) = гЬп(х). 

where tpo € H1, H1 is the standard Sobolev space with the norm: 

(4.2) \\f\\h = 11/111+ ll/'lli-

The problem has a solution ip = ip(x,t) which belongs to H1 with respect to 
x for each t, moreover ip e C(R —• Hl) . Any such solution ij) obeys two 
conservation laws: 

(4.3) J t)\2dx = const, f[\Mx,t)\2 + u(Wx,t)\). dx = const, 

where U is the function (1.3). The second formula (4.3) leads to the following 
estimate: 
(4.4) \\ФЫ)\\ю<с(\Ш\ю)\Ш\ю, 
here c = R+ —> R+ is a smooth function. If in addition ^ has the finite norm: 
||(1 + |x|)^o||2 < °°, the solution ip also has the finite , but growing in time, 
similar norm: 

(4.5) ||(1 + |x|№(x,*)||2 < c(\\1h>\\h*) [||(1 + M M k + t\\M\m]. 

5 T h e o r e m 

Let cr0 = (ßo,uo,bo,vo) G ,^0 = î 
4 

(v2 - a£). Consider the Cauchy problem 
for equation (1.1) with the initial data: 

(5.1) rß0(x) =w(x\a0) + Xo(x). 

Our aim is to describe the asymptotic behavior of the solution ip as t —> oo. 
Assume that: 
T1) the norm 
(5.2) JV=||(l+a;2)Xo||2+||Xoll2 

is sufficiently small; 
T2) E = 0 is the only point of the discrete spectrum of H(ao) and the dimension 
of the corresponding root subspace is equal to 4; 
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T3)the points =fEo are not resonances; 
T^the function F is a polynomial1 and p > 4. 

Then there exist a+ G E and /+ G L2 fl such that 
(5.3) ф =w(.,o+(t))+ exp(-ilot) + o(l) 

as £ —> 00. In this formula: <r+(£) is the trajectory of the system (1.8) with 
the initial data a+(0) = <r+; /0 = — o(l) is meant L2 -norm. Moreover 0+ in 
(5-3) is sufficiently close to ao and /+ is sufficiently small. 

It is worth to note that the operator H(a) possesses theses two properties 
T2) and T3) if a is sufficiently close to ao and the operator H{a+) possesses 
both these properties naturally. 

6 Li terature 

Of course, simple formulas (1.6-8) for the soliton are well known. But in many 
dimensional ж-space the situation is quite different,see,for example, [Str2, 
Ве-Li]. Properties of the spectrum of the operator H(a) were considered 
in [We2]. The Cauchy problem for equation (1.1) was considered in the space 
Hl in [G-V, K] and in some other works. The Cauchy problem with the initial 
data of the form (5.1) was treated in [Sh-Str, Ca-Li, Wei, We2]. The main 
result states that for the Cauchy data (5.1) the solution always remains in a 
small fl^-vicinity of the orbit generated by the trajectory 00(i), 00 (0) = <то- As 
for the scattering behavior of the solution when t —•> 00, some series of works 
devoted to the scattering in the absence of bound states should be mentioned 
[Strl, G-V]. The only result which is close to formula (5.3) is contained in 
[Sof-We]. The authors of the work have considered the equation 

iil)t = - А ф + [V(x) + \\ф\т-1]ф, 

ф = ф(х, t), x G Rn, 1 < m < n + 2 
ri-2 

n = 2,3. 

In this situation the soliton appears as the perturbation of an eigenfunction 
of the operator ip —* — A ip + V(x)ip, which is supposed to be unique and 
simple. The main difference between the theorem of [Sof-We] and our theorem 
is generated by the fact that in the first case the center of the soliton is 
stable. As a result our work containes some number of technical detailes 
which differ it from [Sof-We] although the main line is the same. However, 
it is worth to emphasize that this common mane line is also similar to the 
corresponding one in the investigation of asymptotic regimes for nonlinear 
parabolic equations,see[He]. 

1This assumption is not crucial, it is accepted only for the simplicity 
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7 Separation of motions 

Consider a trajectory a(t) = (/?(£), <j(i), b(t),v(t)) G £ which generally is not 
a solution of system (1.8).Consider the corresponding trajectory in the set of 
soliton states 
(7.1) w(x\a(t)) = exp(i$>)<t>(y\a), 

$ = -B(t) + 
1 
2 

v(t)x, y = x — b(t), a = a(t). 

