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Resolvent Estimates and Time-Decay 
in the Semiclassical Limit 

SHU NAKAMURA 

1. Introduction. 
In this note we study the Schrodinger operator 

H = -(tiz /2)A + V(x), on L2(Rd), h > 0 

in the semiclassical limit: % —» 0. In particular, we are interested in the scatter­
ing theory and long time behaviors of the time evolution: e~tiH/h<p. Boundary 
value of the resolvent: l im^+o (H - A ± ie)~l = (H — A ± iO)-1 plays essential 
roles in the scattering theory, and various observable quantities, e.g., scattering 
amplitude, time-delay, etc., are represented by it ([RS]). In studying the bound­
ary value of the resolvent, the theory of Mourre is quite powerful and has been 
applied to many problems (e.g., [M], [PSS], [CFKS]). Jensen, Mourre and Perry 
extended the theory using multiple commutators, and proved the existence of 
boundary values of powers of the resolvent ([JMP]). Using the result they also 
obtained time-decay results (see also [Jl]). 

In a series of papers [RT1]-[RT4], Robert and Tamura systematically studied 
the semiclassical limit of the scattering process for nontrapping energies. In 
their arguments, an estimate of the form: 

( x ) - a ( H - AdbiO)"1 (x)~ < CJi -l h > 0,a > 1/2, 

which is called semiclassical resolvent estimate, plays a crucial role. Here we 
1 /2 

have used the standard notation: (x) = (l + \x\2) . They proved it using a 
parametrix for the time evolution. The proof was simplified and generalized by 
several authors with the aid of the Mourre theory ([GM], [HN], [G], [W2], etc.). 
Moreover, Wang proved semiclassical estimates for powers of the resolvent ([Wl], 
[ W 2 ] ) : 

( x ) - Q ( H - X±i0)~n (xY < Cah~ h > 0 , a > n - 1/2. 
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We also want to mention works on semiclassical resolvent estimates for high 
energies ([Y], [J2]). 

On the other hand, motivated by works on the barrier top resonances ([BCD], 
[S]), the author generalized the semiclassical resolvent estimate to the simplest 
trapping energy, namely the barrier top energy ([N1]). In this case, the estimate 
has the form: 

(x)~a ( H - X ± i O ) ~ 1 (x) <Cañ~¿, h > 0 , a > 1/2, 

where A is the barrier top energy. 
The aim of this note is to construct a semiclassical analogue of the multiple 

commutator method of Jensen, Mourre and Perry, and apply it to the barrier 
top energy and nontrapping energies. We note that for the nontrapping energy 
case, this was done by Wang ([W2]). Roughly speaking, our abstract result is 
as follows: Let A and H be a pair of self-adjoint operators satisfying certain 
regularity conditions (cf. (H1)-(H4) in Section 2). If, in addition, they satisfy 

EA(H)[H,iA]EA(H) > chPEA(H), ft > 0 , 

for some 1 < ¡3 < 2, where A is a neighborhood of an energy E, then we can 
show 

(A)~a ( H - E ± i0)~n (A)~a\\ < C J T n ^ ft > 0,a > - 1/2. 

/3 = 1 corresponds to the nontrapping case, and ft = 2 to the barrier top 
case. We don't know any concrete examples with 1 < (3 < 2. Even though 
the restriction (3 < 2 doesn't seem crucial, our proof dosn't work for the case 
/3 > 2. Time-decay results in the semiclassical limit follow from the above 
result (Theorem 3). In particular, it follows that if / £ Co°(R) is supported in 
a small neighborhood of the barrier top energy, then 

(x) s e - H H f ( H ) { x ) - < C ñ - ( t ) - , t e R, 

for s > sf > 0. 
This note is organized as follows: In Section 2 we state the abstract results, 

and it is proved in Section 4. Applications to Schrödinger operators are discussed 
in Section 3. 
Acknowledgement: The work was motivated by a comment by Professor D. 
Robert on the author's talk in the Nantes conference. The author is grateful 
to Professor Robert for the constructive comment, as well as for organizing the 
wonderful conference. He is also grateful to Professor C. Gerard and Professor 
X. P. Wang for valuable comments. 
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2 . Abstract Results. 
Let H and A be ^-dependent self-adjoint operators on a Hilbert space 7i 

(h G (0,oo)). We first suppose 

(HI) D(A) n D(H) is dense in D(H) with respect to the graph norm. 

