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Exponential convergence of the first eigenvalue 
divided by the dimension, for certain sequences 

of Schrödinger operators 

Johannes Sjöstrand 

0. Introduction 

In [HS] we introduced a class of semi-classical Schrodinger operators 

of the form - ± h 2 A A + V(m) on Rm for m = 1 ,2 , . . . , where V{m) satisfy 

various assumptions, implying in particular convexity. If /x(m; h) denotes the 

first eigenvalue, we showed among other things that fi{m\h)/m tends to a 

limit /¿ (00; h) when m —• oo and that: 

(0.1) /I(ra; h)/m — /I(OO; h) — Ol(h/m) . 

We also proved (by adapting the methods of [SI , 2]) that /I(OO; h) has an 

asymptotic expansion ~ /I(//O + l^ih + ...), when h —» 0. One element of the 

proof was the use of certain WKB-expansions, more precisely, we showed that 

if li(fix)(m) + fii (m)h + . . . ) is the formal asymptotic expansion of / /(m; h), 

then iik(iti)/m fik when m —• OO with an exponential rate of convergence. 

A natural question is then wether (0.1) can be improved to : 

(0.2) /I(m; h)/m - //(OO; h) = O(e-Krn) 

for some suitable K > 0. 

In this work, we establish estimates of the form (0.2) for certain sequences 

of T/(m). A general result of this type is given in Theorem 3.1, and in Theo­

rem 4.1 we obtain a better rate of exponential convergence for a somewhat 

more restricted class of potentials. In particular, we study in section 5 the 
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/. SJÔSTRAND 

same sequence of potentials related to statistical mechanics as in [HS], and 

show that we get exponential convergence with a rate which seems to be 

optimal. 

In [HS] we obtained exponential convergence at the level of W K B -

eigenvalues by introducing exponential weights in the study of certain Hessians 

of the logarithm of certain W K B approximations to the first eigenfunction. 

These estimates were obtained by adapting the WKB-constructions in the 

complex domain of [SI, 2], and by introducing certain exponential weights in 

these estimates. In the present work, we also establish exponentially weighted 

estimates of certain Hessians of the logarithm of the first eigenfunction, but 

this time we work with the exact first eigenfunctions, and inspired by the ap­

pendix b in [SiWYY], we use systematically the maximum principle in order 

to obtain these estimates. In particular, we never use any small h expansions, 

and our results are uniform in h. 

The plan of the paper is the following : In section 1, we make some 

estimates for the log. of the first eigenfunction near \x\ = oo, in the case 

when the potential is a compactly supported perturbation of \ x 2 . These 

estimates, which are not necessarily uniform with respect to the dimension, 

form a preparation for the more refined estimates that we obtain in section 2. 

In section 3 we get a first result about the validity of (0.2). 

In section 4, we start by examining a sequence of simple quadratic po­

tentials, and we see that Theorem 3.1 does not give the optimal K in this 

case. Then after some further exponential estimates in the style of section 2, 

we obtain the sharper Theorem 4.1, which is valid under somewhat different 

assumptions. In section 5, we apply this result to the model problem from 

statistical mechanics already studied in [HS], and establish (0.2) with a set 

of K which seems to be optimal. 

We thank B. Helffer for some stimulating discussions as well as the Wis-

senschaftskolleg zu Berlin and the mathematics department of the Université 

de Tunis for their hospitality. 

1. Some estimates for the exterior Dirichlet problem for the 

harmonic oscillator 
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EXPONENTIAL CONVERGENCE OF THE FIRST EIGENVALUE 

Let B be an open a ball in Rn centered at 0 . Then the Dirichlet realiza­

tion P of — A + x2 in R n \ i ? has discrete spectrum. Choose ¡1 E R such that 

x2 — /j, > 0 in Rn \ B. Then /i is also below the infimum of the spectrum of 

the operator P just defined, and we let K : C°°(dB) -> C°° (Rn \ B) be the 

operator such that u = Kv belongs to the domain of P outside a compact 

set and solves the problem: 

(1.1) ( - A + x2 - fi)u = 0 , U\QB = v . 

Using weighted L2 estimates we see that daKv(x) —• 0, \x\ —• o o , for every 

a. Using the maximum principle we then have that v > 0 Kv > 0. This 

implies that if v\ < v<i then Kv\ <Kv*i, and also Kv < supv , if sup v > 0 , 

Kv > mfv if iniv < 0. Of particular interest is K(l) which is a radial 

function u0 = i£o( |^ | ) , with : 

(1-2) {-d2r - ((n - l)/r)dr + r2 - /i)izo(r) = 0 , t io(l) = 1 . 

Here and in the following we assume (without loss of generality) that B is the 

unit ball. Writing UQ = r~(n~1^2 f(r), we know that / is in L 2 ( [ l , o o [ , d r ) 

and satisfies the Schrodinger equation: 

(1.3) {-dl + r2 + (n - l ) (n - 3) /4r2 - n)f = 0 , / ( 1 ) = 1 . 

We can construct cp(r) with 

(1.4) (p'{r) ~ r + a_i r + a _ 3 f 3 + ..-, r —• - foo , 

such that 

(1.5) ( _ 0 2 + r2 + (n _ X)(n _ 3 ) / 4 r 2 _ ^ ( e - ^ C r ) ) = e-v>(r)ß(r) ^ 

where R is rapidly decreasing with all its derivatives when r —• + o o . Actually 

we solve asymptotically the equation (cpf)2 — cp" = r2 + (n — l ) ( n — 3) /4r2 - /x, 

and it is a routine procedure to verify that / = e ~ ^ + i ^ , with daR = 0(r~~°°) 

for every a > 0. Replacing y> by cp + i ? , we still have (1.4). With g{r) = 

^ ( r ) + ((n ~~ l ) / 2 ) log r, we get : 

( i .6) u0 = e-g([x|) . 

Here we note that ^ „ ^ ( l ^ l ) = g' (|x|) xv\\x\ = x„ + 0(1/ \x\), 

(1.7) d*,da¥g = 6v„ + 0{\x\-1) . 
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Let now v G C°°(Sn~1) be strictly positive everywhere and let u = Kv. 