Write the solution ip of the Cauchy problem (1.1),(5.1) as the sur 

(7.2) T/>(X, t) = w(x\a(t)) + t). 

Instead of the equation (1.1) one can get a system for a and x introducing 
some conditions on the splitting (7.2). Let wa be the derivative of w(x\a) with 
respect to the parameter a and wa(t) — wa(-\a(t)). One will use the following 
condition to fix the splitting: 

(7.3) (X(t),a3wa(t)) = 0 , 

here (•, •) is the scalar product in the space 1/2(R —> C2). Note that 

(7.4) W/3 = exp(za3$)£, ^ = exp(2<73$)&>, 

(7.5) wb = exp(icr3$)65 ™v = exp(zcT3$) Й -
i 
2 M i 

1 
2 ' 6 

So conditions (7.3) can be represented in the form: 

(7.6 </(<Wl(£)> = 0, 

where 
(7.7) X(x,t) = exp(i$)f(y,t),Çi(t) = ii(y\a(t)). 

A different but an equivalent form of the splitting condition is 

(7.8) im(/(t),Ui(i)) = 0. 

The geometrical sense of (7.3)=(7.6)=(7.8) is very simple: condition (7.6) 
implies that f(t) belongs to the subspace of the continuous spectrum of the 
operator H(a(t)). Actually the condition leads to decomposition which is in 
accordance with the asymptotic behavior (5.3). 

Write down the system for a and x (or / ) m more explicit form. Replace 
the set a = (/?, u, 6, v) by some other set of variables (7, c, v), where 

(7.9) b 
i 

v(r)dr + c, (3 = u(r)dt + 7. 
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In terms of new variables system (1.8) acquires the form: 

(7.10) y = 0,u/ = 0,c' = 0,i/ = 0. 

Rewrite equation (1.1) in terms of f: 

(7.11) ift = L(a)f + N(d>, f) + 1(a)f + l(a)d> + • 
1 

E 
vv 

0 
•0a » 

WVIPTP 

(7.12) N(<j>, f) = F(\cf> + f\2){ct> + f) - F{^)4> - F(<p2)f 

-F'(ó2)ó2(f + f), 

(7.13) 1(a) = 
1 

2 
v'y + ic'dy + 

1 

2 
bv' - V 

Consider the derivative of splitting condition in form (7.8) with respect to t 
and substitute expression (7.11) for ft in the obtained relation. The result can 
be written down as follows: 

(7.14) (A0 + A1)\ = G, 

where 
(7.15 A = (7' 

1 

2 bv',J 
1 

2 
vv', c', v') A0 = {imiu^Uj)}4^, 

{l.lQ){A,X)^-re{l{a)f,u3)-
2 

a 
[J 

1 
vv') im(f,uja), G = re(N, Uj). 

Obtain the explicit expression for the matrix Aq: 

(7.17) A2= 

0 
—e 
n 
0 

e 
0 

n 
0 

0 
0 
n 

-n 

0 
n 
n 
0 

,n = 
1 
4 IMI!, e = 

4 dn 

a da 

Under assumptions T2),T^) 

(7.18) deti40(a0 ^ 0, 

see (3.7). If a(i) is close to ao and /(£) is sufficiently small (actually we are 
going to prove it), equation (7.14) can be used to estimate A. Substituting A 
from (7.14) to the right side of (7.11) one obtains the system: 

(7.19) <Tt = Gì(aJ),ifi = L(a)f + N1(aìf). 

Equation (7.14) is not a complete equivalent of conditions (7.3)=(7.6)=(7.8). 
To get the equivalence one has to add to equation (7.14) condition (7.3)= 
(7.6)=(7.8) at the time-moment t = 0: 

(7.20) (Xo,<73Wa('\<ro)) = 0. 
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Generally this condition is not satisfied by the given decomposition (5.1) of 
the initial data fa. But if xo is sufficiently small it is possible to reconstruct 
decomposition (5.1) of the initial data fa in order to satisfy to condition (7.20) 

In fact, one has to solve the equation: 

(7.21) (fa - vecw(-\ai),a3Wa(vi)) = 0 
with respect to o\. Here should be given by (5.1) with sufficiently small xo, 
see (5.2). The local solvability of (7.21) is guaranteed by the nondegeneration 
of the corresponding Jacobi matrix: 

(7.22) - {waA'\ao),azwaj(-\<To)) = -2iA0(a0). 

