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K-UNIRATIONALITY OF CONIC BUNDLES 

OVER LARGE ARITHMETIC FIELDS 

Vyacheslav I. YANCHEVSKIÏ 

In the study of rational surfaces a major role is played by Del Pezzo 
surfaces and by conic bundles over curves. There are some interesting open 
questions about their properties. Most important among them is the problem 
of if-unirationality for conic bundles having a if-rational point. For a more 
precise exposition of this problem we need some definitions and conventions. 

Let if be a field of characteristic ^ 2, X an absolutely irreducible variety 
defined over if, and if the algebraic closure of if. 

Recall that X is said to be if-rational (respectively, if-unirational) if its 
function field if(X) is (respectively, is contained in) a purely transcendental 
extension of if. One says that X is rational if X = X XK if is if-rational. 

DEFINITION 1. A rational if-surface X is called a conic bundle over a 
rational curve C if there exists a if-morphism f:X—>C whose generic fibre 
is a rational curve. 

The problem of if-unirationality for conic bundles without a if-rational 
point clearly has a negative solution. So the following question is natural: 
are rational conic bundle surfaces with a if-rational point if-unirational ? 
This question is not only of arithmetic interest. Its algebraic significance lies 
in the connection with the problem of existence of splitting fields of special 
type for some quaternion algebras. More precisely, V. A. Iskovskikh [8] has 
established that a conic bundle is if-unirational if and only if the correspond­
ing quaternion algebra over a if-rational field has a if-rational splitting field 
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(here a clf-rational field' means some rational function field K(z)). Thus our 
if-unirationality question can be formulated as a problem in the theory of 
central simple algebras. 

Further, this problem generalizes to arbitrary finite-dimensional central 
simple algebras. For a strict formulation we shall need the following definitions. 

Let v be a valuation (or a place) of a field F. We shall denote by Fv the 
completion of F with respect to v (or at v). 

DEFINITION 2. Let A be a finite-dimensional central simple algebra over 
a If-rational field L. Then one says that A has a K-rational point if there 
exist two elements, k E K and x G X, such that L = K(x) and the algebra 
A®K(x)K{x)(x-k) (where (x — k) denotes the valuation of K(x) corresponding 
to x — k with trivial restriction to K) is trivial (i.e. a total matrix algebra 
over K(x){x__k)). 

With the above notation (and definitions), the problem of existence of 
rational splitting fields for quaternion algebras generalizes as follows. 

PROBLEM. Let A be a finite-dimensional central simple algebra over 
a K-rational field, and suppose it has a K-rational point. Does A have a 
K-rational splitting field ? 

For some classes of fields this problem has a positive answer. This is 
trivial in the case of an algebraically closed field K. Actually, in this case, 
K(x) is a Ci-field (for definitions see e.g. [15]), and the Brauer group of 
K(x) is trivial (see [15]). Hence any extension of K(x) (in particular, any 
If-rational field) is a splitting field for any central simple algebra over K (x). 
The first nontrivial case is that of local fields (i.e. real closed and p-adically 
closed fields). The case where K = R was first considered by Iskovskikh [8]. 
Real closed fields were considered later by the author. As to p-adically closed 
fields, the author [18] proved that the above problem has a positive solution 
for Henselian fields K and hence for p-adically closed fields (see [14]). The 
next natural case for consideration is when K is 'pseudo-closed'. The aim of 
this paper is an exposition of results on the above problem in this case and 
of the analogous result for the so-called large arithmetic fields. These results 
were obtained recently by Yu. Drakokhrust and the author. 

The author would like to thank the referee for some useful suggestions 
(see the Appendix). 
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§1. The case of pseudo-closed fields 

In this section we shall prove that if a central simple algebra over a 
if-rational field has a if-rational point, then it has a If-rational splitting 
field, provided if is 'pseudo-closed'. We recall some definitions. 

DEFINITION 3. A field if is said to be formally real if it has at least one 
ordering (for details see e.g. [11] and [12]). 

DEFINITION 4. A field if is said to be real closed if it is formally real 
and does not admit any proper formally real algebraic extension. 

Any real closed field has a unique ordering, and any formally real field is 
contained in some real closed one. Moreover, if L\ and L2 are two real closed 
algebraic field extensions of if whose orderings induce the same ordering v on 
if, then Li and L2 are if-isomorphic and one says that L\ is a real closure of 
if (with respect to v). Let us denote by SK the set of all orderings on if (we 
do not rule out the possibility that SK may be empty) and by ifv the real 
closure of if for each v G SR-. 

