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0 Introduction

Background In his talk at the Edinburgh congress in 1958 [Gr], A. Groth-
endieck described a duality theory for coherent sheaves. For the special case
of a scheme X of finite type over a field k, this duality theory is based on a
certain canonical complex of quasi-coherent sheaves called the residue complez.
It replaces the sheaf of top degree differential forms which appears in Serre
duality on projective space. The residue complex K is a direct sum of sheaves
D(X/Y), where Y runs over the irreducible closed subsets of X. Say Y has
generic point y and L C Ox, is a field such that L/k is separable and k(y)/L is
finite. Then D(X/Y') is canonically isomorphic to Hom7™(Ox y, 2} ,), where
Oxy has the my-adic topology and p = ranky Qj ;.

The full treatment of Grothendieck’s duality theory, namely the text “Resid-
ues and Duality” [RD] by R. Hartshorne, places the theory in the abstract
setting of derived categories. Instead of the single dualizing object K, one has
a functor f' : DF(Y) — DF(X) assigned to every morphism f : X — Y (in
a suitable category of schemes), and when f is proper, f' is right adjoint to
Rf.. If X is a scheme of finite type over a field k, with structural morphism
7, then the residue complex is obtained as the Cousin complez associated to
7'k € DF(X). In [RD] ch. VI it is denoted by 72k = E(n'k). What is lost
in this general, yet natural, approach, is the module structure of the residue
complex. The summands of 72k are not expressed in a concrete form (they are
local cohomologies of 7'k), and a fortiori, neither is the coboundary operator.
Moreover, 72k is only determined up to isomorphism, and in order to make
this isomorphism unique one must introduce a substantial amount of extra data
(cf. [RD] ch. VI thm. 3.1).

There have been many efforts since then to state parts of the theory in terms
more accessible to computation. All these efforts utilize some sort of residue map
defined on differential forms. For curves this is a classical construction, used
by J.P. Serre in [Se]. For higher dimensions one had Grothendieck’s residue
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symbol ([RD] ch. III §9). Out of that grew two types of residue maps. Say X
is an n-dimensional variety over a perfect field k. The first type is a residue
map on local cohomology groups, Res : H?(Q% /k) — k, for closed points z € X.
This is the approach taken by E. Kunz, J. Lipman and others (see [Lil], [Li2],
[HK] and [Hu]). The second type resembles Serre’s residue map, in that it uses
differential forms with values in local fields (only this time of dimension n).
This approach was developed by A.N. Parshin and V.G. Lomadze, who were
influenced by the work of F. El Zein [EZ]. Let us mention that in [Be], A.
Beilinson shows (among other things) how to get Parshin’s residue map using
a generalization of J. Tate’s construction (cf. [Ta2] and [AK] ch. VIII §2). We
shall make use of the Parshin residue map here.

The objective of this monograph is to give an explicit construction of the
Grothendieck residue complex Ky when X is a reduced scheme of finite type
over a perfect field k. By “explicit” we mean a construction that involves con-
crete realizations of the complex as an Ox-module (differential forms etc.) and
straightforward formulas for the coboundary operator. Thus on the one hand
the complex Ky should be constructed in some direct fashion, and on the other
hand, an isomorphism Ky 2 n'k in D(X) should be exhibited. By the very
nature of 7', getting such an isomorphism, not to mention making this iso-
morphism canonical, requires “going outside of X”, i.e. considering morphisms
between schemes and the variance of K (cf. remark 4.5.10).

Outline of the construction As in Grothendieck’s original description, our
complex K is a direct sum of dual modules K(z), z € X (denoted D(X/Y)
in [Gr]). For any coefficient field o : k(x) — Ox. (i.e. a k-algebra lifting)
we set K(o) = Homi‘zzﬁ(@x,;,w(x)), where @X,, has the m,-adic topology,
d := ranky(,) Qi) and w(z) := Qz(x) Jk- Our first task is to find, for any two
coefficient fields 0,0, a canonical isomorphism ®, . : K(¢) = K(¢'), such that
for three coefficient fields o,0’,0", one has ®, .1 = P, on 0 B, . This will
give us a module K(z) together with isomorphisms ®, : K(0) = K(z). The
second task is, given a pair of points z,y € X with y € {z}~ of codimension 1
(i.e. y is an immediate specialization of z), and given coefficient fields o, 7 for
x,y respectively, to find a coboundary homomorphism §(; ).0/- : K(0) = K(7).
The homomorphisms 4, 4) »/- should commute with the isomorphisms ®, . and
®, -, thus defining a coboundary homomorphism é(, ) : K(x) — K(y).

It turns out that both tasks are accomplished simultaneously, once formu-
lated properly. Let us assume for simplicity that X is integral, of dimension
n. A saturated chain of length [ in X is a sequence { = (z,...,x;) of points
of X with each z;;; and immediate specialization of z;. A pair of compati-
ble coefficient fields for ¢ is a pair of coefficient fields v : k(zg) — Ox, and
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7 : k(z;) = Ox,, such that “upon completion along &, o becomes a k(z:)-
algebra homomorphism, via 7” - see def. 4.1.5 for the precise statement. Given
a saturated chain £ and compatible coefficient fields o /7 for it, there is a nat-
urally defined homomorphism & ,/, which we shall describe later on in the in-
troduction. Now observe that if z is the generic point of X then z has a unique
coefficient field p, and K(p) = w(z) = Qf(x)/- We prove that for any y € X
there is a finite set of saturated chains S of the form £ = (z,...,y), such that
for any coefficient field o for y, the map Y¢es 6 o/ : w(x) — K(0) is surjective
(Internal Residue Isomorphism, thm. 4.3.13). Moreover, the kernel w(z)hol:s
of this map is independent of o. This provides the sought after isomorphism
®, .. Since for any saturated chain 7 = (y, ..., 2) there are many compatible
coefficient fields o /7, and since 8,y .2).0/r = 8y,...2)0/r © O(z,...y).0/0s WE et
the commutation between the ®’s and the §’s. Thus the coboundary homomor-
phism & : K(y) — K(z) is defined.

The collection ({K(z)}, {¢}, {®.}) is called a system of residue data on X.
It is unique up to a unique isomorphism. The passage to the residue complex
is easy. Define X, := {z € X | dim{z}~ = ¢}, K" := @D.ex, K(z) and
bx = Y(sy)O(z,y) (see thm. 4.3.20). The fact that 8% = 0 is an immediate
consequence of the Parshin-Lomadze theorem on the sum of residues (thm.
4.2.15; cf. [Pal] §1 prop. 7 and [Lo] §3 thm. 3).

Some properties of the complex Ky can be deduced directly from its con-
struction. For an open immersion ¢ : U — X there is a canonical isomorphism
v¢ : Ky = i*Kx (prop. 4.4.1). For a finite morphism f : X — Y there is a
canonical isomorphism 'y} : Kx = f°Ky (see def. 4.4.3 and thm. 4.4.5), and
hence a trace map Try : f,x — Ky. Let 7 : X — Speck be the structural
morphism. There is a nonzero homomorphism Tr, : m. K% — k (cor. 4.4.13),
which for proper 7 induces a homomorphism of complexes Tr, : 7.y — k
(thm. 4.4.14). If X is integral of dimension n then &x := H™"KY is the sheaf
of regular differential forms of Kunz (thm. 4.4.16).

Although the complex K is canonical, it is somewhat difficult to identify it
with 7'k in D(X). For X smooth irreducible of dimension n we show that the
fundamental class Cx : Q%/[n] — Kk is a quasi-isomorphism, thus giving an
isomorphism Ky = 7'k in D(X) (thm. 4.5.2). From this it follows that on any
reduced X, K is a residual complex (see def. 4.3.1 and cor. 4.5.6). If 7 is proper
and some isomorphism Ky & 7'k exists, then there is a unique isomorphism
(x : Kx = 7'k in D(X) such that our trace morphism Tr, : 7Ky — k
corresponds to that of [RD] ch. VII cor. 3.4 b) (thm. 4.5.9). We prove existence
of such an isomorphism only when 7 factors into 7 = pf with f finite and p
smooth (cor. 4.5.8); note that this includes all quasi-projective varieties. In the
appendix (by P. Sastry) the existence of a canonical isomorphism (x : Ky = 7'k



A. YEKUTIELI

in D(X) is established in general (see remark 4.5.10). A complete treatment of
the identification Ky = 72k shall appear in [SY], where both Ky and 72k are
considered as sheaves on the site Vz,, of [Lil].

The explicit construction of the residue complex shows that it carries a
canonical structure of a complex of right Dx-modules, regardless of singularities
or the characteristic of the field k. We indicate how the bigraded Ox-module
K¥ :=Homx(Q%, Kx) of [EZ] ch. IT §2.1 can be made into a double complex,
without having to embed X in a smooth scheme. These issues are discussed in
digressions 4.5.12 and 4.5.13.

Let us briefly explain the contents of the various chapters.

Semi-Topological Rings The topologized rings one runs across in this area
(e.g. Beilinson completions of Ox-algebras) usually do not have adic topologies.
Thus the conventional methods (say, those of [EGA I] ch. 0 §7) are not appli-
cable. To complicate matters even further, these aren’t topological rings in the
usual sense : the multiplication map A x A — A is not continuous. It was not
at all clear what can be done with such rings (take completion for instance,
remark 1.2.10). Since our work relies heavily on topological considerations, we
undertook to develop the theory of semi-topological rings.

A semi-topological (ST) ring is a ring A, equipped with a linear topology
on its additive group, such that for all a € A the multiplications z — ax
and £ — za are continuous endomorphisms (def. 1.2.1). Similarly we define
ST A-modules (def. 1.2.2). Relaxing the continuity requirement enables an
unexpectedly rich structure. Let us denote by STMod(A) the category of left
ST A-modules and continuous A-linear homomorphisms. In STMod(A) there
are direct sums, products, limits and tensor products. Given an indeterminate
t one defines new ST rings A[t], A[[t]], A((t)), etc., of polynomials, power series
and Laurent series respectively. (Note that even if A is a topological ring (in the
usual sense), A((t)) needn’t be - remark 1.3.8.) A continuous homomorphism
of ST rings A — B determines a base change functor STMod(A) — STMod(B),
M — B®4 M, which is left adjoint to “restriction of scalars” (prop. 1.2.14). In
particular, if A9 is the ring A with the discrete topology and M9 is a discrete
Ad-module, then M := A ® ¢ M? is said to have the fine A-module topology
(def. 1.2.3 and remark 1.2.16). R

Given a ST ring A and an ideal I C A, one can define a ST ring A :=
lim,, A/I"*! (having the usual I-adic topology when A is discrete). Suppose
A is a commutative noetherian ST ring and M is a finitely generated A-module
with the fine A-module topology. Generalizing the I-adic case we have an
isomorphism of ST A-modules A ® 4 M & lim,_, M/I"*'M (prop. 1.2.20).

In section 1.5 we examine the differential calculus over commutative ST
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rings. Let A be a commutative ST k-algebra (def. 1.2.17). It turns out that
continuous k-derivations of A into separated ST A-modules are represented by a
universal derivationd : A — ijzp. One defines topologically smooth and étale
homomorphisms relative to k, extending the usual notions of formally smooth
and étale homomorphisms (see def. 1.5.7 and thm. 1.5.11). For instance, if
A — B is topologically étale relative to k then (B® 4 ij‘,’cp)sep ~ Q}g’sﬁp. Suppose
A is a noetherian commutative ST k-algebra, differentially of finite type over k
(def. 1.5.16). Let I C A be an ideal and let A be the ST k-algebra lim._, A/I"*1.
Then A is topologically étale over A relative to k (thm. 1.5.18). This implies
that for such A, A[[t]] is topologically étale over A[t] relative to k.

We think that ST rings can be used to generalize the work of R. Hiibl on
traces of differential forms [Hu]. Another possible application is for calculations
involving Beilinson’s sheaf of adeles (with values in Ox), which can be made

into a sheaf of ST rings.

Topological Local Fields An n-dimensional local field consists of a field
K, together with complete discrete valuation rings Oj,...,O,, such that for
i=1,...,n —1 the residue field k; of O; is the fraction field of O;;;, and K
is the fraction field of O;. Let k be a fixed perfect field. A topological local
field (TLF) K over k is a local field which is also a ST k-algebra. We require
that there will be some isomorphism K 22 F((t,))...((¢1)) (a parametrization)
with F discrete and rankp Qp, < co (def. 2.1.10). The category of TLF's over
k is denoted by TLF(k). Changing the parametrization involves continuous
differential operators, and this process is explored in thm. 2.1.17. We show
that if K — L is a finite morphism in TLF(k) then L has the fine K-module
topology. In characteristic p the topology is, in a sense, superfluous - see prop.
2.1.21. This is because a differential operator of order < p™ —1 is linear over the
field K(?"/%) and is therefore continuous (thm. 2.1.14). We give an example of a
TLF K of dimension 2 in characteristic 0 and many automorphisms of it (as a
local field) which aren’t continuous (example 2.1.22). Thus K has many equally
“natural” topologies. This example refutes the claim made by Lomadze, that
a local field has a canonical topology on it ([Lo] p. 502).

At this point the reader, accustomed to the classical (i.e. 1-dimensional)
situation, where the topology is determined by the valuation, may ask: which
is the “correct” topology on a local field? The answer is that the same algebro-
geometric data that defines the local field (a chain of points £ = (x,,...,z,) in
a scheme, see §3.3) also defines the topology.

In section 2.1 we define a base change operation for TLFs. To do this it
is necessary to introduce clusters of topological local fields, which are artinian
ST algebras whose residue fields are TLFs. The prototypical example of finitely
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ramified base change is the morphism k((s)) — k((s))((t)), which is gotten from
the morphism k(s) — k(s)((t)) by the base change k(s) — k((s)). In section
2.3 we prove the existence of traces of differential forms, using results of E.
Kunz [Kul].

Our approach to the residue functor is axiomatic (§2.4). Theorem 2.4.3 is
an improved version of {Lo] thm. 1, adapted to the setup of topological local
fields. It says that there is a contravariant functor Res on the the category
TLF(k), such that Res K = Q;(’f,f for a TLF K. Given a morphism K — L
the map Resy/k : 27;" — Q}s/ekp is a homomorphism of differential graded ST
left Q%7F-modules. The proof uses the notion of topological smoothness and
the separated de Rham cohomology algebra H*QZ‘/“,? . The residue functor is
actually defined on the category CTLF,.q(k) of reduced clusters of TLFs. We
are able to prove the following: let A — B be a morphism in CTLFq(k). Then
the residue pairing (—, —) p/4 is a perfect pairing of semi-topological A-modules
(Topological Duality, thm. 2.4.22). We also prove: the residue maps commute
with topologically smooth, finitely ramified base change (thm. 2.4.23).

We wish to point out that in characteristic 0, the residue theory for local
fields developed in [Lo] is faulty, since it does not take the topology into account.
This rather surprising fact is clearly demonstrated by example 2.4.24. Also
included in this section are digressions on residues in Milnor K-theory and on
de Rham cohomology.

Beilinson Completions Given any chain §{ = (xo,...,2;) in X and a quasi-
coherent sheaf M, the Beilinson completion M, of M along £ is defined (def.
3.1.1). The completion operation (—) is a special case of Beilinson’s adeles,
described in [Be] (see [Hr] for a discussion and proofs). We introduce a topology
on the completion M in a natural way (def. 3.2.1). If { = (z) and M is coherent
then M is just the m,-adic completion of M, with the m,-adic topology. For
chains of length > 1 the topology is more complicated.

It turns out that given a chain £ in X, the completion Ox ¢ := (Ox)¢ is a
commutative ST k-algebra, and for any quasi-coherent sheaf M, M, is a ST
Ox¢-module. Any differential operator D : M — A extends to a continuous
DO D, : Mg — Ng. If nis a face of £ (i.e. a subchain), the face map M,, — M,
is continuous. We prove that for a saturated chain £ of length n > 1 the face
map My, ¢ — Mg is dense (Approximation Theorem, thm. 3.2.11) and the face
map Mg,e — Mg is strict (thm. 3.2.14). We also prove that the completion
Ox is a Zariski ST ring (see def. 3.2.10 and thm. 3.3.8), so the functor (—)¢ is
exact (in the topological sense). For any face 1 of £, Ox ¢ is topologically étale
over Oy, relative to k (cor. 3.2.8). This, with the Zariski property, shows that
the completion (2%, )¢ is isomorphic, as a ST differential graded k-algebra, to
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the separated algebra of differentials Q¢ ", (def. 1.5.3).

Let ¢ = (z,...,y) be a saturated chain of length n. Then k(§) := k(x), is
an n-dimensional reduced cluster of TLFs, whose spectrum is determined by
repeated normalizations (thm. 3.3.2, cor. 3.3.7). This shows that Ox ¢ is a semi-
local ring with Jacobson radical m¢ := (m;)¢. On the other hand, these results
connect the geometry to the theory of topological local fields and residues.

Residues on Schemes Given a coefficient field o : k(y) — Ox,y) = Ox,
the induced map & : k(y) — k(£) is a morphism in CTLF,e4(k). Thus we obtain
Parshin’s residue map

. vsep DESKE/Khe
Resgo : Diaye = Miyne — Dryyre

(def. 4.1.3). Using thm. 4.1.12 which compares completion to finitely ramified
base change we prove the transitivity of the residue maps for compatible coef-
ficient fields. Given saturated chains (z,...,y) and (y,...,2), and compatible
coefficient fields o/7 for (y, ..., z), one has (cor. 4.1.16):

Res(z:'“:yv'uz))r = Res(yy"-lz)yr o Res(z»---,y),ﬂ : Q:(z)/k d QZ(z)/k *

We can now define the coboundary homomorphism & ,/,. Let ¢ = (z,...,y)
be a saturated chain and let o /7 be compatible coefficient fields for {. For any
# € K(0o) consider the diagram:

Oxe —2— w(z)

)

loc ‘ Res¢ »

0r, 9. iy

Since Resg , is a locally differential operator (def. 3.1.8) it follows that §(¢) is
continuous for the my-adic topology, and its completion §(¢),) : Ox,y) — w(¥)
is k(y)-linear (via 7). Thus we get & o/ : K(0) — K(7).

Let us say a few words about holomorphic forms. Say ¢ = (z,...,y) is a
saturated chain and 7 is a coefficient field for y. Define &, : w(z) — K(7) by
b¢ - (a)(a) := Res¢-(aa), @ € w(z), a € Ox,y. Using a base change argument
we prove that w(z)nee = ker(é¢ ;) C w(z) is independent of 7 (lemma 4.2.1).
The elements of w(z)po¢ are said to be holomorphic along €. The quotient
w(z)/w(x)hot¢ is a cofinite Ox ,-module, with socle canonically isomorphic to
w(y). This allows us to define the order of pole along £ of a form a € w(z) (def.
4.2.10).
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Finally, we wish to stress the role of topological considerations in this work.
Take the Parshin residue map Res¢o : Q;,) — Q) Even though it is
a map between algebraic objects, it is defined using topological methods (viz.
TLF’s). Moreover, its important properties (e.g. being a locally differential
operator, prop. 4.1.4; or transitivity, cor. 4.1.16) are proved topologically. The
main result of the paper, the internal residue isomorphism (thm. 4.3.13), is also
proved using topological arguments.