So one can assume that decomposition (5.1) obeys condition (7.20). 
Since i\) G C(R —> Hl) a little more general constructions show that condi­

tion (7.3) has to fulfil on some small time-interval. Some estimates which will 
be given in next sections, will show also that at the end of this time- interval 
the solution has the structure (5.1) with the small second term. It gives us 
the possibility to continue the constructions and to solve equation (7.3) for all 
te [0,ti]. 

8 Reduction to a spectral problem 

Now one can describe the main line of the following constructions. 
l)System (7.19) will be investigated on a large finite interval t G [0, ti]. In 

the end one will be able to consider the limit t\ —> oo. 
2) On the interval [0, t\) one can pick out the leading term of system (7.19) 

in the. form: 
(8.1) °t = O , i ft = Ua) f. 

The first equation should be completed by more stable final data: a(ti) — o\ 
. with the imdefinite for the moment values: 

cri = <r(ti),<7i = (ßu vu h, Vi), 

w 1 
4 {v\-a\)M =viti + ci,/3i = o ; i é i + 7 i . 

Naturally now one has to put L(a) = L(ot\). After that the second equation 
oppositely should be completed by the known initial data. 

3)Rewrite full equation (7.11) in order to get the operator L{pt\) as the 
main term of the of the right side. Introduce the new function g: 

(8.2) X = exp(i®i)g(z, t), $ i = -uit - 71 
1 

' 2 
ViX, Z = X — V\t — C\. 
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It obevs the en nation: 
(8.3) igt = L{ct\)g + D(a,g), 

and D is given by the formulas 

(8.4) D = D0 + Di + D2 + D3 + £»4, 

D0 = exp(—iA) U(rWy\a) + i 
2 

1 

j,2 1 

2 
wî/)^a(î/|a) 

A = $i - $, 

D\ = [F(<p2(y\a) + F'(4>2(y|a))tf>2(y|a)] 9~ 

[F(^(z|ai)) + ^ ( ^ ( z l a O ^ ^ l a i ) ] 5, 

£>2 = F'(<A2(2/|a))</.2(y|a)[exp(-2iA) - % 

Ih = [F'{<t>2{y\a))<t>2{y\a) - F'(^(2|a1))^2(2|a1)]p, 

D4 = eyLp(-iA)N(<p(y\a),exp{iA)g). 

In order to investigate the long-time behavior of the solution of the second 
equation (8.1) and its full form (8.3) one has to separate the contributions of 
the discrete spectrum and of the continuous spectrum of the operator L(a\), 
more precisely, of the operator H(a\). Consider the representation 

(8.5) g — k + h, 

where k and h are the indicated contributions. One can use condition (7.6) to 
express the component k in terms h. Since 

(R fi k--
i 

Ki E(za1) 

condition (7.6) leads to the relation: 

(8.7) 
i 
>i(A|*(2;|a1),(73ê(y|a)) (Ah,o3£j(y\a))=0, 

where 

(8.8) A = 
eiA 

0 

n 
e-iA 

The main term of equation (8.7) is again defined by the matrix An: 

(8.9) (ë(^|ai),a3ë(î/|ai)> 2iA0(an). 

At last for h one can write down the following integral representation feaua-
tion): 

(8.10) h — exD(—iHit)hn — i 
2 

o expf-zffi(É-r)lPiDdr. 
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Here P\ is the spectral projection operator on the subspace of the continuos 
spectrum of H\ and 

(8.11) ho = P\go,go(z) = exp ¿71 2 1 
2 

Vi (z + ci] Xo(z + d). 

The final form of the equations which are used in order to investigate the dy­
namical system on the interval t G [0, t\] is given by relations (7.14),(8.7),(8.10). 