If 0 < vm[n < vmax denote the infimum and the supremum of v , then we 

have: 

(1.8) ^min UO < U < VMA,XU0 , 

and hence: 

(1.9) u _ e-fl(|x|)+fc(x) ^ 

where A; is a bounded function. If the vectorfield v is an infinitesimal generator 

of a rotation of § n _ 1 , and if we extend the definition of v to W1 by means 

of polar coordinates, (r, 6), x = r6, then v o K = K » v. Since v is C°°, it 

follows that d$u = 0 ( 1 ) e-w(r) for every a. We conclude that 

(1.10) d%k = (9(1) for every a . 

We also need to control some radial derivatives of k. Writing 

- d2r - ((n - l)/r)dr + r2-n- r-2A0)(uo(r)ek) = 0 , 

and using (1.2), we ge t : 

( l . n ) (d2r + (2(0r u0)/u0 + (n - l ) / r ) a r ) ( e f c ) = -r~2 Aeek . 

Here d%{r~2 Ae(ek)) = 0(r~2), and we have 2(dru0)/u0 = -2drg, so (1.11), 

(1.5) imply that 

(1.12) (0r - f(r))dr(ek) = - r " 2 Ae(efc) = 0(r~2) , 

where / ( r ) = 2r + 0(l/r), f'(r) = 2 + 0(l/r2) etc. Let F ( r ) 
r 

/ 
l 

f(t) dt . 
Then 

(1.13) Srre k = -
+ 8 

/ 
r 

e F ( r ) - FW o ( r 2 ) d s + C e F W m 

The first term is O( r"3) since F ( r ) - F ( ^ ) ~ r2 - 52 < 2r(r — 5 ) , for 5 > r , 

and since we know that drek cannot tend to + 0 0 or — 0 0 , when r —* 00, we 

conclude that C = 0 in (1.13), and hence : 

(1.14) SSrekK = O(r-3) . 

More generally, 

(1.15) drd%ek = 0{r~z) . 
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EXPONENTIAL CONVERGENCE OF THE FIRST EIGENVALUE 

Differentiating (1.12) and using (1.15), we get : 

(Lie) (dr-f(r))ddss2r(ek) = O(r-3) 

and similarly for the 0— derivatives. 

The same argument then shows that: 

(1.17) d2rd%ek = O(r~4) 

Continuing this way, we get by induction 

(1.18) c£dflaefc = ö ( r - 2 - " ) , », = 1 ,2 , . . . 

and remembering that k is bounded, we deduce (by differentiating the identity 

k = logeh) that 

(1.19) d»d%k = ö(r-2-1') , i/ = 1 ,2 , . . . 

Going back to the x— coordinates, we get : 

(1.20) d%k = ö(\x\~iai) , for every a^O . 

Using also the properties of g we get — logw = \x2 + t^(x), where W satisfies 

the estimates (1.20). 

Let us finally remark that everything works equally well for the opera­

tor —h2A + V, when V satisfies the assumptions above. We then obtain 

-hlog u = \x2 + ift(x), with xj) satisfying (1.20), not necessarily uniformly 

with respect to h. 

2. Estimates on the logarithm of the first eigenfunction 

Let V : Mm —• R be a smooth potential which is equal to x2/2 outside 

some bounded set. Let u = e ~ ^ x ^ be the first normalized eigenfunction 

of — 7>h2A + V. (Here <p also depends on h.) Let ¡1 be the corresponding 

eigenvalue, and let 0 be an open ball centered at 0 with the property that 

V = x2/2 > ¡1 in the exterior of 0 . If K is the exterior Poisson operator 

associated to — \h2A + \ x2 — /x, then in the exterior of 0 , we have u = 

K(u\do), and after a scaling we are in the situation of section 1. We then 

know that (p(x) = x2/2 + i(>(x), where xj)^a\x) —• 0 , when \x\ o o , for 

a ^ O . Here, we have apriori no uniformity with respect to m or /i, however, 

we shall use the maximum principle in a way inspired from the appendix B 
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of [SiWYY], to get some uniform estimates on the Hessian and on the third 

order derivatives of <p. 

Proposition 2.1. Let B be the space Rm equipped with some norm 

\\*\\B , and assume that for some fixed 0 : 

(2.1) \\v"(x) - /||£(B,B) < e < I for every x G Rm . 

Then for every x € R r a ; 

(2.2) № " ( * ) - J | l z : ( B , B ) < 0 > 

where 0 = 0 / ( 1 + ( 1 - 0 ) * ) 

P R O O F : Write fx = hE and recall that 

(2.3) 
1 
2 V)2 = v + 1 

2 
hAip - hE . 

Taking the Hessian of this relation, we get (as in [SiWYY]): 

(2.4) v'.dx{v") + v"2 = v" + 1 
2 

h&(<p") . 

Write if" = 1 + xp", V" = 1 + W" : 

(2.5) P' . Sx (W") + 2W" + W"2 = W" + 1 
2 fcA(V>") 

In section 1 we showed that | | V ' " ( a ; ) l l £ ( B B) ~* ^ > l x l —* 0 0 ' so there is a point 

£ 0 , where W'(x)||L(B,B) is maximal, and we let M denote the maximal 

value. Let v G B be a normalized vector such that | |V ' ,/(a;o)»/||£ = ^ , and 

let fi G B* be a normalized vector such that (ip"(xo) f, fi) = M . Then x 1 - » 

(tp"(x)u,fj,) reaches its maximum value (M) at the point XQ. We apply the 

terms in (2.5) to v and take the scalar product with fi. Then with x = xo, 

we ge t : 

(2.6) 2 W(x0)v,n) + U"(x0)2v,n) < (W"(x0)vtfi) , 

and hence 

(2.7) 2M - M2 <0 , 

or equivalently : 

(2.8) Either M < 6t 1 + ( l - ^ ) i o r M > l + ( l - ^ . 
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EXPONENTIAL CONVERGENCE OF THE FIRST EIGENVALUE 

The last possibility can be excluded by a deformation argument : Putting 

Vt = x2/2 + tW, we see that Mt = sup \W{X)\\C(B,B) depends continuously 

on t. • 

We also need to estimate the third derivatives of ip. In order to do so we 

assume that the assumptions of Proposition 2.1 are fulfilled also in the case 

B = £°° : 

(2.9) \\V"{x)-I\\c{BiB)B and \V"{x)-I\\c{BiB)BB 

are <6 forali x e Km. 

