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Semiclassical expansions of the 
thermodynamic limit for a 

Schrddinger equation 
I. The one well case 

by B.Helffer and JSjostrand 

§1 Presentation of the problem : 

One of the motivations of the study presented here is a statistical model 

introduced by M.Kac [Ka] 2 and called the exponential bidimensional model. 

This model was supposed to present phase transition. Let us just recall 

here (see [Ka]2 or [Br-He] for details) that after some reductions M.Kac 

arrive to the question of studying the spectral properties of the following 

operator: 

(1.1) K ( h ) : = 

= exp[-V(m)(x)/2].exp[h22 :m={d2/dx2k].exp[-V(m)(x)/2] 

with1 : 

(1.2) V(m)(x) = ( l / 4 ) 2 k ^ x k 2 - Z ^ l o g c M V ^ (xk+xk + 1)). 

1 In fact, the operator which appears in Kac is exp(-mh/2)Km(h). It is easier w.l.o.g. in 
this article to work with this modified Kac operator. 

S. M. F. 
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The parameter v is here the inverse of the temperature and h is a 

semi-classical parameter. The two questions of interest are in this context: 

(1.3) If |i, (m;h,v) is the largest eigenvalue of the Kac's operator, what is  

the behavior as a function of v and h of the thermodynamic quantity : 

Limm_w ( -Log \i{ (m;h,v) /m). 

(1.4) If n,2(m;h,v) is the second eigenvalue (which is < \i{ (m;h,v) by 

standard results), can we study the quantity : 

Limm-+oo ( |i2(m;h,v) (m;h,v)). 

From discussions with specialists in statistical mechanics (with T.Spencer 

for example), we get the impression that this problem is probably well 

understood and that according to the value of v with respect to a critical 

value vc the answer to (1.4) will be that the limit will be <l for v<vc 

and will be 1 for v >vc. This is a sign of a transition of phase. However, we 

do not have a precise reference for that and at least the problem of 

analyzing in detail the behavior of the different thermodynamic quantities 

near the critical value v c seems to remain open. 

In his interesting course in Brandeis [Ka]2, M. Kac explains, at least 

heuristically, how to compare (in the semi-classical context) the operator 

Km(h) to the exponential of (minus) a Schrbdinger operator. The validity of 

this approximation (for m fixed) has been studied more carefully in [He-Br] 

and [He] using some results of [He-Sj]j 4. 

If we admit this approximation, we shall find the following problems for 

the Schrbdinger equation: 

(1.5) Pm(h) = „ m , 2 - 2 . 2 w(m), x 
- 2 k = , h 8 / 3 x k +V (x) . 
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SEMICLASSICAL EXPANSIONS 

(1.6) If X j m)(h,v) is the smallest eigenvalue of the Schrbdinger's operator, 

study as a function of v and h the thermodynamic quantity : 

Limm^oo ( X{ (m;h,v) /m). 

(1.7) If A,2(m;h,v) is the second eigenvalue (which is >X{ (m;h,v) by standard 

results), study the quantity : 

Limm_>oo(^2(m;h,v) -X{ (m;h,v)). 

Forgetting the initial Kac's problem, we shall start to study in this article 

these two questions (1.6) and (1.7). Because it is a high dimension problem, 

we shall use (at least in the semi-classical context) the techniques introduced 

by one of us (J.S). Most of the results which are given here : 

(1) existence of the thermodynamic limit Limm_̂ oo ( X{ (m;h,v) /m) 

(2) asymptotic expansion of the limit as a formal series in h 

(3) rapidity of the convergence as m - 00 

are given in a relatively general framework but we shall see how it can be 

applied in our motivating example, in the particular case where v<vc. 

This is of course just the starting point (and the easiest) of a study which 

has to consider after the case where v >v c, and then the transition around 

v = vc. There is some hope to return later to the initial Kac's problem. This 

vc can be guessed by looking carefully to the properties of V .As 

observed by V.Kac, for v< 1/4, the potential V(m) has a unique minimum 

at 0 and appears to be convex. For v> 1/4, we shall observe a double well 

problem which is certainly more difficult to analyze. 

The principal result of this paper will be: 
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Theorem l , l 

If v < l / 4 , the limit A(h,v) = Limm_ioo ( X{ (m;h,v) /m) exists and admit a 

complete asymptotic expansion: 

A(h,v) ^ hZ. n A.(v).hj as h tends to 0. 

Moreover, if we denote the corresponding semiclassical expansions for 

X{ (m;h,v) /m by: 

{Xt (m;h,v) / m ) ^ h2j>0 A-dM-h1. 

there exists &0 s. t. for each j , there exists a constant Cj (v), s.t. 

|A.(v)- A.(m.v)|« Cj(v). exp(-^0 m). 

(v) can be chosen independently of v in a compact of [ 0,1 / 4 [. 

The problems, we consider here, are also connected to quantum field 

theory problems and a lot of results have been obtained by other techniques 

(see for example the new edition of [G1- Ja] for a updated presentation). 

The paper is organized in three parts. 

The first part (§ 2 and §3) is essentially devoted to the proof of the 

existence of the thermodynamic limit. This is a non-semiclassical proof but 

we shall see that a control of the convergence with respect to parameters 

can be useful. In §3 we give additional remarks (to [Sj]2) on universal 

estimates of the splitting of the two first eigenvalues . 

The second part (§4 and §5) is the semi-classical part and the natural 

continuation of two papers by one of us (J.S) [Sj]j 2. 
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SEMICLASSICAL EXPANSIONS 

In the last part (§6), we shall first recall some preliminary computations 

by Kac [Ka] and then deduce the Theorem l.l as a particular case of the 

more general results obtained in the preceding sections. 

The first author (B.H) thanks V.Tchoulaevski and T.Spencer for useful 

remarks and stimulating discussions. 

%Z On tfre existence of tfrç thermodynamic limit \ (mj/ni 

This section is inspired by the reading of the book of Ruelle [Ru] which 

gives probably the necessary ideas to extend the results we present here 

to more general interactions. 

Let us just consider the following model : 

(2-0 Pm = -h2Am + i k : , w ( V k + 1 ) 

(with the convention that m + l = l) 

operating on L2 (IRm). 

Here: 

(2.2) ik:,w(Vk+1 

We forget the semi-classical problem (we take h = l) (but if needed the 

proof will be sufficiently explicit to have a control with respect to h), we 

assume that W is C and satisfies : 

(2.3) W^O 

There exists a constant C0 >Os.t.: 
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(2.4) W(t,s) << C ( W(t,r) + W(u,s)+l) for all t,s,r,ue R 

which will be called the decoupling inequality. 

Moreover, we assume 

(2.5) W (t,s) 00 as |t|+|s| - 00. 

This last property (which is not necessary at all) permits us to work in the 

simpler context where the Schrbdinger equation has compact resolvent. 

Remark 2.1 : 

(2.4) and (2.5) follow from the stronger assumptions, that there exists 

constants Cj C2 >0, and C3 s.t.: 

(2.6) W(t,s)^(l/C2) ( t + s ) - C, foralls,t € R 

(2.7) W(t,s)<< C2 ( t2+ s2 ) + C3 foralls,t G R 

We shall denote in this section by X{m) =X{ (m) the first eigenvalue of 

P . This first eigenvalue always exists (the resolvent is compact) and we 

shall denote by um the corresponding eigenfunction uniquely determined if 

we suppose that the L2 norm is one and that um is positive. Recall that by 

standard results um is strictly positive. 

The main result of this section is the following: 

Theorem 2.2 

Under the assumptions (23) - (2.5), the seq uence X (m) / m is convergent 

as m tends to infinity. 