DEFINITION 5. A field if is called pseudo-real closed (pre) if any abso­
lutely irreducible affine if-variety X has a if-rational point if and only if it 
has a simple ifv -point for every v £ 

These definitions imply that the class of pseudo-algebraically closed 
(pac-) fields if is contained in that of prc-fields. This is a case where SK 
is empty. (Pac-fields were introduced by J. Ax and have been systematically 
investigated in [4], [9], and [17]. As to prc-fields, see e.g. [13].) 

The class of p-adically closed fields can be defined in a similar fashion. 

DEFINITION 6. Let if be a field of characteristic zero with valuation 
valuation ring fi, and maximal ideal E C fi. Suppose the field fi/S is of 
characteristic p and dim^/p^ft/E = d. Then if is called a p-valued field of 
p-rank d. 

DEFINITION 7. Let if be a p-valued field of p-rank d. Then if is said to be 
p-adically closed if if does not admit any proper p-valued algebraic extension 
with the same p-rank. 

If if is a p-valued field with valuation then there exists a maximal 
p-valued algebraic extension of if having the same p-rank. Any such field ifv 

is called a p-adic closure of if. 
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DEFINITION 8. Let K be a p-valued field and let MK be the set of all non-
if-isomorphic p-adic closures of if. Then if is said to be pseudo-p-adically 
closed (ppc) if every absolutely irreducible affine If-variety has a if-rational 
point provided it has a simple L-rational point for every element L of MR;-

REMARK 1. The Brauer groups of prc-fields can be finite but, contrary to 
the case of pac- and real closed fields, their orders are not uniformly bounded 
and can even be infinite. 

From now on, pac-, pre- and ppc-fields will be called pseudo-closed fields 
for short. The main result of this section is as follows. 

THEOREM 1. Let K be a pseudo-closed field. If a finite-dimensional cen­
tral simple algebra A over a K-rational field K(x) has a K-rational point, 
then it has a K-rational splitting field. 

REMARK 2. In the case of pac-fields if, this theorem was proved earlier 
by I. I. Voronovich [16]. 

Before proving the theorem, it is convenient to formulate the main result 
of [18]. 

THEOREM (*) . Let A be a central simple (finite-dimensional) algebra 
over a K-rational field K(x). We assume that A has a K-rational point. If K 
is Henselian and its characteristic does not divide the index of A, then A has 
a K-rational splitting field K{z). Furthermore, 

x — h(z)/n, 

where h(z) G K[z] is an irreducible monic polynomial and 7r is a suitable 
element in the valuation ideal of K. In addition, a root a of h(z) generates a 
Galois extension of K, and K(a)(x) is a splitting field of A. 

Proof of Theorem 1. Let A be a central division algebra over K(x) and let 
dimK(x) A = n2. We denote by P the algebraic closure of K(t) in K(t), where 
K(t) is the field of formal power series in t over K. Then P is a Henselian field 
[2]. By Theorem (*) the algebra B = A ®K(X) P(X) has a P-rational splitting 
field P(z) such that 

x = h(z)/tm. 

Here n divides m, and h(z) € K[z] is an irreducible monic polynomial with 
the property: if h(a) = 0 then K(a) is a Galois extension of K and K(a)(x) 
is a splitting field of A. 
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Let us fix ourselves a if(x)-basis {1*1,1*2? . . . ,i¿n2} for A. Then the ele­
ments of the standard matrix basis { e n , ei2,...,enn} of the total matrix al­
gebra B ®P(x) P(z) are P(z)-linear combinations of 1*1 ,1*2, . . . ,i*n2- We write 
(pi = at(z)/b{(z) (i = 1,2,. . . , ra4) for the coefficients of all these combinations 
(a,i(z),bi(z) € -Pfc]), and $(z) = S(z)/R(z) for the determinant of the matrix 
JV (with S(z),R(z) € P[z]), where [elue12,... ,enn] = [i*i,i*2,... ,i*n2] iV. 
Finally, we write 