Here it is assumed that 0 < 6 < 1. 

We can rewrite (2.4) as : 

(2.10) <p(3),<p' ®<® s + (<p"t,<p"s) V",t®s) 
1 
2 

h A {<p",t®s) 

for all t,s £ M.N , and if we take the derivative of this relation in the constant 

direction r , we get 

(2.11) iff • <9X(V>(3)) + 3</>(3), r ® s ® t + i / > ( 3 ) , V > " ( r ) ® s ® * + 
V>(3),r ® ip"(s)®t + V>(3),r ® s®W"(t)x = 

y(3),r® S® < + 
1 
2 

hA V>(3),r® s ® i 

In section 1 we established that ip^(x) —• 0 when x —• o o , and hence there 

is a point x0 where ||^'^3^(a;)| |(BglB.gl£0o). reaches its supremum that we shall 

denote by M^3\tp). Here we identify the dual space of a tensorproduct of nor-

med spaces with the normed space of multilinear forms on the corresponding 

Cartesian product. Let r G B, s G B*, t G t°° be normalized vectors such 

that (ip(3\x0), r ® s ® <) = M(3>(V>). The same argument as before gives : 

(2.12) 3M(3)(V>) - 3M<3>(^)0 < ( F ( 3 ) ( X 0 ) , r ® s ® A < M (3)(F) , 

where M ^ ( y ) V is defined as sup 
X 

VW(x) 
(3(1 - 0))-1 

We then get : 

(2.13) sup 
x 

^3\x) 
(3(1 - 0))-1 

< (3(1 - 0))-1 sup 
X 

V^(x) 3M<3>(^)0 x 

We shall now take two potentials Vb and V\, which satisfy the assump­

tions above and in particular the assumption (2.9). We shall estimate ip[ — (pf0 
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and (p{ — % , where ipj denotes the phase associated to Vj, so that 

(2.14) 
1 
2 ш - 1 

2 
hA(fj + hEj = Vj , j = 0,1 . 

Taking the difference of these two equations, we ge t : 

(2.15; 
1 
2 (pi + <Po) ' Mfi ~ <Po) + KE1 - E0) = Vx - V0 + 1 

2 
hA((pi - ifo), 

and taking the gradient of this relation gives : 

(2.16) 
1 
2 v" + ¥>O)(P'I - <Po) = d1 +02 

1 

2 iv" + ¥>O)(P'I - <Po) = 

hA(fj + hE 1 

2 
/ i A ( ^ - tp'0) . 

From section 1 it follows that p i (a:) — (p'0(x) —• 0 when x —• 00, so 

sup | |P'1(x) — P2(x)IIB = m is reached at some point x0. Let v E B* be a 

normalized vector such that (<p'i(xo) — (p^xo),^) = m . Then applying (2.16) 

to v and putting x = XQ , we ge t : 

(2.17) 
1 

2 
(x0(Q"1) + Q0(x0))(Q1(x0) - Q'0(x0)), v 

iv" + ¥>O)(P'I X0, VCVW 

Here we use that (p"(x) = 1 + I/J"(x) with | | ^ " (^ ) | | £ (B B^ < ® •> and obtain : 

m - 5 m < I K K - V o ' X x o ) ! ^ . 

We have then proved : 

(2.18) sup 
x 

¥>i(*)-¥>b(*)l lB< (1 - 0)-1 sup 
x 

V Y ( x ) - V 0 ' ( x ) | | B 

We shall also estimate <p'{ — Q0 in C(t°°,B). We first apply (2.16) to a 

constant vector v : 

(2.19) <PÏ ~ Po, 
1 

2 (vi + PÓ) ® " 
1 

2 ( P ? + P O M P ' I -<Po)®v 

(V{ - V{, v) + 
1 

2 
^A((^ì -<p'0iv)) 

and differentiate in the constant direction fi : 

(2.20) p'i" ~ Po", 
1 

2 (pi + Po) ® 17 ® 

PÏ " Po, 
1 

2 
(Q" + Q0)(µ) O v1 l 

2 (p'" + P Ó " ) , ( P i - P Ó ) ® * ' ® ^ 

1 

2 (pi' + P Ó W i ' - P Ó » ® " 

( V 1 " - V 0 " , I / ® M ) + 
1 

2 
/ i A « ^ ' - ^ , , i / ® , i ) ) 
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EXPONENTIAL CONVERGENCE OF THE FIRST EIGENVALUE 

which can be rewritten as : 

(2.21) 
1 

2 Vi + <Po) • dx ((pi - Po) ,v®p) + 2 <PÌ - Po, v®n) + 

<p" - Po', 
1 

2 M' + tfoX/*)®" <p" - P o , M ® 
1 

2 
PÓ)®"®*'w 

i 

2 W + C M v ì - P Ó ) ® " ® * ' = <^"-K>®/*> + 
1 

2 
fcA((y>i,-^,i/®,i)) 

We know that sup \\<p1 — 'PoWcte00 B)= M is attained at some point XQ. Le 

v e t°°, p € B* be normalized vectors with (p" (xo ) - ^ ' ( r c0 ) ,v ® n) = M. 

Taking these vectors in (2.21) and x — XQ gives : 

(2.22) 2M + Pi' ~ Po', 
1 

2 (#' + O ( / 0 ® " 

Pi - P o , M ® 
1 

2 W + K)(") 
1 

2 « + 0 , ( P Ì - P Ó ) ® " ® M < W - V o " , ! / ® ^ . 