Majoration, minoration : 

We get from (2.3) that : 
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(2.8) Mm) ¿0 

and (2.4) (with r = u = 0) and (2.5) imply : 

(2.9) Mm) *cCm 

We then have: 

(2.10) 0<<Liminfm_>oo Mm)/m$Lim supm_>oo Mm ) /m <°° 

The following simple lemma will play a crucial role 

Lemma 2.3 

There exists a constant C4 such that, for allm^U we have, for j = l to m: 

(2.11) ||W(x,x, + 1)l/2uJ|2 « M m ) / m <cC4 

Proof: 

From (2.3), we get: 

2,||W(x,xj + 1)!/2uJ|2 < M m ) 

We observe now that the potential is invariant by circular permutation. By 

usual arguments, we get that um (which is strictly positive and corresponds 

to an eigenvalue of multiplicity l) has the same property. 

In particular ||W(x + {) u j | is independent of j . The lemma follows 

immediately with C4 = Supm (Mm)/m). 

Comparison between Um). Mo) and Mm+o) 

In a second step we shall prove the 

Lemma 2,4 

There exists a constant > 0 such that, for all integers m, p s.t. l$p, 

lgm , we have : 
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(2.12) -C5+X(m) +Mp) s Mm+p)«$ C5+X{m) +Mp) 

Proof 

We start from the following decomposition of Pm+0 

(2-13) Pffl + 0 = Pm + P m + ° -W(xmx,)+W(xfflxm + 1 ) -

-W(xmi x„ ^ ,)+W(xmj.„x, ) m + p m + l m + p i 

with : Р(m+1) 
- (m + l) У ян- р -1 

f Zk = m + l W(xk*k + 1) 4 m + p m + 1 

andÂ(pm + ,) 2k = m+ l ( a x / 

It is then clear that the infimum of the spectrum of P is the same 

as the infimum of P . Sometimes we shall use the notation 

PmePft instead as Pm + P(nm + 1). 

m p m p 

For the minoration of X(m+p), one writes : 
Mm+p) =(Pm+pum+pMm+p) > (Pmum+plum+p) +(Ppm + 1 um+p|um+p) 

- Wi/2(VlK+f -HW,/2(xm+pXra + 1)um+pll2 

and we use (2.4) and Lemma 2.3. 

By the definition of Mm) (and identifying Pm on L2(Rm) and Pm® I on 

L2(IRm)®L2(lRp) who have the same spectrum (as a set)) we get the first 

estimate: 

Mm + p) s Mm) + Mp) -C (with C5 = 2C4). 

For the majoration of Mm+p), we proceed similarly using the fonction: 

Ûp,m(X) = Um<Xl X m ) V X m + l Xm + p) 

We have : 

Mm+P) dPm+pûm,plûmiP) * (Pmûm,plûmp) +(P(pra + ,)ûmiPlûmp) . 

+ llW1/2(xraXm + I)ûm,pl|2 + l|W,/2(xm+px,)ûraiPll 
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<cMm) +Mp) +C5 

(using the same type of arguments) 

The last lemma to prove the proposition is the following: 

Lemma 2,5 ; 

Let C some fixed constant (C^o). Let Mm ) (m£lN ) be a sequence of 

real numbers such that 

(2.14) IMm + p ) - M m ) - M p ) | ^ C , foreachmfp , 

then the limit of the sequence X (m)/m exists and : 

(2.15) l ( M m ) / m ) - L i m ^ U ( m ) / m ) | $ C/m. 

Proof 

Let n( f l i ) = Mm)/m. Let us rewrite (2.14) on the form : 

(2.16) I t̂(m + p)-((m/(m + p))ii(m))-((p/(m + p))ii(p))U C/(m + p) 

In particular, for p = m, we get: 

lli(2m)-ii(m)| <cC/2m 

and by iteration: 

|[i(2k + ,m) - ti(2km)| $ C/(2km). 

In particular p,(m): = L i m , ^ p,(2 m) exists and 

(2.17) |]T(m)-|i(m)| s$C/m. 

Replacing m and p in (2.16) by 2 m and 2 p and taking the limit in k, we 

get: 

(2.18) IT(m + p) = ((m/(m + p))ir(m)) + ((p/(m + p))iT(p)). 

We now define X{m) by : X{m) = m \i{m), and rewrite (2.17) as : 
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(2.19) Mm + p) = Mm) + Mp). 

This implies in particular that Mm) = mMl) and then : 

(2.20)]T(m)=]r(i). 

(2.17) and (2.20) give the lemma. 

Examples 

Example 2,6 (TKal) 

Let us consider 

V j x , xm) =(l/4)2k;iXk2-2k^logch(>Ar (v^xk+7T^ xk + 1)), 

where^e lo . lL v>0. 

Then this potential can be written on the form (2.1) by taking : 

W(s,t)) =(1/8) (s2+t2) -logch(Vv ( V ^ t + T T ^ s)) 

In the introduction we took and in the future we shall take § = 1/2. 

Example 2,7 
One gets another example by taking the quadratic approximation at a 

minimum of the preceding model. Then we arrive to: 

W(s,t) =(1/16) (s- t)2 + \i (s + t)2 

where |i depends on v but remains >0. 

In this case, very explicit computation can be made (see [Ka] or § 6). 

Example 2,8 

More generally, T.Spencer indicates to one of us (B.H) that the following 

more general model is interesting: 

W(s,t) = g(s2+t2) +h (s-t)2+ X (f(|is)+f(|it)) 
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where |f(v)| $C(M+l ) and g>0 and h>0 are parameters. 

Remark 2-9 

It is important to remark that for the application to semi-classical analysis 

there exists at each step of the proofs in this section a very good control 

with respect to the different constants. 

Remark ?.io 

It will be interesting in the case of the Examples (2.6) or (2.7) to have a 

control of the regularity of the limit with respect to the parameter v. It is 

clear that the convergence is uniform with respect to v, on each compact of 

]0,oo[, so it is clear that the limit is continuous. Moreover we observe that 

(<R(m;v)/dv)/m is abounded set (by theHellman's formula) which implies 

that the limit as m tends to oo of Mm;v)/m is Lipschitzian in ]o,oo[. But a 

more interesting result would be to study the properties of analyticity 

with respect to v. One suspects of course that the limit is analytic with 

respect to v, for v<vc, in the model presented in the introduction (£ = 1/2, 

in Example (2.6)). 

Remark 2.11 (stability by perturbation) 

The limit is relatively stable by perturbation. For example, if we consider 

the following operator 

pm = 
m 

- A m + 2k=r' W<Xk*k + .) 
and if we denote by X'(m) the first eigenvalue of P'm, 

then it is possible to prove, under the additional assumption that 
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there exists a constant C s.t., for all l$>£>0, we have: 

(2.21) W (s,t) <c (l+s) (W(s,r) +W(pft) ) + (C/e) 

for all s,t,r,p, that: 

(2.22)Limm_w^,(m)/m= L i m ^ M m J / m 

S3 Additional remarks on the splitting of the two first eigenvalues 

Let us recall the problem mentioned in (1.7). It is also interesting to have 

theorems on LimflWw(^2(m)-X| (m)) and Lim ra_w(^2^m^"^i ^m^- If the 

potential depends on a parameter v (typically the inverse of the temperature 

in Example (2.6)), one is interested in knowing for which values of v we 

have: 

LiH m^00 {X2imy)-X{ (m;v))>0 

or 

Lim m^oo a2(m;v)-X1 (m;v)) = 0. 

We shall not give an answer to the most interesting questions in this paper 

but we shall recall and improve some results obtained in this context. Let 

us first recall the : 

Proposi t ion 3.1 (cf TSWYYl) 

If V is a C°°positive potential tending to <x> as \x\ tends to oof then we 

have: 

(3.2) U2(m)-X1(m))$ 4?.I(m)/m 

1 4 6 
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We shall now show how to give a result which is more sensible to the 

property of the Hessian of the potential V. The proposition is the following: 

Proposition 3,2 

Under the additional assumption that x -'(Hess V)(x) is bounded, we 

have: 

(Z3)X2-X{ <c VÏ InfXeRm ||x|| = 1(Supx(HessV)x(X,X))1/2 

Proof 

The proof is as in [SWWY] reminiscent of the proof of the Payne-Polya-

Weinberger inequality [P-P-W]. Similar ideas are used in the paper by 

B.Simon [Si]3 who refers to [Ka-Th], §3. 