Let Bo = H. We wish to define Bj inductively by 

Bj = [B j - i , iA] , i = 1 ,2 , - . - , 

at least formally. In order that we suppose 
(H2) B\ = [H, iA], defined as a form on D(H)nD(A), is extended to a bounded 

operator from D(H) to H. Inductively, 2?;-+1 = [Bj, I'A], defined as a form 
on D(H) PI is extended to a bounded operator from D(H) to H 
for any j > 1. 

In this sense, H is C°°-smooth with respect to A. We suppose the following 

^-dependence of these commutators: 

(H3) For each j > 1 there is Cj > 0 such that 

\ \Bj(H+ < Cjhj, h > o . 

(H4) There is C > 0 such that 

||(H + i y ^ H , [H,iA]](H + i)'11| < C h \ h > 0. 

In applications, (H1)-(H4) follow easily from the symbol calculus. See Section 3. 
Now let us fix an energy EQ £ R. The next inequality, a semiclassical variation 

of the Mourre estimate, is essential. Let ¡3 > 1. 

(H5:/?) There is an interval A 3 E0 and C > 0 such that 

EA(H)[H,iA]EA(H) > Ch^EA(H), h > 0 , 

where EA(H) is the spectral projection of H and A. 

We prove the next theorem in Section 4. 

THEOREM 1. Suppose (Hl)-(H5:p) with 1 < /3 < 2. Then there is an interval 
A 3 E0 satisfying the following: Let n > 1 an integer, and let s > n — 1/2, then 
for any A G A, 

lim (A)~s ( H - X ± i6)~n (A)~s = (A) '8 ( H - X ± i0)~n (A)~s 
8—•-l-O 

exists and satisfies 

{ A y 8 ( H - x ± i O ) - n { A ) - 8 < C h ~ n ^ ft > 0,A e A. (1) 

REMARK: Condition (H4) is missing in Lemma 2.3 of [N2], but we need it even 
for n = 1 if ¡3 > 1. On the other hand, it is not necessary if /3 = 1 (cf. Proof of 
Lemma 6). 

The next result on time-decay is a direct consequence of Theorem 1. 
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THEOREM2. Suppose (H1)-(H5:(3) with 1 < /3 < 2 . Then there is an interval 
A 3 Eo such that for any f £ C Q ° ( A ) and for any constants s > s' > 0, 
s " > s ' ( ( 3 - l ) , 

( A ) - S E - I I H ' H F { H ) { A ) - S < C%-*" (T)-* ' , H > 0, T € R. 

PROOF: We follow the argument of Theorem 4.2 in [ J M P ] . Since 

(2) 

d 
dX J 

j 
EUH) = 1 

2ni 
d 

dX 

D 
((H - X - iO)-1 - (H - X + iO)-1) 

2m 
( ( H - X - iO)-*-1 - { H - X + iO)"'-1), 

it follows from Theorem 1 that 

( A ) - ° 
d 

dX 

j 
Kf(H) tie-nH/Kf(H) 

if s > j ' + 1 /2 . By integration by parts and the functional calculus, we have 

tie-nH/Kf(H) = 
»00 

-OO 
tie-iiX'h f(X)E'xdX 

OO e-a\/n —ith 
d 

d\ 
(f(X)E'x)dX. 

Thus 
AD { A ) - S E - I I H ' H F { H ) { A ) - A tie-nH/Kf(H) 

and hence 

(Ay8 e-itH'nf{H) {A)~3 tie-nH/Kf(H)tie-n 

if s > j + 1/2. Now (2) follows by interpolation. 

3. Applications. 
Here we apply the results of Section 2 to Schrodinger operators: 

H = -
l o 
2 

2A + V(x) on H = L2(RD) 

with d > 1, h > 0. Throughout this section we assume the potential V{x) 
satisfies the following condition: 

(P) V € C ° ° ( R D ) and for any multi-index a, 

d 
dx 

a 
V(x] tie-nH/Kf(H) x e Rd. 

l-oo 
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Let h(x,p) = \p2 + V{x) be the corresponding classical Hamiltonian. We 
denote the solutions of the Newton equation: 

x'(t) = p(t), p'(t) = 
d v 
dx 

(x(t)) 

with the initial condition: x(0) = x0l p(0) = Po by x(x0,po;t) and p(x0,po;t). 
We write the cj-limit set as 

o;-lim(x0,po) = 
oo 

M=l 
\(x(x0,po:t),p(xo,po;t)) \t > M \ . 