Problems Here is a list of some problems related to the present construction.

1) Let k be a perfect field, and let f : X — Y be a smooth morphism of relative
dimension n between reduced k-schemes of finite type. Describe explicitly the
derived category isomorphism Ky = wx/y([n] ®oy f*Ky.

2) Remove the hypothesis that X is reduced.

3) Remove the hypothesis that k is a perfect field. Allow k to be any field,
or a complete DVR with perfect residue field, or Z. This may require a more
sophisticated theory of topological local fields.

4) Equivariant case: let f : X — Y be an equivariant morphism for the action
of some algebraic group G over k (an algebraically closed field). Relate the
complexes of invariants T'(X, Kx)9*® and T(Y, K;)¢®).

5) Explore connections with de Rham homology and intersection homology,
especially when k = C (cf. digressions 4.5.12 and 4.5.13).
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1 Semi-Topological Rings

1.1 Preliminaries on Linearly Topologized Abelian Gr-
oups

Let M be an abelian group. Given a nonempty collection {Uy, }4er of subgroups
of M, let T be the topology on M generated by the subbasis {z + Uy }zeM acr-
With this topology M becomes a topological group. We call 7 the linear
topology generated by {Uq}ecr, and we say that M is a linearly topologized
abelian group. Let us begin with an elementary but useful lemma (cf. [GT] ch.
1§2.3 and §2.4).

Lemma 1.1.1 Let M be an abelian group, let {N,} be a collection of linearly
topologized abelian groups, and for each «, let ¢o : M — N, (resp. ¢o : Ny —
M) be a homomorphism.

a) There exists a coarsest (resp. finest) linear topology T on M such that all
the homomorphisms ¢, are continuous.

b) Let L be a linearly topologized abelian group and let ¢ : L — M (resp.
Y : M — L) be a homomorphism. Suppose that all the composed homo-
morphisms ¢o 0% : L — N, (resp. Y 0 ¢ : Ny — L) are continuous.
Then v is continuous relative to T .

Proof First consider homomorphisms ¢, : M — N,. Let {Us} be the collec-
tion of subgroups of M of the form Uz = ¢,'(V,), with V, an open subgroup
of N, for some a. The linear topology 7 generated by {Us} has the required
properties.

Next consider homomorphisms ¢ : N, — M. Here we take for {Us} the
collection of all subgroups of M such that for all «, ¢;'(Up) is open in N,, and

we let 7 be the linear topology generated by {Us}. |

11
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Note that in the case ¢o : Ny, — M the subgroups of the form Uz =
Yo 9a(Va), with V,, C N, open, are a fundamental system of neighborhoods of
0 for the topology 7.

Denote by TopAb the category of linearly topologized abelian groups and
continuous homomorphisms. This is an additive category, but not an abelian
one.

Definition 1.1.2 A sequence of homomorphisms M’ ML M TopAb is
called exact if it is exact in the category Ab of abelian groups and if ¢ and Y
are strict.

(See [GT] ch. III §2.8 for the definition of a strict homomorphism.)

It follows from lemma 1.1.1 that the category TopAb has direct and inverse
limits; the underlying abelian groups are just the corresponding limits in Ab. In
particular, TopAb has infinite direct sums and products. Note that the topology
on [], M, is the usual product topology.

Definition 1.1.3 Let M be a linearly topologized abelian group.

a) The associated separated topological group of M is defined to be the quo-
tient M®P := M/{0}~, where {0}~ is the closure of {0} in M.

b) The completion of M is defined to be the inverse limit M?' := lim.,
M/U, in TopAb, where {U,} is the collection of open subgroups of M.

c) M is said to be separated (resp. separated and complete) if the canonical
homomorphism M — M®® (resp. M — M*) is bijective.

Note that the canonical homomorphisms M — MP, M*P — M and
M — M<® are all strict. Both functors M — M?3® and M +— M* are additive
idempotent endo-functors on TopAb.

Lemma 1.1.4 Let M be a linearly topologized abelian group. Then M is sep-
arated and complete in the sense of definition 1.1.3 iff every Cauchy net in M
has a unique limit.

Proof This is an immediate consequence of [GT] ch. III §7.3 cor. 2 to prop. 2,
and of [Ko] §2.3 and §5.4. a

It turns out that separated modules are more interesting, from the point of
view of semi-topological rings, than complete ones; consider remark 1.2.10 and
theorem 1.5.11.

12
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Proposition 1.1.5 a) An inverse limit of separated (resp. separated and
complete) linearly topologized abelian groups is separated (resp. separated
and complete).

b) A direct sum of separated (resp. separated and complete) linearly topolo-
gized abelian groups is separated (resp. separated and complete).

c) Let M = @,y My, be a countable direct sum of separated linearly topol-
ogized abelian groups and let (z;)ien be a Cauchy net (i.e. a Cauchy
sequence) in M. Then there is some ng such that x; € @pLy M, for all .

Proof a) See [GT] ch. II §3.5 cor. to prop. 10, and ch. I §8.2 cor. 2 to prop. 7.

b) See [Ko] §10.2 (8) and §13.4 (2); the proofs there are for vector spaces but
work also for linearly topologized abelian groups.

c) This is an easy exercise using a “diagonal” argument and the fact that the
subgroups of the form @ U,,, with U, C M,, open, are a fundamental system of
neighborhoods of 0 in @ M,,. O

Generalizing the result on inverse limits in Ab we have:
Proposition 1.1.6 Let
(0— M % M; % M = 0)ien

be an inverse system of exact sequences in TopAb. Assume that M; , — M is
surjective for all : € N. Then the sequence

0 — lim M! % lim M; % lim M — 0
s ezact in TopAb.

Proof Consider the commutative diagram in TopAb

0 — mm L pa B gy — o

0 — lime M! —2+ lim_ M; ¥+ Lm M' —~ 0

The top row is exact in TopAb and the vertical maps are strict monomorphisms.
Also, the bottom row is exact in Ab by [Ha] ch. II prop. 9.1. Hence ¢ is a strict
monomorphism.

13
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In order to show that ¢ is strict it suffices to check that for every open
subgroup V' C lim. M;, ¥(V) is open in lim. M}'. Let v;; : M; — M; be the
maps in the system (M;). We may assume that

V=(l§£nMi)ﬂ(Vo X oo X Vo X Mpy1 X Myja X -+)
where V; C M; are open subgroups and v;;(V;) CV; for 0 <i < j < n. Let
W = (Lm M) 0 (ho(Vo) X -+« X n(Va) X My y x My 5 X -+ )

which is open in lim_ M. We claim that ¥(V) = W. Clearly (V) C W.
Given z" = (zg,27,...) € W, choose any z € ¥~'(z"). Now z,, € V,, + ¢,(M.),
so there is some z' € lim_ M with z, — ¢,(z},) € V,. Setting y := z — ¢(z')
we get y € VNy~i(z"). h m|

Proposition 1.1.7 Let (M;);cn be a direct system in TopAb s.t. all the homo-
morphisms M; — M;,, are strict monomorphisms, and let M := lim;_, M;.
Then for all i, M; — M is a strict monomorphism. If moreover all the groups
M; are separated, then so is M.

Proof We may assume i = 0. The injectivity of My — M is known. Let
Ups C My be any open subgroup. By hypothesis we can choose for every j > 1
an open subgroup U; C M; s.t. U;_; = U; N M;_;. Then U := UU; is an open
subgroup of M and Uy = U N M,.

Now suppose all the M; are separated, and let « € M, z # 0. Then z € M;
for some ¢, and there is an open subgroup U; C M; s.t. z ¢ U;. Let U C M be
an open subgroup s.t. U; = UN M;; then ¢ € U. Hence M is separated. O

Proposition 1.1.8 (Sufficient Conditions for Density)

a) Lee M = (0 - M* - M!' 5= M? -5 0) and N = (0 - N° - N! —
N? — 0) be two complezes in TopAb, with N* ezact, andlet ¢’ : M° — N°
be a homomorphism of complezes. Suppose ¢° : M® — N° and ¢? : M? —
N? are dense. Then ¢' : M* — N is dense too.

b) Let (¢; : M; — N;)ien be an inverse system of dense homomorphisms
m TopAb, with M;,, — M; surjective for all i. Then ¢ : lim._; M; —
lim_; N; is dense.

c) Let (¢ : Mo — Ny)aer be a direct system of dense homomorphisms in
TopAb. Then ¢ : lim,_, M, — lim,_, N, is dense.

14
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Proof a) Given any open subgroup U C N, let N! := N!/U and let P :
M! — N be the induced homomorphism. We must show that ¢! is surjective.
Set N° := N°/N°NU and N? := N?2/im(U — N?). So N" is an exact complex
of discrete groups. By assumption ¢° : M® — N° and ¢? : M? — N? are
surjective; hence so is ¢!.

b) Let U C lim.; N; be any open subgroup. Then U is the preimage of an
open subgroup U; C N; for some j. Thus (lim; N;)/U — N;/U; is injective.
By assumption lim. ; M; — M; and @; : M; — N;/U; are surjective. Hence
¢ : lim_; M; — (lim—; N;)/U is surjective too.

c) Let U C lim,—, N, be any open subgroup. For 8 € I let Ug C Ng be the
preimage of U. Then (lim,_, N,)/U & lim,_,(N,/U,). Since ¢ : My — No/U,
are assumed to be surjective, so is @ : lim,_, My — (lim,—, N,)/U. O

1.2 Semi-Topological Rings

We will be considering topologized rings in which multiplication is continuous
only in one argument. To distinguish these rings from ordinary topological
rings we adopt the name “semi-topological ring”. The following notation will
be used throughout this section. Given a ring A and an element a € A, left
and right multiplication by a will be denoted by A, : b +— ab and p, : b — ba,
b € A. Similarly given a left A-module M and elements a € A and x € M, we
set \g :y— ay,y € M, and p, : b+ bz, b € A. In order to emphasize where
a € A acts we may indicate the module in superscript, e.g.: AM : M — M. All
rings under consideration have 1.

Definition 1.2.1 A semi-topological (ST) ring is a ring A together with a
topology on it satisfying the following conditions:

i) The additive group of A s a linearly topologized abelian group.
ii) For every a € A the multiplications A,,p, : A — A are continuous.

Definition 1.2.2 Let A be a semi-topological ring. A semi-topological (ST)
left A-module is a left A module M together with a topology on it satisfying the
following conditions:

i) M 1is a linearly topologized abelian group.

ii) For every a € A and every x € M the multiplications A\, : M — M and
Pz : A — M are continuous.

Similarly one defines semi-topological right modules and bimodules.

15
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Denote by STMod(A) the category of semi-topological left A-modules and
continuous A-linear homomorphism. It is an additive subcategory of TopAb,
closed under direct and inverse limits. We define exact sequences in STMod(A)
to be those which are exact in TopAb(A) (see def. 1.1.2). Given M,N €
STMod(A), we denote the group of morphisms between them by Hom$™(M,
N). (The category of right modules we denote by STMod(A°).)

Suppose M is a left A-module. Consider it as an abelian group with homo-
morphisms p, : A - M, x € M. Let T be the finest topology on M making
all the p, continuous (see lemma 1.1.1). We claim that with this topology M
becomes a semi-topological A-module. It suffices to show that for every a € A
the endomorphism AY : M — M is continuous. Choose such a. For each
z € M we have \M o0 p, = p, 0 A2 : A — M, which is continuous by definition.
From lemma 1.1.1 it follows that AM is continuous.

Definition 1.2.3 The above topology on M 1is called the fine A-module topol-
0gy.

The next proposition gives a characterization of this topology.

Proposition 1.2.4 Let A be a semi-topological Ting and let M be a semi-
topological A-module. Then M has the fine A-module topology iff for every
semi-topological A-module N

Hom$™ (M, N) = Hom (M, N). (1.2.5)

Proof Suppose M has the fine A-module topology. Let ¢y : M — N be an
A-linear homomorphism; we must show that it is continuous. For any z € M,
one has 90 p, = py() : A — N, which is continuous by definition. According to
lemma 1.1.1 ¢ is also continuous. In particular, Taking IV to be the same module
as M but with various topologies (satisfying the conditions of def. 1.2.2), and
taking ¥ : M — N to be the identity map, we see that the fine A-module
topology is indeed the finest of them all.

Conversely, suppose that equality holds in (1.2.5). Then using the same
setup as above, but this time N is the module M with the fine A-module topol-
ogy, we see that the topology on M is finer than the fine A-module topology,
and hence equal to it. ]

Corollary 1.2.6 Let {M,} be a direct system of ST A-modules. If every M,
has the fine A-module topology then so does lim,_, M,.
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Definition 1.2.7 Let M be a semi-topological left A-module and let {m,} be
a subset of M. M 1is said to be free with basis {my} if for any semi-topological
A-module N and any subset {n,} C N there is a unique continuous A-linear
homomorphism ¢ : M — N with ¢(my) = n,. Similarly for right modules.

Clearly M is free iff M = @, A in STMod(A). We have another corollary
to prop. 1.2.4:

Corollary 1.2.8 Suppose ¢ : M — N 1is a continuous surjective homomor-
phism of semi-topological A-modules, where M has the fine A-module topology.
Then ¢ is a strict epimorphism iff N has the fine A-module topology. In par-
ticular, this is the case when M 1is free.

A ring homomorphism f : A — B is called centralizing if B = f(A)-Cg(A),
where Cg(A) is the centralizer of A in B.

Proposition 1.2.9 Let A be a semi-topological ring and let f : A — B be a
centralizing ring homomorphism. Put on B, considered as a left A-module via
f, the fine A-module topology. Then the following hold:

a) As a right A-module via f, B has the fine A-module topology. In partic-
ular, B is a semi-topological A-A-bimodule.

b) B is a semi-topological ring.

c) Let M be a left B-module. The fine B-module topology on M coincides
with the fine A-module topology on it.

Proof a) Choose a subset {c,} C Cg(A) such that the bimodule homomor-
phism ¢ : @, A — B, (X as) = ¥ agCo = Y Cala, is surjective. By corollary
1.2.8, used twice, ¢ is a strict epimorphism and B has the fine A-module topol-
ogy as a right A-module.

b) For every b € B the map A, (resp. p;) is an endomorphism of the right
(resp. left) A-module B. By part a) and proposition 1.2.4 both )\, and p; are
continuous.

c) This follows from cor. 1.2.8 and the fact that a direct sum of strict homo-
morphisms is strict. a

Observe that the proposition includes the case of a surjective ring homo-
morphism. Given a semi-topological ring A, let I be the closure of 0. Then

17
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I is an ideal and AP = A/I is a semi-topological ring. Similarly, if M is a
semi-topological left A-module, then M is an A*P-module. Thus M +— Ms=eP
is a functor STMod(A) — STMod(A4%P) and A — AP is a functor on semi-
topological rings.

Suppose A is a semi-topological ring and B C A a subring. Then B is also
a semi-topological ring, and the same is true of its closure B~. Similarly for a
submodule.

Remark 1.2.10 The author does not know whether the completion M is,
in general, a semi-topological A-module. The difficulty is in establishing the
continuity of p, : A — M for z in the “boundary” M — M. Of course, if
the topology on M is generated by A-submodules there is no difficulty.

Definition 1.2.11 Let A be a semi-topological ring and let M and N be right
and left semi-topological A-modules, respectively. The tensor product topology
on M ®4 N 1s by definition the finest linear topology such that for every x € M
and every y € N the homomorphisms A\, : N - M @, N, y — z2Q® Yy, and
py:M - M®aN, 2’ — 2’ @y, are continuous (see lemma 1.1.1).

Whenever a tensor product of semi-topological modules is encountered, it
will be endowed with this topology by default. We state the following lemma
whose proof is an application of lemma 1.1.1.

Lemma 1.2.12 Suppose L is a linearly topologized abelian group and ¢ : M R 4
N — L 1s a homomorphism such that for every x € M, y € N the composed
homomorphisms ¢o A\, : N — L and ¢ o p, : M — L are continuous. Then ¢
s continuous relative to the tensor product topology on M @4 N.

Suppose Aj,...,A, are semi-topological rings and My,..., M, are semi-
topological bimodules such that the tensor product M := My ®4, - -+ ®4, M,
makes sense. Then the tensor product topology on M is independent of the
binary grouping of the factors (associativity of the tensor product topology).
It is described directly as being the finest linear topology such that for every
i, 0 < 4 < n, and every x; € M;, j # i, the homomorphism M; — M,
YR Qi1 QYR Ty @ - -+ @ x, is continuous.

Another observation is that taking tensor products of semi-topological mod-
ules commutes with passing to the associated separated module. To be precise,

(M @4 N)*P 22 (M*P @ gsep N5P)*P (1.2.13)
as quotients of M ®4 N.

Semi-topological modules admit a useful base-change operation.

18
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Proposition 1.2.14 Let A — B be a continuous homomorphism of semi-
topological rings and let M be a semi-topological left A-module. Then the tensor
product topology on B® 4 M makes it into a semi-topological left B-module. This
topology is characterized by the following properties:

i) The canonical homomorphism of A-modules M — B®4 M 1is continuous.
ii) (Adjunction) For any N € STMod(B) the canonical homomorphism
Hom$™ (B ®4 M, N) — Hom$™ (M, N)
18 bijective.

Proof First we must verify that the maps \2® : B, M — B4 M, b € B,
and p, : B - B®4 M, u € B ®4 M, are continuous. The continuity of
APEM follows from lemma 1.2.12. As for p,, we may assume that u = b ® «,
s0 p, = pz o p£, which is continuous by definition. Therefore B @4 M is a
semi-topological B-module. Properties i) and ii) are similarly checked.
Finally, we show that the two properties determine the topology on B®4 M.
Let N; and N, be two ST B-modules with the same underlying B-module
B®4 M, and both enjoying properties i) and ii). Then the identity map N; —
N, is a homeomorphism. O

Corollary 1.2.15 If M has the fine A-module topology then B @4 M has the
fine B-module topology.

Remark 1.2.16 The ST A-modules with the fine A-module topologies are
precisely those induced from discrete modules. To see this, let M be an A-
module with the fine topology. Define A¢ and M9 to be A and M, respectively,
with the discrete topologies. Then A ® 4a M4 — M is a homeomorphism.

Definition 1.2.17 Let k be a commutative semi-topological ring. A semi-
topological k-algebra is a semi-topological ring A together with a continuous
centralizing homomorphism k — A.