Here we use that ||1/2(w"1 + <0)(//)||B, ||± (</>'/ + KX^IU <J> to bound the 

second and the third term of the LHS from below by — M6. Using (2.13), 

(2.18), we can bound the fourth term from below by 

1 

3 
(1 - 0)-2 max sup 

¿ = 0 . 1 x 

V'j" (x) || (BxB*xl8)* sup 
x 

V{{x)-Vi{x)\\Bb 

and we end up with the estimate : 

(2.23) sup 
x 

Pi - PO'II L(l8,B) < 
1 

2 
(1 - f t - 1 s u p 

X 

V1 - V0 || L(l8,B) + 

( i / 6 ) ( i - 0 ) - 3 sup 
x, j 

Vj"(x) 
( B ® B * ® £ ° ° ) * W Q ma 

x 
\V{(x)-V¿(x)\\вb 

So far, all the estimates have been obtained under the assumption that 

V — x2/2 and Vj — x2/2 have compact support, and we shall now eliminate 

this assumption by means of an approximation procedure. We start by noti­

cing that for every e G ]0 ,1 ] , there exists x = Xe £ Co° (R) with values in 

[0,1] such that |x'(')l < e/\t\, \X"(t)\ < e/t2, \X'"(t)\ < s / \ t \ \ 3 , such that X 

is equal to 1 on the interval [—e-1,^""1]. (We can take Xe(0 = / ( s log |*|) 
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for a suitable / . ) Let V = \x2 + W(x) with W 6 C ° ° ( R m ; R ) and assume 

that W" and W"f are uniformly bounded as functions of x. We also as­

sume that (2.9) is satisfied. By symmetry and interpolation we then also have 

\\W"(x) - / | | £ ( £ 2 ) £ 2 ) < 0 < 1, and it follows that V"{x) > 1 - 0 in the sense 

of symmetric matrices. We then know that V is a strictly convex function. 

We approximate W by the compactly supported functions W£ = 

Xe(\x\)W. Since We" = XeW" + 2X'£W' + X"W, and since x« = 0 ( s / M ) , 

x» = 0(e/\x\2), W = 0 (1 + | x | ) , W = <3((1 + |:z|)2) (where for the 

moment the estimates are not necessarily uniform with respect to the di­

mension j , we see that We will satisfy (2.9) with 0 replaced by 0£ —> 0 

when e —• 0. Similarly we see that sup 
x 

We(3)(x) 
(B®B*®e°°)* 

tends to 

sup 
x 

W^\x) 
(B®B*®i°°)* 

when 5 ^ 0 . Let u£ = e ¥?e//l be the first nor­

malized eigenfunction of l 
2 

fr2A + V£, where Fe = \x2 + W£ . Then all the 

estimates of this section that we obtained for a single potential of the form 

2 x + W with W of compact support, apply to <p£ when e is small enough. 

Moreover it is easy to see (for instance by using exponential decay estimates) 

that u£ —u in the C°° topology when e —• 0, so y?e —• (p in C°° . From these 

remarks we see that the assumption that W have compact support can be 

eliminated in the estimates above, in the case of a single potential. Consider 

finally the case of two potentials of the form Vj = | x2 + Wj for j = 1,2. We 

assume that Vj satisfy (2.9) and that W" are uniformly bounded on Rm, 

and that sup| |V/ — V '0 | | ^ , and sup HV" — VV0o"||L(l8, B) are finite- Then we can 

put V}?£ = \ x2 + Xe (kl )Wj and perform the same approximation argument 

and deduce the same estimates for the difference of the phases, as we had in 

the case when Wj had compact support. Let us sum up otir results : 

Theorem 2.1. 

(A) Let V(x) =1/2^x2 + W(x) where W is real valued and smooth on Km , 

We assume that (2.9) holds and that the third derivatives of V are bounded 

on Rm . Let u = e~*lh be the normalized positive eigenfunction associated 

to the first eigenvalue of — | h2 A + V . Then the conclusion of Proposition 2.1 

holds as well as the estimate (2.13). 
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EXPONENTIAL CONVERGENCE OF THE FIRST EIGENVALUE 

( B ) Let Vj(x) = \x2 + Wj(x) , j = 1,2 satisfy the assumptions of (A) 

(with the same 0 in (2.9)J, and assume in addition that sup\\V{ — VQ\\B , 

and s u p || V" - VQ II£(£<X5B) axe finite. Then if we let e~vj/h denote the first 

normalized eigenfunction of - | f t 2 A + Vj , we have the estimates (2.18) and 

(2.23). 

3. Exponential convergence 

We consider a sequence of potentials V ^ ( x i , . . . , xm), m = 1 , 2 , . . . , 

and an associated sequence of functions p = p^ : Z / r a Z —»]0, oo[ , with the 

following properties : 

(3.1) y(™)(0) = 0 , W ( m ) ( 0 ) = 0 , 

(3.2) 
For 0 < t < 1, m, n G { 1 , 2 , . . . } , we have : 

j _ v2((i - t)v{m) e vw + tvim+n)) 
L(l8, lp) 

< 0 

for p= 1 and for p — pm,n given by p(j) = p^m\j) when 

1 < j < m, p ( j ) = />^n^(j — m ) , ra + l < j < r a + n . 

(3.3) , (m) 1 

2 
m > eroK/2 , p(m)(l) = p(m)(m) = 1 . 

Here 0 < 0 < 1 , K > 0 are fixed in the following, and we let t?p denote the 

space Cm equipped with the no rm: |x|pp = \px\p = (E \p{j) x j\p)x Ip (with 

the obvious modifications when p = o o ) . The choice of m will be clear from 

the context. We write : 

V(m) 0 V^\xU. . . , Xm+n) = V^m\xU. ..,XM) + V^(xm+1, …… Xm+n) . 

We assume that there exists a constant Co, such that: 

(3.4) sup 
x 

V3V (m)(x) 
(*r®*î/,®/00)* 

< C o , 

p = ^k, j + k = m, and p = p(m). 

We also assume that 

(3.5) V^™' is invariant under cyclic perturbations 

of the coordinates : 

y(™) (xm, x1, ..., xm-1 = V(m)(x1, x2, ...., xm), ...., xm) 
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and that \Am) is close to V^m+n) in the following sense : We have 

(3.6) sup 
x 

w2 (V(m+m) - V(m) + V(n) )) 
foo 

<C0 , 

(3.7] sup 
x 

w2 (V(m+m) - V(m) + V(n) )) 
c(t<*>,e«>) 

<C0 , 

for p = pm'n. 

We can then apply Theorem 2.1 (B) with V0 = F(m) © F<n), Vi = 
V{m+n) B = l ^ p = pm,n and hence . 