Now we fix an energy EQ G R. EQ is called nontrapping if the following 
condition is satisfied: 
(NT) There is e > 0 such that for any (x,p) G Rd X RD satisfying h(x,p) G 

[E0 - e , E o + e], u-\im(x,p) = 0. 
We also suppose that V(x) satisfies the virial condition near x — oo, i.e., 
(V) There are R > 0 and 6 > 0 such that 

(Eo - V(x)) -
1 
2 x 

dV 
dx 

(x) > 6 for \x\ > R. 

THEOREM 3. Suppose (P), (NT) and (V). Then there is A : a neighborhood of 
Eo, such that: 

(i) For any n > 1 and s > n — 1/2, the limit 

lim (x)~s ( H - X ± i6)~n (x)-s = (x)-8 ( H - X ± i0)~n (x)-8 
8—>-+0 

exists for X € A and sufficiently small h > 0. Moreover it satisfies 

(x)-s (H - X ± i 0 ) - n (x)-s < Ch~n, \ e A,h > 0. (3) 

(ii) For any f e C§°(A) and s > s' > 0, e > 0, 

(x)-8 e-HH'hf{H) ( x p < Ch~e (tys , t e R , h > 0. ( 4 ) 

REMARK: Theorem 3 was first proved by Wang ([Wl] Theorem 2) using dif­
ferent methods. See also [W2], where the estimate (3) is proved for TV-body 
Schrodinger operators. We note (4) is not optimum. In fact Wang showed that 
if V(x) is short range then the estimate holds with s = s' and e = 0 ([Wl] 
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Theorem 1 ) . It seems difficult to obtain such an estimate from ( 3 ) . We expect 
that the optimum estimate can be proved by more direct method. 

Now we turn to the barrier top energy case. If V attain its maximum at a 
point, then EQ = sup V is clearly trapping energy in the classical sense. We call 
it the barrier top energy, and we suppose: 

(BT-i) The origin is the unique nondegenerate maximum of V(x) , i.e., 

E0 = sup V(x) = V(0), det ( ^ £ ( 0 ) ) ± 0. 

(BT-ii) There is e > 0 such that any classical particle with the energy in [EQ — e, 
EQ + e] has no o;-limit set except for (0,0), i.e., 

| J ^Km(s ,p ) = { ( 0 , 0 ) } . 
h(x,p)e[E0-c,Eo+e] 

(BT-iii) There are no homoclinic orbits with the energy EQ, i.e., if x(t) —» 0 as 
t —» ±oo then x(t) = 0. 

THEOREM 4 . Let EQ be the barrier top energy and suppose (P), (V) and (BT). 
Then there is A : a neighborhood of EQ, such that: 

(i) For any n > 1 and s > n — 1/2, the limit 

lim (x)-8 ( H - X ± i6)-n (x)-8 = (x)~8 ( H - X ± i0)~n (x)~8 
8 —>--|-0 

exists for X € A and sufficiently small h > 0. Moreover it satisfies 

{x)~s ( H - X ± i 0 ) ~ n (xY < Ch -2n A G A,7i > 0. ( 5 ) 

(ii) For any f € Q ° ( A ) and s > s' > 0, 

(x)-8 e-iiH'nf{H) (x)~8 < Crr8 (t)-8', t € R, h > 0. ( 6 ) 

REMARK: ( 6 ) implies that it takes at most time of order 0(h8^8 ) for a quan­
tum particle with the energy near Eo to escape from a bounded region. As in 
Theorem 3, we expect that ( 6 ) holds with s = sf. 

In the proof, we use the symbol class S(m,g) with m = m(h;x^)1 g = 
dx2/(x)2 + dZ2l(t)2. S(m,g) is the set of functions: / ( f t ; x , 0 € C°°(Rn x Rn) 
with a parameter ft > 0 such that for any a and /?, 

d 
dx, 

a d 
aX 

№ ; x , 0 < CaB m(h; x, 0 (x)"|a| ( 0 ~ m , x, | € Rd. 
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The Weyl operator with the symbol 6(ft;x,f) (or the ft-pseudodifferential oper­
ator with the Weyl symbol b(h;x,£) ) is defined (formally) by 

bw(h;x,hD)^(x) = (27rh)-n j e ^ - ^ / H ^ ; ^ , ^ ^{y)dyd^. 