Given two semi-topological k-algebras A and B their tensor product A ®j
B is again a semi-topological k-algebra. Let us denote by STComAlg(k) the
category of commutative semi-topological k-algebras and continuous k-algebra
homomorphisms. An immediate consequence of prop. 1.2.14 is:
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Corollary 1.2.18 Let A and B be commutative ST k-algebras. Then A ®; B
18 the fibred coproduct of A and B in the category STComAlg(k).

Discrete rings and modules are semi-topological. A more interesting example
is provided by:

Lemma 1.2.19 Let A be a ST ring and let I C A be an ideal. For eachn >0
put on A/I"*! the fine A-module topology, and put on A := lim_, A/I"*! the
lim.. topology. Then A is a ST ring.

Proof According to prop. 1.2.9, every A/I"*! is a ST ring. Let a € A. Then
for every n the homomorphisms A, p, : A/I"*' — A/I"*! are continuous.
Passing to the inverse limit it follows that A,,p, : A — A are continuous.
Therefore A is a ST ring. a

Of course if A is discrete we recover the I-adic topology on A. In general
A need not be separated nor complete topologically. Extending the standard
result on I-adic completions of finitely generated modules over a noetherian
commutative ring, we have:

Proposition 1.2.20 Let A be a noetherian commutative ST ring and let I C A
be an ideal. Put on A :=lim. , A/I™*! the topology of the previous lemma. Let
M be a finitely generated A-module. For each n > 0 put on M/I"*'M the fine
A-module topology, and put on M =lim_, M/I"*'M the lim._ topology. Then
the topology on M is the fine A-module topology.

Proof As in the proof of lemma 1.2.19, M is a ST A-I}lodule. By corollary
1.2.8 it suffices to produce a strict epimorphism A"—+»M. Choose any exact
sequence of A-modules

0 K— A% M—o.
For every n we get, in virtue of cor. 1.2.8, an exact sequence in STMod(A)
0— K, — (A/I") 53 M/ M — 0,
where K, := im(K — (A/I"*!)") with the subspace topology. By prop. 1.1.6,
¥ = lim_ v, is strict. a

Corollary 1.2.21 Suppose M has the fine A-module topology. Then the natu-
ral homomorphism A®4 M — M is an isomorphism in STMod(A).
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Observe that if I "+1MA= 0 for some n > 0, then the fine A-module topology
on M = M and the fine A-module topology on it coincide.

Proposition 1.2.22 Let A be a ST ring, let M and N be ST A-modules and
let $ : M — N be a continuous A-linear homomorphism. Suppose that M =
lim_, M, in STMod(A) for some inverse system (Mg)acr. Suppose also that N
is finitely generated, separated and semi-simple in STMod(A). Then ¢ factors
through some M,.

Proof We have N = @)_, N;, where each N; is a separated, simple, ST
A-module. For each j let U; C N; be a proper open subgroup, and define
U :=@j_;U;. Then U C N is an open subgroup, but the only A-submodule
contained in U is 0. For a € I set K, := ker(M — M,). By the definition of
the lim._ topology there is some ag s.t. Koy C ¢~ 1(U). So ¢(Ka,) C U, and
being an A-module it must be 0. a

Let A be a ST ring and let Ay C A be a subring. A ST A-module is said to
have an Aj-linear topology if there is a basis of neighborhoods of 0 consisting
of Ag-submodules (e.g. take for A, the image of Z).

Proposition 1.2.23 Let A be a ST ring and let Ay C A be a subring. The
full subcategory of STMod(A) consisting of modules with Aq-linear topologies
s closed under quotients, subobjects, sums, products, direct limits and inverse
limats.

Proof Immediate from lemma 1.1.1, since the maps are Ap-linear. a

1.3 Rings of Laurent Series

An important class of semi-topological rings is that of rings of iterated Laurent
series, which we will examine in this section.

Definition 1.3.1 Let A be a commutative semi-topological ring and let t =
(t1,...,tn) be a sequence of indeterminates. We put on the A-algebras A[t] :=
A[tl’ o vtn]’ A[_t.]/(z)H_l: i 2> 0 and A[Lfl] = A[th vy ln tl_la ceey tr_lll the
fine A-module topologies. We put on A[[t]] := lim.; A[t]/(2)"+! the inverse
limat topology.

Lemma 1.3.2 A[t], A[t]/(¢)"", A[t,t7'] and A[[t]] are all semi-topological A-
algebras.
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Proof Immediate from prop. 1.2.9 and lemma 1.2.19. O

Definition 1.3.3 Let A be a commutative ST ring and let t be an indetermi-
nate. For every j > 0 put on t=I A[[t]] the fine A[[t]]-module topology. Put on
A((2)) :== A[[t]][t7"] = lim;_, t~7 A[[t]] the direct limit topology.

Lemma 1.3.4 The topology on A((t)) is the fine A[[t]]-module topology. There-
fore A((t)) is a semi-topological A-algebra.

Proof This follows from cor. 1.2.6 and prop. 1.2.9. a

Proposition 1.3.5 The homomorphisms A — A[[t]], A[[¢]]>A and A[[t]] —
A((t)) are all continuous and strict. If A is separated (resp. separated and
complete) then so are A[t], A[t]/()*?, Alt,t71], A[[t]] and A((2)).

Proof For every i,h > 0 consider the exact sequence of semi-topological A-
modules

0 — Al/E¥ AL — Al /6 ALY — B4 — 0

with its obvious splitting (in STMod(A)). Passing to the inverse limit in ¢ and
then to the direct limit in h we get

@ A[[f]]. (1.3.6)

A((t)) = lé tIA

Therefore A[[t]] — A((t)) is strict. A similar consideration shows that A[[t]] &
A @ tA[[t]], so the other two homomorphisms are strict.

The statements regarding separatedness and completeness follow from for-
mula (1.3.6) and prop. 1.1.5. a

The topology on the ring of iterated Laurent series defined below generalizes
Parshin’s topology on a local field, see [Pa3] §1 def. 2.

Definition 1.3.7 Let A be a commutative semi-topological ring and let t =
(t1,...,tn) be a sequence of indeterminates. The Laurent series ring in t over
A is the semi-topological A-algebra A((t)) = A((t1,...,ts)) defined recursively

by
A((ts, .. 1)) = A((ts, - .., 1)) (1))

22



A CONSTRUCTION OF THE RESIDUE COMPLEX

From proposition 1.3.5 it follows that the inclusion A — A((t)) is a strict
monomorphism. Evidently the operations A — A[t], A — A[t]/(2)**!, etc. are
functors on the category STComAlg(Z) of commutative ST rings, sending the
full subcategory of separated (resp. separated and complete) rings into itself.

Remark 1.3.8 As noticed by Parshin, if k is a discrete field and n > 2, the
field of Laurent series k((t)) = k((t1,...,t,)) is not a topological ring; i.e.,
multiplication is not a continuous function k((2)) x k((t)) — k((t)) (see [Pa3]
remark 1). Also, in this case k((¢)) is not a metrizeable topological space.

Lemma 1.3.9 The image of A[t,t7] in A((2)) is dense.

Proof Lett := (ts,...,t,). By induction for every i > 0 the map A[t',#~!|[t]
— A()[t])/ @) is dense so by prop. 1.1.8 b) we have that A[t',#'~ 1][t ] —
A((®))[[t1]] is dense. Hence for every j > 0, t;7 A[t',#~][t:] — 77 A({))[[t1]] is
dense, and finally by prop. 1.1.8 c), A[t,t~ 1] — A((2)) is dense. a

Suppose A is separated and complete. An element a(t) € A((t)) determines
a function a : Z — A, i — a;, in the usual way. The support of the function
a:Z — A is bounded below, and a(t) = ¥;cz a;t' in the sense of [GT] ch. III
§5.1. From the recursive definition of the ring A((¢)) one sees that any a(t) €
A((2)) determines a function a : Z" — A, i+ a;, such that a(t) = T,czn a; t.
There are certain conditions on the support of @ : Z" — A, and in fact one can
show that these conditions are precisely equivalent to the summability of the
collection of monomials (a; Ii)ieZn.
Given another sequence s = (sy,...,s,) of indeterminates and a sequence
e = (e1,..., e,) of positive integers, the homomorphism of ST A-algebras
A((s)) — A((2)), s; — t7, makes A((t)) into a free ST A((s))-module, with
basis {ti}, 0 < i; < e;. By abuse of notation we denote the image of A((s)) by

A((#2))-

1.4 Preliminaries on Differential Operators

Let k be a commutative ring and let A be a commutative k-algebra. Given
A-modules M and N, we use the following notation for the action of A on
Homz(M, N): for a,b € A, ¢ € Homz(M,N) and z € M, we set (agb)(z) =
ad(bz) € N.

Recall the definition of differential operators (DOs) over A from M to N
([EGA 1V] §16.8). Given D € Homz(M, N) and a € A, set [D,a] := Da—aD €
Homgz(M,N). We say that D is a differential operator of order < n over
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A, and denote this by ord4(D) < n, if for all ag,...,a, € A it holds that
[...[D,a0),...,a,] =0. (We set ord4(0) := —1.) If D is k-linear, it is said to
be a differential operator relative to k. Set

Diff}, (M, N) := {D € Hom(M, N) | ord4(D) < n}
Diff o/4(M, N) := | J i} (M, N).

Evidently, for any n > 0, ord4(D) < n iff ord4([D,a]) < n —1 for every a € A.

Let I4 be the kernel of the multiplication map A®Qx A — A, a®b +— ab, and
define P, := A@r A/I a*1. Consider P} /i as an A-algebra via the first factor:
a+— a®1l, and set d*(a) := 1 ® a ( mod I}*!). d" defines a right A-module
structure on P%/,. Given an A-module M set P}, (M) := P, ®4 M. The
map d}, : M — P} (M), z — (1 ® 1) ® z, is a universal differential operator
of order < n; for any A-module N it induces an isomorphism

Hom4(P}/(M), N) S Diff} (M, N). (1.4.1)

If A =k[t] =k[t1,...,tn] is a polynomial ring then I, is generated as an
AQ®r A-module by t;, ® 1 —1®¢;,i =1,...,m. Therefore

Pign= @D klH-d"@), (1.4.2)

0<i1,....im<n

and this implies

Proposition 1.4.3 If A is a finitely generated k-algebra and M s a finitely
generated A-module, then P} /k(M ) is a finitely generated A-module.

Proposition 1.4.4 Suppose that the k-algebra A admits an augmentation 7 :
A — k, and let J = ker(n) be the augmentation ideal. Let M and N be A-
modules which are annihilated by J™*! and J™*! respectively. Then

Diff};"(M, N) = Hom(M, N).

Proof We have a k-module decomposition A = k® J induced by 7. Write any
a€Aasa=A+z, A€k, x €J. Let D € Homy(M, N). For any a € A one
has

[D,a] = [D, )\ + [D,z] = [D, z] € Homi(M, N).

Choose arbitrary ag,...,0m+n € A and define Dy := D, D;y, := [D;, a;]. If we
write a; = \; + x; as above, we also get D;yy = [D;,z;]. Sofori=m+n+1,

Dm+n+1 = ...:}:(:cio...a:;ij,-J.H ...1‘,‘m+n):|:... .
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But either j > n or m+n — j —1 > m. Therefore all the terms in the sum are
0 and Dypyn4+1 = 0. Working backwards we see that forall,0 <¢ < m+n+1,
D; € Diff /" ~*(M, N) (cf. [EGA IV] prop. 16.8.8). a

The proposition has a noteworthy corollary:

Corollary 1.4.5 Assume that k is a perfect field and that A is a local k-algebra.
Then any short exact sequence of finite length A-modules can be split by a
differential operator over A relative to k.

Proof Let m be the maximal ideal of A and let K be its residue field. Say we
are given an exact sequence

0O- M -sM->M -0

of finite length A-modules. Then these are A/m!-modules for sufficiently large
l. Since K is formally smooth over k, there exists a k-algebra lifting of K into
A/m! (see [Ma] theorem 62). Let D : M" — M be any K-linear splitting of the
exact sequence. By the proposition, D is a differential operator over A relative
to K (and hence relative to k). In fact, if m*'M = 0 and m’*!M" = 0, then
ords(D) <i+j. O

The next proposition is probably well known, but for lack of suitable refer-
ence we supply a proof here.

Proposition 1.4.6 Let M and N be A-modules, let D € Diff}y (M, N), and
let J C A be an ideal. Then for every ¢ > 0

D(J%*"M) c JID(M) C N.

Proof It suffices to check the universal DO d" : A — P} ,. We prove by
induction on ¢ that d™(J"*') C J*P7} sk~ For i = 0 there is nothing to prove, so
let i > 1. Choose a,,...,a,4+; € J. Since each of its factors is in T4 the product
(1®a—a;1®1)---(1®apti—an+i®1) =01in P4/ Expanding this product
we get
d* (a1 @nti) =1Q@ay -+ apyi € E de"(J"“"j).
Jj=1

But by the induction hypothesis d"(J"**~7) C J*=/P}, for 1 < j <i. a

Suppose the ring k has characteristic p (a prime number). Let F : k — k be
the absolute Frobenius homomorphism, F(A) = )?. Define

APR) = k@, A, (1.4.7)
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where k acts on the first factor via F; thus 1® Aa = A’®a in A®/%) for all X € k
(see diagram below; cf. [Il] §2.1). Let Fo/ : AP/®) — A XA ® a — Aa?, be the
relative Frobenius homomorphism. We make A®/*) into a k-algebra via A — A®
1. Hence F4; is a k-algebra homomorphism and its image is the k-subalgebra
of A generated by {a” | a € A}. Recursively define A®""'/%) .= (A®"/R))(e/k),
Observe that if k is a perfect field then the homomorphism W :a +— 1 ®a is
a (ri/n)g isomorphism A 5 A®/®). For k = F, we simply write A®) instead of
Alp/k),

W A®/k) Fan, A

L1

F k

The next lemma generalizes a result of Chase (see [Ch| lemma 3.3).

Lemma 1.4.8 Suppose k has characteristic p. Let M and N be A-modules and
let D € Homy (M, N).

a) Ifords(D) < p* —1 for some n > 0 then D is A®"/¥) linear.

b) Assume that A is generated by r elements as an A®/¥)_glgebra. If D is
A®/k) _linear for some n then ord4(D) < r(p™ —1).

Proof a) Set B := A®"/¥)_ For any m > 0 consider the homomorphism of B-
bimodules ™ : Pg, — P}, induced by the k-algebra homomorphism B — A
(the iteration of the relative Frobenius). If ™ factors through Py, = B then
every D € Diff},(M, N) has ordg(D) = 0, i.e. it is B-linear.

Set I, := ker(A®; A — A) and Ip := ker(B @, B — B). Now Ip is
generated as a left B-module by {b®1—1Q®b | b € B}, and hence by elements
of the form (1®a)®1-1®(1®a), a € A (write b =} \; ® a; and factor out
Ai € k). We get

P((1Ra)R®1-13(1Ra) =" ®1-1Rd =(@®l-1®a)""

so y™(Ig) C I "k (ideal power). Taking m = p™ — 1 we have IﬁnPZ‘/k =0
and ™ factors through P} [k

b) Say A is generated as an A®/¥)-algebra by ay,...,a,. Then these elements
also generate A as an A®"/F)_algebra for all n > 0. Choose n > 1 and set
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l:=r(p" —1), B := A?P"/®)_ The ideal J := ker(4 ®p A — A) is generated as
a left A-module by {a; ® 1 —1® a;}}_,. Since

(:®1-1Qa)" =a” @1 -1®a? =0
we get J'+! = 0. Therefore P}, = A®p A and

Hom,(A ®p M, N)
Hom(Pjy/p(M), N)
Diff}, 5 (M, N).

1R

Hompg(M, N)

IR

IR

As an immediate consequence of the lemma we obtain:

Theorem 1.4.9 Assume that k has characteristic p and that the relative Frobe-
nius homomorphismF 4/, : AP/®) 5 A s finite. Then for any pair of A-modules
M and N -

DiffA/k(M, N) = U HomA(p"/k) (M, N)

n=0

This is the so-called p-filtration on Diff 4 /1 (M, N), cf. [Wo], proof of theorem
1.

1.5 Differential Properties of Semi-Topological Rings

Throughout this section k is a commutative semi-topological ring and A is a
commutative semi-topological k-algebra. Recall that a derivation of degree ¢
of a graded ring Q* = @32, Q" is an additive homomorphism d : Q* — Q*
of degree i satisfying d(af) = d(a)B + (=1)ad(B) for all o, 8 € Q* with «
homogeneous of degree |a|.

Definition 1.5.1 A differential graded (DG) semi-topological k-algebra is a
graded k-algebra Q* = @2, Q" (where k — Q°), together with:

i) A linear topology on each homogeneous component Q", such that Q* with
the direct sum topology is a semi-topological k-algebra.

ii) A continuous k-derivation of degree 1 of Q* satisfying d* = 0.
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We denote by STDGA(%) the category of semi-topological differential graded
algebras over k, with the obvious morphisms.

Let T} A = @n-o T?A be the tensor algebra of A considered as a k-module.
Put on T"A A®j -+ - ®r A (n times) the tensor product topology and put on
T%A the direct sum topology. The associativity of the tensor product topology
shows that T} A is a semi-topological k-algebra. Therefore A ®; T} A is a semi-
topological A-algebra (the multiplication is (ay®a;®- - -®a,,)(bo®b; R- - -®b,) =
(aobo®a,®- ~*®a,®b;®- - -®by)). Define a continuous k-linear homomorphism
of degree 1,d:ap® - ®a,—~ 1Qa;® - ® ay,.

Now let 7, = A% Q /& be the algebra of differential forms over A relative
to k, also known as the de Rham complex, and let d be the exterior derivative.
The map AQ,TyA — 2}, ;. given by ap®a1®- - -®a, — aod(ar)A---Ad(a,) isa
surjective A-algebra homomorphism, sending d to d. Put on % /i the quotient
topology. Recall the notation A, p, used in §1.2 for left and right multiplication
by a € A.

Lemma 1.5.2 0}, , 1s a differential graded semi-topological k-algebra. The
homomorphism A — QY /k 18 an isomorphism of semi-topological k-algebras.
The topology on Q, /i 18 the finest linear topology such that for every a € A the
homomorphisms A 0 d, pa(a) : A — QL /K aTe continuous.

Proof According to prop. 1.2.9, % /i 1s @ semi-topological k-algebra. Since
%k is the quotient of A ®; TFA it follows that ) Jk 1S the direct sum of the
Q7 in STMod(A). The continuity of d is due to the continuity of d.

