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SINGULAR PERTURBATION OF SYMBOLIC FLOWS 
AND 

THE MODIFIED LAX-PHILLIPS CONJECTURE 

MITSURU IKAWA 

1. Introduction. In the study of scattering by an obstacle consisting of 
several convex bodies, it is known that the distribution of poles of the scattering 
matrix has a close relationship to the zeta functions associated with a dynamical 
system in the exterior of the obstacle. When we want to consider the validity 
of the modified Lax-Phillips conjecture, we can derive it from the existence of 
poles of the zeta functions. That is, roughly speaking, if the zeta function has 
a pole in a certain region, the scattering matrix for the obstacle has an infinite 
number of poles in a strip {z G C; 0 < Im z < a} for some a > 0. The modified 
Lax-Phillips conjectrue will be explained in the next section. 

Therefore, in order to consider distributions of poles of scattering matrices 
for an obstacle consisting of several convex bodies, the zeta functions play a 
crucial role. But unfortunately, it is not so easy to show the existence of a pole 
of the zeta functions in general. 

In this talk, we shall develop a theory of singular perturbations of symbolic 
dynamics, with which we shall show the existence of a pole of the zeta function 
when the obstacle is consisted of several small balls. 

In Section 2, we explain the modified Lax-Phillips conjecture and consider 
the scattering by obstacles consisting of several convex bodies. In Section 3, 
we shall discuss singular perturbations of symbolic dynamics. In Section 4, 
we shall show how to apply the theorem on singular perturbations of symbolic 
dynamics to considerations of the matrices for obstacles consisting of several 
small balls. 

2. Scattering by several convex bodies. 

Let O be a bounded open set in R 3 with smooth boundary T. We set 

ft = R 3 - 0 , 
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M. IKAWA 

and assume that $1 is connected. Consider the following acoustic problem: 

(2.1) 

d2u 

Uu = — Au = 0 in Q x (-00,00), 

u = 0 on r x (-00,00), 
u(x,0) = f1(x),—(x,0) = f2(x). 

We denote by S(z) the scattering matrix for this problem. The scattering 
matrix S{z) is an C{L2{S2))— valued function analytic in {z; Imz < 0} and 
meromorphic in the whole complex plane C, and that the correspondance from 
obstacles to scattering matrices 

O — S(z) 

is one to one(see for example [LP]). 
Concerning the above correspondance, we are interested in the problem 

to know how the distribution of poles of scattering matrices relates to the 
geometry of obstacles. As to this problem, we would like to present the following 
conjecture: 

Modified Lax-Phillips Conjecture. When O is trapping, there is a positive 
constant a such that the scattering matrix S(z) has an infinite number of poles 
in {z]0 < Imz < a}. 

Hereafter, we say that MLPC(abbreviation of the modified Lax-Phillips 
conjecture) is valid for obstacle (9, when there is a > 0 such that the scattering 
matrix S(z) corresponding to O has an infinite number of poles in {zm,Imz < 
a}. 

About this conjecture, obstacles consisting of two convex bodies were 
studied first. By the works [BGR], [G], [Ikl] and [S], the distribution of poles 
are well studied, and it is shown that MLPC is valid for obstacles consisting of 
two convex bodies. It is very natural to proceed to obstacles consisting of three 
strictly convex bodies. But the problem for three bodies exposes an essential 
difference from that of two bodies. Namely, for an obstacle consisting of three 
bodies, there exist infinitely many primitive periodic rays in the exterior of 
the obstacle in general. Thus, we have to consider geometric property of the 
totality of the periodic rays in the exterior, and it seems that the asymptotic 
behavior of the periodic rays with very large period plays an essential role. 

Here, we present a theorem in [Ik3,4], which allows us to connect the 
asymptotic behavior of the periodic rays and the distribution of poles of the 
scattering matrix. 
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SINGULAR PERTURBATIONS OF SYMBOLIC FLOWS 

Let Oj, j = 1,2,-" ,L,be bounded operi sets with smooth boundary Tj 
satisfying 

(H.l) every Oj is strictly convex, 

(H.2) for every { J 1 J 2 J 3 } E {1,2, • • • , L}3 such that ji ^ j v if I ̂  V, 

(convex hull of Ojx and Oj2 ) D Oj3 = <j>. 

