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Eigenvalue asymptotics 

related to impurities in crystals. 

Rainer Hempel 

1. Introduction. 

In the present paper, we continue the analysis of eigenvalues of Schrodinger 
operators H — XW in a spectral gap of H. As a typical example, one should 
think of H = —A + V as a periodic Schrodinger operator which, in solid state 
physics, may be used to describe the energy spectrum of an electron moving in a 
pure crystal (in the so-called 1-electron model). The perturbation W simulates 
a localized impurity, and A E R is a coupling constant; both V and W are 
assumed to be real-valued. Here we ask for the existence and number of discrete 
eigenvalues of H — \W which are moved into or through the gap as A increases 
from 0 to oo. The connection of this question to solid state physics is discussed in 
more detail in [7,13]; we only mention that "impurity levels" (i. e., energy levels 
which are introduced into the spectral gap of the pure crystal by impurities) 
are responsible for the color of crystals in the case of insulators, and strongly 
influence conductivity in the case of semi-conductors; cf., e. g., [3, 21]. 

In the mathematical analysis of this problem, it turns out that the case 
where W doesn't change sign enjoys many simplifying features: fixing E in 
the gap and assuming W > 0 for the moment, basic existence and asymptotic 
results can be read off from the associated (compact and symmetric) Birman-
Schwinger kernel W1/2(H - £ ) _ 1 W 1 / 2 , (cf. Klaus [18] and, most recently, the 
remarkable work of Birman [4]). This approach is based entirely on functional 
analysis and avoids PDE-methods. 

In the general situation where W changes sign, however, the associated 
Birman-Schwinger kernel is no longer symmetric and it is hard to extract 
useful information from its analysis. Here a more direct approach was de­
veloped by Deift and Hempel [7] which combines localization techniques and 
a quasi-classical volume counting in phase space. Led by some simple phys­
ical intuition—which says that a localized perturbation should have localized 
effects— we start from a suitable approximating problem on the ball Bn , and 
let n tend to oo. Note, however, that even this approximation step is by no 
means trivial, since restricting the operator —A + V to Bn and imposing Dirich-
let boundary conditions, will in general produce (unwanted!) eigenvalues in the 
gap. This method was further extended in some work of Hempel [13, 15], Alama, 
Deift and Hempel [1], where decoupling by an additional Dirichlet boundary 
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condition (DBC) or Neumann boundary condition (NBC) on OBR is used to 
separate the region where the perturbation XW is active from the remaining 
portion of BN. In Section 2, below, a brief outline of this technique is given (for 
a more detailed description, cf. [1,15]). By now, this approach has been fully 
developed and it provides various asymptotic results for the eigenvalue counting 
functions iV±, where 

N±(X;H-E,W) = V <иткег(Я ^ ßW - E) (1.1) 
0<//<A 

counts the number of crossings of eigenvalue branches, keeping track of mul­
tiplicities; here, again, E is a fixed "control point" in the gap. In Section 
3, we present upper and lower asymptotic bounds on iV+ in the general case 
w = W+- W_, W± > 0. 

In Section 4, finally, our method will be used in the delicate problem of 
finding a lower bound for the (finite) quantity 

iV_ (00; K) := sup N. (A; H-E,Xk), 
A>0 

where K is a fixed compact subset of iV_(oo; K) counts the total number of 
eigenvalue branches which cross E under the influence of a potential "barrier" 
supported on K, with height going to infinity. While it is known that (in 
dimension > 2) no eigenvalue branch of H + X\K > A > 0, will ever cross E 
if the diameter of K is small enough, we also know that some eigenvalues will 
cross E UK contains a ball of sufficiently large radius (cf.[13,15]). In the present 
paper, we'll concentrate on if's which are drastically different from balls. Here 
it turns out that decoupling by natural DBC plays a crucial role, highlighting 
once more the fundamental difference between N+ and iV_ in the case where W 
is non-negative: while JV+ is dominated by the Weyl term, which is related to 
the volume of the interior of K, the number we are investigating now is more or 
less independent of the volume of K ; e. g., a set K looking like a swiss cheese 
with many small holes may be very effective in shifting eigenvalues through the 
gap although the volume of the cheese might be very small as compared with 
the volume of the holes. 