Now let N be the module Q4 /k With any linear topology such that the
homomorphisms Agod, py(a) : A — Q4 /i are continuous. These homomorphisms
factor through A ®; A as @’ — a® d' and o’ — d ® a. By lemma 1.2.12
the homomorphism A ®; A — N is continuous relative to the tensor product
topology, so the identity map Q} /k = N is continuous. O

Definition 1.5.3 The separated algebra of differentials of A relative to k is the
semi-topological differential graded k-algebra

AT 1= (i)™ = D@

n=0

(We are using the fact that the functor M +— M*® commutes with infinite
direct sums, which is a consequence of prop. 1.1.5 b).)
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Proposition 1.5.4 The continuous derivation d : A — Q5P has the following
universal property: given any separated semi-topological A module M, the map

om™ (QL5P, M) — Deri™ (4, M)

induced by d is bijective.

Proof The injectivity is true because Q45 A/k is generated as an A-module
by d(a), a € A. Given a continuous derivation D : A — M, there is a
corresponding A-linear homomorphism ¢ : Q}a/k — M. For any a € A,
porgod=2Xro0D:A— M and ¢ o pya = ppa) : A = M are contin-
uous. By lemmas 1.5.2 and 1.1.1 it follows that ¢ is continuous. But M is
separated, so ¢ factors through Q;’ﬁp. a

By universality, A — Q, Ak is a functor STComAlg(k) — STDGA(k). Given
a homomorphism f : A — B in STComAlg(k) we use the same name for the
induced DGA homomorphism.

For n > 0 the tensor product topology on A ®; A induces a topology on
Pan = Ak AJI3HY. Set Puk = (Pip)*P. This is a semi-topological A-
algebra. Given a semi- topologlcal A-module M set P7P(M) := (P} ®a
M)sep'

Proposition 1.5.5 Let M be a semi-topological A-module and let n > 0. The
continuous differential operator of order < n, djy : M — Py7°(M) has the
follownng universal property: given any separated semz-topologzcal A-module N

th
¢ map H cont n,sep «grn,cont
omy™(Pyji (M), N) — Diff ;) (M, N)

induced by dj; is bijective.

Proof This is a consequence of the universal property of P} (M) and lemma
1.2.12 (cf. previous proposition). a

For n =1 we get an isomorphism of semi-topological A-algebras
PLiE = AP QP (1.5.6)
the latter being a quotient of Q77°. The formula is d'(a) =1 ® a > a +d(a).

Definition 1.5.7 Let u : A — B be a homomorphism in STComAlg(k). We
say that B is topologically smooth (resp. topologically étale) over A relative to
k (or equivalently, u is topologically smooth relative to k, or u is smooth in
STComAlg(k), etc.) if, given any commutative diagram in STComAlg(A)
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with C' and Cy separated and 7 a surjection such that ker(w)? = 0, the homo-
morphism g : B — Cy can be lifted (resp. lifted uniquely) to a homomorphism
g : B — C in STComAlg(A) whenever it can be lifted to a homomorphism
g: B — C in STComAlg(k).

When these algebras have discrete topologies this definition coincides with
that of formally smooth and formally étale algebras relative to k (cf. [Ma]
§30.A). Moreover, we have:

Proposition 1.5.8 If B has the fine A-module topology and is formally smooth
(resp. formally étale) over A relative to k for the discrete topologies, then it is
also topologically smooth (resp. topologically étale).

Proof Any A-algebra homomorphism § : B — C' is automatically continuous
(see prop. 1.2.4). O

Proposition 1.5.9  a) (Transitivity of topological smoothness) Let A = B
= C be homomorphisms in STComAlg(k). If u and v are smooth (resp.
étale) in STComAlg(k), then so isvou: A — C.

b) (Base change) Let A — B and A — A' be homomorphisms in
STComAlg(k). If A — A’ is smooth (resp. étale) in STComAlg(k), then
s01s B—B®4A.

Proof Just like the proofs for formally smooth and formally étale homomor-
phisms (see [Ma] §28.E - 28.G) plus, in part b), the universal property of base
change (cor. 1.2.18). 0O

Lemma 1.5.10 Let u: A — B be a homomorphism in STComAlg(k). Then u
is smooth (resp. étale) in STComAlg(k) iff the conditions of definition 1.5.7 are
satisfied for all diagrams with ker(m) nilpotent (not necessarily of square 0).
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Proof One direction is trivial. For the other direction, suppose that u is smooth
(vesp. étale) and that we are given a diagram of continuous homomorphisms
with N1 = 0, where N = ker(). For 1 < i < n define C; := (C/N*+!)*P (so
C, = C). The intermediate diagrams involving m; : Ciy; — C; have ker(m;)? =
0, so g can be lifted (resp. uniquely lifted) step by step. O

The following theorem is an adaptation of well known results to the context
of semi-topological rings.

Theorem 1.5.11 Given a homomorphism A — B in STComAlg(k) the follow-
ing are equivalent:

i) B 1is topologically smooth (resp. topologically étale) over A relative to k.

cont

ii) For every separated semi-topological B-module N the natural map Derj
(B,N) — Der{™™ (A, N) is surjective (resp. bijective).

iii) The natural homomorphism (B ®4 Qk;‘;f’ P — Q};ﬁp in STMod(B) has
a left inverse (resp. is an isomorphism).

iv) For every separated semi-topological B-module N, for every semi-topo-
logical A-module M and for every n > 0 the natural map lef%ﬁ“t (B®a

M,N)— Diff'f;'/c,‘:“t(M , IN) 1s surjective (resp. bijective).

v) For every n > 0 the natural homomorphism (B ® 4 p"’sep)sep — P;/SZP n

STMod(B) has a left inverse (resp. is an zsomorphzsm)

Proof

ii) = i): Say we are given the data of definition 1.5.7 and a continuous k-algebra
lifting h : B — C of g. Then § :== f —h : A —» N = ker(7) is a continuous
k-derivation. Let § : B — N be an extension of §. Define j:=h+6é: B — C;
this is a continuous A-algebra lifting of g. The uniqueness of § comes from the
uniqueness of 8.

iii) = ii): We first observe that (B ®4 Q sk )P represents Dery”™(A4, N) for
separated semi-topological B-modules N. So an isomorphism in iii) implies
a bijection in ii), and a left inverse allows the extension of any continuous
k-derivation § : A — N to a derivation 6 : B — N.

iv) = ii): Trivial, take n = 1 and M = A, and make use of the canonical
splitting of Der*®™ — Diffcon,

v) = iii): Trivial, take n = 1 and use the splitting (1.5.6).
v) = iv): Use prop. 1.5.5 and formula (1.2.13).
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i) = v): See [Sw], proof of theorem 13.12. In [Sw| the assumption is that B is a
finite separable A-algebra, and there is no topology involved. However the same
arguments can be applied to our more general and topologized setup, because
the bimodules ’Pfj'ip have the appropriate universal properties. O

Condition iii) implies that when A — B is smooth in STComAlg(k), the
canonical sequence

0 — (B®a Q)P — Qg7 — Q77 — 0 (1.5.12)
is split-exact in STMod(B).

Corollary 1.5.13 If B is topologically étale over A relative to k then the nat-
*,Sep *,sep

ural homomorphism of semi-topological B-algebras (B @4 Q0 Tk )P — Qp Ik S
an isomorphism.

Proof By the theorem we have an isomorphism in degrees < 1. The homomor-
phism is surjective because ) Bj‘ﬁp is generated as a B*P-algebra by Q};ﬁp Since
5/ is an exterior algebra the B-linear homomorphism Qj /k—»QBﬁp (B®a4

lse % )°P induces a graded B-algebra homomorphism Qf , — (B ®4 Q07°)*P.

By lemma 1.2.12 this homomorphism is continuous, so it passes to B:“ﬁp , pro-

viding a continuous left inverse to the natural homomorpmsm

Corollary 1.5.14 (Cancellation) Let A = B = C be homomorphisms in
STComAlg(k). If u and v o u are étale then so is v.

Proof Use condition iii) of the theorem and the fact that C®g B=C. O

If B happens to be separated and 2 A’j’;’f happens to be a free ST A-module,
we have the simple formula:

(BRaQIE)P =BV (1.5.15)
and the same for P} Sep.

Definition 1.5.16 Let A be a ST k-algebra. If Ql’”" s a finitely generated A-
module with the fine A-module topology, we say that A 1s differentially of finite
type over k. If moreover ) Ajk 18 free over A, its rank is called the differential
degree of A over k.
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Here are a few examples of topological smoothness.

Example 1.5.17 Let A € STComAlg(k) and let t = (¢4,...,%,) be a sequence
of indeterminates. Put on A[t] and on A[t,z7!] the fine A-module topologies.
Then A[t] — A[t,t7!] is étale and A — A[t] is smooth in STComAlg(k). In fact,

Q,lismq/)k = (A[ﬂ ®a Q}.{ﬁp)sep ® (@ A[ﬁ]“"dt;) )
i=1

(Of course k is unimportant here.)

A useful result is:

Theorem 1.5.18 Let A € STComAlg(k). Assume that A is noetherian and dif-
ferentially of finite type over k. Given an ideal I C A, put on A=lm_, A/I"
the topology of lemma 1.2.19. Then A — A 1s étale in STComAlg(k).

Proof Let N be a separated ST A-module and let § : A — N be a continuous k-
derivation. Then §é factors through some finitely generated A-module M which
we may assume has the fine A-module topology.

By prop. 1.4.6, for every n > 0 we get a derivation 6, : A/I"*! — M/I"M.
Since the projection A—»A/I"*! is strict, §, is continuous. Passing to the
inverse limit there is a continuous derivation § : A » M = A®4 M — N (see
cor. 1.2.21). Since N is separated and A C A is dense (prop. 1.1.8), this & is
unique. O

Corollary 1.5.19 Let A be as in the theorem and let t = (t1,...,t,) be a
sequence of indeterminates. Then A[t] — A[[t]] and A[t] — A((t)) are étale in
STComAlg(k).

Proof The ST k-algebra A[t] also satisfies the assumptions of the theorem,
so Aft] — A[[¢]] is étale. Now take n = 1. By prop. 1.5.8 and lemma 1.3.4,
A[[t]] — A((2)) is étale, so by transitivity (prop. 1.5.9) A[t] — A((?)) is also
étale in STComAlg(k).

Therefore for every 1 < i < n the homomorphism

Aty t)lt] = Atirns - 1)) (1) = A((ts, - .- 1))

is étale. By base change

A((ti+l7 AR tn))[tb s >ti]
- A((tn ey tn)) ®A((t;+1,...,t,.))[t.-] A((ti+l’ oo ,tn))[tla oo 7ti]
= A((t,', “e 1tn))[t1a oo ati—I]
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is étale, and finally by transitivity A[t] — A((f)) is also étale in
STComAlg(k). 0O

A fact to be used later is:

Proposition 1.5.20 Let v : A — B and f : B — C be homomorphisms in
STComAlg(k), with u étale. Suppose C is separated, and consider it as a ST
B-module via f. Let g : B — C be a continuous DO over B relative to k, s.t.
gou:A— C is a ring homomorphism. Then g is also a ring homomorphism.

Proof For any a,b € B set D,(b) := g(ab) — g(a)g(b). We must show that
D,(b) = 0. Now for any a € B, D, : B — C is a continuous DO over B. First
fix some a € A. Then Dy o u = 0, and by the uniqueness of extension of
DOs, Dy) = 0. Next fix some b € B. By symmetry D, ou = 0, and again by
invoking uniqueness we get D, = 0. a
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2 Topological Local Fields

2.1 Definitions and Basic Properties

In this section we define topological local fields and examine their structure.
The definition below is due to Parshin (see [Pal] p. 697, [Pa3] §1 def. 1 and also
[Ka] part IT §3.1).

Definition 2.1.1 An n-dimensional local field is a field K, together with com-
plete discrete valuation rings (DVRs) Oy,...,Op, such that:

i) For i = 1,...,n — 1, the residue field of O; equals the fraction field of
Oiti.

ii) The fraction field of Oy equals K.

The fraction field (resp. residue field) of O; is denoted by x;_; (resp. &;).
The number n is called the dimension of X and is denoted by dim(K). For
1 < ¢ < n the fibred product O; x4, -+ X4,_, O; is the largest subring of K
on which the projection to «; is defined. Let O := O; X, -+ X«,_, On. When
dealing with a few local fields K, L, ... we will write O,(K), O;(L), ... etc.

Remark 2.1.2 The ring O, being a valuation ring, is integrally closed, but
unless 7 = 1 it is not noetherian (see [CA] ch. VI §1.4 cor. 1 and §3.6 prop. 9).

Example 2.1.3 Let F be a field and let K := F((¢)) be the field of Laurent
series over F' in the sequence of indeterminates t = (¢4,...,t,) (see §1.3). Then
K is an n-dimensional local field with

0; = F((ti+1> s ’tn))[[ti]]
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ki = F((tisns- - t))-

By the Cohen structure theorem ([Ma] thm. 60), this is the general situation
in the equal characteristics case, i.e. when char K = char k; = ... = char &,
(or equivalently, when O contains a field).

Example 2.1.4 Let p be a prime number and consider the complete DVR
with p-adic valuation A4 := lim. ;(Z/(p'))((t)). Let K be the fraction field of
A. Then K is a 2-dimensional local field with O1(K) = A and & (K) = F,(())
(where F, :=Z/(p)).

Definition 2.1.5 Let K be an n-dimensional local field. A sequence a =
(a1,...,a,) of elements of O is called a system of parameters (resp. a regu-
lar system of parameters) in K if for all i the image of a; in O; is a parameter
(resp. a regular parameter) in this DVR. A subsequence (ai,...,a;) of a system
of parameters (ay,...,a,) is called an initial system of parameters of length j.

Choose a regular system of parameters a in K. Every a € K* (units of K)
can be written uniquely as

= ual:=ua®-..a*
a = ua*:=uaf ---a;

with i = (41,...,i,) € Z" and u € O*. Thus g gives rise to an isomorphism of
ordered groups K*/O* = (Z",lex).

Let L/K be a finite extension of fields. Then any structure of n-dimensional
local field on K extends uniquely to one on L. Conversely, any n-dimensional
local field structure on L restricts to one on K. These statements follow from
repeated applications of [CA] ch. VI §8.5 cor. 2, and §8.1 lemma 2 (cf. [Lo]

§1.2).

Definition 2.1.6 A finite homomorphism of local fields between the n-dimen-
stonal local fields K and L is a ring homomorphism f : K — L such that
[L: K] < oo and f respects the local field structures.

Let f : K — L be a finite homomorphism of n-dimensional local fields.
Then for every 1 < ¢ < n, O;(L) is a free O;(K)-module of finite rank. One has
the following identity:

[L: K] =[kn(L): kn(K)] e(L/K) (2.1.7)

where
e(L/K) = [(L*/O(L)*) : (K*/O(K)*)]

is the ramification index.
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Definition 2.1.8 Let K and L be local fields of dimensions m and n, respec-
tively (m < n). A homomorphism of local fields f : K — L 1is a ring homo-
morphism such that f(K) C O1(L) Xx,(1) " * Xxp_m-1(L) On-m(L) and such that
the induced homomorphism K — K,_m(L) in a finite homomorphism of local
fields. Define dim(f) = dim(L/K) :=n —m.

Example 2.1.9 Let F be any field and let ¢ be an indeterminate. Then the
inclusion F' — F((t)) is a homomorphism of dimension 1. Let K be the local
field of example 2.1.4. Then the natural homomorphism Q, — K is not a
homomorphism of local fields, because Q, ¢ A = O;(K).

We shall only be concerned with local fields of equal characteristics. Fix for
the remainder of this section a perfect field £ with the discrete topology.

Definition 2.1.10 A topological local field (TLF) over k is a field K, together
with the following structures on it:

i) A structure of an n-dimensional local field, for some n > 0.
ii) A ring homomorphism k — O(K).
iii) A structure of a semi-topological ring.
The two conditions below must be satisfied:
a) Ifn =0 the topology on K 1is discrete and rankg Q}(/k < 00.

b) If n > 0, then there is a topological local field over k of dimension 0,
F, and an isomorphism K = F((t4,...,t,)) which respects the structures
i),%) and 1) above. Here F((t1,...,t,)) has the topology of definition
1.8.7 and the local field structure of example 2.1.3.

A morphism of topological local fields f : K — L is a continuous k-algebra
homomorphism which is also a homomorphism of local fields.

An isomorphism K 2= F((ty,...,t,)) as in condition b) is called a para -
metrization of K. The condition rankp Q};‘/k < oo (finiteness of differential
degree) is equivalent to tr.deg, F' < oo if chark = 0. If chark = p > 0 then it
is equivalent to [F': F(P)] < co. Note that given a parametrization K & F((t))
the topology on K is F([t]-linear (see prop. 1.2.23). A finite morphism of TLF's
is a morphism K — L s.t. [L : K] < oo. Denote the category of topological
local fields by TLF(k).
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Example 2.1.11 Let K be a TLF and let ¢t = (¢,...,t,) be a sequence of
indeterminates. Then K ((t)) is a topological local field (of dimension dim(K)+
n) and K — K((t)) is a morphism in TLF(k).

Let K be a topological local field over k. Put topologies on O; and «;
such that the canonical homomorphisms O; — k;_; and O;—»«; become strict.
Thus if K = F((t,...,t,)) is a parametrization, then O; & F((ti41,...,tn))
([t]] and &; & F((tit1,-..,t,)) are homeomorphisms. By prop. 1.3.5 all these
ST k-algebras are separated and complete.

Assume that char k = p. Let K be an n-dimensional local field over k, and let
K = F((t1,...,tn)) be a parametrization. Let d := ranky Q}. The field K(#/%
maps isomorphically to the subfield F®/R((##)) := FE/R((# ... #)) C K.
(See §1.4 for the definition of K®/%).) Choose a p-basis u = (uy,...,uq) for F.
Looking at the definition of the topology on F((t)) we see that

@  FUP(@)uit S F((2) (2.1.12)

0<i1,..id,J1,--,Jn <P

is a homeomorphism. If we let K(#/¥) = F(®/k)((r)) be a parametrization, then
the relative Frobenius Fg/x : K (#/k) _ K becomes a finite morphism of TLFs.
Iteration gives:

Proposition 2.1.13 Let chark = p and let K € TLF(k). Then for any m > 0,
the field K™ /%) qdmits a unique structure of TLF over k s.t. the iterated relative
Frobenius map K®"/¥) — K is a finite morphism in TLF(k), and s.t. K has
the fine K®™/% module topology.

Theorem 2.1.14 Let chark = p and let K € TLF(k). Suppose M and N are
semi-topological K -modules, with M having the fine K-module topology. Then
any differential operator over K, D : M — N 1is conlinuous.