We set 

(2.2) 0 = uf=1Oj, Q = R 3 - 0 and T = dQ. 

Denote by 7 an oriented periodic ray in ft, and we shall use the following 
notations: 

d 7 : the length of 7, 
T 7 : the primitive period of 7, 
z 7 : the number of the reflecting points of 7, 
P 7 : the Poincaré map of 7. 

We define a function FD(S) (S E C) by 

(2.3) FD(s) = ^ ( - 1 ) ^ T 7 | / - P 7 r 1 / 2 e " s ^ 
7 

where the summation is taken over all the oriented periodic rays in Si and 
IJ — Py \ denotes the determinant of / — P 7 . 

Concerning the periodic rays in we have 

(2.4) # { 7 ; periodic ray in ft such that d 7 < r} < ea°r 

and 

(2.5) I / - -P7I > e 2 a i < S 

where ao and ai are positive constants depending on O. The estimates (2.4) 
and (2.5) imply that the right hand side of (2.3) converges absolutely in {s E 
C; Res > ao — a\). Thus Fo(s) is well defined in {s E C; Res > ao — a\), 
and holomorphic in this domain. 

Now we have 
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Theorem 2.1. Let O be an obstacle given by (2.2) satisfying (H.l) and (H.2). 
If Fo(s) cannot be prolonged analytically to an entire function, then MLPC is 
valid for O. 

We cannot give here the proof of the above theorem. We would like to 
refer that the trace formula due to [BGR] is the starting point of the proof. 
This trace formula is written as follows: 

(2.6) Trace L 2( R 3 ) / p(t) (cos ty/^A ® 0 - cos ty/—AQ j dt 

_ 1 
~~ 2 

pc 

3=1 

p (z j), for all p e C£°(0,oo) 

where 

P(z) = eiztp(t)dt, 

{zj}fL1 is a numbering of all the poles of S(z), A is the selfajoint realization 
in L2(f2) of the Laplacian with the Dirichlet boundary condition and AQ the 
one in L 2 ( R 3 ) , and ®0 indicates the extension into O by 0. It gives us an 
relationship between the distribution of poles of the scattering matrix and the 
singularities of the trace of the evolution operator of (2.1). We shall use (2.6) 
in the following way: Suppose that i*b(s) has a singularity. This enable us to 
choose a sequence of p of the form 

pq(t) = p(mq(t - lq)) 

in such way that 
lq —> co, mq —• oo as q —• oo, 

and that the left hand side does not decay so fast as q tends to the infinity. 
But if MLPC is not valid, the right hand side of (2.6) for pq decreases very 
rapidely. The difference in decreasing speeds brings a contradiction. Thus 
MLPC is valid. The detailed proof is given in [Ik3]. 

By virtue of Theorem 2.1, the proof of the validity of MLPC is transfered 
to the consideration of singularities of FD(S). But it is not easy to show the 
existence of singularities of FD{S) in general. At present we can show it only 
for obstacles consisting of small balls. 

Theorem 2.2. Let P 7, j = 1,2, • • • , L, be points in R 3 , and set for e > 0 

0£ = U*f=1Oji£, Oji6 = {x- \x -Pj\<e}. 
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Suppose that 

(A) any triple of Pj }s does not lie on a straight line. 

Then, there is a positive constant eo such that the modified Lax-Phillips con­
jecture holds for Oe for all 0 < e < 6Q. 

To prove the above theorem we have to show the existence of singularities 
of Fo(s) associated with Oe. To do this, we need a theory of singular pertur­
bation of symbolic dynamics, which will be developed in the next section. 

3. Singular perturbations of symbolic dynamics 

In this section we consider singular perturbations. First we shall give 
some notations concerning the symbolic dynamics. 