9 Linear evolution 

Consider the operator H = H(a) with some fixed a and assume that H satis­
fies conditions T2),T3) (with a instead of ao in them). Let U(t) = exp(—iHt] 
be the corresponding evolution operator and P be the spectral projection oper­
ator on the subspace of the continuous spectrum of H. Equation (8.11) shows 
that one has to have some estimates of the evolution U(t)P . Such estimates 
will be presented in this section. They are enough transparent and can be 
proved by means of simple (but unfortunately not short) computations whicl 
use the spectral resolution of H. So let h = Ph, then 

(9.1) \\U(t)h\\x<ct-V2[\\h\\2 + NR(h)}; 

(9.2) H a l l o o < c(l + Г1/2[||Я||я1 + NR(h) 
(9.3) \\QU(t)h\\2 < c(l + i)"3/2[IN|2 + NR(h)}. 
Here 

NR(h) can be equal ||(1 + a;2)/i||i or ||(1 + x2)h\\2, 

q{x) = {1 + \x\)-k,k>3,5. 

10 Estimates of nonlinear terms 

All nonlinear terms of euation (8.10) can be estimated with the following set 
o: 

M0(t) = \a2-allMAt) = \d(t)\,d = у - z, 

M2(t) = U\Lk = (Ki,K2,K3,K4),M3(t) = \\Q(z)h(z,t)\\2,M4 = l f e í ) I U 
Moíí) = supMo(T),6/M,(t) = sup Mi (T), 

T<t 
Mo(t) = supíl + r)3/2M2(r), Maft) - supil + r)3/2M3(r), 

T<t T<t 
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M , m = sunn 4 - t ^ M a I t Y 
r<t 

At last 
M ^ M ^ t i ) . 

These definitions and relation (7.14) lead more or less directly to the inequal­
ities: 
(10.1) ||A|| < W(M)(M2 + M3)2(l + t)~\ t < ti. 

Here W(M) is a function of Mo, Mi , M2, M3, M4, which is a bounded function 
on a finite vicinity of the point Mj = 0 and can acquire infinite values outside 
of some larger vicinity. It is possible to present an explicit expression for W 
but this expression is useless for our purpose. ¿Prom (10.1) one can obtain: 

(10.2) M0,Mi < W(M)(M2 + M3)2. 

Inequalities (10.1) together with the relation (8.7) generate also the estimate 

(10.3) M2 < W(M)(M2 + M3)3. 

Now pick out from D4 all terms containing at least one power of <p and denote 
their sum by DJJ, the remainder will be denoted by Dm. Finally, let Dj — 
Dx + D2 + D3. 

Direct computations permit to prove the following estimates: 

(10.4) ||(l + z2)Pi(A) + .E>/ + £>//)||2< 

W(M)(M2 + M3 + M4)2(l +1)-3/2. 

In order to obtain a similar estimate for Dm one has to use additionally some 
information on solutions of nonlinear equation (1.1), more precisely one ha* 
to use conservation law (4.3) and estimate (4.5). As result one has obtain: 

(10.5) \\PiDm\\2 + ||(1 + z^PiDmh < W(M)Mf-l(l + t)-*2. 

Just here it is important to assume that 4 < p. 

11 Final estimates 

Using equation (8.10) and combining estimates (9.1-3),(10.4-5) one can obtain 
finallv: 

m.i) M3, M4 < W(M) N + (M2 + M3)2 + M2 + M f - 1 

where 

i V = | | ( l + x2)xo||2 + ||x,oll2. 
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The first term N is originated from the first free term of the right side of 
equation (8.10). It is controlled by the second variants of estimates (9.2-3). 
Other terms in brackets are originated from the integral term of equation 
(8.10). They are controlled by estimates (10.4-5) and by both variants of 
(9.1),(9.3). 

Now one has obtained a closed set of inequalities (10.2-3),(11.1) and can 
try to solve it. Formulas (10.3),(11.1) give the system: 

(11.2) M2 + M3,M4 < 

W(M) [N + (M2 + M3)2 + (M2 + M3)3 + M2 + M f - r 
If N is sufficiently small, the system shows that the pair M2 + M3,M4 car 
belong either to a small vicinity of the point (0,0) or to some domain whose 
distance from (0,0) is limited from below uniformly with respect to N. It is 
clear that only the first possibility can be realized. Therefore all the functions 
M0,Mi,M2,M3,M4 are sufficiently small: 

(11.3) Mj(t) < n(N)N, 
here /x(iV) is a bounded function denned for small N. Since all constants in the 
estimates do not depend on t\ the same estimates are true for Mj(i) uniformly 
in t 6 R+: 
(11.4) Mdt) < fi(N)N. 