Conversely, we denote the Weyl symbol of an ft-pseudodifferential operator by 
aw('), i.e., aw (bw(h;x,hD)) = b(h;x,£). (cf. [H]; see also [R], [G], [Nl] for the 
calculus of ?i-pseudodifferential operators.) 

It is easy to see that h(x,£) = |£2 + V(x) G S({£)2 ,g) is the symbol of H. 

LEMMA 1. Let a G S((x) ( £ ) ,g) and suppose A = aw(h;x,hD) is essentially 
self-adjoint on the Schwartz space S. Then the pair of operators H and A 
satisfies the conditions (H1)-(H4). 

PROOF: ( H I ) is clear since S is dense in D(H) = H2(Rd). For any B = 
bw(h',x,hD), b G S((02 ,#) , we have 

*W{[BM\) 6 S((x) ( 0 • (02 'h(x)-1 (t)-1 ,g) = S(h(02 ,<?), 

and hence ||[5,M](jH" + ^ I*1 particular, 

oW (B1) = aw([H,iA](H + i)'1) e S(h ( 0 \ g ) ; ||fli(# + i)-1|| < Ch. 

Inductively, we have 

aw(BJ) = <jw{\Bj-i,iA]) e S(V {02 ,9 ) ; \\Bj(H + *>—*|| < C h \ 

for j > 2. This proves ( H 2 ) and ( H 3 ) . Similarly, we have 

aw([H,[HM]])eS(h2 (x)-1 ( 0 \ g ) , 

and hence 

\\(H + o-Mfr,[H,iA]](H +1)-11| < en2. I 

In order to prove Theorems 3 and 4, it remains to show that there is a G 
S({x) (£) ,g ) such that (H5: /?) holds with (3 = 1 and 2, respectively. For the 
nontrapping case, such a(x,£) was constructed by Gerard and Martinez [GM]: 

LEMMA 2 . Suppose (P), (NT) and (V). Then there is a real-valued symbol: 
a G CS°(Rd x Rd) such that: 

(i) a{x,Z) - x • i G C§°(Rd x Rd); 
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(ii) There are e > 0 and 6 > 0 such that for any (x,£) € Rd x Rd with 
h(x,£) G [E0-e ,E0 + e], 

{ h , a } ( x , 0 > 6 , (7) 

where {•, •} is tie Poisson bracket: 

{a ,b} = 
d 

¿=1 

da db da db 

diidxi dxi d£i 

Let ao(x,£) = x • £. then Ao = a™(x,TiD) is the generator of the dilation 
group, and hence it is essentially self-adjoint on S. It follows from Lemma 2-(i) 
that a € S({x) (f) ,g) and A = aw(x,hD) is also essentially self-adjoint. Thus 
A satisfies the conditions of Lemma 1. The next lemma follows from (7) and 
the functional calculus: 

LEMMA 3. Let a(x,£), e and 6 as in Lemma le:a2. Then for any 6 > 8' > 0 and 

f e C § ? ( E o - e , E o + e), 

f(H)[H, iA\f(H) > 6'hf(H)2, h > o . (8) 

For the detail, we refer [GM]. See [G] for the 3-body case, and [W2] for the 
iV-body case. See also [HN] and [N2] for similar discussions. 

PROOF OF THEOREM 3: By these lemmas, H and A satisfy (H1)-(H5:1). Thus 
Theorems 1 and 2 apply to obtain (3) and (4), respectively, with the weight 
(A)~s instead of (x)~s. We note that 

f(H)[H, iA\f(H) < c 

if s < 2n. If s — 2n, the above estimate follows from the observation: 

aw Ux)-2n(H + i)~n(A)2n) e s Ux)-2n • ( 0 ~ 2 n « x ) ( 0 ) 2 n , g ) = S ( i , g ) , 

and it is extended to 0 < 5 < 2n by complex interpolation (cf. [PSS], Lemma 8.2). 
Combining these we obtain the conclusion. | 

For the barrier top energy case, such a(x,£) was constructed in [N2]: 

LEMMA 4. Suppose (P), (V) and (BT). Then there is a real-valued symbol: 
a(a?,£) G C ° ° (RD x Rd) such that: 

(i) a ( x , 0 - x • i e C£°(Rd x Rd); 
(ii) There are e,a,P > 0 such that for any (x , f ) G Rrf x Rd with h(x,£) G 

[ E o - e , E o + e], 

{ / i , a } ( x , 0 > m i n ( a ( | x | 2 + |e |2),)8). (9) 

The next lemma follows from (9) analogously to Lemma 3: 
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LEMMA 5. Let a{x, £), s as in Lemma 4. Then for any f G CQ°(EO — £, EQ + e), 
there is c > 0 such that 

f { H ) [ H M ] f { H ) > ch2f (H) \ n > o . (10) 

For the detail, we refer [N2]. Now Theorem 4 follows from Lemmas 1 and 5, 
analogously to Theorem 3. 