3.1. Notations and statement of a theorem. 

Let L > 2 be an integer, and let A = {A{i^j))i-=l2,^L be a zero-one 
L x L matrix. We set 

= {£ = ( 6 , 6 , • • • ); 1 < Zj < L and A&^+i) = 1 for j = 1,2, • • • } , 

and denote by a A the shift operator defined by 

(^A(O)J = & + I for all j . 

We regard £j[ as a compact metric space by introducing the usual discrete 
metric. Define var n r and HrHoo for r E C(£j[) by 

var nr = sup{|r(0 - rft/0|;f,^ G £ ^ and ^ = ipi for j < n} , 

||r||oo = sup{|r(í) |;í GEJ} . 

We set for 0 < 9 < 1 

\\r\\o = sup varn r n>1|||r|||0, = max{||r||0, ||r||oo} 

^ , (E+) = { r G C ( E + ) ; | | | r | | | 9 < o o } . 

Assume that A satisfies 

(3.1) AN > 0 for some positive integer iV, 

that is, all the entries of the matrix AN are positive. Let B = [B(i, j)]*,j=i,2,- , l 
be another zero-one L x L matrix. 
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Definition. Let z,j G {1,2, - • • , L } . The notation 

Ì — • 7 
B 

indicates the existence of a sequence ¿ 1 , ¿2. • • • , i p such that 
B(iui) = 1, B(iq+Uiq) = 1 for q = 1,2, ••• , p - 1 and B(j,ip) = 1. 

We assume on 5 the following: 
There is 1 < K < L such that 

(3.2) B(i,j) = 0 for all j if i>K + l, 

(3.3) i —> i for all 1 < i < K, 
R 

(3.4) i —> 7 implies 7 —• z if i.j < K 
B B 

and 

(3.5 B(i,j) = 1 implies ^ ( ¿ , . 7 ) = 1. 

Let / e , / i e are functions with parameter e > 0 satisfying 

(3.5) /e, he E ^ f l (E t ) for all 0 < £ < Ci , 

where £ 1 is a positive constant, and let k € ^ ( S t ) satisfy 

(3.6) *(0 = 
m =o if B ( 6 , 6 ) = I 

* ( É ) > 0 if 5 ( 6 , 6 ) = 0. 

Suppose that 

(3.7) | | | / « - / o | | | f l , | | | * i e - f t o | | | » - > ° ° 3 5 £ - + ° 

For 0 < e < ei , we define zeta function Z£(s) by 

(3.8) Z(s; e) = exp 
00 

n 

1 

qpx 
expSexpS 

expS nr(£,s;e) 

where 

r«,5 ;e ) = - 8 / e ( 0 + M 0 + fc(01oge 

and 

r«,5;e) = -8/e(0 + M0 
n-l 

7=0 
r«,5;e) = -8/e(0 + M0 

The following theorem is on the existence of singularities of Z(s;s), which is 

the main result of [Ik5]. 
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Theorem 3.1. Suppose that (3.1)~(3.7) are satisfied, and that 

(3.9) / o ( O > 0 for all £ G E + , 

(3.10) / i 0 (0 is real for ail ^ G such that £ ( 6 , 6 ) = 1. 

Then there exist so G R, Da neighborhood of So in C and 6Q > 0 such 
that, for every 0 < e < Co, ^(s; e) is meromorphic in D and it has a pole se in 
D with 

se —> so as e —» 0. 

Here we would like to mention about the reason why we call the above 
result as singular perturbation. 

Let us set 
C = (B(i,j))iJ=h2,...,K 

and 

E£ = {£ = ( 6 , 6 , • • • ) ; 1 < 6 < ^ and £ (6 ,6+1) = 1 for all j}. 

Consider a term in (3.8) 

Snr(f,s;e) 
exp S n r ( f , s ;e ) . 

If we make 6 tend to zero, because of the effect of k(£) log e, for all £ G £j[ such 
that A;(o-.4m£) > 0 for at least one ra, exp 5 n r(£, 5; 6) tends to zero. Therefore, 
the above summation tends to 

Snr(f,s;e) 

exp S n r(£,s;e) . 