Let u xm the first normalized, strictly positive eigenfunction attached to 

Xt (m). We forget now the reference to m. Then we have : 

(3.4) (-A+V)u =X{ u 

Let: 

p€ = Jx€(u )2dx 

and let us consider : 

u =(x€-p€)u 

u ' is orthogonal to u and by the minimax principle we have : 

(3.5)3l2« < ( - A + V ) u U | u a > / < uV'e>fore€{l m} 

Let us observe now that, as a consequence of : 

(-A+V)u1,£= JL ul ,6-28xu, 

we get : 
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<(-A+V)ui,e |uI 'e>^1 < u!V,e> + 1. 

Now the incertainty principle gives : 

(3.6) (1/2)^113^11 ||uu||, 

and then finally : 

(3.7) Q<X2 -X{ <c l /<uU|uU> 

and 

(2.3)X2-1{ $ 4 Hd̂ uH2. 

Summing over Z and using the equation we obtain first Proposition 3.1. 

We now observe that (because u1 is real) for all Ze{i,....,m}, we have: 

(3.9) Ug : = dxu is orthogonal to u1 

Similarly to the proof of (3.5), we deduce : 

(3.10) x2<< <(-A+V) U g | u g > / < U g | u g > fo r€G{i m} 

Let us observe now that : 

(-A+V)u^= X{ uJ-0XeV)u! 

and that : 

< ( - A + V ) u g | u J > ^ 1 < Ug|ug> +(l/2)<(32 V ) u V > . 

Finally we get 

(3.11) X2-X{ <c ( 1 / (2< uJ|uJ>))Supx3^V 

Then we take the product of (3.8) and (3.1l) to get : 

(3.12) X2-Xt$V2(Supxa\v)i/2. 

This gives the proposition by observing that all the assumptions are invariant 

by rotation in Rm. 

(3.12) X2 X{ ^ V^"(Supx82V)1/2. 

This gives the proposition by observing that all the assumptions are invariant 

by rotation in Rm. 
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Example 3,3 (cf Example 2,6); 

IfVv =2,Wv(x,x| + I)iwith: 

Wv (s,t) = (1/8) (s2+t2) -log ch(/fr/2)~ (t+s)) 

then we get: 

X2-X{$\ 

If we introduce the semi-classical parameter h, we shall obtain : 

X2-Xt $h. 

To finish this section let us give shortly (in the case of Rm) some 

universal minoration for the splitting. This result was already proved in 

[Sj] 2 in the case of an open bounded convex set a and it is not difficult to 

extend the result to the case of Rm by taking the limit of Dirichlet 

problems in balls a R of increasing radius R and using the fact that the two 

first eigenvalues of the Dirichlet problem X ^(£1$) (resp. X 2(aR)) converge 

as R tends to oo to the corresponding eigenvalues of the global problem in 

R ^ O n ) (resp.*2(m)). 

Proposition 3.4 (TSj12): 

Let Vbea strictly convex C°°positive potential tending toooas \x\ tends 

to oo. Then we have: 

(3.13) X2-X{ 5V2.Infx^min((HessV),/2(x)) 

where Xmift( (Hess V)1/2(x)) is the smallest eigenvalue of (Hess V)1/2(x). 

To see the interest of such a result let us observe the following: 
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Lemma 3.5 (Example 2.6 ) 

If Vv =2,;|Wv(xJx, + 1).iKi£fi: 

Wv (s,t) = (1/8) (s2+t2) -log ch(V^72T (t+s)), 

then the potential is convex iff v $ 1/4. 

1/4 is consequently the good candidate to be the critical vc. 

Remark 3.6 

The existence of a minoration in the convex case was apparently known to 

some specialists (as T.Spencer indicated to one of us (B.H.)) at least in the 

framework of the field theory but surprisingly we do not know a reference 

before [Sj] 2. Recall also that a semiclassical version appears in [Sj] . 

Let us now sketch here a variant (in the case of IRm) of the proof given in 

[Sj]2. The first step is the following formula for the splitting (cf for 

example [Ki-Si]) 

(3.14) X2-X = Inf0{ [(J|V*|2 (u')2(x) dx)/J|<»|2 (u')2(x) dx)], 

• eC~ !• (u)2(x) dx=o} 

This is just avariant of the minimax principle. 

The second step is the 

Proposition 3.7 (cf fBLl): 

Let us assume that V(x) =(l/2)<o2x2 + U(x) with co^O and U convex. 

Then 
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g(x):=-Log(u )(x)= (<ox A / 2 ) + v(x) 

with v convex. 

This step was also basic in the proof in [Sj] 2 (cf also [SWYY] for a proof 

based on the maximum principle). 

For the last step let us introduce some notations. If <t> is for example a 

continuous bounded function we can introduce: 

<<j>> = J<j> (u ) (x) dx, var(<t>) = <(<>- <<J>>) >. 

Then Brascamp and Lieb give in [Bra-Li] the following inequality : 

(3.15) var (<») <; < (V4>|g''xx"!|V*)>. 

The proof is then easy by combining the results of the three steps. 

Application 3-8 (Example (2.0) 

As seen in Lemma 3.5, Example (2.6) satisfies all the assumptions. In 

particular we get for all m, and all v < 1/4 : 

(3.16) X2(m»)-Xx ( m ; v ) > 7 T l ~ 4 v ) 

This gives us an interesting control with respect to the temperature. Of 

course, this result is not astonishing for the specialists in statistical physics. 

If the semi-classical parameter h is introduced we get: 

(3.17) ^2(m;h,v)-^1(m;h,v)^VTl~4vT h. 

The most interesting result would be to prove that, for v >l/4, the splitting 

{X2{m\h9v)-Xl (m;,h,v)) tends to 0 as m tends to infinity. On the other 

hand we do not know if, for v < l / 4 , the limit {X2{m\h%v)-X{(m;,h,v)) 

exists. 
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§ 4. Exponentially weighted estimates in the construction of the phase 

In this section, we shall develop some complements to the results in 

[ S j ] 1 2 . 

To come back to the notations used in these papers, we shall now work 

with the operator - (h /2)Am+V. Let us introduce a set <$& as the disjoint 

union over IN of sets : 
m A= 

m F în m 

where Am c V m x 3lm , Vm is the set of C°° potentials on R m and 3lm is 

the set of applications from {l,....,m} in R + . 

Let us make on <& the following assumptions : 

For all {Wfi) in<& 

(4.1) V is holomorphic in B(o,l) with |VV(x)|o o=0(l) uniformly in s& and 

B(o,l), (Here B(o,l) is the open unit ball in <Cm with respect to the norm 

|xloo= sup lXj l ) 

( 4 . 2 ) V ( 0 ) = 0 , V ' ( 0 ) = 0 , 

V"(o) = D + A , where D is diagonal (positive definite) and 

(4.3) There exis ts r{ and r0 (independent of (V,p) in ¿30 such that: 

H A l l j M e ^ p ^ i < r o « ^ m i n ( D ) 

for all p s.t. l^p$<x> . 

We also as sume: 

(4.4) \\V2VhKK) = 0(1) 

uniformly in and p. 

Here we wri te: 

|x|pp= W p = ( * a ) x , l p ) l / P f o r u p < o o 

1 5 2 
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and 

|X| |рх1„-9|р||рДОХ||. 

Because A and V V are symmetric, we deduce from (4.3) and (4.4) that 

we have the same estimates with p replaced by (l/p), so we may assume 

that: 

(4.5) (V,p)€<&=* (V,l/p)€<&. 