4. Proof of Theorem 1. 
Throughout this section we assume (H1)-(H5:/?) hold with 1 < (3 < 2. We 

trace arguments in [JMP] and [CFKS], Section 4.3. Let / G C $ ° ( R ) be sup­
ported in A of (H5:/?), and / = 1 in a neighborhood of E0 . Then (H5:/?) implies 

f (H) [H , iA}f (H)>ch^ f (H)2 . (11) 

We often write / = f (H) and / = 1 — / for simplicity. We also write p = (A)-1. 
For e > 0 and z G C \ R, we let 

G ? ( z ) = G™ = ( H - ieM2 - z)-1; M2 = f (H)[H, iA\f (H) > 0. 

We fix a neighborhood of E0: A ' CC {A|/(A) = 1}, and let 

ÇL± = { z e C|Re z G A' , ±Im z > 0 } . 

LEMMA 6. For e > 0, Im z > 0, (H - ieM2 - z) is invertible. The inverse is 
continuous in e for e > 0 and smooth for e > 0. Moreover, there are €Q > 0 and 
C > 0 such that 

HfGf 

HfGf 

HfGf 

H f G f 

HfG™ 

< C h - ^ e - ^ \ ^ , G ^ ) \ 1 / 2 , H f G f 

< Ch-pe~ \ 

HfGf 

;i2) 

(13) 

(14) 

for 0 < s < e0, 0 < h < 1 and z € fi±. 

PROOF: For z = fi + i6, ¡1 € A', 6 > 0, 

( # - e '£M2-?)d = (F - isM2 -n)<p\ +62 \\ip\\2 + 2e6 \\M<p\\2 

62\\<p\\2, <p€D(H). 
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Hence G ^ ( z ) exists and it is easy to see that it is smooth in e if e > 0 because 
M2 is bounded. Now we use the Mourre estimate (11): 

\\fG»<p\\2 = ( V , G » ' f * G ? < p ) 

< Oh-*3 (<p,G™*M2G™<p) 

< Ch-Pe-1 (<p, G f * (2eM2 + 21m z) G?<p) 

= C h ^ e - 1 ( < p , i ( G ? * - G ? ) if) 

< 2 C h - P e - 1 \ ( < p , G ^ ) \ . 

This proves (12). Estimate (12) implies 

\ \ f G ^ \ \ < C h - ^ e - ^ 2 \ \ G ^ \ \ 1 / 2 . (15) 

Now we decompose G^1 as 

GM / G f / G f 

<Ch-^2e -1 /2 \ \Gf \ \1 / + f ( H - z ) - 1 + f { H - z ) - ' e M 2 G ™ 

K C h - ^ e - 1 ' 2 G f 1 1 + C { l + he G f 

By solving the quadratic inequality in | | G f || , we obtain 

\G?\\ KCh-Pe-1 (16) 

if he is sufficiently small. We set So > 0 so small that it holds for any 0 < h < 1. 
(13) follows immediately from (16). 

In order to prove (14), we first note that by the resolvent equation, 

/ G f < f ( H - z ) - 1 + f ( H - z)-1 (ieM2) G f 

< C [ l + he- Ch 'Pe-1) < Ch1-!*. (17) 

We take g € C Q ° ( R ) SO that g = 0 in a neighborhood of A and g f = / . Then 
(17) holds for g G f also. We decompose / G f as 

/ G f = f ( H - z)-1 {ieM2) g ( H ) G ? + f ( H - z)~l [g(H),ieM2] G f . 

Since (H4) implies 

\[g, ieM2]\\=e\\f[g,[H,iA}]f\ \ 
< e \ \ [ ( l - g ) , [ H M ) } \ \ < C h z e , 

and P < 2, we have 

/ G f < C + Che • Ch*-? + Ch2e • h '^e '1 < C ( l + h2~n < C. 