(3.8) sup 
xERm+m 

w2 (V(m+m) - V(m) + V(n))) 
oo,p 

< C o / ( l - 0 ) , 

(3.9) sup 
xERm+m 

w2 (V(m+m) - V(m) + V(n) )) 
L(l8, l8) < 

C o / ( 2 ( l - 0 ) ) + C o 2 / ( 6 ( l - ? ) 3 ) 

where 0 is defined in Proposition 2.1. Choosing v = [ | m ] we ge t : 

(3.8) d x y m + n ) ( 0 ) - d x ^ m \ 0 ) f d s = e>(i)e-KTO/2 

(3.9) w2 (V(m+m) - V(m) + V(n) )) =nO(l)e-Km/2. 

Let p.(m) = p(m;h) be the lowest eigenvalue of — ̂ h2A + V(m). From 

(2.3) and the fact that V"(m)(0) = 0, we ge t : 

p,(m) = 
1 
2 

k E c ? 2 y ™ ) ( 0 ) -
1 
2 E(d*„P(m)(0))2 

with - ( p ^ / h g being the logarithm of the first eigenfunction. From (3.5), we 

deduce that P(m) is invariant under cyclic permutations of the coordinates, 

and hence the terms in each of the sums are independent of v. For an arbitrary 

v in { 1 , 2 , . . . , m}, we then ge t : 

(3.10) u(m)/m = 
1 
2 

hd2x /m)(0) -
1 
2 

( ^ P ( m ) ( 0 ) ) 2 • 

Choosing v so that (3 .8) , (3.9) hold, and noticing that dXl/<p^m)(0) = O(h\1) 

by (2.3), we ge t : 

(3.11) \\i(m + n ) / ( m + n) - p,(m)lm\ = 0(h? + ft)e_Km/2 . 

This implies that lim p,(m)/m exists (as we already know from [HS]). If we 
m—* oo 

denote the limit by fi(oo), then (3.11) implies : 

(3.12) \p(m)/m - /i(oo)| = £>(h* + h)e-Km/2 . 
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Summing up, we have proved : 

Theorem 3.1. Let V^m\xu ... ,xm) satisfy (3.1)-(3.7) and let fi(m) be 

the lowest eigenvalue of - | / i 2 A + 0 m ) on Rm . Let / i (oo) = lim /x(m)/m 
m—• oo 

(which exists according to [HS]J. Then uniformly with respect to h we have 

(3.12). 

REMARK. If V(m) are even, then <^m) are even, and the second term of the 

RHS of (3.10) vanishes. Then we can replace 0(h$ + h) in (3.12) by O(h). 

4. Improved bounds on the speed of convergence 

We first study the speed of convergence for the family of quadratic poten­

tials, T/(m) = ^Ej^x2 — 7}aYt7[lXjXj+ij+1 (with the convention that subscripts 

are in Z / m Z ) . A similar discussion was given in [HS]. Here a is fixed in 

[0,1[. If we view V2F(m) as a map from Cm to itself and identify Cm with 

£ 2 ( Z / m Z ) , we have : 

(4.1) V 2 F ( m ) = l _ Q a 1 

2 
[ri + T_!) 

where (rkx)j = Xj-k. The eigenvectors e*. = (#o> xu • • • > ^ m - i ) of V2V^m) 

are given by xj = exp{2-Kikj/m), 0 < k < ra, and the corresponding ei­

genvalues are 1 — acos(27rfc / ra) . The lowest eigenvalue / i (m) of p(m) = 

- \ A + F(m> therefore satisfies : 

(4.2) fi(m)/m = (2m)~1E^"1(l - a c o s ( 2 7 r f c / m ) ) * , 

and this is a Riemann sum corresponding to the integral: 

(4.3) (47T)-1 ƒ 
2TT 

0 

(1 — Of cos x)2 drr , 

Let v(x) = (1 — a cosx) 2 . Then the right hand side of (4.2) can be rewritten : 

(4.4) 
1 

2 
ƒ 

2 TT 

LÜ 
v(x)urn(x)dxJ with wm(rr) = E 

kEZ 

m 6(x — 2irk/m). 

The Fourier coefficients of um are given by : 

Ûm(j) = 1/2* if e-ij2rm = 1 
(4.5) 

(i.e. if j is a multiple of m) and um(j) = 0 otherwise. 
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Rewriting (4.4) with PlanchereFs formula, we get : 

(4.6) / x (m) /m = 
1 

2 E 
vEz 
WBESBÊSm ƒ 

2?r 

0 

(1 — a cos x ) 2 dx + 
1 

2 E tf(z/ra). 

Here, 

(4.7) v(um) = ( 2 7 T ) - 1 ƒ 
2TT 

R0 
( l - a c a 8 x ) 1 / 2 e-i"mxdx , 

and depending on the sign of z/, we wish to deform the integration contour 

into the upper or the lower half plane. The amount of deformation is limited 

by the singularities of the function x »—• (1 — acosx)1/2, i.e. by the points x 

such that 1 — a cos a; = 0 . These are the points of the form iy + 27rfc, with 

chy = 1/a. The deformation argument then shows that 

|£f(i/m)| < Ce exp[—(1 — e) \u\ mch 1 ( l / a ) ] for every e > 0, 

and (4.6) then gives : 

(4.8) \ji{m)/m — /i(oo) I < Ce exp[—(1 — e) m eh 1(l/a)] , 

for every e > 0 . Pushing the same method a little further would probably give 

an asympotic expansion of ( / / (m) /m — /¿(00)) exp [ m c / i _ 1 ( l / a ) ] in decreasing 

powers of m. 

Let us interpret the exponent in (4.8) in terms of exponential weights. 

If p : Z/mZ -> ] 0 , + o o [ , then the norm of | a ( r i + r_ i ) : Pp -+ t?p, or 

equivalently the norm of po | O ( T I + T _ I ) op-1 : p -> t? can be bounded by 

a max sup 
3 

1 

2 PU)/P(J - 1 ) + PU)/PU +1) sup 
k 

1 

2 
p(k-1) / p(k)(k) 

+ p(k + l)/p(k) 

Put i /(j) = p(j + l)/p(j) and assume that e * < v(j + l)/v(j) < e6 for some 

small 6. Then the quantity above can be estimated by aes sup 
k 

1 

2 
(v(k) ++ 

1 /z / (&)) , and we are then naturally led to the assumption that ae sup 
k 

1 

2 
v (k) ++ 

i/(&)-1) < 6 < 1, or equivalently: | log (/>(£ + l ) / , 9 ( f c ) ) | < chr1^e61-9/a). 