Proof According to thm. 1.4.9 applied to A = K, D is K*™)-linear for some
m > 0. Since k™) =k, D is even K®"/%)_linear. Now by prop. 1.2.9 ¢), M
has the fine K(*™/¥).module topology, so D is continuous. a

Corollary 2.1.15 Ifchark = p then Q}‘}ekp has the fine K-module topology, the
differential d is K®/®) _linear, and

*,5ep * * o~ OF
gk = Veygom = Qg =

(the last denoting absolute differentials).
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Proof Put on Q¢ the fine K (?/¥)-module topology It is a separated ST
K-module and d is continuous, s0 Q. ro/m = QU Kem- But by lemma 1.4.8
a) every derivation of K is K®/¥)linear. a

Corollary 2.1.16 Suppose chark = p. Let K,L € TLF(k) and let K — L be
a continuous k-algebra homomorphism. Then L is topologically smooth over K
relative to k iff L s a separable K -algebra.

(See [Ma] §27.D for a definition of separability.)

Proof By the previous corollary we can erase the superscript “sep” in condition
iii) of thm. 1.5.11. Now use [Ma] theorems 66 and 62. a

The next theorem is the key to the structure of topological local fields.

Theorem 2.1.17 Let L be an n-dimensional local field, let K € TLF(k) be n-
dimensional, and let K — L be a finite homomorphism of local fields. Put on L
the fine K-module topology. Let A € STComAlg(k) be noetherian and differen-
tially of finite type over k, and let s = (s1,...,5m) be a sequence of indeterma-
nates (m < n). Suppose g : A[s] — L is a homomorphism in STComAlg(k) such
that g(A) € O1(L) Xuy(1)* ** Xnm_1(L) Om(L) and (g(s1),...,9(sm)) 18 an initial
system of parameters in L. Then g has a unique extension to a homomorphism

g:A((s)) = L in STComAlg(k).

Proof We use induction on m which we assume is at least 1. Choose a
parametrization K = F((t)) = F((t1,...,ts)), and a regular parameter ry
of the DVR O;(L). Define sequences of indeterminates t' := (t5,...,t,) and
s = (S2,...,5m) and ST k-algebras B := A[s] and B := A((s’))[[sl]] For
every i > 0 set B; := B/(si*') and B; := B/(si*'). Put on Oy(L)/(ri*")
the fine F((;’))—module topology. Since OI(L) has the fine F((t'))[[t1]]-module
topology, there is an isomorphism of ST k-algebras O,(L) = lim.; O,(L)/
(ri*!) (see prop. 1.2.20). We get induced continuous k-algebra homomorphisms
gi: By — Oy(L)/(r).
Now fix ¢ > 0. The By-linear map

®: (Bo)i+1 = Bi» ®(bo,...,b Z bust

and its inverse are continuous DOs over B, by prop. 1.4.4. Similarly for L: if
chark = 0 (resp. chark = p), let o : k(L) — Oy(L)/(ri*!) be any F((¢'))-
algebra (resp. k-algebra) lifting. The k;(L)-linear map, with respect to o,

Uk (L) 5 0y(L)/(ri*), ¥(eo, ... 0) = io(cu)r‘{

v=0
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and its inverse are continuous DOs over O;(L). In characteristic 0 the continuity
follows from the F'((¢'))-linearity. In characteristic p we are using the fact that
¥ is a DO over F((t)) (of order < i) and thm. 2.1.14. In particular o is
continuous.

By induction on m, gy extends (uniquely) to a homomorphism §o : By —
k1(L) in STComAlg(k). Define f : B—By & k(L) S 0O (L)/(ri*'), and
consider O;(L)/ (r{“) as a ST B-module via f. Then ¥ is B-linear. On
the other hand g; is a DO over B of order < i, since |[...[g;,aq],...,a;](h) =
9i(0) IT,,=o(9i(a) — f(a,)) =0 for any ay,...,a; € B, b € B;.

For every 0 < pu,v < i there is a DO over B relative to k, D, ,, : By — k1(L),
such that

[Dyy] =¥ ogi0®: Bit! — k(L)

in matrix notation. Since B — B is étale in STComAIg(k) D,, extends to a
continuous DO D,, v By = K1 (L) over B. Putting the Du » together we get a
continuous DO over B

Gi=Vo[D,,]o®!:B; — Oy(L)/(rit)

extending g;. By prop. 1.5.20, §; is a k-algebra homomorphism. The §; form
an inverse system. Passing to the inverse limit we get § : B — ©O;(L), and by
lemma 1.3.4 it extends to a homomorphism § : A((s)) — L in STComAlg(k).
The uniqueness of § is obvious. a

Corollary 2.1.18 Let K — L be a finite morphism in TLF(k). Then the
topology on L 1is the fine K-module topology.

Proof Let L' be the field L with the fine K-module topology. Then the
identity map h : L' — L is continuous. Let L = F((t)) be a parametrization of
L, and let g : F[t] — L' be the inclusion. By the theorem there is a continuous
homomorphism § : L 2 F((t)) — L' extending g. Since hog : L — L is
continuous and ko §|pg = h o g, uniqueness implies that § is the identity map.
Therefore the two topologies on L are equal. a

Corollary 2.1.19 Let f : K — L be a morphism in TLF(k) of dimension n, let
a = (ay,...,a,) be an initial system of parameters in L and let s = (s1,...,5n)
be a sequence of indeterminates. Then f extends uniquely to a finite morphism

f:K((s)) = L in TLF(k) with f(s;) = a;.
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Proof To get f apply the theorem to f : K [s] = L. Let e; be the order of a;
in O;(L). From [CA] ch. III §2.11 prop. 14, used repeatedly, we get

[L:K((s))] =e1---en[kn(L): K] < c0.
O

We see that every morphism in TLF(k) factors as a Laurent series morphism
(i.e. K — K((s))) followed by a finite morphism. This implies that a morphism
is, topologically, a strict monomorphism.

Corollary 2.1.20 Let K be a TLF andlet f : K — L be a finite field extension.
Then L admits a unique structure of TLF such that f becomes a morphism in

TLF(k).

Proof Say K has dimension n; then L has a unique structure of n-dimensional
local field extending that of K. Put on L the fine K-module topology. We must
exhibit a parametrization of L. Choose a k-algebra lifting F' = k,(L) — O(L)
and a regular system of parameters ¢ in it. By thm. 2.1.17 we get a continuous
k-algebra homomorphism g : F((t)) — L, which is in fact bijective (cf. previous
cor.). Choose a parametrization K = E((s)) and let h : K — F((t)) be the
finite morphism extending g~! o f|gy). Since goh : K — L is continuous
we have g o h = f, so in fact g is a homeomorphism, and it is the desired
parametrization. a

Let LF(k) be the category of local fields over k, i.e. the objects have the
structures i) and ii) of def. 2.1.10 and the morphisms are the homomorphisms
which respect those structures. Let unt : TLF(k) — LF(k) be the functor which
forgets the topology. The behavior of this functor changes dramatically between
characteristic 0 and positive characteristics.

Proposition 2.1.21 Suppose chark = p. Then the functor unt induces an
equivalence between TLF(k) and the full subcategory of LF(k) consisting of the
fields K such that rankg Q. < oo.

Proof Clearly every such field K € LF(k) lifts to some K € TLF(k) (use the
Cohen structure theorem). It suffices to show that unt is a full functor. So let
K,L € TLF(k) and let f : unt(K) — unt(L) be a morphism in LF(k). We must
show that f is continuous.

First assume that dim(K) < dim(L) and L = E((s)) for some TLF E. Let
fi + K — EJ[s]/(s**!) be the induced homomorphism. By induction on the
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dimension we know that f, : K — F is continuous, so E is a ST K-module
(via fo). Choose i > 0 and let ¥ : E*+! 5 E[s]/(s+!), U(ay,...,a;) = T a,s*,
which is an isomorphism of ST E-modules. The map D; := ¥~'of; : K — E**!
is a differential operator over K (of order < 7), so by thm. 2.1.14 it is continuous.
Hence f; is continuous. Now pass to the inverse limit to conclude that f is
continuous.

If dim(K') = dim(L) write K = F((t)). Then by the discussion above the
maps f; : F[t]/(t!) — E[s]/(s**!) are continuous, and by passing to limits so
if f. O

This is not the case in characteristic 0. If chark = 0 and K is a local field
over k of dimension > 2, then K admits different topologies. Equivalently, given
K € TLF(k), there exist automorphisms of unt(K) in LF(k) which aren’t con-
tinuous. Note that this contradicts the assertions in [Lo] pp. 501-502 regarding
the uniqueness of the topology.

Example 2.1.22 Suppose chark = 0. Let K := k((t1,t2)) € TLF(k), and
let {uq} be a transcendency basis for k((t2)) over k(t2), so k((t2)) is separably
algebraic over k(ty,{uq}). Choose arbitrary v, € k((t2))[[t1]]. Then there
exists a unique k(t;)-algebra lifting o : k((t2)) — k((¢2))[[t1]] such that o(us) =
Uy + t1v,. Extend it to an automorphism o of K such that o(t;) =¢;. o is an
automorphism of unt(K), but it is continuous precisely when all the v, are 0.

To conclude this section we will show that the topology on a topological local
field determines its local structure. Given K € TLF(k), let m; : O(K) — k;(K)
be the canonical continuous maps (O(K) has the topology induced from K).

Lemma 2.1.23 Let K € TLF(k) be n-dimensional.

a) Let s be an indeterminate and put on Z the discrete topology. If f :
Z[[s]] — K 1is a continuous ring homomorphism, then f(s) € O(K) and

.0 f(s) =0.

b) Let u and s be indeterminates and put on Z[u,u™"] the discrete topology.
Let f : Z[u,u™"][[s]] = K be a continuous ring homomorphism, with
f(u) € O(K). Then for everyi, 0 < i < n—1, either m;o f(s) =0 or
Tiy10 f(u) #0.

Proof a) We prove by induction on i, i < n — 1, that m; 0 f(s) € Ou1(K).

Since lim;_, s = 0 in Z[[s]], we get lim;_oo(m o f(s))’ = 0 in ;(K). Now
ki(K) = L((t)) for some TLF L, so by the decomposition (1.3.6) and prop.
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1.1.5 c) it follows that m; o f(s) € Oi1(K) = L[[t]]. Since k,(K) is discrete it
must be that 7,, 0 f(s) =0

b) Set a := m; 0 f(s) and b := m; o f(u). If @ # 0 and myq o f(u) = 0, then
b~"a € ki(K) — Oi31(K) for h >> 0. Now lim;j_oo(u"s)? = 0 in Z[u,u"][[s]],
s0 lim;_,(b*a)? = 0 in «;(K), which is impossible by prop. 1.1.5 c). a

Proposition 2.1.24 Let K € TLF(k) be n-dimensional and let a = (ay,...,
an) be a sequence of elements of K. Then a is a system of parameters in K
iff there exists a continuous ring homomorphism Z((t)) = Z((t4,...,tn)) = K,
ti = a;.

Proof Suppose a is a system of parameters. By thm. 2.1.17 there is a contin-
uous ring homomorphism Z((t)) — K sending t; — a;.

Conversely, suppose such a homomorphism f : Z((t)) — K exists. Take ¢,
1 < i < n, and consider the continuous ring homomorphism Z[[s]] — Z((t)),
s — t;. By lemma 2.1.23 a), a; € O(K) and m,(a;) = 0. Define [; to be the
smallest number such that m,(a;) = 0. Now take i < n — 1, and consider the
continuous ring homomorphism Z[u,u=][[s]] — Z((2)), s = t;, u +— t;41. By
lemma 2.1.23 b), it follows that /;41 > l;+ 1. Therefore l; = ¢ and a is a system
of parameters. a

2.2 Clusters of TLFs and Base Change

As before k is a fixed perfect field. In this section we define a category of algebras
CTLF(k), which contains TLF(k) as a full subcategory. In this new category
there is a convenient base change operation. Given an artinian k-algebra A let
Ayeq := A/(radical). Since k is perfect, there exist k-algebra liftings A,eq — A.

Definition 2.2.1 A cluster of topological local fields over k is an artinian, com-
mutative semi-topological k-algebra A, together with a structure of a topological
local field over k on each of its residue fields A/p, p € Spec A. We require that
there will exist some k-algebra lifting A.e.q — A, relative to which A has the fine
Areq-module topology.

A s called equidimensional if the TLFs Alp, p € Spec A, all have equal
dimensions and equal differential degrees.

A morphism f : A — B of clusters of TLFs is a continuous k-algebra
homomorphism such that for every q € Spec B lying over some p € Spec A, the
induced map on residue fields A/p — B/q is a morphism in TLF(k).
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Denote the category of clusters of TLFs by CTLF(k). The topology on
a cluster of TLFs A is local with respect to Spec A, i.e. A = [y cspeca Ap
as ST rings. This is because the spectral decomposition is multiplication by
idempotents, a continuous operation. Since A.q is a complete separated k-
algebra, so is A.

The next proposition shows that the topology on A is independent of the
lifting Areqa — A (provided this lifting is continuous). Given a morphism f :
A — B and a maximal ideal q € Spec B, let dimy(f) := dim(A/p — B/q),
where p := f~!(q). We say that f is finite if dimy(f) = 0 for all q.

Proposition 2.2.2 a) Let 7 : Ajeq — A be a morphism in CTLF(k) (i.e. a
continuous lifting). Then A has the fine A.q-module topology (via 7).

b) Let A — B be a finite morphism in CTLF(k). Then the topology on B is
the fine A-module topology.

c) Let A € CTLF(k) and let B be a finite A-algebra. Then there exists a
unique structure of cluster of TLFs on B which makes A — B into a
morphism in CTLF(k).

Proof These questions are local on Spec B, so we may assume that Spec B =
{q} and Spec A = {p}.

a) Set K := A/p and let K = F((t)) be a parametrization. Let A’ be the algebra
A with the fine K-module topology via 7, and let h : A’ — A be the identity
map. We must prove that h is a homeomorphism. Say o : K — A is a lifting
which determines the topology. Then it suffices to prove that A~ oo : K — A’
is continuous. Now g := h™! o g|py : F[t] — A’ is a DO over F(t] (cf. proof
of thm. 2.1.17) so it extends to a continuous DO § : K — A’. But ho g is
continuous, so h o § = ¢ and hence h~! 0 ¢ = § is continuous.

b) (Cf. proof of cor. 2.1.18.) Let 0 : K = A/p — A be alifting which determines
the topology. Let B’ be the algebra B with the fine K-module topology and
let h : B — B be the identity map. As in the proof of thm. 2.1.17 there exists
some continuous k-algebra lifting 7 : L = B/q — B’. Now hoT : L — B is
a morphism, so by part a), B has the fine L-module topology via h o 7. This
implies that h is a homeomorphism.

¢) Denote the homomorphism A — B by f. Let 0 : K = A/p — A be a lifting
which defines the topology. Put on B the fine K-module topology, and put on
L = B/q the unique structure of TLF such that K — L is a finite morphism
in TLF(k). It remains to exhibit a lifting 7 : L — B such that B has the fine
L-module topology.
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Choose a continuous k-algebra lifting 7 : L — B as before. Let B’ be the
algebra B with the fine L-module topology, so B’ is a cluster of TLFs. Let
h : B' — B be the identity map. Choose a parametrization K & F((t)). The
DO g := h™' o o|ppy : F[t] — B’ extends to a continuous DO § : K — B,
and hoj = foo : K — B. Thus § is a morphism, and by part b) h is a
homeomorphism. O

Let k' be another perfect field, with discrete topology, and suppose there is
a homomorphism k¥ — k'. Thus any ST k'-algebra is also a ST k-algebra.

Definition 2.2.3 Let A € CTLF(k) and let A’ € CTLF(k'). A finitely ramified
homomorphism A — A’ is a continuous k-algebra homomorphism, such that
for every p' € Spec A’ lying over some p € Spec A, the image of (A/p)* in the
canonical valuation group (A'/p')* JO(A'/p')* is a subgroup of finite indez.

Theorem 2.2.4 (Finitely Ramified Base Change) Let f : A — B be a mor-
phism in CTLF(k), let A’ € CTLF(K') and let u: A — A’ be a finitely ramified
homomorphism. Then there exists an algebra B' € CTLF(k'), a morphism
f' + A" = B’ in CTLF(K') and a finitely ramified homomorphism v : B — B/,
satisfying:

i) dimg(f') = dimg(f) for every q' € Spec B’ lying over some q € Spec B,
and the diagram below is commutative:

B Y. B
o
A L. q

ii) Suppose g’ : A’ — C' is a morphism in CTLF(k') and w : B — C' is a
finitely ramified homomorphism, such that wo f = g' ou and dimgy(¢') =
dimgy(f) for every q' € SpecC’ lying over some q € Spec B. Then there
exists a unique finite morphism h' : B' — C' in CTLF(k') such that ¢’ =
h'of andw="houv.

Proof We can assume that Spec A = {p}, Spec A’ = {p’} and Spec B = {q}.
Choose a lifting 0 : A/p — A. Say dim(f) = m and pick by,...,b,, € B
such that their images form an initial system of parameters b = (by,...,b,) in
B/q. Let s = (s1,...,8m) be a sequence of indeterminates. As in the proof
of prop. 2.2.2, we get a finite morphism (A/p)((s)) — B, extending fo o
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and sending s; — b;. Now A((s)) = A ®a/p (A/p)((s)), giving rise to a finite
morphism A((s)) — B extending f. There is also a continuous homomorphism
@ : A((s)) — A'((s)), which is finitely ramified. Define

B':= B®4(q) 4'((s))

with the unique structure of CTLF to make A'((s)) — B’ a finite morphism in
CTLF(k'). The maps f' and v are the obvious ones.

Suppose that an algebra C’ and maps ¢', w are given as in ii). Let ¢’ €
SpecC’ be arbitrary, and set p’ := ¢"~(q') and q := w~!(q'). Let b be as before.
We claim that (w(by),...,w(bx)) is an initial system of parameters in C'/q'. If
dim(C") = m this follows directly from prop. 2.1.24. Otherwise, recall that u is
finitely ramified, so there is an element a € A with u(a) a parameter of the DVR
O1(A'/p’). From lemma 2.1.23 b) it follows that ((w(b;),...,w(bn),d o u(a))
is an initial system of parameters in C'/q’. As before we get a finite morphism
A'((s)) — Cy, si = w(b;). Thus a morphism B’ — Cy, exists, and it is clearly
unique. 0

Example 2.2.5 Take A := k(t3), B := k(t2)((t1)) and A’ := k((¢2)) with the
standard homomorphisms. Then B’ = k((¢2))((t1)) = k((t1,%1)).

2.3 Differential Forms and Traces

As before k is a fixed perfect field with discrete topology. In this section we show
that to each finite morphism K — L in TLF(k) there is attached a canonical
trace map Try/k : Q}‘j:" — Q}s/"}cp.

Lemma 2.3.1 Let K be a TLF over k. Then Q;&sﬁf is a free ST K -module of
finite rank.