• f f /Gf < C easily follows from this. 
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LEMMA 7. Let SQ as in Lemma 6. Then 

fG?ptl> fG?ptl> 

fG?ptl> fG?ptl> fG?ptl> 
(18) 

(19) 

for 0 < e < £0, 0 < h < 1 and z € Q±. 

PROOF: Let FM = pG^p. Substituting (p = pip to (12) and using (14), we 
obtain 

\ \ G f p ^ \ \ < fG?ptl> +||/GeMpV|| 

Gfp^\\< fG?ptl> +||/GeMpV||GeMpV||eMpV 

< C l + z r ^ V 1 ' 2 FeM ' " J I M I - e M '"JIMI 

Thus 
\\Gfp^\\< fG?ptl> +||/GeMpV||GeMpV|| (20) 

On the other hand, as in the proof of Lemma 4.15 of [CFKS], we have 

1 d 
i de 

FeM = PGfM2G™p = Q1+Q2 + Q3, 

Q, = - p G f f B ^ G f p , 

Q2 = - p G f j B . f G f p - p G f f B j G f p , 

Q3=pGM{H,iA]GMp. 

By (13), (14) and (20), Q \ and Q2 are estimated as follows: 

| | Q , | | < G Y M B ^ H + i)-1 (H + i ) f G ? < C h , 

IIQ2II < 2 G?f\\ \\B.iH + i)"1 II \\(H + i)f\\ \\G?p\\ 

< C h l + h-We-1 '2 \\FFM\r) 

We decompose Q3 = Qa + Q5 where 

Q4 = p G f [H - ieM2 - z,iA] G™p, 

Qh = p G f [ieM2,iA] G f p . 

Using (20) again, we have 

I I ^ H < 2 | | p G f ^ | | < 2 | | p G f | < C ( l + ft-'/V1/2 F™ V 
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Since 

\ \ [M\iA}\ \<2 \ \ [ fM)\ \ \ \ [HM}f\ \ + \ \ [ [HM]M]f\ \<Ch2, 

Ok is estimated as 

HQsII < 2e \\pG?\\ • Ch2 < Ch2-*3 \\FeM\\ < C \ \ F ? \ . 

Combining these, we obtain 

d 
de 

F£M l + h - ^ e - " 2 \ \ F ? \ f 2 + \ \F? \ { (21) 

By (13) and (14), we learn 

F™\ < \\G^\ KCh-Pe-1. (22) 

(21) and (22) imply 4-F™ < C (1 + h ' ^ e ' 1 ) . Integrating this, we obtain 

\ \ F r M \ \ < C h - ^ ^ + C 
AD 

D 
1 + K-fiv-1 du 

< C h - P (l + I log el). 

We substitute this to (21) and integrate again: 

II TpM\\ / n%-P . n%-P AF 

AF 
(l + |loge|)de <Ch~p . 

This proves (18) and (19) follows from (18) and (20). 
For m > 2 we set 

Cm(e) = 
m 

> = 1 

i - ieV 
AF 

AF e > 0, 

which is bounded from D(H) to H. 

LEMMA 8. There is £o > 0 such that (H + Cm(e) — z) has a bounded inverse 
G€(z) for 0 < e < So and z G fi±. Ge(z) is continuous in e for 0 < e < Sq and 
smooth for 0 < e < Sq. Moreover, it satisfies 

\\Ge\\ + \ \ H G e \ \ < C h - " e - \ 

\\Gep\\ + \\HGep\\<Cn-^-1/2. 

(23) 

(24) 
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PROOF: We construct G£ following [ J M P ] . ( 1 4 ) implies eB1fG™J < Che. 

Hence 

G°e(z) = G f -G°e(z) = Gf - i e B . f G ^ f ) ' 1 ( - i e B 1 ) f G ? 

is bounded, and it is an inverse to (H — ieB\f) if £ is sufficiently small. More­
over, by ( 1 3 ) , ( 1 4 ) and ( 1 9 ) , we learn that estimates ( 2 3 ) - ( 2 4 ) hold for G°e and 

/ G ° + HfG°£ < C. ( 2 5 ) 

Now ( 2 5 ) implies efG^Bi < Che, and hence 

Gl = G°s-G°e ( - ieBi ) ( l + fG° { - i e B , ) ) * / G ° 

is bounded, and it is an inverse to (H — ieB\ — z). Moreover, estimates ( 2 3 ) -
(25 ) hold for G\. 