The approach described above allows us to discover some of the local effects 
of the perturbation and connects phase space analysis with eigenvalue counting. 
However, it is neither simple nor short, and there are many results which can 
be obtained by more direct methods; we conclude this introduction with a brief 
discussion of some of these alternatives. As mentioned above, a very fruitful 
idea consists in the recent observation of Birman [4] that one should apply the 
first resolvent equation to (H — E)~L in the Birman-Schwinger kernel to replace 
the control point E in the gap by some £"0 < infer (if) . The transformed kernel 
can then be analyzed with the aid of the Gokhberg-Krein theory of weak trace 
ideals. This yields some sharp asymptotic results for iV+ in the case where W 
is non-negative, and works even for E sitting on the gap edge, if H is periodic. 
Since this method tests asymptotics on the scale of Weyl's Law, it gives only 
weak information for iV_, however. 
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For W changing sign, W of compact support, a very short and elegant proof 
for the existence of eigenvalues of H — XW in the gap has been given by Gesztesy 
and Simon [11], while some very detailed and surprising facts concerning the 
trajectories of eigenvalue branches in the o.d.e.-case ("trapping and cascading") 
have been discovered by Gesztesy et al. [10]. Of particular interest and difficulty 
is the question for the number of eigenvalues in a given interval in the gap; here 
we would like to mention some recent 1-dimensional work of Sobolev [28]. For 
results concerning eigenvalues in gaps under the semi-classical point of view, we 
refer to Klopp [19] and Outassourt [20]. Finally, Alama and Li [2] have created 
a non-linear Birman-Schwinger principle which can be successfully applied to 
non-linear perturbations of periodic Schrodinger operators. 

2. Approximation and decoupling. 

We are now going to give a condensed description of the approach developed 
by Deift and Hempel; for details, see [1,15]. Starting from a Schrodinger operator 
H = — A + V , where V is a bounded potential and H is the unique self-adjoint 
extension of — A + V on C ^ R " ) , we make the basic assumption that (T(H), the 
spectrum of H, has a gap. Again, we are mainly interested in the case where the 
spectral gap occurs above the infimum of aess(H), the essential spectrum of H. 
As a typical example, one may think of H as a periodic Schrodinger operator, 
but spectral gaps may also occur in Schrodinger operators of disordered matter 
(Briet, Combes and Duclos [5]). Also, for convenience, we assume that V > 1. 
In the sequel, let a < b be such that 

[a,b]n<r(H) = Q. 

We next introduce the perturbation Wa bounded, real-valued function going 
to 0 at infinity. While H — XW has the same essential spectrum as i7, the 
perturbation XW may produce discrete spectrum in the gap. By Kato-Rellich 
perturbation theory, the eigenvalues of H — XW depend analytically on the 
coupling constant A, as long as they stay inside the gap. In order to count the 
eigenvalues, we now fix E G (a, b) and we define N±(X) := N±(X; H — E, W) as 
in (1.1). 

In the case of non-negative W there are some nice quasi-classical heuristics 
("volume counting in phase space"; cf. [7,1]) which suggest that one should 
expect for iV+ an asymptotic behavior with a leading order term as in Weyl's 
Law, 

7V+(A) - cvXvt<l J Wu'2, A —• oo, 
if W decays faster than quadratically. In contrast, if W behaves like c|x|~a, for 
x large and some constants c, a > 0, then iV_ is highly dependent on the decay 
rate a, 

iV_(A) -C .A^ /a , A - + 0 0 , 

under certain natural assumptions on W (cf. [1]). Note that the asymptotics 
of N+ can be obtained by Birman's method in [4], and this even in the case 
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where E is situated on the edge of a gap. The case where W changes sign is 
much harder to understand, and there are only a few upper and lower bounds 
on iV+(A), for A large; this will be discussed in Section 3 in more detail. 