If we set 

ZQ(S) = exp{ 
00 

n=l 

1 
qs 

Snr(f,s;e) 
e x p 5 n ( - a / 0 ( 0 + M 0 ) } , 

¿0(5) is a zeta function of the symbolic flow on ( E j , a c ) . Thus the above fact 
suggests us that Ze(s) should be regarded as a perturbation of Zo(s). But when 
we compare these, not only the function —/o(0 + ho(£) but also the structure 
matrix C are perturebed. Thus we should call it singular perturbation. 

In the rest of this section we shall give only a sketch of the proof of 
Theorem 3.1. For the detailed proof, see [Ik5]. 
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3.2. The Perron-Frobenius operators. 
In order to find a pole of Ze(s) it is important to examine the spectrum 

of the Perron-Frobenius operator associated with Z(s;e) defined by 

Snr(f,s;e) 
Snr(f,s;e) 

exp(re(77,s))u(r7) for u G C(EJ[). 

For the proof of the existence of poles of Z(s; e), if we use the results of [Po] or 
[H], it suffices to show the existence 5 for which C6iS has 1 as an eigenvalue. 

Remark that it is difficult to consider directly the spectrum of since 
r e(£,s) is of the form rather complex for e > 0. Thus, it is important to find 
its nice approximations. As the first approximation, we introduce an operator 
C's in E J by 

[3.11) '-s 
B(m-6)=i exp(re(77,s))u(77) for £ € E ( 1 ) , 

for £ € E ( 2 ) , 

where 
rote*) = - « / o ( 0 + M O , 

'Bfai,€i)=i indicates the summation taken over all rj G Ej[ such that CTAV = £ 
and B(rji,ti) = 1, and 

E(l) = {£ G E+;B ( / ,6) = 1 for some 1<1<K], 
E(2) = {£ G E+; JB(Z,6) = 0 for all 1 < I < K}. 

Since ro(^,s) is not necessarily real even for e = 0 and real 5, we have to 
introduce an approximation Cs of C's defined by 

(3.12) Cav(£) = exp(re(77,5)) u(rj) for v G C(E j ) . 
Snr(f,s;e) 

Now ro(^, 5) is real valued for all £ G E j and real 5 and we can apply the 
generalized Perron-Frobenius theorem and find so G R such that CSo has 1 as 
an eigenvalue. 

Of course, in using these approximations of we have to compare the 
spectra of these operators. In our reasoning, the most crucial step is to give a 
relationships between spectra of Cs and C's. 

3.3. On the decomposition of Cs. 
First recall the generalized Perron-Frobenious Theorem of [AS] for sym­

bolic dynamics which is not necessarily mixing. We introduce the following 
definition of indecomposability of a matrix. 
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Definition. We say that a n i x L zero-one matrix C is indecomposable when 
i —> j for any ij e {1,2, ••• , L } . 

c 
Then the following theorem holds: 

Theorem 3.2. Suppose that a zero-one matrix C is indecomposable, and r 
is a real valued function belonging to ^ ( E j ) . The the operator in ^ ( E j ) 
defined by 

£u (0 = exp(rfa)) «(»7) 
Snr(f,s;e) 

has the following decomposition: 

C = 
Snr(f,s;e) 

k=l 
XkEk + S 

where 

Ai > 0, and Xk = Ai exp(i(k — l)27r/A;o), for k = 2 , . . . , ko, 
Ek Ei = SkiEk, EkS = SEk = 0, 

dimension of the range Ek = 1, 
the spectral radius of S < Ai(l — 5) for some 6 > 0. 

The constant ko is the greatest common divisor of all the periods of pe­
riodic elements in E j 

Let us say that i and j are equivalent when i —• j . Then the con­
ditions (3.2) and (3.3) on B imply that this gives an equivalent relation in 
{ 1 , 2 , . . . , K}. Therefore, by changing the numbering of the elements of 
{ 1 , 2 , . . . , i f } , we maY assume that the set { 1 , 2 , . . . ,K} is decomposed into 
equivalents classes 

Mj = {ij.ij + !,••• - 1} (j = 1,2,.-. , / ) . 