Choosing p conveniently and approaching the limiting case 6 = 1, 8 = 0 , we 

see that the estimate of section 3 gives : 

(4.9) \p(m)/m — / i (oo) | < Ce exp [—(1 — e) 
1 

2 
m d - ^ l / a ) ] , 1 2 a 
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which is not as good as (4.8). 

In the remainder of this section we shall establish improved bounds of 

the form (4.8) for sequences of potentials which are not necessarily quadratic. 

As a preparation we need bounds on the fourth order derivatives of the phase. 

Let V : Rm —> R satisfy the assumptions of Proposition 2.1, for some B and 

also for B = £°°, and let u = e"^^ be the positive normalized eigenfunction 

associated to the first eigenvalue of — \h2A + V. We then have (2.2) and 

(2.13) (where <p" = 1 +</>", so that ^(3) = V>(3)). 

Rewrite (2.4) as : 

(4.10) ip(3), <p'®t®s) + ((cp", t), (cp", * » = ( V " , t®s) + -hq(A<p",t®s 

where we use the following notation : if A is a symmetric k— tensor and B 

a £— tensor with I < k, then (A, B) is the symmetric k — I tensor C with 

(C, t) = (A, B ®t). We differentiate (4.10) in the constant direction r : 

(<pi4\ <p' ® r ® s ® t) + (v?(3), {<p", r) ® s ® t) + 

[U3\r® t) , <y>",.)) + Uip\t), (^3),r®s)) = 

(v{3),r®s®t) + 
1 
2 h A ^ ( 3 ) , r ® s® *^ 

which can be rewritten as : 

(4.11) (y?(4), <p' ®r®s®t\>+ 

/y>(3), (9?",r) ® s ® < + r ® (</>",s) ® < + r ® s ® (<p",t)\ = 

(v(3),r®s®t) + 
I 
2 

hAUp^3),r ® s®t\ 

We differentiate this in the constant direction u and get : 

(4.12) ¥>' • #x ( (<£(4\ u®r®s®r\)+4 (<p(4), u®r®s®A + 
\¥>(4\ W " g u t u ) ® r ® s ® t + u® <W", r)®s®t+ 

U ® r ® (^;/, s ) ® * + U ® r ® S ® <w", *) ) : 

( V ( 4 ) , u ® r ® S® A 
1 

2 /iA (<p^\u ® r ® 5 ® A -

(v>(3), * ® A, ( ^ ( 3 ) , w ® r ) ) + ((^(3), u ® 5 ) , ( ^ ( 3 ) , r ® A) + 

(^(3\r®s),(^(3),ii® A) I 

317 



/. SJÖSTRAND 

Let M%((p) = M | ( V O be defined as in (2.12) and recall (2.13) : 

(4.13) Ml{<p)<{Z{\-0~))-xM3Blp(V)M. 

Since everything also works in the case when B = £°°, we have : 

(4.14) M | 0 o ( ^ ) < ( 3 ( l - Ö ) ) - 1 M | 0 0 ( F ) 

Put M%(<p) = sup 
x 

P(4)(x) 
(B®B*®e.oo®iooy 

where the norm is the one for 

multilinear forms on B x B * x f 0 0 x f 0 0 . Let xo be a point where the supremum 

is attained and let u £ B, r £ B*, s,t (E £°° be corresponding normalized 

vectors. Then 

<S(3), s + t 
oo 

<M3B(<p)<p (p(3\u®t<p> 
1 

<MU<P), 

<S(3), s + t 
B 

<M3B(<p)<p ip(3\r®t<p> 
B* <M*B(<P), 

<p(3\r ® s 
B* 

<M3B(<p) (p(3\u®t<p 
B 

<MU<P), 

Hence the last term in (4.12) can be bounded by 

M!ao(<p)-MB(<p) + 2(MB(<p))2 . 

The usual argument gives : 

(4.15) 4(1 - e)M%{<p) < M%{V) + M$oo(<p)Mf,(<p) + 2 M | ( ^ ) 2 < 

M%{V) + (9(1 - ë y y ^ M Ï ^ M l i f d s M V P ) + 2M%{V)2}. 

Here we used (4.13), (4.14) in order to get the last inequality. Hence 

(4.16) M4B(ip)<(4(i-e))-1M%(v)+ 

(36(1 - Ö ) 3 ) - 1 [ M | o c ( F ) M | ( F ) . + 2M3B(V)2]. 

Everything works the same way with B = i°° and we ge t : 

(4.17) Mt-(<p) < (4(1 - 0O) M&o(V) + (12(1 - Of)-1 Mzeaa{V)2. 

As before, these estimates extend to the case of potentials of the form 

±X2 + W(x) where W need not have compact support, but with (2.9) fulfilled 

and with V 3 V ( x ) , V4 V(x) bounded as functions of x. 

Let y(m>, m = 1 ,2 , . . . be a sequence of strictly convex smooth poten­

tials on Rm with V^m\x) —> + o o when \x\ —• o o . More assumptions will be 
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made later, for the moment, we only assume that for m sufficiently large and 

for some fixed k > 2 : 

(4.18) V(fcm)(x, x,..., x ) = kVm(x), x e Km , 

(4.19) V^m\xm, xx , . . . ,xm_!) = Vtm\xu...,xsmd) . 

Let u(m) = e""v,(m)/'1 be the positive normalized eigenfunction associated 

to the first eigenvalue, hEm(h) of -^h2A + V(m). Our goal is to estimate 

(E^km^/km) — E ^ / r a , when m tends to infinity, and in order to do so, we 

shall show that k~x <p(km\x,x,... ,x) is close to (p(m\x) when m is large. 