Proof Let K = F((t,...,t,)) = F((t)) be a parametrization of K. By cor.
1.5.19, F[t] — K is topologically étale relative to k. By condition a) of def.
2.1.10, Qpy i is a finitely generated free F' [t]-module. Since K is separated,

*,8ep ~v

and using cor. 1.5.13, we get Q" = K Qpg Qpyg k- O

Recall that if chark = p then Q5° = Q} , = Qf (cor. 2.1.15).
Given a TLF K define the differential logarithm map dlog : K* — Q}",S/e,f,

dlog(a) := @ 'da. This is a homomorphism of abelian groups, functorial with
respect to continuous k-algebra homomorphisms.
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Proposition 2.3.2 There ezxists a unique functorial trace map, assigning to
each finite morphism K — L in TLF(k) a map Trp x : Qpj — QEJF, satisfy-
ing the following azioms:

T1 Trpx 1s a homomorphism of semi-topological differential graded left
Q;{’s/e,f-modules, of degree 0.

T2 Trp/k coincides with the field trace on L = Qgﬁp .

T3 Trp/k odlog = dlogoNp/k : L* — Q}f/e,f, where Ny g s the field norm.

(Cf. [Lo] props. 2 and 4, and [Kul] §2.3 Satz 1.)

Proof 1) Assume k has characteristic 0. According to cor. 2.1.18 and prop.
1.5.8 any finite morphism K — L is topologically étale relative to k. Therefore
QR = IP @ L. Let Trpyx : Qpjf — Qg7 be the Q770 linear extension
of the field trace Try x : L — K. Because it is K-linear, Try/ is continuous.
The functoriality follows from the same property of the field trace.

Choose any finite Galois extension g : K — M containing L, and let H :=
Homagxy(L, M). By cor. 2.1.20 we may assume that g is a finite morphism in

TLF(k). Then g : Q5 — Qj\;;,f is injective, and

goTryx =3 h: Q5P — Qe . (2.3.3)
heH

Since hod=doh and go Ny/g = [lpeg h : L — M, it follows that Try/k
commutes with d and that axiom T3 is satisfied.

2) Now assume that k has characteristic p. By [Kul] §2.3 Satz 1 there is a
functorial trace map Try g : Qf — Q} for any finite extension K — L. It is a
homomorphism of DG Q}-modules; hence it is continuous. Axiom T2 follows
from [Kul] (2.3.6) property d). In order to verify axiom T3 we may assume (by
transitivity) that L is either separable over K, or purely inseparable of degree p.
In the first case formula (2.3.3) holds. In the second case it suffices to consider
a € L* — K*, and by [Kul] (2.3.6) property e)

Trz/k o dlog(a) = a PTry/k(a”~'da) = a7?d(a?) = dlog o Ny /k(a) . (2.3.4)
a

Remark 2.3.5 In [Kul] E. Kunz proves the existence of a canonical trace map
Trp/k : Q) — Qy, for any finite extension of fields K — L relative to any
base field k. In characteristic 0 the proof is like part 1) of prop. 2.3.2, whereas
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in characteristic p it uses Tate’s trace map, see [Tal] p. 401. For TLFs the
two trace maps Try/x are compatible with the projections Q* /, — Qi‘ﬁp . (The
author thanks R. Hiibl for referring him to [Kul].)

Remark 2.3.6 The multiplicative group K* is considered here to be a discrete
group, and the same holds for the Milnor ring K*K; see remark 1.3.8 and
digression 2.4.25. When dealing with local class field theory one does topologize
these groups appropriately; the reader is referred to [Pa3] §2, [Ka] part I §7.1
and [Kh] §2.3.

Definition 2.3.7 Let K € TLF(k) with rankg Q}f}ekp = d. The dual module of
K 1s the free semi-topological K-module of rank 1, wg := Q’;(’,jekp.
The name is explained by the next proposition. First we define the trace
pairing
mult Trr/x
(—,—)L/K : waL — Wj, > WK. (238)

Proposition 2.3.9 The trace pairing is a perfect pairing of semi-topological

cont

K-modules, i.e. it induces isomorphisms wy = Hom@"(L,wk) and vice-versa.

Proof It suffices to show that Tr;/x is non-zero, and we may assume K — L
is either separable or inseparable of degree p. In the separable case this is
well known. If L = K[a] with a inseparable over K of degree p, then choose
bi,...,b4_1 € K> such that a,b,,...,by_, is a p-basis of L. Then

Trr/k(dlog(by) A - - - A dlog(bg-1) A dlog(a))
= dlog(b;) A - - - A dlog(b4—1) A dlog(a?) # 0
in wg. (Cf. [Kul] (2.3.5)). O
Let CTLFreq(k) be the full subcategory of CTLF(k) consisting of reduced

algebras. It is an easy matter to extend the trace functor to CTLF,q(k). For
A € CTLF,eq(k), we have Q:{ﬁp = Tlpespeca U arny/k- Given a finite morphism

. (A/p)/k"
A — B, the trace map is defined locally on Spec B:
Trp/a = Y Tres/a/am : Vare — e (2.3.10)
alp

Set wg 1= @pespec 4 Wa/p; a free ST A-module of rank 1. Then the trace pairing
(—,—)B/a: B x wp — w, is a perfect pairing of ST A-modules.

The next proposition shows that the trace pairing commutes with finitely
ramified base change (cf. [Lo] lemma 5 iii) ).
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Proposition 2.3.11 Let the data of theorem 2.2.4 be given, and assume that
f s a finite morphism and the algebras A, A’ and B are reduced. For every
q' € SpecB' denote the length of the artinian local ring By, by I(B;) and
denote by vy the induced map B — B'[q' = (Blq)q- Then

uo TI‘B/A = TI‘B:“/A: (¢} (Z I(B;,)vq,) . Qgﬁp — Q:;,ls/eg’.
q

Proof We may assume that A, A', B are fields. Now B =B®, A'. If A— B
is separable then so is A" — B’ and I(Bg) = 1 for all ¢'. All traces appearing
are gotten by base change from the field trace Trp/4 : B — A, so equality holds.

Next, assume that B = A[b] with b inseparable of degree p over A. Then
Spec B' = {¢'}, and either u(b?) ¢ AP, in which case I(B') =1, B' = A'[v(b)]
and Trp:; 4 (dlog o v(b)) = uo dlog(b?); or u(b?) € A'®, in which case I(B') = p,
Bl = A" and u o dlog(b’) = 0. Again equality holds.

The general situation now follows by transitivity. a

2.4 Residues in Topological Local Fields; Topological
Duality

As before k is a fixed perfect field. Given K € TLF(k), let K,K = @2, K:K
be its Milnor ring (see [Mi]). As mentioned earlier (remark 2.3.6), K.K has
the discrete topology. For any a,,...,a; € K*, we denote the corresponding
element (symbol) in K; K by (ai,...,a;). Let n := dim(K). Foreveryl1 <i<n
there is a homomorphism of abelian groups

ordy :=00---08 : K;K — Kok;(K) = Z (2.4.1)

1

where 0 : K. K — K,_1k,(K) is the map of [BT] prop. 4.5. If v = (v1,...,v,) :
K* — (Z,lex) is a surjective valuation, one has ordy/(ai,...,a;) = (-1)@

det[v,(a,)] (cf. [Lo] p. 501).

Remark 2.4.2 The original definition of 9, namely the one in [Mi], differs
from that of [BT] by a sign. We chose the latter since it permits O* to act
from the left.

There is a canonical homomorphism of graded rings (called the Tate map
on [Pa3] p. 166) dlog : K.K — Q7, extending the differential logarithm

dlog : K* — Q}fﬁp. Thus dlog(ay, . ..,a,) = ay’da; A --- A a;'da,,.
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The following important theorem is due to Lomadze ([Lo] thm. 1). It gen-
eralizes the well known 1-dimensional case (see [Se] ch. IT no. 11) and Parshin’s
result for 2-dimensional fields ([Pal] §1 prop. 1). We present an improved ver-
sion, in the framework of topological local fields.

Theorem 2.4.3 Let k be a perfect field. There exists a unique functor Res :
TLF(k)° — Ab, such that Res K = Qi7P for all K € TLF(k), and satisfying the
following azioms:

R1 Given a morphism K — L in TLF(k), the map Resy/kx := Res(K — L) :
Q}:’;Zp — Q}s/ekp s a homomorphism of semi-topological differential graded
left Q35 -modules of degree —dim(L/K).

R2 If K — L is a finite morphism then Resy/x = Try/k.

R3 If K — L is a morphism of dimensionn > 1, then for any aq,...,a, € L*
it holds that

Res/k o dlog(ay,...,a,) = [ka(L) : K]ordy(ay,...,a,).

The proof is postponed till later in this section.
Observe that for L = K((t1,...,t,)), axiom R3 yields

Resy/k(t;'dta A--- At71dY) =1 .

Remark 2.4.4 Our residue map Resy /g differs from the one defined on [Lo]
p. 509 by a factor of (—1)#), where n = dim(L/K).

Let K — L be a morphism in TLF(k). We call K — L smooth (resp.
étale) if it is so in STComAlg(k). A Laurent series morphism K — K((t)) is
smooth. Thus if chark = 0, any morphism K — L is smooth, since it factors
as K — K((t)) — L with K((¢)) — L finite separable. On the other hand,
if chark = p, K — L is a smooth morphism iff L is a separable K-algebra
(see cor. 2.1.16). (One can actually show that any smooth morphism factors
as K — K((t)) — L with K((¢)) — L finite separable.) Given a smooth
morphism K — L of dimension , any splitting Q7 = Q7% & (Q}('s/ip Ok L)
defines an isomorphism of left ST graded Q}sﬁcp-modules

QP = QP @k O . (2.4.5)
This induces a canonical homomorphism of left ST graded 237 -modules
s Q?;::p *,5€] *,Se]
QL’/kp - = 5P ®K HnQL’/I? . (2-4-6)

*,5€ <n-—1se n—1,se - 'Kk
V- (QL/k +d(Q7 p))
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Hence any map 977, /k —Q ’s/ep satisfying axioms R1 - R3 factors through the
module on the right hand side of (2.4.6), and thus is completely determined by
its restriction to Q7" (if K — L is smooth !).

Note that by formula (2.4.6), QX @k H'QPE is a DG Qi5P-module.
Taking L = K((t1,...,t,)), the action of the exterior derivative d on Q7P ®k
H* Q%) 1S given by.

4(8 ® tdlog(t)) = d(8) ® - dlog(1) (247

for B € N ,gjip and i € Z". Define a K-linear map
Kwyx — K 2.4.8
{ Yiezr @i tidlog(2) — a(,...0)- ( )

An elementary calculation (say, using prop. 1.3.5 and lemma 1.3.9) shows that

this map vanishes on d(Q'I'{((l &/ x)» inducing a map H" Q¥ (yx — K. Extend

it to a homomorphism of left Q If/e,f-modules

Reskwy/kt * Qyn — Uk (2.4.9)
using (2.4.6).

Definition 2.4.10 Let K — L be a morphism of dimension n in TLF(k) and
let a = (ai,...,a,) be an initial system of parameters in L. Define

*,sep

Resz/k.a = Resk()/K.a © Tro/k(@) : Qi — Q-

Suppose K — E is a finite morphism. Then Q3 BD) i = Ejk ®x Vi K((_)) /K>
implying that

Resk(()/k .t © Tre(@)/k(0) = Tre/K © Resp(w) /- (2.4.11)
It immediate from the definition that
Resk(t9)/k,te) = Resk((9)/k.s © ReSk(,0)/k((),t (2.4.12)

where (¢,s) := (t4,...,51,...) is the concatenated sequence.
If char k = p we have K((t))*/%) = K((¢*)) = K((£},...,t2)), so

Tri )k () (dlog(t)) = dlog(#”) ,

and .
Trx @)/ () (& dlog(t)) =
if 0 < i; < pbuti#(0,...,0). Therefore we get an equahty

RCSL/K& = ReSL/K,_a_p (2413)

for every initial system of parameters g in L.
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Lemma 2.4.14 The map Resp/x, commutes with finitely ramified base ch-
ange: given K' € TLF(K') and a finitely ramified homomorphism u : K — K',
let K' — L' be the resulting morphism in CTLF(k'). Then in the notation of
thm. 2.2.4 and prop. 2.8.11 one has

uo R(ESL/K’E = z l(La/)ReS(LI/qI)/KI’E O Vg : QZﬁp — Q;ﬁ;‘,:, .
q’

Proof In view of prop. 2.3.11 it suffices to show that

u o Resk((a))/k.a = Resg((a))/kr,a 0V
which is immediate from the definitions. O

A homomorphism of fields K’ — L induces a homomorphism of graded rings
K.K — K,L, and this makes K, L into a left K, K-module. If K — L is finite,
there is a canonical transfer map Ny k : K.L — K, K, which satisfies:

Nyz/k is K, K-linear of degree 0,

Ni/k(1) = [L: K] and Nk, is the field norm. (2.4.15)

(see [BT] p. 386 and [Ka] §1.7 prop. 5).
Now suppose that K — L is a finite morphism in TLF(k). Then according
to [Lo] propositions 5 and 6 respectively we have

Try/k o dlog = dlog o Nk : K.L — Q;(S/e,f (2.4.16)

and ' .
ordy o N/ = [ki(L) : ki(K)]ordy, : K;L — Z. (2.4.17)
(Cft. also our digression 2.4.25.) According to [Lo] lemma 6 vii) b), it holds that

Resk (())/k,q © dlog = ordk () : KnK((a)) — K. (2.4.18)

Lemma 2.4.19 The map Resy g, satisfies azioms R1, R2 and R3.

Proof Axiom R2 holds by definition. To verify axiom R1 we may assume that
L = K((t)) and a = t; this is because of proposition 2.3.2. The Q5P -linearity
is built into the definition. As for continuity, according to formula (2.4.12)
we may assume that L = K((t)). Now use prop. 1.3.5. To see that Resy/k;
commutes with d, it suffices to look at the forms 3 A ¢ dlog(t), with 8 € Q;f/e,f
For them we can use formula (2.4.7).

Finally, to prove axiom R3 we consider the diagram
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n,sep
Lfk
dlog Trr/k (@)
Ni/k(@) dlog n
K.L K.K((a)) K'?es))/k
ordz OI'd';{((g)) Res K((a))/K,a
kn(L): K
[£a(L) : K] K

Looking at formulas (2.4.16), (2.4.17) and (2.4.18) we see that the three
small diagrams commute. But the axiom is equivalent to the commutativity of
the outer diagram. a

Proof (of thm. 2.4.3) First we show the uniqueness of the residue functor.
Let K — L be a morphism of dimension n in TLF(k) and let a be an initial
system of parameters in L of length n. We will show that Resp;x = Resy/kq.
By functoriality and axiom R2 we may assume that L = K((a)). Using the
factorization (2.4.6) and axiom R1 it suffices to show that Res;,x (at dlog(a)) =
bi(0,..,0) for all i € Z*. For i = (0,...,0) this is axiom R3. If chark = 0
we are done, since we may “integrate” ‘a’dlog(a) if ¢ # (0,...,0), showing
it is a cocycle. If chark = p we get TrL/L(,,j,K)(gidlog(g)) = 0 when j is
large enough (take j s.t. i € p'Z"). Now apply functoriality and axiom R2 to
K — LW/K) [

To prove existence it suffices to show that Res; k. = Resy/k for any two
initial systems of parameters ¢ and b. Functoriality is then a consequence of
formulas (2.4.11) and (2.4.12), and we already checked that the axioms are
satisfied. The initial system of parameters ¢ may be taken to be regular. Let
us consider three cases:

case 1 The map K — k,(L) is an isomorphism. Then L = K((a)). Since
the map Resy/k, satisfies the axioms, the uniqueness proof above (and using
formula (2.4.13) in characteristic p) tells us that Res; k. = Resy k.

case 2 The map K — £k,(L) is separable. Then there is a factorization K —

E — L with E 5 k,(L). Therefore L = E((a)) and formula (2.4.11) reduces
this to case 1.

case 3 The map K — k,(L) is purely inseparable (and chark = p). (Cf. [Lo]
lemma 8.) First note that formula (2.4.13) allows us to assume that K — L
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is smooth: simply replace L with K ((_q))[_lz”’ | for j sufficiently large. Therefore

we need only compare the two maps restricted to Q7 7;".

Let K be the field K made into a 0-dimensional field in TLF(k) (so it has
the discrete topology) and let L be the field L with the TLF structure such that
K((a)) — L is a finite morphism. Note that the original morphism K — L is
then the finitely ramified base change obtained from K — L and K — K. By
lemma 2.4.14 we can assume that dim K = 0.

Now let K’ be an algebraic closure of K, considered as a 0-dimensional
field in TLF(k), and let K’ — B’ be the morphism in CTLF(k) obtained by
finitely ramified base change from K — L and K — K'. Again appealing to
lemma 2.4.14 it suffices to check that Resp//q)/k'a = Res(p//q) K for every
q' € Spec B'. Since K’ is algebraically closed we are back to case 1. O

Corollary 2.4.20 There ezists a unique functor Res : CTLFq(k)° — Ab ez-
tending Res : TLF(k)° — Ab, s.t. for any morphism A — B, the residue map
Resp/a : Qg7 — Q7° is (left) Q50 -linear.

Proof Define Resp/4 := 31, Res(s/q)/(a/p)- =

Definition 2.4.21 Let A — B be a morphism in CTLF,eq(k). The residue
pairing is the map

mult ResB/A
(—- _)B/A BXUJB — WRB —/m W4 .

We can now state our main result on clusters of TLF's:

Theorem 2.4.22 (Topological Duality) Let A — B be a morphism in
CTLFrea(k). The residue pairing is a perfect pairing of semi-topological A-
modules.

Proof We may assume that A and B are fields. Moreover, in view of prop.
2.3.9 we may assume that B = A((t)) = A((t1,...,tn)) Withn > 1. Set t' :=
(t2,...,tn). Given ¢ € Hom$™(B,w,) define, for every i E€Z, ¢ A((Y)) —
wa, ¢i(a) := ¢(at;’). By induction on n there exists a unique a; € wa))
representing ¢; with respect to the pairing (—, —)4())/4- According to prop.
1.2.22, a; = 0 for i << 0. Then «a := ¥ ;cz ; A tidlog(t;) € wp represents ¢,
and it is unique. O

Another important result is: (cf. [Lo] thm. 1 iv))
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Theorem 2.4.23 (Smooth Finitely Ramified Base Change) Let f : A — B be
a morphism in CTLF,.q(k), let A’ € CTLF,eqa(k) and let u: A — A’ be a finitely
ramified homomorphism, topologically smooth relative to k. Let f' : A’ — B’
be the morphism in CTLF(k) gotten by finitely ramified base change and let
v : B — B’ be the corresponding finitely ramified homomorphism (see thm.
2.2.4). Then B' is reduced, u : Q}ﬁp — Q;’,sﬁ 18 injective and the diagram
below commutes:

v
*,s€p *,sep
Q1'3/1‘: QB’/k’
ResB/A ‘RGSB//A:
Qsep u Q*sep
Alk Allk!

