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NEAR—COHOMOLOGY OF HILBERT 
COMPLEXES AND TOPOLOGY OF 

NON—SIMPLY CONNECTED MANIFOLDS. 

M.GROMOV,M.A.SHUBIN 

Introduction 
In an earlier paper [5] we introduced some new homotopy in

variants of compact non-simply connected manifolds (possibly 
with boundary) or finite CVF-compexes. In terms of these invari
ants the heat kernel invariants of closed non-simply connected 
manifolds [9] (see also [ 4 ] ) can be expressed and thus their homo
topy invariance can be proved. 

Note that both invariants in [5] and [9] are expressed in terms 
of L 2 - d e Rham complex on the universal covering, using the deck 
transformation action of the fundamental group in differential 
forms. The use of the combinatorial Laplacians leads to the same 
invariants as was proved by A . Efremov [3]. 

In this paper we follow the abstract setting from [5] and give 
a refined formulation of the abstract result there. This leads to a 
new notion of near-cohomology for Hilbert complexes. We take 
a special family of quadric cones depending on a small positive 
parameter and consisting of cochains which have coboundaries 
which are small with respect to the distance of the cochains to 
the space of all cocycles. Heuristically this means that we take 
cochains with small coboundaries modulo cochains close to co-
cycles. (Instead of cochains close to cocycles we could also take 
cochains close to coboundaries which would remind cohomology 
more but it just adds cohomology as a direct summand.) Near-
cohomology are germs of such families of quadric cones modulo 
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an equivalence relation which naturally arises if we consider ho-
motopy equivalence of Hilbert complexes with morphisms given 
by bounded linear operators. Then near-cohomology becomes a 
homotopy invariant. 

Adding a von Neumann algebra structure to the Hilbert com
plex we can transform near-cohomology to a set of positive-
valued functions of the small parameter up to an equivalence. 
These functions are defined as maximal von Neumann dimen
sions of linear spaces which belong to the cones. The equivalence 
is given by estimates of these functions with dilatated arguments. 

Applying these constructions to the de Rham L2-complex on 
the universal covering of a compact manifolds (with the von Neu
mann algebras consisting of operators commuting with deck trans
formations on differential forms) we obtain invariants which were 
introduced and studied in [5]. 

Note that the idea that there may be topology invariants lying 
near cohomology was first formulated in [8]. 

1. Hilbert complexex and their near-cohomology. 

A . Let us consider a sequence 

E: 0 E0 
do 

E1 ... Ek 
dk 

Ek+i —• ... 
dN - 1 

EN 0, 

where Ek is a Hilbert space and the differential dk : Ek — -Ek+i is 
a closed densely defined linear operator (with the domain D(dk))> 
This sequence is called a Hilbert complex if dk+i odk = 0 on D{dk) 
or, equivalently, Im dk C Kercfo+i. Note that Ker dk is always a 
closed linear subspace in Ek. 

Let E1 be another Hilbert complex of the same length N (if 
the lengths differ then we can always formally extend the shorter 
complex by adding zero spaces in the end; so for the sake of 
simplicity we shall always suppose that all complexes have the 
same length N). The corresponding spaces and differentials will 
be denoted E9k and d'k. 

Definition 1.1. A morphism f : E —» E9 of the Hilbert com
plexes is a collection of bounded linear operators fk : Ek —> E[ 
such that 
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fk+1dk C d'kfk, 

which means that fk+\dk — dkfk on D(dk). In particular we 
require that fk(D(dk)) C D(d'k). 

If f : E —» E* and g : E' —> E" are two morphisms of Hilbert 
complexes then their composition g o f : E —-» i ?" is a morphism 
defined as the collection of compositions gk o fk, k = 0 , 1 , . . . , TV. 