If f(x) = <p(km\x, x , . . . , x ) , x £ Km, then : 

Af = E 
l < i / < m 

( ^ + aXv+m + . . . + a ^ + ( f c _ 1 ) j V f c m ) X, X, »Z/ ) — 

E 
l < i / < m 

E 
0 < a < f c - l 

E 
0 < / 3 < f c - l 

5* x am S#s x„ ¥>(*m) «2?, «2?, • « • , X ) 

E 
l < z ^ < m 

E 
0 < a < f c - l 

E 
0 < 7 < f c - l 

Sxv + am Sxv + (a+y)mP(km) (#, x , . . . , x) — 

E 
l<ti<km 

E 
0 < 7 < f c - l 

dx dx x <p(hm) ( x , . . . , x ) 

(Here we use the cyclic convention : Xj+km — %j •) Hence : 

(4.20) A / ( x ) = ( A ^ f c m ) ) ( x , x , . . . , x ) + 

E 
l<H<km 

E 
l < 7 < f c - l 

dx dx x <p(hm)dsds ( x , . . . , x ) 

Similarly, since (5^+m ^ f c m ) ) ( z , . . . ,x) = (0X„ <plkn*)(x,... , s ) (by (4.19) 

with m replaced by km) : 

(4.21) V f)22 E 
l < i / < m 

(dXw<p)(x,...,fdsx)dsfd+ 

(dXl/+m(p)(x,..., x) + . . . + (dXv+(k_1)m(p)(x,..., x) 
2 

k2 E 
1 < i / < m 

(5Xl/<^)(x, . . . ,x) 
2 

= k E 
l < i / < A : m 

( d X v ^ ) ( x , . . f q . , x ) ( x 

2 
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Still with k fixed, we put P(m) = AT Vfcm) (*,•••,x) E{m) = fc_1E(fcm). 

Then : 

(4.22) F(m)(x) -
1 

2 
; v $ 5 ( M ) ) 2 + 

l 

2 
hAp(m) - hE(m) = 

1 

2 
hk-1 E 

l</i<fcm 
E 

l<7< f c - l 

SxµSxµ+ymP(km) (x , . . . ,x) . 

We now add one more assumption. We assume that for sufficiently large 

m : 

(4.23) y _ y(m) satisfies the assumption (2.9) with 

B = l™, for some family p(m) with the 

properties (4.24), and that with the same p : 

sup 
x 

v 3 y ( m > 
lpxl11/pxl8 )* 

sup 
x 

v 3 y ( m ) l8+l1+l8+ )* 

sup 
x 

v 4 y ( m ) 
l8 + l1 + l8 +)* 

sup 
x 

v 4 y ( m ) 
l8 + l1 + l8 +)* 

are all finite and bounded by some constant which is independent of m . 

Here the property of p should be : 

(4.24) For j £ Z/mZ we have: e~K < p(j + l)/p(J) < eK. 

Moreover p(0) = 1 and we have p(j + l)/p(j) = eK 

for C <j < 
1 

2 
ro-C, p(j + l)/p(j) = e -

for — 
1 

2 
m-C)< j < - C , with K > 0 

and C independent of m. 

It follows from our earlier estimates that 
(4.25) 

Jl4»(¥>) , M j j L f o O for j = 3,4 
are bounded by a constant 

independent of m (when m is sufficiently large), 

are bounded by a constant independent of m (when m is sufficiently large), 

and using this fact for (p(km) (with k fixed) we shall estimate the right hand 
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side, F of (4.22). To shorten the formulas, we take k = 2 , but everything 

works the same way for any fixed k > 2 . Then we have : 

(4.26) F = 
I 
2 m E 

l</i<m 

SxµSxµ+mP(2m) (x,x) 

From (2.2), it follows that 

(4.27) ( ö , 1 ö . 1 + . ^ a m ) ) ( * , « ) = 0 ( l ) e - " m . 

uniformly in a; and in m . Using (4.25), we also get : 

(4.28) V ((kdXldXl+m<pW)(x,x)) 
l 

= 0(l)e-Km , 

(4.29) V*((dXldXl+m<pW)(x,dsx) 
(£<*><g)£«>)* 

= 0(l)e~Km . 

For instance, the last estimate follows from : 

V2 ( (8,, 0«1+mp(2m))(x, *)),!/®/id = 

(V4 y>(2m))(ar, x), ei <g> e1+m ® (i>i ® /*i + ^i <8> A*2 + »2 ® A*i + »2 ® /12) 

where f i = (v,0), v<i = (0,v) etc., and the fact that ||ei||s,p = 0(1), 

| |ei+m|li1/p = 0(e~Km). Since (p(2m) is invariant under cyclic permutation 

of the coordinates (cf. (4.19)), we have (4.27)-(4.29) also in the case when 

dx, dXl+m is replaced by dXil dXil+m , so by (4 .26) : 

[4.30) F(x), iVFOr)!, , ||V2F(*)||(£oo0£oo). = O(l )mhe-«m. 

We now compare (4.22) : 

V^mHx) -
1 

2 
(Vp(m))2 + 1 

2 
hA<pW-hE(m)ds = F 

and 

(4.31) V^m)(x) 
1 

2 
'Vw(m))2 

1 

2 
ÄAp<m) - ÄE<m> = 0 

as in section 2. Taking the gradient of the difference gives : 

(4.32) 
1 

2 
V2s(m) + vVm))(V0(m) - V»(m)) (Vom) + 

1 

2 
V2s(m) + vVm ) ) ( V 0 ( m ) - V»(m)) = 

- V F + 
1 

2 
hA(Vp(m) - Vp(m)) . 
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Here we recall that V V m > = 1 +V2t/><m> with ||V2^m>||(/008/1). < 6. 

Using this with m replaced by 2m, we get: 

V2<p^)(x,x),(u)x> 
1 

2 
(V2<p^)(x,x),(u,u)®(p,fi),µµ 

V² x 1 

2 
(V2^2™))(x ,ar),(i/,i/)®(/i,/i) 

The absolute value of the last term is l 
2 

* Moo 2 K = O H « , K , SO 

V 2 ^ m ) = 1 + V2$(m) with 

(4.33) V² x (m) 
(^(gl*1)' 

< 0 

The same argument as in section 2 then gives : 

(4.34) V2<p^)(x,x),(u) 
1 

< (1 - 6)-1 sup 
X 

VF(x)|1 = C?(l)m/ie-/6m. 