Proof We may assume that A, B and A’ are fields. From formula (1.5.12) it
follows that Q377 = Q7% ®4 77, so u is injective.

Recall the proof of thm. 2.24. Since u : A — A’ is smooth in
STComAlg(k), so are A[s] — A'[s] — A'((s)) (prop. 1.5.9 b) and cor. 1.5.19).
But A[s] — A((s)) is étale, so by diagram chasing in def. 1.5.7 we see that
A((s)) = A’((8)) is smooth in STComAlg(k). By cor. 2.1.16, if chark = p, this
implies that A’((s)) is a separable A((s))-algebra. In characteristic 0 separabil-
ity is automatic. Therefore B’ = B ® 4((s)) A'((s)) is reduced, which means that
I(By) =1 for all q' € Spec B'. By lemma 2.4.14 the diagram commutes. [

We saw that in characteristic p the topology on local fields is superfluous
(prop. 2.1.21). The next example shows that in characteristic 0 and dimension
> 2, not only are there many topologies on a local field, there also are many
residue maps, since these depend on the topology. Fix a field K € TLF(k)
and a morphism f : unt(K) — L in LF(k), and let {f* : K — L} be the
morphisms in TLF(k) in the fibre over f relative to the functor unt. Then the

ReSLa /K
maps /k—»Q*L’fe/';c ——— Q3P may change as « varies.

Example 2.4.24 Suppose chark = 0. Let L° := k((¢1,%3)) € TLF(k) and let
o : k((tz)) — L7 be the standard morphism. Denote by L the untopologized
local field unt(L?). Choose a transcendency basis {uq} for k((ty)) over k(t,)
and fix some ug € {uy}. Let 7 : k((t2)) — k((t2))[[t1]] be the unique k(t,)-
algebra lifting such that 7(ug) = ug + t; and 7(uys) = u,, a # 0. Extend it to
an isomorphism k((t1,t5)) = L of local fields by sending ¢; + t,, and let L" be
this new TLF. The map 7 : k((t)) — L is then a morphism in TLF(k).
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Consider the form 3 := t7'd(uo + t1) A t;'dt; € Q% /i (the discrete, infinite
dimensional space). Since we have a morphism 7 : k((tz)) — L7, it follows that
d(uo+t1)Adty = 7(dugAdt;) = 0in Q7. Therefore 8 = 0 and Reer /(B) =

On the other hand, in Q L’fj‘,’c we have dug A dt; = o(dug A dtz) = 0, so
B = t7'dt; A t3'dt, and Resgo i (8) = —1.

Digression 2.4.25 It is possible to define a residue map in Milnor K-theory.
First one has the following result: Let K — L be a finite homomorphism of
n-dimensional local fields (def. 2.1.8). Then for all 1 < i < n,

Ny (L)/ri(x) © 3}1 = 327 oNp/k : K.L — K._iki(K). (2.4.26)

Here 8% = 0o ---00, so 9%|k,x = ordy. The proof uses the same ideas found
in [BT] ch. I §5.9 and [Ka] §1.7. This generalizes prop. 3.1 of [Kh].
Given a morphism K — L in LF(k), define

Resl}flK = N, (2)/k 0 0L : KiL = Ki_n K (2.4.27)

where n = dim(L/K). Formula (2.4.26) implies that Res™ := (K.(-),
ResY,_) is a functor LF(k)° — Ab. It is not hard to verify that dlog : Res™ o
unt — Res is a natural transformation of functors on TLF(k)°. This is of par-
ticular interest in characteristic 0, when one takes into account example 2.4.24
and the preceding discussion.

Digression 2.4.28 We may define a version of de Rham cohomology in TLF(k)
and get a Poincaré duality. Let us consider the easier case of a morphism
K — L = K(¢t) = K((t1,---,t)). Set Z*Qp g = ker(d) and B*Q} x :=
im(d). If chark = p there is a relative Cartler operation, an L(*/K)_algebra
epimorphism Cp/x : Z* QL/K—»QL(,,,K x With kernel B*Q} ;. (see [II] §2.1).
Define Z1Q2} /i = Z*Q /g, BIQ7 k _]é *Q},k and by recursion

Zi = L1k = Crlp(ZiV0rm k)

Bin =B, */K = CL/K(B Qm/x)/x)
Then B} CB; C...CB; CZfC...CZ; CZ]. Set Z} :=Z; and B}, :=
closure of UB; in Q7. Having done so, we define

H*QZ’;"IE if chark =0

,sep =
(L/K): { if chark = p

B‘
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Then one can show that

HpP(L/K) & K ®k A; [@ k- dlogt,-]
=1

and that the residue map induces a perfect pairing

. . Res
isep(L/K) x Hip*P(L/K) — HpeP (L) K) —— K.
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3 The Beilinson Completion Functors

3.1 Definition of the Completions

Let X be a noetherian scheme. In [Be] A. Beilinson defines sheaves of adeles
on X with values in any quasi-coherent sheaf. The “local factors” of the adeles
are the completions discussed in this section.

Given a subset S C X we denote its closure by S~. If z,y € X are points
s.t. y is a specialization of z, i.e. y € {z}~, we shall indicate this by writing
T 2>y.

Definition 3.1.1 Let n be a natural number. A chain of length n in X is a
sequence € = (xo,...,Z,) of points of X with z; > x4 for alli. If for every i,
Ty 18 an tmmediate specialization of z; (i.e. codim({zi41}™,{zi}”) = 1), we
call € a saturated chain.

Let ¢ = (xg,...,2n) be a chain. A face of { is any subchain 7. For any integer
i =0,...,n, the i-th face of ¢ is the chain d;§ := (zg,...,Zi—1,Zit1 ,---,%n)-
We say that { begins with zy and ends with z,. Formally we introduce a
chain 1 of length —1, and set do(zo) := 1. By convention whenever we write
€ = (z,...) etc. or specify that a chain ¢ is saturated, it is implied that { # 1. If
&= (zo,...,2,)and n = (Yo, ...,Ym) are chainss.t. , > yo, their concatenation
is defined to be the chain £V 7 := (zo,...,Zn,Yo,...,Ym). For any chain { define
Evi=1v{:=¢.

Let M be an Ox-module. Its stalk at the point £ € X is denoted by M,.
Let m, € Ox . be the maximal ideal. If M is quasi-coherent then for any i > 0,
M, /mi*! M, is a skyscraper quasi-coherent sheaf supported on {z}~.

Definition 3.1.2 To each chain § in X we associate an additive functor (=) :
M — M, from the category QCoh(X) of quasi-coherent sheaves on X to the
category Ab of abelian groups, called the Beilinson completion along £. The
definition s by recursion on the length of £.

59



A. YEKUTIELI

a) For any quasi-coherent sheaf M set M; :=I'(X, M).
b) Suppose £ = (z,...) has length > 0.

i) Given a coherent sheaf M set M :=lim_;(M,/mi I M, )q,e.

ii) Let M be a quasi-coherent sheaf and let (Mg) be the direct system
of its coherent subsheaves. Set M :=lim,_,(M,q)e.

Let £ = (xzo,...,2,). Forevery: =0,...,n there is a natural transformation
0; : Mg, = Mg, called the i-th face map. These satisfy the simplicial relations
0;0; = 0;_10; for all i > j. Thus for any face 7 of { there is a well defined face
transformation 0 : (=), — (=)¢. If n = 0 and M is coherent then M,
is nothing but the m, -adic completion of M,,. When M,  has finite length
over the local ring Ox,,, the face map 0y : Mq,e — M; is bijective. For the
structure sheaf we abbreviate and write Ox ¢ instead of (Ox);.

The group M, is only an auxiliary device introduced to simplify definitions
and proofs. Completion along an actual chain £ = (z,...,2,) (as opposed to
& =1) is a local process - it depends only on the stalks at z, € X. Thus we
can replace X with any open subscheme U C X which rontains z,,.

When convenient we shall consider the completion M, ... z,) as a skyscraper
sheaf supported on the closed set {z,}~. (It is seldom quasi-coherent !) Doing
so the completion becomes a functor (—)¢ : QCoh(X) — Mod(X) and the face
maps 0; become Ox-linear.

Consider the prototypical example:

Example 3.1.3 Let X := AZ = Speck[s,t], the affine plane over a field k.
Take z := (0), y := (t) and 2z := (s,t) in X, so £ := (z,y, z) is a saturated chain
of length 2. We then have

Ox,z) = k(s1), Ox,y) = k(s)((?)) ,
Oxw = k()[[t], Oxws = k((s))I[]
Ox:) = ks, Ox ez = k((s)((?)) -

Proposition 3.1.4 For any chain £ (of length > 0) the functor ()¢
QCoh(X) — Ab is ezact and commutes with direct limits.

Proof The proof is by induction on the length of { = (z,...) and is divided
into steps. We may assume that X is affine, so the functor (—); is exact.
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1) Consider the functor (—), : Coh(X) — Ab. To prove its exactness we modify
the the proof for the usual adic completion over a noetherian ring. Given an
exact sequence
M=0-M->M->M"-0)

in Coh(X), define an inverse system (M});cn, Where M; := M, /mitIM,,
M! = M! JmiI MY and M := im(M, — M;). Since (—)q,¢ is exact by
induction, we get an inverse system of exact sequences ((M;])4.¢ )ien in Ab,
and since (M, ;)de — (M})a,¢ is surjective for all 7, we get an exact sequence

0— Hm(M;)doﬁ — Mg - Mg —0.

But by the Artin-Rees lemma the filtration (M/,Nmit M, );en on M., is cofinal
with the m,-adic filtration on it. Therefore lim, ;(M;)a,e = M.

2) Now suppose lim,—, M, = N in Coh(X). Define M/, := ker(M, — N)
and M! := im(M, — N). Then lim,_, M/, = 0; since the category Coh(X)
is noetherian, for each g there exists some a; > ap such that im(M —
M., ) = 0. This implies that lim,_,(M,)¢ = 0 too. Because (—)¢ and lim_, are
exact functors we have lim,—,(M,)¢ = lim,—,(M%)e. Now there exists some ag
s.b. M2 S M S N for all @ > ag; therefore (ML, )¢ = lim,—, (M) = N
3) Suppose we are given a direct system (Mgy)aer in QCoh(X), with lim,,
M, = N. Each M, is itself a direct limit of coherent sheaves; since direct
limits commute we may assume that all M, are coherent. Let (Nj)ges be
the direct system of coherent subsheaves of A/. For each (a,f8) € I x J let
Lop := My Xn Np, a coherent sheaf. The direct system (Lqg)(a,8)crxs is a
common refinement of (M, )aer and (N3)gey, and by step 2)

lim(Ma)e = lim (Lop)e = Lim(Np)e = A -
4) Finally any exact sequence M* in QCoh(X) is a limit of some direct system

of exact sequences M?, of coherent sheaves. Since (M*)¢ = lim,_,(M}); it is
exact. O

Just like for the adic completion of a noetherian ring we have:

Corollary 3.1.5 For any chain € in X (of length > 0) there is a natural iso-
morphism of Ox-modules M¢ = M ®o0, Ox¢. The Ox-module Ox ¢ is flat.

Proposition 3.1.6 Let £ be a chain in X (of length > 0). Then the completion
Ox¢ 15 a commutative Ox-algebra. Given a quasi-coherent Ox-algebra B, the
completion B¢ is an Ox ¢-algebra. If B is coherent then B is a noetherian ring.
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Proof We may assume that X is affine, so Ox; = I'(X, Ox) is a noetherian
ring. The proof is by induction on the length of { = (z,...).

1) For any i > 0 set B; := Ox,/mi*!. This is a quasi-coherent Ox-algebra. By
induction (B;)g,¢ is an Ox q,¢-algebra. Moreover, since (B;)ae = Bi ®ox Ox doe
is a localization of a quotient of the noetherian ring Ox gq,¢, it is noetherian
too. Passing to the inverse limit we conclude that Ox ¢ = lim. ;(B;)4,¢ is an
Ox do¢-algebra. According to [CA] ch. III §2.10 cor. 5, this is a noetherian ring.

2) Let B be any quasi-coherent Ox-algebra. By corollary 3.1.5 we have B¢ =
B®ox Ox¢. The right hand side exhibits B, as an Ox ¢-algebra. If B is coherent
then B; is finite over Ox, so it is noetherian. O

Given a chain { = (z,...) we shall write k(§) := k(z)¢ and m; := (m,),.
Thus me C OX,£ is an ideal and Oxyg/me = k(f)

Let f : X — Y be a finite morphism of noetherian schemes. If y € Y
and z € f~!(y), that is if = lies over y, we shall write z|y. This standard
notation can be extended to chains: given chains 7 = (yp,...,yn) in ¥ and
& = (zo,...,2,) in X s.t. z;|y; for all 7, we shall write &|n.

Proposition 3.1.7 Let f : X — Y be a finite morphism of noetherian sche-
mes, let M € QCoh(X) and let ) be a chain in' Y. Then there is a natural
isomorphism (fu M), = D¢, Me.

Proof The proof is by induction on the length of 7. To start the induction
note that (fuM); = M;. Say n = (y,...). First assume that M is coher-
ent. Then f,M is also coherent and the two inverse systems in QCoh(Y):

($z|y f"(M‘/miHM“))ieN and ((f./\/()y/m;'l‘"l(f,,./\/i)y)i‘EN are equivalent. By

induction we have for all ¢ > 0 and all z|y:

f*(Mz/miHMz)don = @ (Mz/miHMr)f' .
€'|don
Therefore ) .

(feM)y = Lmy((foM)y/m" (M) )den
> lim; (@ay fo(Ma/mi ' My))
= ®z|y ®€'|do7l lim._,-(M,/m;"'le)y
= Dep Me -

Now let M be quasi-coherent. Then every coherent subsheaf N, C f,M

is contained in f.Njp for some coherent N3 C M. According to prop. 3.1.4 we
have (f,M), = @¢), Me. a
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From here to the end of §3.1 we assume that X is a scheme of finite type over
some noetherian ring k. Let M and A be Ox-modules and let D : M — N
be a k-linear sheaf homomorphism. D is called a differential operator (DO) of
order < d (relative to k) if the following holds: for every open set U C X the
homomorphism D : ['(U, M) — I'(U, N) is a differential operator of order < d
over the k-algebra I'(U, Ox). The set of all operators of order < d is denoted
by Diﬂ"g(/k(M,N), and taking the union over all d > 0 we get Diff x/r(M,N).
The composition of differential operators is again a differential operator, of a
higher order. Differential operators of order < d are represented by the sheaf
of principal parts of order d, Pj’(/k(M) = 'P}’l(/k ®o, M; that is to say, there is
a canonical isomorphism

Diff% (M, N) = Homx (P (M), N) .
(For more details see [EGA IV] §16.8 and §1.4 here.)

Definition 3.1.8  a) Let A be a commutative k-algebra and let M and N
be A-modules. A locally differential operator over A, relative to k, 1is
a k-linear homomorphism D : M — N s.t. for every finitely generated
A-submodule M' C M, D|yp is a differential operator over A.

b) Let M and N be Ox-modules and let D : M — N be a k-linear sheaf
homomorphism. We call D a locally differential operator (relative to k) if
for every open subset U C X the homomorphism D : T'(U,M) — I'(U,N)
is a locally differential operator over I'(U, Ox).

If M is coherent then any locally differential operator is actually a differ-
ential operator (because X is noetherian). The usage of the adverb “locally”
is confusing, since it has nothing to do with the topology of X; however this
usage is common in representation theory.

Lemma 3.1.9 a) Let M a coherent sheaf, let N be a quasi-coherent sheaf
and let D € Diff x/(M,N). Then im(D) is contained in some coherent
subsheaf of N

b) The composition of two locally differential operators is again a locally
differential operator.

Proof a) Since X is of finite type over k the sheaf Py /(M) is coherent (cf.
[EGA 1V] prop. 16.8.6). If ¢ : P§ /(M) — N represents D then im(D) C
im(¢). (In fact im(¢) is the Ox-submodule of N generated by im(D).)
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b) Given quasi-coherent sheaves £, M and N, and locally differential operators
£ 2 M B N we have to show that Eo D is a locally differential operator as
well. Let £' C £ be a coherent subsheaf. Then D|. is a differential operator.
By the preceding lemma, im(D) C M’ for some coherent M’ C M. Since E|r¢
is a differential operator, so is E o D|z = E|p: 0 D|gr. O

Proposition 3.1.10 Let M and N be quasi-coherent sheaves on X and let ¢
be a chain in X. Any locally differential operator (relative to k) D : M — N
extends to a locally differential operator over Oxg¢, D¢ : Mg — Ng. If D is has
order < d, then so does D¢. The assignment D — D; is functorial.

Proof The proof is by induction on the length of £ = (z,...). For £ =1 the
statement is trivial.

1) Assume M is coherent. According to lemma 3.1.9 a) there is a coherent
subsheaf N/ C N such that D factors through A”. Thus we may assume N
to be coherent too. Let d be the order of D. According to prop. 1.4.6, for
any integer ¢ > 0 we have D(mit+IM,) C mitIA, so there are well defined
differential operators

D; : M, /miFH M, — N /mitIN, .

Upon applying (—)q¢ We get:
(Di)aog * (Ma /M My )age — (No/meH No)aoe

which has order < d too. Passing to the inverse limit in ¢ we obtain D, : M¢ —
Ne. If E : N — L is another locally DO then these considerations show that
(EO D)g = Ef 0D£.

2) Next assume M is quasi-coherent, and let (M,) be the collection of its
coherent subsheaves. The functoriality of D, on coherent sheaves shows that the
differential operators D : (M,)e — N patch together to a locally differential
operator D¢ : Mg — N. O

3.2 Topologizing the Completions

In this section X is a scheme of finite type over a noetherian ring k. We
introduce a canonical linear topology on the Beilinson completions M. Recall
that the category TopAb of linearly topologized abelian groups is additive and
has direct and inverse limits (see §1.1). Repeating definition 3.1.2, but this time
with TopAb instead of Ab, we get
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Definition 3.2.1 To each chain { in X, we associate an additive functor (=) :
QCoh(X) — TopAb. The definition is by recursion on the length of €.

a) For any quasi-coherent sheaf M set M, := I'(X, M) with the discrete
topology.

b) Suppose £ = (,...) has length > 0.

i) Given a coherent sheaf M, set Mg = lim_;(M,/miI M, )gpe in
TopAb.

ii) Let M be a quasi-coherent sheaf and let (M,) be the direct system
of its coherent subsheaves. Set M :=limq_,(My)e in TopAb.

Forgetting the topology we recover definition 3.1.2. Thus the completion
M; has many facets: a discrete abelian group, a linearly topologized abelian
group, or an Ox-module. There will be even more facets to Mg, all depending
on context.

Say ¢ has length n > 0. The face maps 0; : Mg, — Mg, 0 < i < n, are
continuous. Later in this section we shall see that for ¢ = n, J; is a dense map,
and for 7 = 0 it is strict. A special instance of this is k(t) < k((t)) (dense) and
k[[t]] < k((t)) (strict).