From this, we get by interpolation that we may assume without loss of 

generality: 

(4.6) If (V,p) is in <&m, (V,l) is in <&m where " 1 " is the constant weight 

defined by p(j) = l for l^j^m. 

As in [Sj]2 (Lemma l.l), we see tha t : 

(4.7), ( V " ( o ) ) 1 / 2 = D + A 

with D diagonal and 

(4.7)2 H A H ^ ^ r i <r~«lfflift(D) 

for all p s.t. 1 ^ p ̂  oo and uniformly in 

The property (4.6) permits to apply the results of [Sj] 2. In particular, let 

<1>0 be the solution of the eikonal equation : 

(4.8) (1/2) |V^0I2= V 

constructed in [Sj]2 , §2 for lx|oo<r. Then we have the following : 

Lemma 4.1 

If r is sufficiently small, then we have: 

(4.9) ll*0"(x)||stW = 0(l) 

uniformly for (V, p) in & and for Ixl^ <r. 
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Pfwf, 

We recall first that^on(0)= V"(o)1/2 and that iV^ ' tx ) !^ = 0(l). Contrary 

to the situation in [Sj] x 2, it seems that we will have to work with <J>0" 

directly (and not just with the Cauchy inequalities to estimate the Hessian 

from the gradient as in [Sj] t §l). Let q = § /2 - V. If we differentiate 

the Ha flow, we get2 : 

(4.10) at(8x) = 54 ,dt[S0 = Vn(x).8x 

Consider an integral curve ] - ° o , o ] a t - * (x(t)£(t)) of Hq with : 

(x(t),S(t)) - (0,0) when t - - o o , x(0) = x, ^(0) = V<f>0(x), |x |<rwith r 

small. Recall from [Sj]2 (§2, 2.16) that3 

(4.11) I x d ) ! ^ exp(-|t|/C) IxL 

Let A(t) =<t>0"(x(t)). Let A be the lagrangian manifold defined by{(x£), 

§ = V<>0(x)). Then the tangent space T(x(t) ̂ (t))(A#o) is given by : 

(4.12) 5^=A(t).8x 

and if we use that the tangent bundle T(A. ) is invariant under the 

differentiated Hq-flow we get by taking the t-derivative of (4.12) and 

using (4.10): 

dt8^=atA(t).8x + A ( t ) 3t5x =8tA(t).6x + A(t)2 ox = V"(x) 8x, and 

consequently: 

2 If we denote by x(t,y,ii), 4(t,y,t|) the solution starting of the point (y,T|) at t =0, the 

equation means : 

a2x€/ataYj =d^/àyr d\/dtàYi =2ma2v/ax̂ xm. axm/ayj 

d2x€/ataiij =6^/^, a^/ata^ =2ma2v/axedxm. ax^diij 

3 we recall that x(t) is an integral curve of V0O. 
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(4.13) 8^(0+ A(t)2= V"(x(t)). 

Put A(t) = V"(0)'/2 + B(t). Then (4.13) becomes : 

(4.16) 8tB(t) + W ( t ) ) = V"(x(t))-V"(0) -B(t)2 

where 

(4 .17 ) TO) =V"(O) ' /2B+B.V"(O) ' /2 

Here we notice that by the Cauchy inequalities : 

(4 .18) II V"(x(t))-V"(x(0))||a,(e;ep)= 0 ( | x ( t ) | J = 0 ( 1 ) exp (-|t|/C). 

Moreover 

(4.19) e x p ( t V ) (B) =exp(tV"(0),/2).B.exp(tV"(0)1/2) 

and as in [Sj]2 (Proposition 1.2) we see that: 

(4.20) Hexp(tV"(o),/2)||itt,ep,$ exp(- | t | /C),fort^o. 

Hence: 

(4.21) || exp(tcU>)(B)||a,(epep)^ exp(-2|t|/C) ||B||sMe»e.)ifort$0. 

From (4.16) we get : 

(4.22)B(t)=J_^exp(-(t-s)V) (V"(x(s))-V"(0)-B(s)2)ds 

If M(t) = Sup_oo<s<tllB(s)||£(ep,ep), then 

(4.23) M(t) $ C ( M(t)2 + exp (-|t | /C)|x |J 

and it follows that M(u) ^1/2 if Ixl^is small enough. 
###### 

Using Lemma 4.1 and the Cauchy inequalities, we see that 

(4.24) lko"(x)-^o"(0)||a(epep) = 0 ( | X | J 

Noticing that v(t) = dxexp(tV<J>0(x).6x)(x)(v(o)) satisfies : 

(4.25)6tv(t) = *>0"(x(t))v(t), where x(t) = exp(tV0o(x).8x)(x). 
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using the arguments around the proof of (4.2l)- (4.23), it is then easy to 

prove that 

(4.26) ||dxexp(W0(x).ax)(x)||^peP) = 0(l) exp (-|t|/C), t < c Q 

Let<> - <J>0 + <J>,h +4>2h + 

be the (asymptotic) solution of the (complete) eiconal equation with 

E Eg+E, h+E2h2+... 

(4.27) V(x) - (1/2) |V*(X)|2 + h( (A<J>(x)/2)-E) = 0, 

i.e. : 

(E) V(x) - (1/2)|V*0|2 = 0 , 

( T j j V O ^ x J . a ^ ^ x ) = (A<>0(x)/2)-E0 , 

Tk) V4>0(x).ax<t>k(x) = 

= (A<J>k_,(x)/2)- ( 1 / 2 ) 2 . ' , V«j(x).V«k_j(x)-Ek_I. 

Here recall that E0 E k _ a r e defined by the condition that the r.h.s. 

of (T,) (Tk), vanish for x = 0. 

Let us recall that u = exp(-«J>/h) is the approximate solution of: 

(-(h2A/2)+V-hE)(u) = 0 

Proposition 4.2 : 

There exists r>0 independent of A and of j such that 

(4.28) ||V20j(x)||^(eP>eP) = Oj(l) 

forìXÌM<r, t^p^oo. 

Proof: 

We recall from [Sj], that we already know that 2.', V«j = Oj(l) and 
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combining this with the Cauchy inequalities we obtain (4.28) in the special 

case when p=l. In the general case we have apparently to work with the 

Hessian directly, and we shall therefore take the Hessians of the r.h.s. of 

(T, ),(T2) 

Knowing (by Lemma (4.0) that 

|<4>0"(x),t®s>| = 0 ( 1 ) lt|p p Js|ql/p , with (1 /p ) +(l/q) = l , 

we get by the Cauchy inequalities : 

|<V2<^0"(x),t®s>,v®li>| = 0(l)|t|pp Js|Q(I/p. M J ^ L 

and Lemma 1.2 of [Sj] { 4 implies that 

A<*0"(x),t®s> = 0(l)lt|p Js|Qil/ . 

Hence 

(4.29) llA^0,,(x)||5WePep)= 0 ( 1 ) . 

We now differentiate {T{) twice and get: 

(4.30) V ^ x U ^ V 2 ^ ) + 4>0". •1 " " •o" 

= (l/2)A<>0" - V3<»0(x) L V ^ l x ) 

where "L" means contraction of tensors : 

< V3<J>0(x) L V<t>j (x), t®s> = <V3<>0(x) ,V^1(x)®t®s>. 

By the Cauchy inequalities, Lemma (4.l) and the fact that |V4>t 1^= 0(l), 

we get that this expression is 0(l) |t|p Js|q {/ and so we have : 

(4.31) The norm in S t (6 j ) of V3^0(x) L (x) is 0(l). 

Consider (4.30) along an integral curve x = x(t) = exp(tV<t>0.dx) (x). 