Definition 1.2. Let / , # : E —± E1 he two morphisms of the 
same Hilbert complexes. A homotopy (between / and g) is a 
collection T of bounded linear operators Tk : Ek —• ^fc-i such 
that 

fk — 9k — Tk+Xdk C rf^.jTfc, k = 0 , 1 , . . . ,iV, 

or equivalently, fk - gk = Tk+1dk + djb-i^* on -^(djfe) (in Par" 
ticular this means that Tk(D(dk)) C Z ^ c ^ ^ ) ) . If there exists a 
homotopy between morphisms / and g then / and g are called ho-
motopic and we denote it as f ~ g- (It is easy to check that being 
homotopic is really an equivalence relation between morphisms.) 

Hilbert complexes E,E* are called homotopy equivalents there 
exists morphisms / : E —• E1 and g : Ef —> E such that 
g o / <~ Id#, f o g ~ Id#/ where Id# and Id#/ are identity mor
phisms of the corresponding Hilbert complexes. We shall denote 
the homotopy equivalence between E and E1 as E ~ E1. 

Definition 1 .3. E is called a retract of E1 if there exist mor
phisms / : E —> E1 and gr : E* ^ E such that g o f ~ ldE. In 
this case / (resp. gr) is called a hom,otopy inclusion (resp. homo
topy retraction) map. 

Remark. Cohomology spaces Hk{E) = Ker djt/Im and . 
reduced cohomology spaces H (E) = Ker <i^/Im dk-\ are ho
motopy functors in the category of Hilbert complexes with mor
phisms and homotopy as before. 

B . Now let us introduce the following quadric cones, depending 
on the degree k and on a positive parameter A: 
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B (к) 
f = € Ek/Ker dk, || dktü | | < A || to \\mod Ker d}, 

where || a? ||mod Ker d is the norm in the quotient space E^/Ker dk, 
|| dfcu? || means the norm of d^uo in -Efc+i. It is understood that in 
this definition we should only take co-sets in Ek/Ker dk defined by 

elements u £ D(dk) to make dkuj well defined. So B^ becomes 
a conic set in the Hilbert space E^/Ker dk which can also be 
identified with (Ker dk)1- (the orthogonal complement of Ker dk 
in Ek). 

Lemma 1.4. Let 7^1,7^2 be Hilbert spaces, A : 7i\ —•> 7^2 be 
a closed linear operator with the domain D(A). Then for every 
A > 0 the set 

CX,A = {x\xeD(A), || A T | | < A | | . T | | } 

is closed in 7^i. 

Proof, Suppose that x is in the closure of C\^A- Without loss of 
generality we may assume that || x | | = 1. Then we easily obtain 
that there exist x7 £ CA,A such that 

Km || £7 — x | | = 0, || Ax7 | |< A || z7 ||, 7 € T, 

where T is a directed set. Taking a cofinal subset of T we may 
further suppose that || x^ \\< 1+e whatever fixed e > 0. Changing 
r again we may suppose that there exists w — lim Ax^ = y (weak 

limit is taken in 7Y2)- Then we have 

|| y | |< limmf || Axy || < Alimmf || x7 || < A || x \\ 

Now the pair {x,y} is in the weak closure of the graph of the 
operator A in Tii x 7^2- The graph is a closed linear subspace, 
hence it is weakly closed. Therefore x £ D(A) and y = Ax:. Hence 
x G C\,A as required. • 

Applying Lemma 1.4 to H\ — Ek/Ker dk, 7i2 = Ek+i and 

A = dk we see that B^ is a closed cone in Ek/Ker dk for every 
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À > 0. Now let us look what happens to these cones when we 
apply morphisms of Hilbert complexes. 

Let us consider a morphism of Hilbert complexes / : E —• E1 
defined by a collection of bounded linear operators fk : Ek — 
E'k, k = 0 , . . . , N . Then fk(Ker dk) C Ker d!k so fk naturally 
defines a bounded linear operator 

h : Ek/Kev dk -> E'JKer d'k. 