We next describe the sequence of approximating problems which are used 
to compactify the problem. Let a1 < a and b' > b be such that the interval 
[a;, &'] doesn't intersect the spectrum of H. As in [13,1,15], we define 

Hn = -An + V\Bn, 

where — An denotes the Dirichlet Laplacian on the ball Bn in , and we con­
sider the spectral projection IIn = P[a',bf] (Hn) associated with the interval [a', b'] 
where { P \ } A G R denotes the spectral family. Clearly, IIN is finite dimensional, 
and for d — V — a', we have 

a(Hn + c'Iln)n(a',b') = <b. 

In the next step, we apply cut-offs in order to restrict the integral operator n n 
to the region Bn — Bn/2- Letting i\)n be defined by </?n(:r) — ̂ (x/n), x G R", 
n G N, where ip G C°°(Rl") enjoys the properties ip(x) = 1, for |x| > 3/4, 
t/>(x) = 0, for \x\ < 1/2, and 0 < ip(x) < 1 else, we define 

Hn = Hn + cVnIIn^n-

Here the important point is that Hn has a spectral gap containing the interval 
[a, 6], for sufficiently large n, i. e., 

a(Hn) H [a,b] = 0, n > n0. 

This basic result is a consequence of Weyl's Law (which yields a bound dim IIn < 
cnu) and the fact that the eigenfunctions of Hn which build up the projection 
IIn are exponentially localized near the boundary dBn ( cf. [7,1] for details). 

The second useful fact is that the Birman-Schwinger kernels associated with 
Hn and W\sn converge to the full Birman-Schwinger kernel in norm. This in 
turn implies the following comparison result for the counting functions ([15; 
Proposition 2.3]), valid for W > 0. To keep the notation concise, we'll often 
write W instead of W\sn , in the sequel. 

2.1. PROPOSITION. Let H and Hn, n > n0, be as above, and let E G (a, b). 
Assume that W is a non-negative, bounded function, tending to 0 at infinity. 
We then have 

N±(X;H - E,W) > limsupAr±(V;ffn - £ , W\Bn), 0 < A' < A, (2.1) 
7 1 — X X ) 

N±(X;H-E,W) <]immiN±(\';Hn-E,W\Bn), 0 < A < A'. (2.2) 

186 



EIGENVALUE ASYMPTOTICS 

By this approximation process, we have gained the following: as the oper­
ators Hn — pW all have compact resolvent, we can count eigenvalues starting 
from the bottom of the spectrum. From Kato-Rellich perturbation theory it is 
then clear that 

iV+(A;HN -E,W) = dim P ^ E ) ( f f „ ) - dim P ^ E ) (HU - Xw) , 

and similarly for N-. Therefore, we can obtain information on N± (A; Hn—E, W) 
by simply counting how many eigenvalues have been moved over the level E by 
the perturbation XW. Here we use the notation "dim P (_oo,£) (•)" *° denote 
the number of eigenvalues below E, counting multiplicities. 

By a different method, one can prove the following convergence result for 
the case W = W+ — W- (note that we do not get an upper bound here). 

2.2. PROPOSITION, (cf. [15; Proposition 2A])Let H and Hn, n > n0, be 
as above, and let E € (a, b). Suppose that W is a bounded function tending to 
zero at infinity. Then, for 0 < A < A', we have 

N±(\';H- E,W) > limsup dim P ^ E ) (ÉN) - dim P(_00,f;) (ÉN T \W) 