Let $(t,s) be the fundamental matrix for the corresponding problem: 

8tv(t) = -*0"(x(t))v(t), 

4If A is a complex NxN matrix, then |TrA| ^HAll^00^) 
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that is the solution of : 

(4.32) at<ï>(t,s)) = - ^0"(x(t))<I>(tis);*(s,s) = l 

Then (see the proof of (4.26)) 

(4.33) | |$ ( t ,s ) | |^ = 0(1) exp ( - ( t -s ) /C) , 

= 0(l)exp(C|t-s|), 

-oo<S^ t^ 0 

- ° o <t$ :s$ : 0 

If B is a matrix, put : 

*(t,s) (B) = *(t,s).B. l*(t,s). 

Then <Ms,s) B= B and $(t,s) is a solution of : 

3t*(t,s)(B) +^0"(x(t)) *(t.s) (B) + *(t,s) (B)0o"(x(t)) =0 

(using that <t>0 "(x(t)) is symmetric). Notice that all non-trivial solutions of 

this equation explode as t - -<*>. The non-exploding solution to (4.30) is 

then : 

(4.34)) 0{ ,,(x(t)) = /loo *(t,s) ((1/2)A*0" - V3*0(x) L V*, )(x(s))ds 

which is (using (4.29), (4.31) and (4.33)) 0(l) in St(Ej) . 

Assume by induction that we have established (4.28) for l ^ j ^ k - l . 

Taking the Hessian of (Tk) we get: 

(4.35) V*0(x).8>k' ') + *Q\ *k" +0k"-<>o" = 

= - V3*0(x) L V*k(x)+fk" 

where fk is the r.h.s. of (Tk). 

Here ||<|>0" L^k1l̂ (ep) = 0(l) by the same argument as before. Observe now 

that f k" contains terms of the form : 

(1 /2 ) A^_|Mi4>,,,.*kH\ V ' L W 

which are all 0(l) in £(££) . The solution of (4.35) is given by a formula 

analogous to (4.34) and it follows that (4.28) holds for j = k. 
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We shall next analyze the influence of a perturbation°t& on V. Let us 

attach to the set the set 9) defined again as a disjoint union over IN: 

$ = u m ®™ where 9 c V x Am m m m — m m 

and let us assume that for all ( " t & . ^ p ) in 3), we have : 

( 4 . 3 6 ) , I V W I ^ = 0 (1) , uniformly in x and & 

and: 

( 4 . 3 6 ) 2 (Vt,p) (with Vt= V +t W belongs to &for all t € [0 , l ] 

(in p a r t i c u l a r we must have °№(o) = O.Wfo) = 0, II W l x ) ! ^ = 0 ( l ) 

uniformly). 

Let 

0 = * t ^ * t ,o + * t , i h + 

be the phase associated to V = V t . 

Differentiating the eiconal equation with respect to t we get 

(4.37) ( v ^ 0 . a x ) o t * 0 ) = • № 
(here we take the notation <l>0(t,x) = <frt 0 (x)) 

and hence: 

( 4 . 3 8 ) (8t*0)(t.x) = J . ^ W e x p (sVx^0(t,x).ax)(x))ds . 

We now observe that : 

d (W(exp (sVx^0(t,x).ax)(x))) = dc№. d(exp (sVx*0(t,x).3x)(x)). 

Using ( 4 . 5 ) , ( 4 . 2 6 ) (with p = 1 and p replaced by l/p) and ( 4 . 3 6 ) , we see 

that: 

( 4 . 3 9 ) ^ 8 ^ = 0 ( 1 ) . 

Assume by induction that we have proved that: 

lV x 3 t * j L , p = 0 ( 1 ) for O d ^ k - l . 
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DifferentiatingTk with respect to t, we get : 

(4.40)Vx4>0(t,x).dxdt<l>k(t,x)=-Vat4>0(t,x).Vx4>lc + (A3t<j>k_1(t,x)/2)-

Zj = 1Vx^,(t .x) .Vx#k_,(t .x) - * & _ , ( t ) . 

The x-gradient of the l.h.s. is 

Zj=1 V x3¿> |(t.x).V x# k ,(t.x) -9&Jt). 

The х-gradient of the l.h.s. is 

Vx^0(t,x).8x(Vx3t^k(t,x)) +4>0M(t,x).Vx3t^k(t,x) 

and the x - gradient of the r.h.s. is a sum of terms of the form : 

c*= V x ( f ) ( V x g ) , p = Vx(g) (Vxf), y= AxVxf 

for various functions f and g satisfying 

(4.41) I V ^ . I V ^ U l lv jg | | „e ; , = 0( l ) . 

(a) f = 3 <J> (t,x), g = <t>k (the verification of (4 .4l) is obtained through 

(4.39), Proposition 3.1 in [Sj] j , and Proposition (4.2)). 

(b) f = 3t<t>k _ { ((4.4l) is satisfied by the induction assumption) 

(c)f= 3t^j,g = ̂ k_j w i thUj<ck- l . 

We have by Cauchy (and (4.40)) : 

<Vxf,v®ii> = 0 ( l ) | v | > l l i l / p 

so 

IIV2

xfll*(e°x>= °W 
and hence |<x| = 0(l). 

That |p| = 0(1) is immediate. 

Finally we get 17I = 0(l), by starting from <Vxf,v>= 0(l)|v|j 1/p 

taking the Hessian, using the Cauchy inequalities : 

<Vx<Vxf,v>,t®s> = 0 ( l ) M l ( 1 / p l t | J s L 

and finally Lemma 1.2 of [Sj]t to get: 

< V x A x f , v > = 0( l ) |v | , , / p . 
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Then using the analog of (4.38) for Vxdt<t>k with °t& replaced by the r.h.s. 

of (4.40) we get the control of lVx3t<t>k I . Then we have proved: 

Proposition 4.3: 

Under the assumptions (4.36), let $t be the phase associated to the 

perturbation V. = V+tct&. Writing 

Ot * t . o + < K , i h +  

we have for every j , and uniformly for (V,p, t) in£8x [o,l] : 

( 4 - 4 2 ) l V x 3 t ^ u U = 0( l) /or I xUr . 

We shall apply the above estimates to show the exponential convergence 

of the WKB ground state energy divided by the dimension, for a certain 

sequence of potentials : V {x{ xm), m = 1,2 

Let us describe <$& and S) in this case. 

We start with this family V(m) defined for each m. For a given m, <&m 

will be parametrized by n (with l $ n ^ m - l ) : <s&m = ^ U f t < m _ , ^ m • 

For given n this is the set of pairs (Vp) where (using a notation introduced 

in the proof of Lemma 2 .4) 

( 4 . 4 3 ) V = ( l - t ) (V(n)© v(m"n)) + t V(m) for some 0<a<cl 

and 
( 4 . 4 4 ) p belongs to # tm(&) defined as a set of applications on{l m} 

and satisfying5 : 

exp(-&) < o(i+l)/p(i) < exp(&) 

5 We can (if necessary) reduce ourselves to a smaller class with the additional 
assumption that p(j) = l for j^n. 
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(with the convention that if p is defined on{l m}, p(m+l) =p(l)) 

exp(-fe) ^ p(n)/p(l) $ exp(&) 

exp(-&) $ p(m)/p(n + l) $ exp(&) 

Notice that (4.44) gives bounds for p(j)/p(k) when (j,k) is a pair of 

nearest neighbors in the graph : 

GRAPH : 

Similarly the set $ is defined by describing $m as u n S)^ where : 

(4.45) < i s the s e t { ^ x < , w i t h ^ = ( V ( r a ) - V ( f l ) 5 v ( m - n ) ) 

Let us assume that, for a suitable fc, the assumptions of Proposition (4.3) 

are satisfied for the set 3) associated to the sequence V(m) (we shall give in 

§6 examples where this is true). Then if <j>(m) denotes the phase associated 

to V we obtain by integrating 

(4.42) with respect to t : 

(4.46) |V(*k(m+p)- *k(m) e *k(p))L, = 0(1), |x|<r. 