12 The limiting soliton 

Return to (10.1) again. Estimates (11.4) show now that 

(12.1) \\\\\<H(N)N2(l + t)-\ 

It implies that all variables 7, a;, c, v have limits 700, a;^, c^, Vqq as t —> 00. So 
one can introduce the limiting trajectory a+(£): 

(12.2) B+(t) =o;+£ + 7+,u;+ : 0^0,7+ = 7oo + /•00 (ш(т) - Uoo)dT, 

(12.3) 6+(t) = v+t + c+,v+ : 0^0,7+ = 7oo + 
-00 
'0 

(V(T) - Voo)dT. 
It is clear that 
(12.4) a(t)-a+(t) = 0(ri), 
as t —> 00.Now the limiting soliton w(x\a+(t)) arises naturally and 

(12.5) w(x\a(t)) - w{x\a+{t)) = 0{t~l) 

in the space L2 fi L^. 
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13 Dispersion reminder 

The second term x of the total solution ip = w(x\a(t)) + x can be studied 
asymptotically if one uses the same representantion of x as m section 8,but 
with oo instead of t\ in transformation (8.2): 

(13.1) X = exp(i<S>oo)g{z,t), 

^ = -BJt) 
1 
2 v+x, z = x — b(t). 

Now the operators Hi and Pi should be replaced by the naturally definec 
operators H+ and P+ and all construction of section 8-11 can be duplicated. 

Particularly one again can separate the contributions of the discrete anc 
the continuous spectra of H+: 

(13.2) g — k + h. 

Prom 
(13.3) M2(t) < fi(N)N(l + *)"3/2, 

see (11.4),one can obtain at once the estimate: 

(13.4) k = 0{t-3'2), 

in the space L2 fl L^ . 
Reprezentation (8.10) for h acquires the form: 

(13.5) h = exp(—iH+t)P+ho — i rt 
Jo 

exp[-iH+(t - T)]P+Ddr, 

with the respectively transformed D. 
Introduce the representation 

(13.6) h = exp(—iH+t)hoo + R: 

(13.7) hoc = P+(ho + hi), h\ - —i •oo exp(iH+T)Ddr, 

(13.8) R = -i •OC exp\-iH+(t-T)\P+DdT. 

Here hoo G L2 fl : ho G L2 ft since ho G Hl\ h G L2 fl in accordance 
with (9.1), (10.4-5). Inequalities (10.4-5) imply immediately that: 

(13.9) R = 0{t-x'2) 

in Lo-norm, 
(13.10) R = 0(r1) 
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in Loo-norm. So one can formulate the following result: 

(13.11) ij) = w(x\a+(t))+ 

+ exp(i$oo) exp(—iH+t)hoo (z,t) + R, 

where R admits estimates (13.9-10). The brackets [v\i are used in order to 
indicate the first component of C2 - vector v. 

14 Scattering 

In the dispersive term exp(i$oo) exp(—iH+tyhoo the element hoo belongs to the 
subspace of the continuous spectrum of the operator H^. So its behavior as 
t —> oo is scattering behavior (in L2 - norm): 

(14.1) exp(—iH+t)hoQ — exp(—iHot)h+ + o(l), 

where h+ G L2 and is related to h^ in terms of the corresponding wave operator 

(14.2) hoo = W+h+. 

It is not essential that the operator is not self-adjoint in our case since its 
spectral resolution has the same structure as for a self-adjoint operator. We 
are not going to discuss here the properties of h+ and the reminder in more 
detail. Only note that 

(14.3) exp(i$oo [exp(-iH0t) i (z) = [exp(-il0t)f+](x), 

and 
(14.4) k = -d2,f+(x) -- exp(-ry+ 

1 
- 1-ViX 2 

\h+(x — c+). 

Introduce representation (14.3) in formula (13.11) and write down the final 
result: 
(14.5) ^ = w(-\a+(t)) + exp(-il0t)U + o(l). 

From the first author (V.B.): 
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to express my gratitude to A. Boutet de Monvel who was my host and was 
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