The above approximation scheme has simplified the problem, but the eigen­
value counting for Hn and Hn — XW is by no means trivial. As a second main 
step in the proof, we use decoupling inside the ball BN to separate the region 
where XW is active from the region where XW may be neglected. As W decays, 
this will in particular ensure that the interaction between W and the non-local 
operator ^ n I I n ^ n will be negligable. To obtain upper or lower bounds, we de­
couple by means of a DBC or NBC on 8BR , where the radius R is chosen in 
such a way that W is sufficiently small outside B R ; note that this can be done 
independently of n, at least for n large. Here our basic lemma reads as follows 
( Bp denotes the p-th Schatten ideal or trace ideal, for 1 < p < oo ; cf. Simon 
[25 j): 

2.3. LEMMA, (cf [15; Proposition 1.3]) Let A,B be compact, symmetric 
operators and suppose that B 6 Bp, for some p 6 [l ,oo). Also let n > 0, 
rj e p(A). Then 

Id imP^A) - dimP(l|f00)(A + B)\ < \\(A - V)-'\\p . \\B\fBp , 

where dimP^^ counts the eigenvalues in (77 ,00) , repeated according to their 
multiplicities. 
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In order to apply this perturbation result in our situation, we need some 
more notation: Letting — A#;JV denote the Neumann Laplacian on BR, and 
—AR,n;N,D the Laplacian on the spherical shell Bn — BR , with NBC on OBR 
and DBC on dBn, we have the following trace ideal estimate: 

2.4. PROPOSITION. Letm>0 and let p > v/2, p = 2q, for some q G N. 
Then there exist constants c, C > 0 such that 

11(-AB + m)"1 - (-AR.N ©-ARY1L.N>D + m)-1 
ARY1L.N> 

and 

( -An + m) 1 - (0|f?fi) © (-&R,n;N,D + m) 1 -1 < CRV, 

/or 1 < i? < n, where Q\Br denotes the zero operator on L2(BR). 

A proof of this basic decoupling result can be found in [15;Appendix]; of 
course, there is a corresponding result for DBC on 3BR. 

While min-max methods and monotonicity imply that adding Neumann 
(resp., Dirichlet) boundary conditions increases (resp., decreases) the number 
of eigenvalues below E, we need estimates which go in the other direction. 
In the following proposition, we let — A#;JV denote the Neumann Laplacian 
on BR, —AR,TI;ND the Laplacian on BN — BR with NBC on ÔBR and DBC 
on dBn. Then HR;N denotes the operator —AR;N 4- V\BR while HR,U\N,D = 
-&R,n;ND + V\BN-BR + cVnlln^n, so that the direct sum HR;N © HR^N,D is 
nothing else but HN with an additional NBC on OBR. 

2.5. PROPOSITION, (c/. [15; Lemma 3.2]) Let H and Hn, n > n0? be as 
above and let E' E (a, b). Then, for n > no and 1 < R < n/2, we have 

dim P(_oo,£') (HR;N) +dim P(_oo,£') (HR^N^ 

< dim Pc-oo^) (HN)+CR"-\ 

with a constant C which is independent of n and R. 

To prove an estimate of this type, we apply Lemma 2.3 to the resolvents, use 
the second resolvent equation to get rid of the potential V and the t/?nIIn^n-term 
and conclude with an application of the trace ideal estimate given in Proposition 
2.4. Of course, decoupling by a DBC on ÔBR leads to a similar estimate; in 
the subsequent proposition, we let — A#,n;D denote the Dirichlet Laplacian on 

BN - BR and HR^D := -AR^D + V\BN-BR + cVnIIn^n . 

188 



EIGENVALUE ASYMPTOTICS 

2.6. PROPOSITION, (cf. [15; Lemma 3.2]) Let H and Hn, n > n0, be as 
above and let E' G (a, b). Then, for n> no and 1 < R < n/2, we have 

dim P ( _ o o , ^ ) (HR) + dim P{-oo^) (HR^D) > dim P{-oo,E<) ( # » ) - CRU~\ 

with a constant C which is independent of n and R. 

3. Some asymptotic bounds. 

As a first illustration of our approach, we prove a simple lower bound for 
iV+ in the general case W = VF+ — W- , with W± > 0; note that there is now 
no need to consider N- separately because this would only mean to switch from 
W to -W. 