We choose p(s) = exp(& min(s,m + l - s ) ) (for l ^ s ^ m + l) and = 1 for 

s gjfli+l .We add one more assumption : 

(4.47) For every m, V(m) is invariant under cyclic permutations of the 
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coordinates : V ( m ) (x m x. x m _ . ) = V ( m ) (x . x f f l). 

Then <t> m will have the same property. Let 

hE(m) ^ h(E0(m)+E, (m) h+ 

betheWKB ground state of -(h2/2)A+V . 

We recall that we have seen just before the Proposition (4.2) the following 

equality : 

( 4 . 4 8 ) Ek(m) = ( A ^ K M J ( Q ) / 2 ) - ( 1 / 2 ) 2 , ^ V ^ k V ^ J ^ O ) 

and using the cyclic invariance of <t> we get for any s € {l m} : 

( 4 . 4 9 ) (Ek(m) /m)=a^ im) (0 ) - (1/2) 2,ka { a ^ j ^ o U ^ ^ J . j t o ) . 
Choosing s with |s-(m/2)| $ 1 , we obtain from ( 4 . 4 6 ) that : 

«*• [ " * ' \ x m + p ) - ^ l m ) ^ xffl) = 0(exp ( - a m / 2 ) ) 

By Cauchy's inequality, we can replace dv by d2 . Using these estimates 

with ( 4 . 4 9 ) , we get: 

( 4 . 5 0 ) (Ek(m + p)/(m+p))-(Ek(m)/m) = 0k(exp(-&m/2)). 

which gives for each k the exponential convergence of the Ek(m)/m 

as m tends to oo. 

To summarize, we have proved the 
Theorem 4.4 

If the sequence of potentials V m satisfies uniformly (4.l),(4.2),(4.3),(4.4) 

and (4.36) for the family of p e Rm (k) introduced in (4.44)6, then the 

first eigenvalue of the Schrddinger operator : - (h 2 / 2) A + V ( m ) 

6 More precisely, we have associated to the sequence V(m* and to a set of weights 
&^(&) a set <& and a set $ The exact assumption is that we can find & 
s.t. all the assumptions concerning <& and & are satisfied. 
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admits an asymptotic expansion of the form : h2k^0Ek(m).h . 

The sequence Ek(m)/m is convergent to a limit E™and we have the 

following inequality: 

For all k, there exists Ck s.t. 

(4.51) |E~-(Ek(m)/m)| <c Ck exp(-£m/2). 

§S Comparison between the Dirichlet problem in a box and the global 

problem 

§S.l Introduction : 

In [Sj] j , the semi-classical study of the fundamental level of the Dirichlet 

realization in a sufficiently small box was achieved. The validity of the 

results was subsequently extended in [Sj] 2.We are here in the apparently 

very simple case of a one well problem, and it is natural to think (but 

difficult to control with respect to m) that the first eigenvalue of the 

Dirichlet problem in a box containing the unique minimum of the potential 

will be in the semi-classical limit quite near of the first eigenvalue of the 

global problem in Rm. We shall prove, following essentially the ideas of 

[Sj] j § 5-6, that it is effectively the case under the restrictive condition on 

the dimension that : 

(5.1.1) m= 0 ( h N o ) for some fixed N0. 

This is naturally not completely satisfactory for our purpose but we shall 

see how to circumvent this problem in §6. In the two next sections, we 

shall construct as a preliminary step for a procedure of localization of 
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estimates a suitable family of boxes covering Rm . The idea behind this 

construction is to compare (more precisely to minorize) by a suitable 

translation the potential in any box of the family and the potential in a 

box centered at the minimum of the potential. 

§5.2 Case of a quadratic potential ; 

Let us consider 

V(x) = (1/2) <V"(o)x,x> 

with (see the stronger assumptions we make in §4) 

(5.2.1) V"(0)= D+A, with D diagonal, 

I I A I I ^ <c f| <r0^^min(D)$Xsup(D)$C0 

tx, r0, C0 are fixed and independent of the dimension m. 

These assumptions were introduced in [Sj]2. 

Then we know from [Sj]2(and we have already used in (4.7) ) that 

(5.2.2) V"(o) = D+A, with D diagonal, 

II All ^ $ r, <ro^^min(D)$^sup(D)$C0 

r{ ,r0, C0 are fixed and independent of the dimension m. 

It will be easier to work in the Morse coordinates : 

(5.2.3)y = V"(0),/2x 

since we get in the new coordinates : 

(5.2.4) V(x)=y2/2. 

As in [Sj] | §5,6, we consider then the following family of boxes, which 

depends on 2 parameters C and £ . The center of the box £2p is p = (p {,...pm) 

and a = I x x l in the new coordinates. Here for each j , we have 
P Pi Pm Jf 
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p. = 0 or pjjsCe, and in the first case I = [-Cfe.Ce] while in the second case 

L= [p:~£,p:+s]. Here C55I, £>0. 

Using (5.2.4) it is easy to see that: 

(5.2.5) V(x)-V(x-p) * (l-ii(C)) V(p), X G Qpi 

where tj(C) is independent of £ and tends to 0 when C tends to 00. 

The £2p are somewhat distorted boxes, but since 

(5.2.7) ly lp - |x |p ,Up$oo, 

the diameter of J2p is Ofe) when C is fixed. 

The general case. 

Let V : Rm- R be smooth with : 

(5.3.1) V(o) = 0, V'(o) = 0 and V"(0) satisfying (5.2.1). 

(5.3.2) <V"(x),t1®t2> = 0(1) lt1lpilt2lp2 

uniformly in x,tj ,t2 and for all pj p2 s.t. 1= l /p, + l/p2. 

(5.3.3) < V,,,(x),t1®t2®t3> = 0 ( l ) | t jp |t2lp|t3lp3 

uniformlyinx,t1,t2,t3andforallp1p2p3 s.t. 1= \/p{ + l/p2 + l/p3 

We write 

(5.3.4) V(x) = V0(x) + Wx )wi thV0(x) = (1/2) <V"(o)x,x>. 

So we have the property (5.2.6) for VQ : 

(5.3.5) V0(x)-V0(x-p) 5 (l-t,(C)) VQ(p),XG op> 

and vanishes to the third order at 0 and satisfies (5.3.3). 

Letp+x<Eftp (so that x <E£20). Then : 

W p + x ) - U(x) = W p ) - B ( o ) + <Ve№(p)-VeWo)ix> 
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+ l,n(l-t)<V2ct*(P + tx) V2et&(tx),x®x>dt 

= «№(p) + JX< V3ct*(tsp),p®p®x>t dt ds 

+ l X ( l - t ) . V3ct&(sp+tx),p«>x<8>x> dtds 

(5.3.6) W p + x) - Wx) = <Wp) + 0(l)|x|Jp|\+ 0(l)|x| "jpl,. 

For the particular choices of p which are allowed, we see that 

(5.3.7) Celpl, $ Cjpl2 

where C and e appear in the choice of ftp and C0 only depends on the 

constants appearing in (5.2.1) (see 5.2.7)). 

On the other hand 

(5.3.8) Ixl^ = O(Ce) 

so, with a new constant (with the same properties as the first one), we 

get: 

(5.3.9) Ixljpl, sCjp l2 

Finally we get from (5-3.6) -(5.3.9) that: 

(5 .3 . l0 )Wp+x) - «№(x) = W(p) + 0(1) Ce Ipl2 

If we combine with the properties of V0, we get for each x in ap : 

(5.3.11) V(x)-V(x-p) ^ V(p) - ri(C) V0(p) - 0(1) Ce |p|2. 

For every 8 > 0, we get by chosing first C sufficiently large and then e 

sufficiently small: 

(5.3.12) V(x)-V(x-p) z V(p) - 8 Ipl2, for x e Gp. 

(Here we have used (5.3.2) for the first time). 