We shall denote by Cj the (ij+i — ij) x (ij+i — ij) matrix [B(i,j)]ijeM:r Note 
that each Cj is indecomposable. We set 

= {£ = ( 6 , 6 , •••);&<= Mj and B (6 ,6+ i ) = 1 for all t} 

and 

E£ = {£ = ( 6 , 6 , • • • ) ; 1 < 6 < K and £ ( 6 , 6 + i ) = 1 for all t} . 
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Regarding E^. and E j as subsets of Ej[, we have a decomposition 

c(e+) = c ( s+ ) e c(E+ 2 ) e • • • e(s+ ) e c(E+2 )). 

For u G C(EJ[) we denote by [u] and [u]j the restrictions of г¿ to E j and E j 

respectively. Conversely, for functions in E£ or in E j . we shall often treat 

them as functions defined in Ej[ by extending them by zero in the outside of 

E j or of . 

Let Cs be the operator in C(Ej ) defined by 

Snr(f,s;e) 

Snr(f,s;e) 

exp(r0(r)]s)) v(rj) for v G C(E+), 

and let CjiS be the operators in C(Ej . ) defined by 

£j9s v(£) = exp(ro(ry; 5)) (̂77) for v G C ( E ^ ) 

Snr(f,s;e) 
where o"c and crc, denote the restrictions of cr̂  to E j and E^. respectively. 

Then £ s has a decomposition 

£S — £L,S © ^2,S © * * • © £/,s« 

By using the notaion introduced in the above, we have for all И G Ej[ 

Cs [u] = Ci,s[u]i © £ 2 | S M 2 © * • • © CiAu]i-
Note that the conditions (3.9) and (3.10) imply that ro is real valued in E ^ 
for s G R. Thus, taking acount of the indecomposability of Cj we can apply 
the above Theorem 3.2 to CjjS and get the following 

Lemma 3.3. For s G R, Cjj3 has a decomposition 

Snr(f,s;e) 
K1 

K=L 
^J,K,S -̂ j,fc,s "I" *̂ 7,S5 

with the following properties: 

(i) £7',S к s — \j к sEj h s . 

(ii) Aj,i,s > 0 and 
d A7-1. s 

as 
> 0 . 

(Hi) |Aj,fc,e| = А^1,я and \jtk,s bj,k',8 ifk^k'. 

(iv) bj,k',8 ifk^k'.bj,k',8 ifk^k'. 

where vjikis G n^ > 0 ^(E5 . )*satisfying Uj^APj^s) = 1, 

(v) |Aj,fc,e| = А^1,я and \jtk,s bj,k',8 ifk^k'.bj,k',8 ifk^k' 

(vi) the spectral radius of 5 J ) S < А ^ > 5 . 
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Hereafter, we shall denote often Xjtii3 as Aj j S . Note that we have for each 

J 

\j,s —> oo as s —• —oo, 

—> 0 as s —• oo. 

Thus, by changing the numbering of A J j S if necessary, we may suppose that for 
some So G R 

1 — ^l,s0

 — ^2,s0 — • • • — Xh,s0 > Xh+ijSo > * * • > ^,s0-

Then, by using the perturbation theory we have immediately the following 

Lemma 3.4. There are a neighborhood D of So in C and a constant 6 > 0 
such that for all s G D we have a decomposition 

Cs = 
h kj 

3 = 1 k=l 

Xj,k,s Ej,k,s + Ss 

with the following properties: 

(i) 
Ej,k,s Ss — Ss Ej k g — 0,Ej,k,s Ss — Ss Ej k g — 0, 

(") Ej,k,s Ss — Ss Ej k g — 0, 

(iii) Ej,k,s Ss — Ss Ej k g — 0, 

(iv) |A,-. -1\<6, 

(v) |Â j ) f c , s - 1| > 26, l-S<\\j,k,.\<l + 6 fork>2, 

(vi) the spectral radius of Ss < 1 — 26. 