Here the main difficulty comes from the competition between the attractive 
part W+ and the repulsive part W- . If W- decays faster than quadratically, 
then W+ always wins over W- (cf. [1, 15]), and we'll concentrate now on a case 
where W- decays slowly, 

W-(x) < c0(l + |o;|)-Q, x G (3.1) 

for some constants c > 0 and 0 < A < 2. The following Theorem 3.1 is a 
refinement of Corollary 3.5 in [15], where some other related results may be 
found. 

3.1. THEOREM. Let H be as above, E G R - a(H) and suppose that W is 
bounded and tends to 0 at infinity, with W- satisfying condition (3.1) for some 
0 < a < 2. For W+ we assume that there exist constants k > 2, ci,c[ > 0, 
0 < /3 < a and J, where 7 satisfies 

W-(x) < c0(l + |o;|)-Q,L-(3)/2, (3.2) 

with the property that each spherical shell Bnk — B(n-i)k> n~ 1? 2 , . .conta ins 
at least c^[n7] mutually disjoint balls of radius 1 on which W is bounded from 
below by c\n~$. 

Then there exists a positive constant C such that 

N+(\,H-E,W)>C\K, A > 1 , 

where n := (u(a - ¡5) + 2>Y + 2) /2a. 

PROOF. As in [1, 15], we let Ex := (a + E)/2 and define 

R = R(\) = (c0\/(E - £x))1/a , A > 1. 
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Then it is clear from (3.1) that 0 < XW-(x) < E - Eu for \x\ > R(\). We now 
decouple by means of a DBC on OBR to obtain 

dimP(_^E)(Hn-XW) 
( ~ \ (3.3) 

>dim P(_oc,£;) (HR - XW) + dim P(-^El) {HR,N.,D) . 

We first consider the second term on the RHS of (3.3) where Proposition 2.2 
implies that 

dim P t - o o , ^ ) (HR,TI;D) >dim P ^ o o , ^ ) ( # n ) - dim P(_0O,je;1) {HR) - c'R"~L 

=dim P{-oo,E) ( # n ) - dim P ( _ o c , ^ ) (HR) - c ' iT"1, 

as E and E\ belong to the same gap of Hn. For the second term on the RHS of 
(3.3), we introduce DBC on the boundaries of the balls where the lower bound 
for W holds; we discard the remaining portion of BR. By Weyl's Law, there 
exist constants > 0 and c3 such that 

dim P(_oo,M) ( - A i ) > C2/i"/2 - c3, /i > 0, 

and it follows that 

dim P ^ E ) ( -Ax + H V I I ^ - ClAn"^) > c,yl2n-^l2 - c5, A > 0. 

Summing up the individual contributions coming from the balls of radius 1 
where the lower bound for W holds, we now obtain 

dim P(-oc,E) (HR - XW) >c5 £ n ^ A ^ n " ^ / 2 - c6 Vol(BR) 

n<R/k 

>c7A^2A(1+^-^2 ) / a~c8A^ , 

as i? ~ A1/"; also note that our assumptions imply that 7 — v(3/2 > —1. 
Using all of the above information in the RHS of (3.3) and also the estimate 

dim P ^ ^ i H ^ K c ^ " , A > 1 , 

which is immediate by Weyl's Law, we finally see that 

dim P{-OO,E) fa ~ AW) - dim P ^ E ) fa) 

>dim P{_^E) (HR - XW) - dim P ^ ^ ) (HR) - c'R^1 

>d\K - c2\u'a - cz\u/a - C4A(,/-1)/Q 

>C\K, 
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for A large, since K > u/a for 7 in the interval defined by (3.2). Now the result 
follows immediately via Proposition 2.2. I 

To obtain an upper bound for iV+ (A; H—E, W), we next try to squeeze some 
information from the associated (non-symmetric) Birman-Schwinger kernel. 