If we have the additional property that: 

(5.3.13) V"(x) <» I>0, 

167 



В. HELFFER, J. SJÔSTRAND 

there is a choice of £ and C in the construction of the ball s.t., for some 80 

>0, we have : 

(5.3.14) V(x)-V(x-p) £80 |pl2 ,forx € op. 

(compare this estimate with (6.2) in [Sj] ) 

§S.4 Statement of the result and end of the proof : 

Theorem ъ л л 

Let V satisfy (5.2.1), (5.3.1)-(5.3.3), (5.3.13) and 

(5.4.1) Vextendsholomorphicallyto { X G C ^ l x l ^ r ^ and IVVI^ = O(l) 

in this polydisc. 

We assume that the condition m = 0(h N°) is satisfied. Then the first 

eigenvalue of the Schrôdinger equation in Rml t (m,h) is of the form hE(m) 

+ 0(h ) (where hE(m) is the WKB eigenvalue constructed in [Sj]2 , see 

also §4). 

Sfretph of the proof 

This is essentially the same proof as in [Sj] { using the improvements in 

[Sj]2 and the new construction of boxes we give in sections 5.1-5.3. Let 

us recall some of the steps. 

We choose £ > 0 so that G£ < < r0. Let us first consider the Dirichlet realization 

PQq of - (h2A/2)+V in the "twisted" box £2Q. In view of (5.4.1), we can 

construct as in [Sj]2 (see our section 4) a WKB-candidate hE(h) for the 

lowest eigenvalue of P0 with : 

(5.4.2) E(h) ^E^+E,h+ E0.^m,El = Oj(m) 
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and modifying E(h) by 0(mh ) we also know from the arguments of [Sj] 2 

that hE(h) is exactly equal to the lowest eigenvalue of P0 , when h is small 

enough. The only slightly new point here is that a0 is not exactly a 

6°°-ball in the x-coordinates. However, it is enough to notice according to 

(5.2.7) that 

(5.4.3) B(0, Cs/C,) c a0 c B{0,Ct Gb) 

with B(x0,r)={xG Rn; |x-xQ|<r}. 

Let us now observe that by monotonicity we have : 

(5.4.4) ^(m,h)<; hE(h). 

In order to get a lower bound, we follow the general strategy of [Sj] (sections 

5, 6) and start by establishing some exponentially weighted estimates in 

QQ. Lemma 5.1 of [Sj]t remains valid in the present context and we 

conclude that if V = V-2 x 2M, and if hE is the lowest eigenvalue of the 

Dirichlet realization of-(h A/2)+ Vinft0,then 

(5.4.5) E-E= 0(l)m.hM~\ 

As in the end of section 5 of [Sj]j we then obtain the estimate 

(5.4.6) (hE-Oajmh**"1)!!^2 $ (exp(v|//h)(-(h2A/2)+V) exp(-v/h)u|u), 

for each U G C^(ao), provided that y is a real valued smooth function, 

defined on Q,Q with 

(5.4.7) (1/2) |V¥(x)|2 ^ I ^ x ^ . x e a0. 

Replacing u by exp(y/h)u, we can rewrite (5.4.6) as 

(5.4.8) (hE-OdJmh'^-^llexp^/hJull2 

$ (exp(\|//h)(- (h2A/2)+V) u|exp(v|//h)u), for each U G C^(a0). 

Using now (5.3.14), we deduce from (54.8) 
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(5.4.9) (hE-0(l)mhM_,)||exp(V/h)u||2 

$ (exp(\|//h)(-(h2A/2)+V) u|exp(\|//h)u), for each u G C ^ p ) , provided 

that \f is a real valued smooth function, defined on £2p with 

(5.4.10) (1/2) |V¥(x)|2 <; ^ ^ ( X j - P j f ^ x G flp. 

Then we have just to control the patching procedure which appears in the 

estimate (6.18) in [Sj] x. The patching procedure is based on a resolution of 

the identity. We just take the same one but in the y variables. The only 

new problem occurs in the control of the commutators. 

For that, we only need to observe that (with the notations of § 5.2), if we 

introduce cutoff functions of the form 

(5.4.11) X (x) = n ^ y , ) . 

where 

(5.4.12) |X.(t)|«l 

and 
(5.4.13) |X,'(t)|+|X,,'(t)|$D 

(where D is independent of j), 

then : 

(5.4.14) |VxX(x)|^<cC(D) 

(5.4.15) IA x(x)| <; C(D)m3.7 

Let us prove for instance (5.4.14) : 

V = 27x1(y1)....ak_1(yk_l) (aXv(xk(yk)).xk + 1(yk + 1) * m ( y J 

with (ax (xk(yj) = xk'(yk)(ax (yk)) = (v"(o)1/2)kvxk'(yk). 

7 In fact using lemma 1.2 in [Sj]t we can get 0(m) but this improvement is of no use 

here. 
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This gives us: 

*x* = K- , ( V W ' X X , (Y, ) Xk _,(yk .,) Xfc'.Xk + ,(yk + ,) .Xm(ym) 

=^,<v"<o>,'Vk<y> 
With tk(y) = X, (y, ) Xk _,(yk _,) Xk'.Xk + ,(yk + ,) XjyJ. 

According to (5.4.12) and (5.4.13), (tk(y))k is inabounded ball of £°° and 

using (5.2.2), we get (5.4.14). 

The control of cut off terms occurs in the proof in §6 of [Sj], only in passing 

from (6.18) to (6.19). These terms are multiplied by an exponentially 

small (w.r.to h) term and as in [Sj], we get 

(5.4.15)(hE-0(l)mhM_,)(l + 0(exp(-l/Ch)))| |uf 

S J(l + 0(exp(-l/Ch)))(-(h2A/2)+V)u)udx 

+J( 0(exp(-l/Ch))|u|.|Vul2dx. 

Since V^o, we have 

(h2/2)J|Vu|2dx s;J(-(h2A/2)+V) u)udx, 

so we end uo with 

(5.4.16) (hE-0(l)mhM_,)||u||2 

$ J(l + 0(exp(-l/Ch))(-(h2A/2)+V)u)udx. 

Taking for u a sequence of truncations of the first eigenfunction, we get in 

thelimit :hE-0(l)mhM",$(l+0(exp(-l/Ch))X1(m,h) 

and combining with (5.4.4): 

(5.4.17) hE-0(l)mhM"V , (m,h)<;hE. 
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§6. Complete study of the model for v < 1/4 . proof of Theorem 1.1 .  

We return in this section to the initial conventions to work with 

-h A + V. 

(Note that it is easy to go from one convention to the other by a change of 

h : h = h /vT). 

§6.1 Summary of the different steps : 

As we have seen in Theorem 5-4.1 : 

(6.1.1) X{ (m; h) ~ Kj>0 A,(m) hj if m= 0(hN° ) 

(with Aj(m)= E,(m).2~(| + I)/2). 

But we have seen in §2, that : 

(6.1.2) I {X{ ( m i h V m J - L i m ^ {X{ (m;h)/m) I <c Ch/m 

Taking m = h "M, we get (using Theorem 4.4) the existence of a sequence 

Aj s.t. : 

(6.1.3) I h(2M>i>0 A,. h1) - L i m ^ a , (m;h)/m) I $ CM. hM 

as h tends to 0, where : 

(6.1.4) A. = L i m ^ (A.(m)/m) 

Of course we have to verify that all the conditions of the different theorems 

we use are satisfied for Example 2.6. 

But before let us give a weaker result which can be obtained easier and 

some explicit computations on the harmonic approximation permitting to 

determine AQ. 
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Lemma 6,1,1 

There exists a constant Csuch that, for all he]o,hQ] and all m ¿1, we 

have: 

(6.1.5) 0<3kf (m;h.v) - (h /2) S^"1 (Vok(m;v) )<c Cm.h2 

where the o>k (my) are given by: 

(6.1.6) <ok(m;v) = l-4v cos (jik/m) ; k = 0,1 m-1 

Proof 

The (<ok(m;v)/2) are just the eigenvalues of the Hessian of the potential 

V(m) at 0. An easy computation (cf [Ka]2) gives (6.1.5) (see § 6.2). 