Theorem 1.5. Let a Hilbert complex E be a retract of E1 and 
f : E — E', g : E' — E be corresponding homotopy inclusion 
and retraction maps. Let B[k\ 'B[k) be families of cones defined 
as before in E, El respectively. Then there exist C > 0 and Aq > 0 
such that for every A £ ( 0 , Aq) 

(i) fk (B (k) 
f 

) C 'B 
(k) 
OA ' 

(ii) lu ; < C I fku I if a; G B (k) 
A • 

Proof. Let us consider a; G B^ and let u;] G (Ker dk)± represent 
JS i.e. ^ mod Ker <7*. = UJ. Then || dKLO\ | |< A || u)\ ||. It follows 
Mint, fk^-\ G Z > « ) , = fk+idku;i and 

Id',(fkw1) 1=1 /k+1(dkw1) |<| fk+1 II dkw1 l< a | fk+1 || w1 | 

Now we should estimate || || by Ci || fku\ ||1110d Ker rf' provided 
A £ ( 0 , Ao) with a small A0 > 0 with a constant C\ which does 
not depend on uj\ or A. Then (i) and (ii) will follow. Let us split 
fku;^ into the sum 

jKLO\ — LO\ + LÛ'2 

with LJ'2 G Ker d9k,u>\ 1 Ker d9k. Hence 
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Il fk^l ||mod Ker d' = \\ u[ | . 
Now let us use a homotopy T between go f and Id#. In particular 
we have 

Id# - gk o fk = Tk+1dk + djb-iTjb on D(dk). 

hence 

^ 1 =9k(fk^i) + Tk+idkLox + dk-iTKLQX = 

gk(u>[ + a ; 2 ) + T H i 4 a ; 1 + dk-iTku>i. 

Clearly gkuif

2 € Ker dk, hence 

^1 = gk^i + Tk+idku>i mod Ker dk. 

It follows that 

|| LJI \ \ < \ \ W i + Tk+id^ \\<\\ gk mi u>[ || + || T f c + 1 mi \ \< 

< l l 9k llll II || T * + 1 HI! o;i ||, 
hence 

I LO\ || < I ff* llll ^ 1 I 
1 - A || Tk+1 || < 2 || gk llll a;i ||, 

if A G ( 0 , A 0 ) where A 0 = ( 2 || Tk+1 H ) " 1 . This gives the required 
estimate that proves the Theorem. • 

Corollary 1.6. Suppose that Hilbert complexes E,E! are homo
topy equivalent and this equivalence is given by the morphisms 
/ : E —• E9 and g : E9 E. Then there exist constants 
C > 0 , A 0 > 0 such that for every A £ ( 0 , A Q ) and for every 
k = 0 , . . . ,7V 

(i) / ( * (k) 
f ) c ' £ (k). 

Cf' 
g{ >B (k) 

A 
) E B (k). 

CA' 

(ii) | | a ; | | < C | | / a ; | | , w € S 
(k) 
f ; || w' | | < C || go;' y, u/ <E 'B 

(k) 
A • 
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Now we can introduce an appropriate notion of near-cohomology 
of a Hilbert complex. This will be done along the lines that can 
be traced in Corollary 1.6. 

Definition 1.7. Special family of quadric cones in a Hilbert space 
E is a family of closed subsets B\ C E defined for all A > 0 as 
follows: 

Bx = {x\xe D(A), II Ax | | < A I) x ||}, 

where A : E —> E\ is a closed densely defined linear operator 
(-Ei is another Hilbert space) with the domain D(A), the norms 
|| Ax || and || z || are taken in E\ and E respectively. 

Two such families B\ C E and 1 B\ C E9 are called equivalent 
if there exist two bounded linear operators: / : E —» E', g : 
E1 E and positive constants C > 0 , Ao > 0 such that for 
every A £ ( 0 , A0) 

(i) f(Bx) c 'Bex, g( fBx) c B C A ; 

(ii) ( I ^ | |< C II / a : I I , x £ £A; || .x' | | < C \\ gxf ||, a : ' £ ;BA-

So in fact up to the equivalence only the germ of the family B\ 
near 0 is important. 

Definition 1.8. Let Ehe& Hilbert complex. Its near cohomology 
NHk(E) of degree k is the equivalence class of the special family 
of quadric cones B^\ 

Corollary 1.6 means then that the near-cohomology is a ho
motopy invariant of the Hilbert complex if the homotopy equiv
alence is defined as a chain homotopy equivalence with bounded 
morphisms and homotopy operators as in Definitions 1.1 and 1.2. 