3.2. THEOREM. Let H be as above, and let E G (a, 6). Suppose that W 
satisfies the decay condition 

\W(x)\<c(l + \x\)-a. x6R", 

with some positive constants c and a. Then, for any p > z//min{a, 2}, we have 

limsuvX~PN+{X;H - E,W) < 00. 

PROOF. (1) Suppose 0 < Ax < A2 < . . . < \j < . . . , with Xj oo, are 
the positive coupling constants where the kernel of H — XjW — E is non-trivial, 
repeated according to the dimension of ker (H — XjW — E). By the Birman-
Schwinger-principle, the numbers K,J := XJ1 are eigenvalues of the Birman-
Schwinger kernel 

IC:= ( s g n ^ l i y l 1 / 2 ^ - ^ ) - 1 ! ^ ! 1 / 2 , 

and (geometric) multiplicities are preserved. Now the Schur-Lalesco-Weyl the­
orem (cf., e. g., [24, 25]) implies that 

3 
1/2A( 

3 

1/2A 

where the /ij denote the singular values of /C. As a consequence, we obtain the 
estimate 

1/2A 
I/P 

1)-1/2A(-A 

We next plug in ( - A + 1)^2(-A + l)"1/2 and write 

A : = ( - A + l)x'2{H - E)-l(-& + I)1'2, 

which is a bounded operator, to conclude that 

||4|| B1 W 1 / 2 ( - A + 1 ) - 1 / 2 A ( - A + 1)-^2\W\^2 
BP 

< Wl /2(_A + l)-l/2 
1/2A( 

•\\A\\- ( - A + I ) - 1 / 2 ! ^ ! 1 / 2 
1/2A( 
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by Holder's inequality for trace ideals ([25]). By the estimates given in [23; 
Theorem XI.20], it is clear that the trace-ideal norms on the RHS are finite, 
since, by assumption, p > u/2 and p > v/a. We have therefore shown that 
Y^j AJP is finite, and the result follows. I 

REMARKS, (a)Our result falls short of proving the more "natural" esti­
mate JV+ (A; H - E, W) < cA"/min{2'a>. However, in the case of W changing its 
sign we can't exclude that eigenvalue branches wiggle around the level E for a 
while which might increase the counting function considerably. 

(b) The bound derived above is not only valid for positive coupling con­
stants, but it gives as well a bound for all complex eigenvalues A in the gener­
alized eigenvalue problem (H — E)u = XWu. 

4. High barriers with compact support. 

In this section, we consider H + \XK, for positive A tending to oo, where 
XK denotes the characteristic function of the compact set K C R". It is shown 
in [15] that a potential barrier of the type \XBR sweeps out all the states of 
H having energy below E and "living" in the ball BR, provided A is large 
enough, up to an error term of order Rv~l. We are now trying to understand 
the mechanism working for compact if's which are very different from balls. 
Here, again, we ask for the large coupling constant limit 

AT_(oo;iîQ:= lim N-(\;H - E,XK) (4.1) 

that is, the total number of eigenvalues of H + XXK which are shifted over the 
level E as A grows from 0 to +oo. Note that the quantity iV_(oo; K) is always 
finite if K is bounded. 

Here we'll see the following mechanism at work: as A tends to infinity, the 
operators H + \XK converge in strong resolvent sense to the operator — A + V 
in the exterior domain R" — K, with DBC on dK. This leads to a decoupling 
via DBC on dK, and, as a consequence, the mere volume of the set K doesn't 
tell much about N-(oc;K). 

In the sequel, we shall always assume that K is a compact subset of R^ and 
that R > 0 is so large that K C BR . Our estimates will involve two auxiliary 
operators defined on the domain Q(R) = BR — K: first, we let H^RYYD denote 
- A + V, acting in L2(tt(R)), with DBC on dQ(R); second, we let ^n(ie);D,Ar 
denote -A + V on Q(R), with DBC on dK and NBC on 3BR. As we shall see 
below, the quantities relevant for the eigenvalue counting are given by 

ni<;N = dim JP(-OO,£) (HR;N) - dim P(-OO,E) {HCLÌR^DIN) (4.2) 

and 
ПК-D = dim -P(-oo,£7) (HR) - dim P(-oo,E) {HÇI(R)-D) • (4.3) 
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The numbers riK;N and n^D giye lower (respectively, upper) bounds for the 
quantity iV_(oo; i f ) , up to an error of order Ru~l. This reduces the problem to 
the study of an explicit situation on the finite region BR; in view of the error 
terms, R should be chosen as small as possible. 