Oi(z) = aoizde*a^ + anz*****™-1 + ... + adego<(z)i, 

with ao¿,... 5ttdega¿(z)i € P. In quite the same way, we define elements 
&oi9...,&deg6i(z)¿; 5o,...,s<iegS(z); 311(1 ro, • • • ,̂ deg R(z) • Let I be the exten­
sion of if generated by the elements ao¿,... ,adego<(*)¿, &oi, • • • >&deg6i(*)t 
(i = 1,2,...,ra) and by t. Then i is a regular extension of if. Since L is 
algebraic over K(t) and char if = 0, then L = if(£,s), where / (¿ , 5) = 0 
for some absolutely irreducible polynomial f(X,Y) £ if[X,y]. Now let 
r = {(a,/3) E A2 I f(a,/3) = 0 } . Without loss of generality we may assume 
that all of afc¿,6fci,rfc,5fc 6 if [T], where if[T] is the ring of regular functions 
on T. Let g(t,s) be the product of all those afc¿,&¿¿,r¿,*fc,t which are not 
identically zero on T, and let E be the affine curve defined by the equations 
/ ( X , y ) = 0 and Z g(X,Y) = 1. Since E is isomorphic to an open subset 
of the absolutely irreducible curve T, it is also absolutely irreducible. Fur­
ther, L = if (r) £ K(E), where K(T) (resp. K(E)) is the field of if-rational 
functions on r (resp. on E). 

Now, an ordering v of a prc-field if (1; £ SK) can be extended (see [12]) 
to an ordering w of Kv(t). And it is clear that the restriction of w to L induces 
an extension of v to an ordering of L. Similarly, a valuation v of a ppc-field 
if can, according to [14], be extended to a p-adic valuation w of Kv(t). Hence 
its restriction to L is a p-adic valuation extending v. Thus we find, according 
to [13] (resp. [14]), that T has a simple ifv-point for every real (resp. p-adic) 
closure ifv. Hence E has a if-rational point (a, b) £ A2 such that a ^ 0. 
Further, for every b{(z) not all bki(a,b) can vanish, for S(z) not all Sfc(a,6), 
and the same is true for R(z) and the rfc(a,fc). 

We now consider the extension if(y) of if (#), where x = h(y)/am, and 
the algebra C = A ®K(X) K{y), There exists a place // of if (x)(ty s) to if (x), 
which is trivial on if (x) and such that fi(t) = a, fi(s) = 6 (see e.g. [3]). Let 
v be a place of if(z)(¿,s) to if(y) extending /* and such that v(z) = y. The 
construction of E and the choice of (a, 6) imply: 

v(S(z))¿0, v(R(z))¿0, u(bi(z))¿0 (¿ = 1,2,. . . , ra4). 

Let [vn, V12, • •. j i>nn] = [^1,^2, • •. ,i*n2] i/(i\T). Then the matrix v(N) is non-
singular and { v n , Vi2 , . . . ,vnn} is a basis for C. Finally, on comparing the 
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structure constants of the algebras B and C with respect to { e n , ei2,..., enn} 
and {vn,t;i2, . . • , v n n} ) we are led to the conclusion that the triviality of B 
implies that of C. • 

COROLLARY 1. Let X be a conic bundle defined over a pseudo-closed 
field K. Then X is K-unirational if and only if X has a K-point. 

§2. The case of large arithmetic fields 

In this section a 'closed field' means an algebraically closed, real closed 
or j>adically closed field. 

Let Q be the field of rational numbers, (Q) its algebraic closure, and let 
Qjjte = Qv n <Q> be the p-adic closure of (Q) if v = p, and the real closure of Q 
if v is real. We denote by G(Q) the Galois group of Q over Q. 

Let vi, ^2 , . . . , vr be a finite set of (not necessarily distinct) absolute values 
of <Q>. We write: a = (au a2,..., (rr) G G(Q)r and 

C ri(Q^g)C ri(Q^g)C ri(Q^g)C ri(Q^g)C ri(Q^g) (*) 

For two elements a, A E G ( Q ) r we now define aX to be the element 
(<7iAi,..., crr\r). In what follows, we use the term 'almost all' in the sense of 
the Haar measure on G(Q)r. With the above notation, one has the following 
two lemmas, which are analogous to Lemmas 12.4 and 12.5 of [7]. 

LEMMA 1. Let f E G((Q))r and Jet L C Qf be a finite extension of Q. 
Then, for almost all A E G(Q)r, the following holds: if f(X,Y) E L[X,Y] is 
an absolutely irreducible polynomial such that, for every i = 1,2,.. . , r, there 
exists a point (aoi,b0i) E ( ^ ( Q ^ 8 ) ) 2 with f(aoi,boi) = 0 and §£(aoi,boi) °> 
then the curve f(X,Y) = 0 has a Qj^-rational point. 