3.4. On eigenvalues of C's. 

With the aid of the results of the previous subsection, we shall consider 
the decomposition of C's. First remark that for any positive integer m and for 
£ G S( l ) we have an expression 

(3.13) £' #

m u(0 = Ej,k,s Ss — Ss Ej k g — 0,Ej,k,s Ss — Ss Ej k g — 0, 

Ej,k,s Ss — Ss Ej k g — 0, 
Ej,k,s Ss — Ss Ej k g — 0, 

where the summation is taken over all 7/1,772,- •• ,7/m satisfying £(771,£1) = 
1, .8(772,772) = l,--- ,£(77^77™.!) = 1. 

In the expression of (3.13), by using the fact the ro G ̂ (EJJ) and the 
decomposition of Cs shown the the previous subsection, we have the following 
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Lemma 3.5. For each pair j , k in Lemma 3.4, there is a function Wjtk,s(€) € 
^ ( E j ) satisfying 

(3.14) 

|(Aj,fc,s) m 

-^•)M(0I <C7R form = 1,2,-.. , 

-^•)M(0I <C7R form = 1,2,-.. ,-^•)M(0I <C7R form = 1,2,-.. , 

- ^ • ) M ( 0 I < C 7 R form = 1,2,-.. , 

and 
£ s wj,k,s ~ ^j,k,s Wj,k,s-

Here 7i is a constant such that 0 < 71 < 1. 

Remark that we have from (3.14) and (iv) of Lemma 3.3 

-^•)M(0I <C7R form = 1,2,-.. ,-^•)M(0I <C7R form = 1,2,-.. , 

from which it follows that 

-^•)M(0I <C7R form = 1,2,-.. , 

Definee c(E+2 )by 
Ej,kM& = i / j ,m(MjH,m (0 -

Then, we have 

Ej,k,sEj',k>,s = Sjj'sk,k'.EjiktS, 

and 

-^•)M(0I <C7R form = 1,2,-.. , 

In the expression (3.13), by using the decomposition of Cs and Lemma 
3.5, we have the following lemma which is crusial for the proof of Theorem 2.1. 

Lemma 3.6. There exist a neighborhood D\ of SQ in C and a positive constant 
62 such that we have for all s G Di 

l - « 2 / 2 < | A i f M | < l + « 2 / 2 , (3.15) 

(3.16) 1 w m 

h 

j=l k=l 

kj 
[hk,S)mE'i.Mt)\\\O < C\\\u\\\e (1 - 262)m. 
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3.5. On the decomposition of C'S. 

By using the same argument as in [Ik3], we have the following two esti­
mates concerning C'SQ for any u G TQ^A) 

| | 4 0

m « l l ° o < C î l M l o o , 

l l l ^ u l l l f l ^ C a ^ l l H H t f + C s N l o o . 

Thus, by applying the theorem of [IM] to the pair of the spaces C(E\) and 
^(EJJ), we have from the above inequalities the following decomposition of 
£ ' i n ^ ( E + ) 

rj -
J 

3 = 1 

CjE'j+S' = E' + S\ 

where 

C'Sq E'j = CjE'j and \CJ\ = 1 for all j , 

E'j E[ = 8ji E^ for all j , Z, 

E'j S' = S' E'j = 0 for all j , 

the spectral radius of S' < 1. 

With the aid of Lemma 3.5 we can show easily that there is no eigenvalue 
of E' besides Aj,fc)S0. Now we have the following proposition from the standard 
perturbation theory: 

Proposition 3.7. There are SQ G R, a neighborhood D2 of So in C and a 
positive constant 63 such that, for all s G D2, £ s has a decomposition 

£ -
*^ s — 

¿0 

1=1 

-^•)M(0I <C 

satisfying the following: 
(1) F{iSS's = S'sFliS=0, forall / = 0,1, - - - , / 0 . 
(2) F{s F'Ks = F^s F{s = 0 for all Z, k = 0,1, • • • , lQ such that I ^ k. 
(3) For 0 < I < Zo, the dimension of the range of F{ — i\ for all s G D2 and 
the eigenvalues of F[s are i — 1> 2, • • • , ii, which satisfy 

Ways - A*? I < ô^3 l/x? - > S3 (l ï I'). 