At last, noting 

\\(Cm(e) - { - i e ) B , ) G \ \ \ < \\{Cm - (-ie)5,) (H + i)"11| \\(H + i)G\\\ 

< Ch2e2 • Ch-^e'1 < Ch2~^£ < Ce, 

we learn that 

Ge - G\ - G\ (1 + {Cm - (-te)JJi) Gj ) '1 (Cm - (-ie)B1)G1e 

is bounded and it is an inverse to (H + Cm - z). Now ( 2 3 ) - ( 2 4 ) follow easily 
from the corresponding estimates for G\. The smoothness in e > 0 follows from 
the //-boundedness of Bj. | 

LEMMA 9. Let Gc(z) as in Lemma 8. Then 

d 

as 
•Ge = ( - i ) \ G e , i A ] + ; 

(-Ì£)m 

m! 
•GeBm+iGe. ( 2 6 ) 

P r o o f : We first noie 4-G, = -G , ( 4 -Cn le ) ) G „ and 

d 

de 
Cm(e) = 

A 

de 

AJ 

í=l 

(-if Y 
GeBm+iGe в,- ( - 0 

m 

GeBm+iGe 

GeBm+iGe 

0' - 1)! 
2A 

= - i B i + (-i) 
m 

GeBm+iGe 

GeBm+iGe 

i! 
GeBm+iGe ( - 0 

(-ie)m 
GeBm+iGe 

GeBm+iGe 

= ( - ¿ ) [ t f + C m - z , ¿ A ] + ¿ 
(-ie)m 

mi 
GeBm+iGe 
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(23) follows from this and [Ge,iA] = -G€[H + Cm - z,iA]Ge. | 
PROOF OF THEOREM 1: Since the case n = 1 is already known, we may suppose 
n > 2 and hence s > n — 1/2 > 1. Let m > /3(n + 1) — 1 and let Ge = 
(H — Cm — z ) -1 , Fe = p8(G€)np8. We compute its derivative in e: 

d 
de 

Fe = p* 
d 

de 
Gn-j-lps 

n-1 

i=0 

AKS d 

de 
AF Gn-j-lps 

n-1 
Gn-j-lps 

j=0 
p8Ge3\Ge,iA\Gen~ 3 p8 + i 

- i s 
ml 

Gn-j-lps 

Gn-j-lps 

p ' G ^ B ^ G ^ - ' p 8 G n 

= -ip8 \Gen,iA] p8 + i-
- i s ) 

ml 

m n~1 

j=0 
p8Ge^iBrn+lG€n->p8 

= 1 + 11. 

We estimate II using Lemma 8: 

\\II\\ < Cem 
n-1 

j=0 
\\PG£\\ G£> B ^ i H + i)-1 {H + i)G£n->-> \\\Gep\\ 

G£n-G£n-
n-1 

G£n-
PG£\\ G£> B^iH + i)-1 {H + i)G£n->->G£n-

n—j — l 

< (7̂ (m+1)-(n+1)/3£:m-n < c. 

In the last step we have used the condition: m + 1 > (n + 1)(3. The other term 
is 

| | / | | < 2 | | ^ G e n A p ' | | < 2 p - ' C V < 2 | | / G e V I | 1 " 1 / s | | G , e V I I "G£n-G£n-

< CIIFJI1-178 W1G£n-
n-1 

h ^ e - 1 ' 2 ) 
lis 

<Ch-nVse-(n-ll2V*\\Fe\Y-lls. 

Combining these we have 

dFs 

de 
< c ( L + n - N N » £ - { N - H 2 ) I S \ \ F E § - V > \ . (27) 

On the other hand, Lemma 8 implies 

IIF.II < C \\pGA\ \\Ge\\n-2 \\G.p\\ < C h - ^ e - ^ . 

G£n-

http://IIF.II
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If we substitute < CTt~np£~1

y 7 > 0, to (27), by integration by parts we 

obtain 

\\F II < C f t - " / * £ - 7 ( l - l A ) - ( n - l / 2 ) / 5 + l < Ch-nPE-7+(l-(n-l/2)/s)^ 

Since 1 > (n - 1/2)/s , finitely many iterations give us | |F e | | < Ch n^ for any 

0 < e < So- Hence 

sup 
supsup 

ps(H-z)-np< < sup sup \\p8Ge

np8\\ < Ch-n(i. 

(l-lA)-(n-l/2) 

Since the existence of the boundary value is proved in [JMP], this completes the 

proof. I 
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