Proof. Let T ^ Q * * 8 ) , . . . , r M ( Q ^ ) (m < r) be all X-nonisomorphic closed fields 
from (*). Using [5], since L is a Hilbertian field, one has sequences {dj} , {bj} 
(dj E Ljbj E <Q>) such that 

i) dj lies near aoi in r i(Q** g ) 5 t = 1,2,... ,m; 
ii) f(dj,Y) is irreducible over L and we have: deg f(dj,Y) = degy f(X,Y) 

and f(djybj) = 0; 
iii) for = L(bj) the sequence Xi, L2,... is linearly disjoint over i . 

Condition i), Krasner's lemma, Sturm's theorem [11] and the condition 
f(o>oi,b0i) = 0 imply that f(dj,Y) has a root in r2-(Q**g), i = 1 ,2,.. . ,r. 
Then there exist \ j u A i 2 , . . . , A i r E G(Q) such that A ^ Z , ) C r i (Q^ g ) , 
t = l , 2 , . . . , r . 

316 



K-UNIRATTONAUTV OF CONIC BUNDLES 

Let Xj = ( A j i , . . . , \ j r ) . Condition iii) implies (see [10]) that, for almost 
all A £ G ( Q ) r , there exists j such that AA7 G G(Lj)r. Then X^iLj) = 
^i(Lj) C Ti(Qllf) (i = l , 2 , . . . , r ) , i.e. L5 C A ^ Q * ^ ) (* = l , 2 , . . . , r ) . 
Hence Lj C Qxr' ( a i ' ^ i ) * s a Operational point of the curve / = 0. 

LEMMA 2. For almost all a G G ( Q ) r one has; if / ( X , F ) is an irre-
ducible polynomial in Q<r[X, Y] and there exists, for every i = 1,2,.. . , r, a 
^i(Qj£g)-rationaZpoint (a0i,fy)i) such that /(a 0i,&oi) = 0 and f£(aoi>koi) ^ 0, 
then the curve / = 0 has a Q&-rationai point. 

Proof. Let T be a countable dense subset of G(Q) r and let L C Q& be the 
finite extension of Q generated by all coefficients of f(X, F ) . We consider the 
element f e r n G ( Q ) r a. Since the fields ^ ( Q ^ « ) , Tj(Q^) are isomorphic 
over £ , we see that / ( X , F ) has Tj(Q**g)-rational points (c 0 i ,d 0 i ) such that 
|p(coi5^oi) 7̂  0 (i = 1,2,... , r ) . Then by Lemma 1 we see that f(X,Y) has 
a Qa-point, unless a belongs to a zero subset of G(L)rf. Since the set of all 
polynomials f(X,Y) € Q [ X , y ] is countable and a countable union of zero 
sets is again a zero set, the lemma is proved. 

Using the above two lemmas we can prove the following 

THEOREM 2. For almost all a £ G(Q)r, if a finite-dimensional central 
simple algebra over a Q&-rational field has a Qa--rational point, then it has a 
^-rational splitting field. 

Proof Let M be a curve similar to the one occurring in the proof of Theorem 1. 
In fact it is enough to establish that, for almost all fields Q & , the curve M 
has a Qa-rational point. Then L = Q*(r) = Q*(E) is contained in Q*{t). 
Since Q9 C &i(Qvl*)i ft h a s a n absolute value Vi. By [12] and [14], vi extends 
to an absolute value W{ on 0*i(Q£*g)(t) and the restriction of wi to L yields 
an extension of V{ to L. Hence we see that T has a <7j(Q**g)-rational point 
(̂ on boi) for each V{, i = 1,2,. . . , r. By Lemma 2 it follows that, for almost all 
0" G G(Q)r, the curve T given by the equation f(X, Y) = 0 has a Qa-rational 
point. Now, the existence of a Qa-rational point on M follows from the proof of 
Lemma 1. Indeed, its statement remains true if we exclude from the infinite 
sequence of fields Lj a finite number of fields, which correspond to points 
(a>j,bj) lying on r but not on M. The end of the proof of our theorem is 
similar to that of Theorem 1. 