Remark. All results of this Section can be easily extended to 
complexes of reflexive Banach spaces. 
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2. Von Neumann structure 
Von Neumann structure on a Hilbert complex allows to trans

form near-cohomology to some simpler invariants: to make the 
same kind of transfer from homotopy to the Betti numbers. 

First we shall recall some necessary definitions (see e.g. [2]). 
Let 7i be a Hilbert space, £(7Y) be the algebra of all bounded 
linear operators in 7i. A von Neumann algebra of operators in 7i 
is a subalgebra A C ^(Ti) satisfying the following conditions: 

(i) A 9 Id^, A is a *-algebra (i.e. A e A A* € A), 
(ii) A is closed in the weak operator topology. 

Let A+ = {A | A G A, A > 0 } . A trace TTA on A is a map 

Tr^4 : A^ —• [0, +oo] satisfying the following conditions: 

( i)Tr^(A1A1+A2A2) = Ai TvAAl+\2rTiAA2 if A, G [ 0 , + o o ] , At G 
A+, i = 1,2, 
(ii) TÏ4 (AA*) = T r ^ A M ) for every A € A, 

(iii) If AT G A+ and A^ / A then Tr^A7 —• Tr^A (normality); 
(iv) Tr^A = sup{Tr^B |0 < B < A,B e A, TrAB < oo} for every 
A G ( semi-finiteness); 
(v) Tr^A = 0 , AG A+ A = 0 (faithfulness). 

If a trace Tr^ is given on A then we can define von Neumann 
dimension dim^. It is defined on all closed subspaces L C 7i 
which are affiliated with A i.e. such that Pi G A where Pi is 
the orthogonal projection in H with the image L. Then we write 
Ln A and dimA L = TrAPL. 

Definition 2.1. Let E be a Hilbert complex. A von Neu
mann structure on E is a collection of von Neumann algebras 
Ak C B(Ek) for all k = 0 , . . . , iV, and a trace Tr^ on every al
gebra Ak (we denote all the traces Tr^i for all k for simplicity 
of notations because it does not lead to a confusion), provided 
Ker dk is affiliated with Ak for every k. 

Now modelling the well known variational principle (Glazman's 
Lemma) for the operators d^dk we can introduce the following 
functions which will imitate the eigenvalue distribution function 
of the discrete spectrum. 
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Definition 2.2. 
Fk{\) = sup dim AL 

LCB™ 

Here it is convenient to identify Ek/Kei dk with (Ker dk)1" so L 
can be considered as a closed linear subspace in Ek (such that in 
fact L C (Ker dk)^), hence dim^ L makes sense. 

Since the cones increase with À the function -F*(A) is an 
increasing function on ( 0 , oo). If Fk(\o) < oo for some AQ > 0 
then Fk(+0) = 0. 

Now let us introduce morphisms and homotopy equivalence for 
Hilbert complexes with von Neumann structure. 

Definition 2.3. Let E,E9 be Hilbert complexes with von Neu
mann structures, 
/ : E —v Ef a, morphism of Hilbert complexes. Then / is called 
compatible with von Neumann structures if the following condi
tion is satisfied: 
(C) Suppose that L C E^^L^Ak and there exists C > 0 such that 

| | * | | < C | | / * * I I , x€L. 

Then fk(L)rjA9

k and dirn^/ fk{L) = dim^ L. 
Roughly speaking this means that the morphism / conserves 

the von Neumann dimension of a subspace provided this subspace 
is mapped by / isomorphically (in topological sense). 

Definition 2.4. Let E,E9 be Hilbert complexes with von Neu
mann structures. They are called homotopy equivalent if there 
exist morphisms of Hilbert complexes compatible with von Neu
mann structure / : E —> E9, g : E' —• E, such that / o g ~ 
Id/<;', go f ~ Id/.;. (Here homotopy between morphisms is under
stood as in Sect. 1 without any additional compatibility condi
tions). E is called a retract of E' if there exist morphisms (again 
compatible with von Neumann structure) / : E —» Ei\ g : E9 —• 
E such that g o / ~ Idfj. The following theorem is an immediate 
corollary of Theorem 1.5. 