Especially /x2 = 1, i0 = h and fi(0,i\a = A7 « (j = 1,2, • - • , h). 
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(4) the spectral radius of S's < 1 — 353. 

3.6. Spectrum of ££jS. 

Suppose that Lemmas 3.6 and Proposition 3.7 hold for the open disk 
D2 = {s; \s — so| < ao} (ao > 0). Recall that Aj>s, j — 1,2, • • • , h are analytic 
in Z?2J and satisfies 

< ao} (ci > 0) 
G Z>2 

ds 
G Z>2 > 0. 

G Z>2 
Thus, by exchanging ao by a smaller one if necessary, we may assume the 
following: 

|Asj - 1| < 53/3 for all s G Z>2, 

|AS)j — 1| > ci|s — so| for all s G {s; |s — so| < ao} (ci > 0). 

By the same argument as in [Ik3, Section 3] we have 

11 l^o,s ~~ £e,s|||0 ~~* 0 uniformly in s £ D2 as e —> 0. 

Therefore by applying the standard perturbation theory we have 

Lemma 3.8. There are positive constants 6Q and 64 such that for all 0 < e < 60 
and s G D2 we have the following decomposition of CEY. 

0) G Z>2 
¿0 

¿=0 

G Z>2G Z>2G Z>2 

where 

(») £(l),e,s £(k),e,s = £(k),e.a £(l),e9a = 0 if I ̂  k, 

(iii) £(0,e,s Se.a ~ Se,s £(l),e,s ~ 0, 

(iv) the spectral radius of S£iS < 1 - 2<53, 

dim Range £n\ e s = i\ for all 0 < e < eo, 

(v) 
G Z>2 

exp(Rer£(£, s)) < C(l + ¿3)" for all n. 

Moreover, denoting the eigenvalues of £(i),£,s by ^i,i(6's)' * = 0> 1> ' ' " > ^ ~ 
1,2, • • • , /1, we have for aJi 0 < e < so 

(vi) G Z>2G Z>2G Z>2 ^ 3 
3 3 

for all s € D2, I = 0,1, • • • , Zo, 

(vii) |Ao,j(£,s) — 1| > ¿4 for a]i s € {s; |s — Sol = ao} . 
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3.7. Proof of Theorem. 

Set 

fi(\,s;e) = 
qj 

i=0 
(A - \ii(e,s)). 

It is easy to check that, for each /, //(A, s;e) is holomorphic in s. With the aid 
of Rouche's theorem, we can show easily from (vii) of Lemma 3.8 that for each 
0 < e < eo, /o(l ,s\e) = 0 has exactly h zeros in {5; \s — So\ < ao} (ao > 0). 

Now we apply Theorem 2 of [Po] or Theorem 4 of [H] to Ce,s- By ex­
changing eo by a smaller one if necessary we may assume that 

6(l + 63) < 1. 

Then, the application of the theorems of [Po, H] to £ £ j S assures that 

Z£(s) is meromorphic in Res > so + <%o 

and is of the form 

Ze(s) = exp(0(s,e)) 
lo 

1=0 

G Z>2G Z>2G Z>2 

where (/>(•, e) is holomorphic in Re 5 > so + ao- Recall that /0 has h zeros near 
SQ. Thus Theorem 3.1 is proved. 

231 



M. IKAWA 

4. Application to small balls 

Let O be the obstacle defined by (2.2) satisfying (H.l) and (H.2). Now 
we explain briefly the relationship between symbolic dynamics and bounded 
rays in the exterior of O. 

Let A = (A(i,j))ij=i,... ,L be the L x L matrix defined by 

A(i,j) = 
1, i f i ^ i 

0, if i = j , 

and set 

expSn(-s/(0+s(0+^)expSn(-s/(0+s(0+^) 
OO 

i=—oo 

{ 1 , 2 , . . . , L } ; 

¿(6>&+i) = l for a l l j } . 