COROLLARY 2. For almost all a G G(Q)r, the Q9-unirationality of a 
conic bundle X is equivalent to the existence of a Qa-rational point on X. 
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REMARK 3. A field of the form is not pseudo-closed in general. In 
fact, let ra,n be two distinct odd prime numbers. By the Chinese Remainder 
Theorem we can find two integers um,un such that (um/m) = (un/n) = -1 
and (um/n) = (un/m) = 1 (where (../••) denotes the Legendre symbol). 
Besides, for any odd prime number p ^ m, n there exists vp G Z such that 
(vp/p) = 1 and (vp/m) = —1. Finally, let a G Z be such that a = 1 (mod 8) 
and (a/n) = —1. Let us consider the absolutely irreducible quadrics defined 
by the polynomials: / m ( X , F ) = X2-urnY2-m, fn(X,Y) = X2-unY2-n, 
fp(X9 Y) = X2 - vpY2 - p, and fa(X, Y) = X2 - aF2 - n. Then the quadric 
/m = 0 has simple points over Qn and over the real closure of (Q), but it has 
no points over (Q)m. Hence, Q(m,n) is neither a pre- nor a pnc-field. The same 
argument with fn = 0 shows that Q(m,n) is not a pmc-field either. Now the 
quadric fp = 0 has no simple points over Qm, so Q(mjn) is not a ppc-field. 
Finally, the quadric fa = 0 has no simple points over Qn, so Q(m>n) is not a 
p2c-field. 

REMARK 4. Let if be a finite extension of Q and let S be a finite subset 
of the set P(K) of all inequivalent places (or valuations) of if. For any g G S 
let = Kg HQ and X s = n , 6 S ( r U W * ( * l * ) ) ) > where G (Kà is the 
Galois group of Q over if. Let Q be an algebraic extension of ifs (for instance, 
ifs). Recently F. Pop informed me that he proved the following 

THEOREM. An absolute irreducible variety V defined over Q has an 
Q-rational point if and only if V has a simple Qv-rational point for all in-
equivalent extensions v of the elements of E to Q. 

Using this fact and modifying the proof of Theorems 1 and 2 one can 
prove the following 

THEOREM. Let Q be as above. If a finite-dimensional central simple alge­
bra over an Q-rational field has an Q-point, then it has an Q-rational splitting 
field. 

COROLLARY. Any conic bundle defined over Q is Q-unirational if and 
only if it has an Q-rational point. 

Appendix 

By using the language of finitely presented morphisms, one can give an­
other nice form to the arguments in §1. Here is a brief exposition of this 
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point of view, which I owe to Per Salberger. (Most facts on finitely presented 
morphisms can be found in [6].) 

PROPOSITION. Let if be a pseudo-closed field and P the algebraic closure 
of K(t) in K(t). Let f:X-^Ybea proper dominant K-morphism between 
smooth projective geometrically connected K-varieties. Suppose there exists 
a finitely presented P-morphism sp: Yp —» Xp such that the composition 
fposp:Yp-+Yp with the induced P-morphism fp: Xp —• Yp is finite and 
surjective. Then there exists a K-morphism s:Y~-+X such that fos:Y -+Y 
is finite and surjective. 

Sketch of proof. Using standard results on finitely presented morphisms 
[6], we see that there exists a finite extension field L of K(t) in K (t) such 
that sp: Yp —• Xp is defined over L. In this way we obtain an L-morphism 
SL-YL —> XL with JLOSL : YL —• YL finite and surjective. Since L C K(t) and 
[L : K(t)] < oo, it is further clear that L is the function field of a smooth pro­
jective geometrically connected if-curve C. Once more we apply the standard 
results in [6] on finitely presented morphisms and extend to a {/-morphism 
su: Yu —• Xy such that fy o sy. Yy —• Yy is finite and surjective for some 
open if-subset U of C. Now U(K) is nonempty since K is pseudo-closed and 
L = K(U) C K(t) (extend orderings and valuations as in §1). So we may 
specialize sy at some if-point on U to obtain the desired if-morphism. 

COROLLARY. Let K,P be as above and let X be a smooth K-variety. 
Let f: X —• P]r be a proper dominant K-morphism whose generic fibre is 
a Severi-Brauer variety over the function field of (e.g. a conic bundle 
surface). Then X is K-unirational if and only if Xp is P-unirational. 

Proof. X is if-unirational if and only if there exists a if-morphism g: Pj^ —• X 
such that fog: P^ —> P^ is finite and surjective, i.e. if and only if there 
exists a P-morphism gp: Pp —• Xp such that fpogp: Pj> —• Pj, is finite and 
surjective, i.e. if and only if Xp is P-unirational. 

It is known that any Severi-Brauer variety over the function field of P^-
extends to a proper morphism / : X —+ P^ from a smooth if-variety X (cf, 
[1]). So there is no reason to restrict our unirationality results to the case 
where / is of relative dimension one. The splitting field result for central 
simple algebras is equivalent to the existence of g: P^- —> X with fog finite 
and surjective. 
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