The minoration is just that in this case the potential V dominates 

everywhere its quadratic approximation in view of 

(6.1.7) - l ogchs £ - s2 /2 

so we get immediately the lower bound in (6.1.5). 

For the upper bound, it is sufficient to use the eigenfunction corresponding 

to the harmonic approximation and to estimate carefully the error using 

the inequality: 

(6.1.8) l-log ch s +s2/2| C s4 

The details are for example computed in [Ka] 2 (p.293- 294). 

We just give now for completeness some of the computations relative to 

the harmonic oscillator. 

The harmonic approximation at 0 is given in the case of Example (2.6) by 

the potential: 

(6.1.9)Qm(x) = ( l / 4 ) 2 k ^ x k 2 - (v/4) ( ^ ( x . + x ^ , ) 2 ) 
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Let us now remark that : 

(6.1.10) L i m ^ [ ( i /2m)2k? ; ! ( v ^ ) ] = 

= (i/2?i) J* vT^4v.cos2e de 

Using directly the Mac-Laurin formula (cf for example [Di], p.302) or 

Fourier series and Parseval, we get: 

(6.1.11) I t L i m ^ [(l/2m) Zk™-Ql ^ ]] -

- [ ( l /2 i i ) J! 7T4v .cos2e de ] <; [(Cr/m)2(r/ra)]ra 

for all r. By chosing correctly r ( = a m ) we get the exponential convergence 

which was proved in the general case in §4. We have used here the K-

periodicity and the analyticity of the function e vl-4v .cos e . 

§6.2 Verification of the conditions for the Example 2.6 

We shall verify the following properties for the potential V = V(m) which is 

given by 

(6.2.1) V(m)(x) = ( l / 4 ) 2 k ^ x k 2 - 2 k ^ l o g c h ( v W 2 (xk+xk + 1)). 

(6.2.2) V is holomorphic in Bjo , l ) with |VV(x)|oo=0(l), 

(6.2.3) V(o) = 0,V'(o) = 0, 

(6.2.4) V"(o) = D+A, where D is diagonal (positive definite) and 

HAllsueV)^! <ro^^min^D^ fora11 P st- U P ¡5 00 and for all p with : 

(*) exp(-ft) s p(j+l)/p(j) * exp(« . 

(6.2.5) HV2V||sMeW = 0(0 

uniformly inBjo,l) for p satisfying (*). 

(6.2.6) V(m)"(x) * ( ( l - 4 v ) / 2 ) . Im 

and in particular V is convex for v <l/4 . 
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With Wm = V(m) - (V(n) e v(m_n)) (1 $n<c m-1) . we must have : 
(6.2.7) For all m. for all n ((l<$n<jm-l)), for all p defined on {l m} 
and satisfying (*) and 
(**)p(j) =1 for jjsn+l, andp(l) = l, 
we have uniformly with respect to p, m, n : 
| V "tfle- = 0(1) in a complex ball B(o,l). 
(6.2.8) V(m) and more generally (l-t) (V(n) © V(m"n)) + t V(m) for 
O t̂̂ l satisfy (6.2.2)-(6.2.4) uniformly for thep satisfying (*) and 
( * *) (more generally ( *) and 
exp(-&) $ p(n)/p(l) !g exp(&) 
( * * * ) 

exp(-Jl) $ p(m)/p(n + l) $ exp(&)) 

(6.2.9) <V"(x),t1®t2> = 0(1) ltJPilt2lpa 

uniformly in x,tj ,t2 and for all p j p2 s.t. 1= 1/pj + l/p2. 
(6.2.10) < V'"(x), t,®t2®t3 > = 0(1) |tjpi lt2lpJt3lp3 

uniformly in x.tj ,t2,t3 and for all p{ P2P3 s.t. 1= + l/p2 + l/p3. 
(6.2.11) For every m, V(m) is invariant under cyclic permutations of the 
coordinates :V(m) (xmfx, xm_,)= V^Cx, xm). 

The verification of (6.2.2) is easy. We just observe (always with the 
convention that xm +, =x{) that: 
(6.2.12) 3xV(ffl)(x) = 
= ( X j / 2 ) -Vv72~th (^/^(xj+xj + 1))-^/v72"th ( V v T I " ( X j + X j _ , ) ) 

and that if Ixl̂ is $1, 
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|Vv/2 (Xj+Xi + .) | $V2V $VU2 <K/2 

which implies that dv V(m)(x) is bounded independently of m. 

Let us observe for future use that: 

(6.2.13) (exv(ra))(x) = 

= ( (1/2) - v ) + (v /2 ) [ th2(Vv72 (xj+xj + 1))+th2 ( V v 7 2 ( x j + x M ) ) 

(6.2.14) ax.ax. V(m)(x) = 

= - v / 2 (1-th2 (Vv72(xj+Xj + ,))) = -v/(2ch2 (VvT I (xj+Xj + ,))) 

(6.2.15) dv 8vV(m)(x) = 0 if l j - k | * 0,-1, + 1 modulo m. 

For (6.2.4) we deduce from (6.2.13): 

(6.2.16)0 = ((1/2) -v) I m 

where I m i s the identity in Rm , so we have : 

(6.2.17) r 0 = * m i n ( D ) =((i/2) -v) . 

If we denote by t the operator of translation (by l) on R m defined by: 

{tx){ =x i _ J , we can write : 

(6.2.18) A = - (v /2) (t + t" !) 

The eigenvalues of A are easily computed as -v . cos(2?tk/m) for 

k = 0,1 m-1. 

It is then easy to verify that for p satisfying to (*): 

(6.2.19) IIAII 

If v < 1/4, we observe that one can choose fe such that : 

(6.2.20) r, = v.exp(fe) <((l/2) -v) 

and we shall make this choice now. 

The proof of (6.2.5) is immediate if we observe that all the second derivatives 
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are bounded and that we have (6.2.15). (6.2.6) is a consequence of 

(6.2.13)- (6.2.15) .Let us now verify (6.2.7). We just observe (with the 

notation of §2) that: 

Wmn=W< V . ) + W K * n + W ( X n X n + 1 ) - W < * o , Xn + , ) 

= logch(vv72~ (xm+x,))+logch(vv72 (xft+xn + 1)) 

- logchtvvTT (xn+x, ))-log chfvvTT (xm+xn + 1)) 

The only j for which dx.t&™ are not 0 are j = l,n,n+l,m 

and one has for each of these terms : 

| 3 X j ^ ( x ) | ^ 4vyv72Sup,6C>|t|<1(th(v^7t) 

forxe Cm, I x l ^ i . 
As in the proof of (6.2.12), SuptgC ̂  (th(V2\T<c) is finite. 

According to the (**), the property (6.2.7) is clear. 

Let us verify now (6.2.8). We first observe that: 

D(tffl)= ( l - t ) D ( n W m - n ) + tA(m) and : 

A,(m) = ( l - t ) A ( n W m - n ) + tA(m). 

All the properties we need are stable by arithmetical means, so it is 

sufficient to treat the case (V(n) e y(m"n)) forp satisfying (***) and 

( *) which can be reduced by separation of variables to the study of 

V = V(m) for p satisfying ( *).Wenow observe that *min(D) = (1/2)-v) and 

that ||A|| $v.exp(ic). 

If v<l/4, it is easy to choose k >0 s.t: 

v .exp(K)<(l /2 ) -v) . 

(6.2.9) and (6.2.10) are then easy to verify by using (6.2.13)-(6.2.15). 

Finally, (6.2.11) is clear from the definition. 
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