Taking the scalar product of (4.32) with the constant vector t and differen­

tiating in the constant direction s, we get as in section 2 : 

(4.35) 1 
2 

(V£<m> + v ^ ( m > ) • dx ( v 2 ( £ ( m ) - <p(m)), s®t) + 

2 (V2(^m> - ^m>), s ® t) + (V2(^ra) - V^m>), 

1 

2 
y2iP(m)+ V2ipW)(s) ®t + s® 

1 

2 
V2#(m) + V2V(m))(*)\+ 

1 

2 
V3 (£5(M) + <^m>), (V$5<TO> - Vy?(m)) <g> s ® t 

-{V2F,s®dts) + 
1 

2 
/ iA(v2(?5(m) - p ( r a ) ) , s ® * ) 

As in section 2 we conclude that : 

(4.36) V2(£5<M) - < ^ M ) ) 
(f°°(g>£°°)* 

= 0( l )m/ie-Km. 

Combining (4.22), (4.31), we get : 

(4.37) m-1(hË(m)-hE(m)) = 

- m"1 F - (2m)"1 (V£(m> + Vy>(m>) • ( V ^ m ) - Vv?(m))+ 

(V2m)A(^(m) -y>(m)) , 

and choosing x such that V ^ m ^ + V<p(m) = 0 at x , we get from (4.30), 

(4.36), (4.37) and Lemma 1.2 of [SI] : 

(4.38) m-\hE{m) - hE^) = 0(h + h2)e~Km . 

Summing up, we have proved : 
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Theorem 4 .1 . Let V(m) = V^m\xux2,... , z m ) , m = 1 ,2 , . . . be a 

sequence of potentials with V^m\0) = 0 , W ( m ) ( 0 ) = 0 , which for m 

large enough satisfy the assumptions (4.18) (with a fixed k > 2 ) , (4.19), 

(4.23). Let / / (m) he the smallest eigenvalue of -1/2\h2A + V(m). Then for 

sufficiently large m (uniformly in h): 

(4.39) (km)'1 n(km) - m~V(m) = 0(h + h2)e'Krn . 

If lim ii(m)/m = / / (oo) exists (as we know under certain assumptions, cf. 
m—*oo def 

section 3 and [HS]), then (4.39) gives : 

(4.40) m - i ^ ( m ) _ ^ ( o o ) = o(h + h2)e-Km .dfs 

5. Application to a model related to statistical mechanics 

In [HS] we studied the following model operator (inspired by [K]) : 

(5.1) Pm = -h2A + V^m\x) 

on R m , where : 

(5.2) 
V^Mx) = 1 

4 
Exj - E log eft 

v 
2 

{Xj + Xj+1) 

with j € Z / m Z 

and assumed that i/ is fixed in ]0 , ^ [. We keep the same assumption on v 

and we then know ([HS]) that V(m) is strictly convex and vanishes to the 

second order at 0 . If / ( * ) = logc/ i*, then f'(t) = sht/cht, /"(*) = (chi)-2, 

and hence (as we saw in [HS]) : 

(5.3) dXjdXjfqf(x) 1 
2 

1 
2 

v (ch V 
2 

^ • _ l + £ j ) ) -2 +(ch V 
2 

(Xj-+Xi+i) ) -2 

(5.4) dXjdXj+1V^\x)(x)= 
1 

2 
i/(c/i 

v 

0 
( X J + X J + I ) ) -2 

(5.5) dXj dXk V(m\x) = 0 if j - k £ - 1 , 0 , 1 mod ( m ) . 

We can then write : 

(5.6) V2V^m\x) = 
1 

2 
(I + A(x)) 
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(5.7) A(x) = 

di(x) 
ci(x) 

0 

0 
Cm{x) 

ci(x) 
d2(x) 

0 . . . 

0 . . . 
c2(x) 

cm-2(x) 
..... 

0 

dm-l(x) 
Cm-l{x) 

Cm(x) 
0 
0 

Cm-l(x) 
dm(x) 

where 

(5.8) \dj(x)\ < 2v , \CJ(X)\ < v . 

We may also notice that dj(0) — —2i/, C j ( 0 ) = —v. 

Let p : Z / r a Z —> ]0, oo[ satisfy : 

(5.9) e~S <li{jj+ l)lli{j)< esS, 

where / i ( j ) = p(j + l)/p(j). Then the argument after (4.8) shows that 

(5.10) \\Mx)\\cuM)<2vw(1 + e6 sup l<fc<m 

1 

2 
(/x(fc) + /x(A;)-1)). 

Let k > 0 satisfy 

(5.11) 2 i / ( l + C/IK) < 1 , i.e. K < c/i""1((l - 2v)/2v) 

Then, if we choose 6 > 0 sufficiently small, it follows that: 

(5.12) 11^)11««^) < E < 1 » 

for some fixed 0 , provided that p satisfies (5.9) and : 

(5.13) e-K< p(j + l)/p(j)< ek. 

We can clearly find such a p which also satisfies (4.24). 

A part from the factor | in (5.6) and the fact that there is no " \ " in (5.1) 

(which is not essential, as can be seen by a scaling in h), we have then verified 

the part of (4.23) which concerns the Hessian of y ( m ) . The remaining parts 

of (4.23) (concerning the higher order Hessians of V(m) are easy to check, 

and it is also clear that we have (4.18), (4.19), so we can apply Theorem 4.1 

and ge t : 
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Theorem 5.1. Let /i(m; h) be the lowest eigenvalue of the operator (5.1), 

(5.2), and assume that 0 <v < \ .If K> 0 satisfies (5.11), then forv, K 

fixed we have uniformly with respect to h : 

(5.14) /i(oo, h) - /i(ra; h)/m = 0(h + h2)e Krn , m - > oo . 

ffere fi(oo;h) denotes the limit of /i(ra;/i)/ra as m tends to infinity. (The 

existence of the limit was estabhshed in [HS] and also follows from Theo­

rem 3.1.) 

R E M A R K 5.2. In analogy with (4.1) we can write 

(5.15) V2V(m)(0) = 
1 
2 

— v (I-(2u/(l- 22v)) 1 
2 

(r-i + ri)) 

so if we compare (4.8) and (5.11), we see that Theorem 5.1 produces a decay 

rate which is equal to the (probably optimal) one that we get for the quadratic 

approximations of V^M\ by applying (4.8). We have therefore every reason 

to believe that the set of exponents in Theorem (5.14) is optimal, and by 

applying the W K B results of [HS, S1S2,], it seems quite possible to prove 

that so is the case, if we require uniformity in /i , as in (5.14). 
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