4.1. THEOREM. Suppose K is a compact subset o / R " and R > 1 is such 
that K C BR. With the above notation, we then have 

N.(oo;K) > nK.N - CRU~\ 

where the constant C is independent of K and R. 

PROOF. By Proposition 2.1, it is enough to produce a lower bound 

supiV_(A; tfn - E,XK) > nK,N - CR"-\ (4.4) 
A>0 

for n large. Without restriction, we may assume that E is not an eigenvalue of 
Hft(R)-D,N- Introducing NBCs on OBR, monotonicity of the associated quadratic 
forms implies that 

dim P^^^i&n + VXK) 

<dim P(_oo,£) (HR^N^D) + dim P(_oo,£) (HR;N + VXK) 

<dim P{-^E) ( # n ) - dim P(-^E) (HR;N) + CRV~X 

+ dim P(_oo,£) {HR;N + VXK) , 

by Proposition 2.5, whence 

dim P(_oo,i<;) ( # n ) - dim P(-OC,E) (#n + MR) ^ 

> dim P(-oo,E) (HR;N) - dim P ^ E ) (HR.,N + IIXK) - CRV~X. 

By classical convergence results for eigenvalues (cf. Simon [26], Weidmann [27]), 
the eigenvalues of HR;N + VXK increase monotonically to the corresponding 
eigenvalues of i?n(i?);Z),jV5 as —• oo. Taking into account the definition of 
n>K;N, we have therefore shown that the LHS of (4.5) is eventually greater or 
equal to nx;N — CRu~l, for // —• oc. By Kato-Rellich perturbation theory, this 
implies (4.4), and we are done. I 

REMARK. The decoupling effect becomes most visible if K has lots of holes 
which are so small that the Dirichlet Laplacian on each hole has no eigenvalue 
below E ("swiss cheese"). In this case, we see that = UKN^ where K 
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is obtained from K by taking the union of K with all bounded components of 
R" — K. For example, it is possible to have K — BR while the volume of K 
itself is arbitrarily small. 

In R^, v > 2, the opposite situation is also possible. In fact, it is easy 
to construct examples where K has large volume while no eigenvalues cross E 
(think of K as a union of many small balls which are well separated; cf. [13, 1]). 

The corresponding upper bound is somewhat easier. 

4.2. THEOREM. Suppose K is a compact subset ofR" and R > 1 is such 
that K C BR. With the above notation, we then have 

JV_(oo;A') < nK;D + CR 

where the constant C is independent of K and R. 

PROOF. Proceeding as in the proof of the lower bound, we now use Dirich-
let decoupling on OBR and Proposition 2.6 to obtain 

dim Р(_оо,я) (НП) - dim Р(_оо,д) (#n + /¿x/Л 

<dim P(_oo,£) (HR) - dim P{-oc,E) {HR + »XK) + CR 

<ni<;D + CRV~X, /1 > 0, n > n0, 

by monotonicity and the definition of nj^.j). By Kato-Rellich perturbation 
theory, this implies that iV_(/i; HN — E, XK) < UK,D + CRu~l, for n large, and 
the desired result follows via Proposition 2.1. I 

REMARK. It is clear that one can use the standard techniques of Dirichlet-
Neumann bracketing in order to derive (crude) estimates for nj{;D in concrete 
situations, but sharp information on n^;p may be difficult to obtain (cf. also 
Kirsch [17]). An even more challenging problem consists in finding bounds for 
nK,N ~ nK;D' 
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