Theorem 2.5. Let E,Ef be Hilbert complexes with von Neu
mann structures and E a retract of E'. Denote by Fk,F9

k the 
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functions defined for E, E1 according to Definition 2.2. Then there 
exist C > 0, A > 0 such that for every k = 0 , . . . , N 

Fk(\)<F'k(C\), A e ( 0 , A 0 ) . 

Corollary 2.6. Suppose that Hilbert complexes E,Ef with von 
Neumann structure are homotopy equivalent. Then there exist 
C > 0, A 0 > 0 such that 

FkiC-'X) < F'k(\) < Fk(C\), A € (0, A 0 ) . 

This corollary tells that the asymptotics of Fk and Fk near zero 
coincide in a weak sense. In particular let us introduce 

Bk — liminf 
A |0 

logF*(A) 

log A 

and let (3k mean the same number for Fk. 

Corollary 2.7. If E,Ef are as in Corollary 2.6 then j3k = f3k for 
all k = 0 , . . . , N. 

Hence (3k is a homotopy invariant of the Hilbert complex E 
with the von Neumann structure. We can also introduce an equiv
alence relation between functions Fk, Fk given by the inequalities 
in Corollary 2.6. Then the equivalence class of Fk will be a homo
topy invariant of the Hilbert complex E with the von Neumann 
structure. 

3. Geometric examples. 
Let X be a compact Riemannian manifold (possibly with a 

piecewise smooth boundary), M its universal covering with the 
lifted from X Riemannian metric. Then let us take Ek = L2 Ak 

( M ) , the Hilbert space of all square integrable exterior differential 
forms of degree k on M. Let us define dk as the de Rham exterior 
differential on Ek with the maximal domain i.e. 

D{dk) = {u;\u G L2 Ak ( M ) , du € L2 A * + 1 ( M ) } , 

where du: is understood in the sense of distributions. Thus we ob
tain a Hilbert de Rham complex L2 A # ( M ) . Its near-cohomology 
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are homotopy invariants of X if homotopy invariance is under
stood already in the usual topology sense (for the proof see rea
soning given in [5], Sect. 5). Note that the group Y = n\{X) 
acts on M by deck transformations and a more general exam
ple can be obtained if we consider a more general discrete group 
r acting without fixed points as a discrete group of isometries 
of a Riemannian manifold M (with boundary) so that the or
bit space X = M/T is compact. Then similarly defined near-
cohomology will be homotopy invariants in the homotopy cate
gory of T-manifolds and T-maps. 

The action of T by isometries on the spaces L2Ak(M) (induced 
by the change-of-variable maps on differential forms) allows to 
introduce a von Neumann structure on L2 A* ( M ) if we define 

Ak = {A\A e B(L2 Ak ( M ) ) , A7* = 7* A for every 7 G T} 

(where 7* is the change-of-variable map on L2 Ak ( M ) given by 
7) and take Tr.4 = Trr, the T-trace introduced by M. Atiyah in 
[1]. It is shown in [5] that the heat-kernel invariants introduced 
in [9] (see also [4]) for the case of manifolds without boundary 
can be expressed in terms of the functions Fk and the numbers 
bk, and in this way the homotopy invariance of the heat-kernel 
invariants can be proved. Note that the result of A. Efremov [3] 
means really the coincidence of the near-cohomology of a closed 
manifold and its simplicial approximation. 

Another geometrical example naturally arises if we consider 
a foliation with a transverse measure on a compact manifold. 
The arguments from [3] can be applied here too. This fact was 
independently noticed by J.L.Heitsh and C. Lazarov. 

Note finally that some calculations of heat-kernel invariants 
made by J. Lott (see [6],[7]) allow to make some conclusions about 
the numbers /3k (and sometimes even calculate them, e.g. for the 
case when M is the hyperbolic space). 
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