Let X(s) (s E R) be a representation of an orientated broken ray by 
the arc length such that X(0) G T and X(s) moves in the orientation as s 
increases. When {|X(s) | ;s G R} is boimded, X(s) repeats reflections on the 
boundary T infinitely many times as s tends to ±oo. Let the j-th reflection 
point Xj be on Tij. Then a bounded broken ray defines an infinite sequence 
£ = { • • • , Z0, Zi, ••• } , which is called the reflection order of X(s). Remark 
that, for a bounded broken ray with direction, there is freedom of such represen­
tation, that is, the freedom of the choice of X(0). Therefore the correspond ance 
between bounded broken rays and is not one to one. We set 

№ = \x0x1\ 

where Xj denote the j-th reflection point of the broken ray corresponding to 

For a real valued function g(£) € ^ ( E ^ ) , we define C(s) by 

C(a) = exp 
OO 

n=l 

1 
n s/(0+s(0+ 

e x p S n ( - s / ( 0 + s ( 0 + ^ ) 

Denote by uo the abscissa of convergence of FD(S), that is, 

uo = inf{i/; FD{S) converges absolutely for Res > v} 

If we choose a(£) in a suitable way, there is a2 > 0, which is a constant deter­

mined by (9, such that the singularities of FD(S) and 
d 
ds 

log ((s) are coincide 
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in {s; Res > 1^0 — ^ 2 } ' The function g(£) with the above property is determined 
uniquely by the geometry of O. 

Thus, if we can show the existence of poles of — — log in {s; Res > 
as 

vo — ^2}, we get the existence of poles of P D ( S ) . 
Now we turn to considerations on the singularities of £(s) corresponding 

to Oe of in Theorem 3.2. Remark that (A) in Theorem 2.2 implies (H.2) for 
Oe when e is small. 

We denote /'(£),<?(£) and ((s) attached to Oe by / e (0>5e(0 a n d Ce(5) 
respectively. It is easy to see that, by setting /o (0 = I P ^ P ^ J , 

(4.1) |loge| \\\fe - fo\\\e ~+ 0 as e 0. 

By using the relationship between the curvatures of the wave fronts of incident 
and reflected waves we have 

I I I & C O - loge-
1 
2 

log 
1 

4 ' 
(cos 0 (0 -

2 
11 |d —» 0 as e —• 0, 

where 0 ( 0 = Z P ^ . ^ ^ P ^ ^ Then, by setting ge(£) = # e(£) - loge and #o(0 
— \ log i ( c o s ^ 2 ^ ) w e have 

(4.2) Ill5e-5OIH0->0 as e ->0 . 

Set 
^max — max I Pi Pj I 

and 

B(i,j) = 1 
0 

if 
if 

l-^P? I — ^max) 
\PiPj\ < d 

max • By changing the numbering of the points if necessary, we may suppose that 

B(iJ) = 0 for all j if i > K + 1, 
B(i,j) = 1 for some j if i < K, 

holds for some 2 < K < L. 
Define k(£) by 

* ( 0 = W o ( O M n a x -

By putting s' = s — (logs + V^-T^O/dmax we have 

-sf£ +g£ + V ^ T T T = -s'fe + h£ + k log £, 
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where 

h£=~g£ + y/^lTr k + (loge + ^ 7 R ) ( / ° ~ / E ) . 

m̂ax 
By tending e to the zero, it follows that 

ho = go + V—ITT fc, 

hence we have 

M O = fifo(0 for £ satisfying J3(£0,6) = 1-

Thus ft,he,k satisfy the conditions required in Theorem 2.1. 
Let Ze(s) be the zeta function defined by using these fe,h£, k. Note that 

we have the relation 

Ce(s) = Ze(s - (log e + x / 1 1 ! 7 R ) / d m a x ) . 

On the other hand, Theorem 3.1 says that there exists e 0 > 0, s0 G R and D0 

such that Ze(s) has a pole in Do, which implies that (£(s) is meromorphic in 
De = {s = z + (log e + V ^ L 7 R ) / d m a x ; ^ G D 0 } and has a pole near s 0 + (log e + 
y/—T7r)/dmax. It is evident that this pole of Ce(s) stays in the domain where the 
singularities of Ce(5) a n d FDI£(S) coincide. Thus the existence of singularities 
of FD,£(S) is proved. 
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