The next two propositions are proved just like their counterparts in §3.1,
using the recursive definition of the topology.

Proposition 3.2.2 Let M and N be quasi-coherent sheaves and let D : M —
N be a locally differential operator. Then the induced operator D¢ of prop.
8.1.10 s continuous.

Proposition 3.2.3 Let f : X — Y be a finite morphism, let M be a quasi-
coherent sheaf on X and let n) be a chain inY. Then the isomorphism (f,.M), =
D¢y Me of prop. 3.1.7 is a homeomorphism.

Recall the definition of semi-topological (ST) rings and modules from §1.2.
We put on the base ring k the discrete topology.

Proposition 3.2.4 Let { be a chain in X. The completion Ox¢ is a semi-
topological k-algebra. Given a quasi-coherent Ox-module M, the completion
M¢; is a semi-topological Ox ¢-module. Given a quasi-coherent Ox-algebra B,
the completion B, is a semi-topological Ox ¢-algebra.

Proof The proposition amounts to the following statement: given an Ox-
bilinear pairing (—, —) : £ x M — N of quasi-coherent sheaves, the pairing
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(—,=)e : L¢ X M¢ — N obtained by tensoring with Ox ¢ has the property
that (a,—) : M¢ — AN is continuous for all a € L. The statement is trivial
for £ =1, so we can use induction on length.

By the definition of the topology one may assume that all three sheaves are
coherent. Say £ = (z,...). For every ¢ > 0 there is a pairing

(Lafm Lo )age X (M /MG My)age = (Na/mGH AL )age -
By induction for every a € £; the homomorphism
(a’ '-) : (Mz/mi+le)do€ - (Nz/m::+l'/\[==)dof

is continuous, and passing to the inverse limit shows that (a, —) : M¢ — N is
continuous too. a

In this way we get a functor (—)¢ : QCoh(X) — STMod(Ox ), the latter
being the category of ST Ox ¢-modules and continuous homomorphisms. The
topology on the completion M¢ is described below.

In §1.2 it was shown that a module M over a ST ring A has a finest topology
with respect to which it becomes a ST module. This topology was called the
fine A-module topology. Suppose Ag C A is a subring s.t. M has a basis of
neighborhoods of 0 consisting of Ay-submodules; then we say that M has an
Ap-linear topology.

Proposition 3.2.5 Let £ be a chain in X and let M be a quasi-coherent sheaf.
a) The topology on M, is the fine Ox¢-module topology.

b) Suppose £ = (...,y); then the topology on M¢ is Ox (y)-linear, and hence
also k-linear.

Proof a) The proof is by induction on the length of {. The statement is
trivial for £ = 1 since the discrete topology is the fine topology over a discrete
ring. Say £ = (z,...). First assume M is coherent. Replace X with a small
enough neighborhood of ¢ to get a surjection O%—»M. For every : > 0 we
have a surjection (Ox ,/mi" Ox z)h ¢ —(Mz/miHM.z)ape in STMod(Ox aq¢)-
By induction both modules have the fine Ox 4.¢-module topology, so by cor.
1.2.8 this is a strict epimorphism. Passing to the inverse limit in ¢ and using
prop. 1.1.6 (cf. also the proof of prop. 3.1.4) we see that O% (—»M is strict, so
M¢ has the fine Ox¢-module topology.

Next let M be quasi-coherent and let (M,) be the direct system of its
coherent subsheaves. By definition M, = lim,_,(M,)¢ in STMod(Ox ), so by
cor. 1.2.6 it has the fine Ox ¢-module topology.
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b) All the limiting processes occurring in def. 3.2.1 involve Ox (,)-modules with
Ox (y)-linear topologies and therefore remain within this subcategory of TopAb
(cf. prop. 1.2.23). a

The tensor product of ST A-modules admits a canonical topology (see def.
1.2.11). By prop. 3.2.5 and cor. 1.2.15 we have:

Corollary 3.2.6 a) If X is affine then for any quasi-coherent sheaf M and
any chain §, M¢ = Ox¢ Qoy, M1 as ST Ox¢-modules.

b) If 1 is a face of £ of length > 0 then M¢ = Ox¢ ®oy, My as ST Ox -

modules.

Recall the notion of a topologically étale homomorphism relative to k, in-
troduced in §1.5.

Proposition 3.2.7 Assume X = Spec A is affine and let £ be a chain in it
Then Ox ¢ is topologically étale over Ox, = A, relative to k.

Proof The proof is by induction on the length of &; if { = 1 the statement
is trivial. Say £ = (z,...). Define B := (Oxz)doe = Ox, ®a Ox,doe and let
I := (m;)a,¢e C B. Then for all i > 0 we have B/I'*! = (Ox,/mit!)g,e as ST
Ox a,¢-algebras (all have the fine Ox g.¢-module topologies), so lim. ; B/I**!
& Oxe. Now B is noetherian. By induction A — Ox g,¢ is topologically étale
rel. to k, so by prop. 1.5.8 and prop. 1.5.9 a), A — B is also topologically étale.
Thus by thm. 1.5.11 we have Qgﬁp = (B Ra O /k)sep which is finitely generated
over B and has the fine B-module topology. Since B is noetherian, thm. 1.5.18
implies that B — Ox is topologically étale, and hence sois A — Ox,. O

Corollary 3.2.8 Let £ be a chain in X and let np be a face of £ of length > 0.
Then the face map Ox,, — Ox ¢ is topologically étale relative to k.

Proof One can assume that X is affine and then use prop. 3.2.7 and the
cancellation property of étale homomorphisms (cor. 1.5.14). a

Let 0%/, be the de Rham complex on X relative to k, with its differential
d. By propositions 3.2.4 and 3.2.2 the completion (Q2%/,)¢ With the differential
d¢ is a differential graded ST k-algebra (see def. 1.5.1).

Corollary 3.2.9 Let ¢ be a chain in X of length > 0. The k-algebra homomor-
phism Ox ¢ — (Ox¢)*P induces a canonical isomorphism of DG ST k-algebras

sep

s = (Wxp)e™-
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Proof We may assume that X = Spec A. By cor. 3.2.6 a) there is an isomor-
phism of ST Ox ¢-algebras (/)¢ = Ox¢ ®4 ¥y, Now use prop. 3.2.7 and
cor. 1.5.13. a

We shall abbreviate ()" to Q7r.

Definition 3.2.10 A commutative noetherian ST ring A is called a Zariski ST
ring if the following conditions hold:

i) Every finitely generated ST A-module with the fine A-module topology is
separated.

ii) Every homomorphism M — N of finitely generated ST A-modules with
the fine A-module topologies is strict.

Condition ii) need only be checked for monomorphisms (cf. proof of prop.
3.2.5). Theorem 3.3.8 gives a sufficient condition for the completion Ox ¢ of the
structure sheaf along a saturated chain £ to be Zariski .

For any ST ring A the category STMod(A) is exact; a short exact sequence
in it is a sequence of strict homomorphisms which is exact in the untopologized
category Mod(A). Evidently, if Ox,¢ is a Zariski ST ring then the functor
(—)¢ : Coh(X) — STMod(Ox ) is exact.

Assume Oy is a Zariski ST ring. Then (%, )¢ is separated, so Q37 =
(2%/k)e- Another conclusion is the following. Let M and N be quasi-coherent
sheaves and let D : M — N be a differential operator. Suppose that & = (z,...)
and N, is a finitely generated Ox ,-module. Then the differential operator
D¢ : Mg — N of prop. 3.1.10 is the unique extension of D to a continuous
differential operator. This is because N is separated and Ox, — Oxg is
topologically étale (see thm. 1.5.11).

Let ¢ : M — N be a homomorphism in TopAb. We say that ¢ is dense if
im(¢) is (everywhere) dense in N.

Theorem 3.2.11 (Approximation) Assume X is a separated ezcellent noeth-
erian scheme. Let M be a quasi-coherent sheaf on X. Let S C X be a finite
subset and let £ = (...,z) be a chain s.t. for all y € S, (z,y) is a saturated
chain. Assume that the completions Ox ;) are all Zariski ST rings. Then the
face map 0 : Mg — @y es Mevy) is dense.

Proof We break up the proof into 4 steps.

1) First suppose § = (z) and M, = k(z). For every y € S the completion
Mz y) = k() which is a finite product of fields, the completions of k(z) with
respect to the discrete valuations with center y on the integral scheme {z}4
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(cf. thm. 3.3.2). If y;,y, € S are distinct points, then the valuations centered
on them are distinct, because X is separated. Thus if [J,es k(z)) = ITi=; Ls,
the valuations of Ly,..., L, are pairwise independent. Since our topology on
[Iyes k(x)(y) coincides in this case with the usual valuative topology, the Artin-
Whaples approximation theorem tells us that 0 : M) — @Dyes M@)yv(y) is
dense.

2) Again let £ = (z) and now assume that M, has finite length over Ox,. By
induction on the length of M, by the exactness of completion and by prop.
1.1.8 a) we reduce the problem to a module of length 1, which is treated in step
1.

3) Now let { = (w,...,z) be an arbitrary chain (possibly of length 0, i.e. with
w = z) and assume that M is coherent. By induction (or by step 2 if w = )
the homomorphisms

(Mou/mET My )are = D Mau/mf Mu)aseviy)

y€eS

are dense for all i € N, hence by prop. 1.1.8 b) so is the inverse limit § : M; —
Dyes Mevy)-
4) Let M be a quasi-coherent sheaf and let (M) be its coherent subsheaves.

By step 3 we have a direct system of dense homomorphisms (Mg)e — Dyes
(Ma)ev(y) so by prop. 1.1.8 c) the limit homomorphism 8 is dense.

Corollary 3.2.12 Let G C X be a finite subset and let S = U,cg S: be a finite
set of saturated chains s.t. each £ € S, begins with . Assume that no chain in
S is a face of any other chain. Assume also that Ox , is a Zariski ST ring for
all saturated chains n of length < 1. Then for any quasi-coherent sheaf M, the

face map 0 : @,eq M(z) = Brec Pees, Me is dense.

Proof We may assume that G = {z}. The proof is by induction on the
maximal length of chains in S, using the transitivity of dense maps. O

Completion along saturated chains behaves very much like adic completion
on a curve. The next lemma puts this into concrete terms. Given a point z € X
and a germ t of Ox at z we write t(z) for the image of ¢ in the residue field
k(z). For a module M we denote its localization with respect to ¢ by M,.

Lemma 3.2.13 Let y € X be a point and let S C X be a finite subset such
that for all x € S, (z,y) is a saturated chain. Let M be a finitely generated
Ox y-module supported on the closed subset S~ C Spec Ox . Supposet € Ox,
satisfies: t(y) = 0 but t(x) # 0 for all x € S. Then the canonical map M; —
Dres M, 1s bigective.
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Proof Let I C Ox, be a defining ideal of S~ C SpecOx,. For suffi-
ciently large n, M is an Ox,/I"-module. The scheme Spec(Ox,/I") is a
1-dimensional noetherian scheme with only one closed point, namely y. There-

fore (Ox,y/I")t = [loes(Ox y/I")a- .

Theorem 3.2.14 Let M be a coherent sheaf on X, let n = (y,...) be a chain
and let S C X be a finite subset s.t. for all x € S, (z,y) s a saturated chain.
Suppose the completion Ox,,, 1s a Zariski ST ring. Then the face map 8 : M,, —
Dzes M(z)vy 18 a strict homomorphism of ST Ox ,-modules.

Proof For every ¢ > 0 define U; := @,cs M, /mit' M, and V; := im(M, —
U;). We shall prove the following statements:

¢ : M, — lim(V;), is a strict epimorphism. (3.2.15)

¥ : lim(V;),, — im(U;), = @ Mz)vy is a strict monomorphism.  (3.2.16)
—1 —1 ces
The composition J = 1 o ¢ is then strict.

1) Choose t € Ox, as in lemma 3.2.13. Then for fixed : > 0 we have U; =
Uiso t™'Vi. Since Oy, is a Zariski ST ring, for every I, (¢t~'V;), — (t-*VV}), isa
strict monomorphism. According to prop. 1.1.7, (V) — (U;), = lim;_,(t7'V;),
is also a strict monomorphism, and by prop. 1.1.6 statement (3.2.16) holds.

2) For each i,j > 0 define W, ; := V,-/m’l;“V,'. Fixing j, the length of the Ox ,-
modules W ; is bounded (by the length of M, /mi*!M,), so the inverse system
(Wi;)ien is constant for i >> 0. There is some i; s.t. i > i; implies W; ; & W ;..
Moreover, we can assume that the sequence (i;) is increasing. Thus (W; ;)jen
is an inverse system. Since inverse limits commute we have isomorphisms in

STMod(Ox ,):
lim(W;, ), & limlim(W; ;), = lim lim(W; ;),, = im(V;), . (3.2.17)
—J —) 1 —1 ) —1

Define K := ker(M,/mI*' M, —W,, ;). We claim that for all j, K;4; — K;
is surjective. In fact, since Wy, ; = W;, ;, both K;,, and K; are quotients of
ker(M, — V;,,,). Therefore upon applying the completion (—), we get an
inverse system of exact sequences

0— (Kj)n - (My/mi+1My)n - (Wij ,J')n -0 (3'2'18)
in STMod(Ox ,) which satisfies the hypotheses of prop. 1.1.6. Passing to the
inverse limit in j and using (3.2.17) we deduce statement (3.2.15). a
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3.3 The Geometry of Completion

In this section we shall give two geometric ways of looking at the Beilinson
completion of the structure sheaf of a scheme X along a saturated chain § =
(z0,...,%,). We are following Parshin’s description as found in [Pa2] §1.1,
although with new notation. Throughout most of the section the topology on
the completion will not play any part. We assume X is an excellent noetherian
scheme (e.g. a scheme of finite type over a field, over Z, or over a complete
semi-local noetherian ring; see [Ma] §34 and [EGA IV] §7.8).

Given a scheme Z we shall denote by k(Z) its total ring of fractions (the
global sections of the sheaf of total rings of fractions, see [Ha] p. 141). If
Z is a reduced noetherian scheme with generic points z1,..., 2, then k(Z) =
k(z1) x -+ X k().

Recall the definition of an n-dimensional local field (def. 2.1.1). Suppose A
is a artinian ring s.t. for each m € Spec A, A/m is an n-dimensional local field.
Then for i = 0,...,n define O;(A) := [Imespec 4 Oi(A/m) and similarly define
k;(A) and O(A). Observe that xo(A) is simply the ring Areq = A/rad(A).

Definition 3.3.1 Let B be an artinian ring and suppose that for each n €
Spec B, B/n is an n-dimensional local field. Let A be an artinian ring and
let f : A — B be a ring homomorphism. For each n € Spec B lying over
some m € Spec A, there is an induced valuation on the field A/m into the
ordered group (B/n)*/O(B/n)* = (Z",lex). We say that f is unramified at
nif n = B, - f(m), and if the the ramification index and the residue degree of
the (possibly infinite) field extension A/m — B/un are both 1. We say that f is
unramified if it is unramified at all n € Spec B.

Let £ be a chain in X. We shall define, by recursion on the length of
€, a scheme X¢ together with a morphism 7¢ : X¢ — X. Let X! be the
normalization of X,q in its total ring of fractions k(Xyeq), and let 71 : X1 — X
be the canonical morphism. Next let £ = (...,y) have length n > 0 and
suppose that 74»¢ : Xd¢ — X has been defined. Let Y := {y}q C X, define
X¢ = (X9€ xx V)L, and let 7€ : X* — X be the canonical morphism. (See
figure 1.)

Thus the scheme X¢ is a disjoint union of normal excellent integral schemes,
and the morphism 7¢ is finite. If £ = (..., y) then X¢ is equidimensional and
m¢(X¢) = {y}~. Given another chain 5 = (y,...), we have X¢Vdo7 = [[, (X*)7
as schemes over X, where 7|7 means # is a chain in X¢ lying over 7.

The theorem below is essentially due to Beilinson; part a) of the theorem
appears (without proof) in [Be]. See also [Pa2] prop. 1.

Theorem 3.3.2 Let X be an integral excellent noetherian scheme and let £ =
(20,...,2,) be a saturated chain in X, with xy being the generic point. Then:
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I
o G . . 7@
o . —_— n Y2 —_— Y
i
X

X (@) X

Figure 1: The morphism ¢ : X¢ — X

a) The completion k(X)e = k(£) is an artinian ring, and for each m €
Spec k(X )¢, the field k(X)¢/m has a canonical structure of an n-dimen-

sional local field.

b) The homomorphism k(X) — k(X), is unramified; in particular k(X)¢ is
reduced.

c) For everyi=0,...,n there is a canonical isomorphism of rings

R(XE 2Nz = Ki(R(X)e) -

d) For every i = 1,...,n the ring O;(k(X)) is the integral closure of
Ox (z;,...zn) 1 Ki—1(k(X)e). In particular, each O;(k(X)) is an Ox-
algebra (supported on {x,}~).

Observe that taking i = n in part c) we get a bijection between the factors
of the artinian ring k(X )¢ and the irreducible components of X¢. We first need
a lemma.

Lemma 3.3.3 Let A be a ring and let t € A be an element satisfying the
following conditions: A = lim_; A/(t)"*'; A/(t) is a reduced artinian ring; and
t 1s a non-zero-divisor on A. Then A is a finite product of complete DVRs
with reqular parameter t. To be precise, say Z := Spec A/(t) C Spec A, so
that A/(t) = [l,ez k(2). Then A =l,cz A:, each A, is a complete DVR, and

AJ() = k(2).

Proof The ideal (t) C A is its Jacobson radical rad(A): since for any a € (t) we
have 1 —a € A* (units), it follows that (t) C rad(A). On the other hand A/(t)
is semi-simple, so rad(A) C (t). Therefore A is a complete semi-local ring, and
by [CA] ch. III §2.13 cor. to prop. 19 we get the decomposition A = [[,cz A..
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In order to show that A, is a DVR we can assume that 4 = A, is local.
Since MN;en(t)! = 0 every nonzero a € A has the form a = ut, u € A%, i € N.
But ¢ is a non-zero-divisor, so u and i are uniquely determined. Therefore A is
an integral domain, and in fact a DVR with regular parameter ¢. a

Proof (of the theorem) The theorem is trivially true for n = 0, so assume n > 1.
By our hypothesis the normalization X = X1 — X is a finite morphism. We
have k(X) = k(X), so according to prop. 3.1.7, k(X)¢ = k(X) & I k(f{)f-,
where £ | means £ is a chain in X lying over €.

Fix some chain £ = (&, ..., %,) lying over £ = (zy,...,%,). The local ring
Ox ;, isa DVR of k(X); choose a regular parameter ¢ in it. Since the sequence

0— Ogz — Oxz — k(#1) — 0

is exact, so is
0 = O 406 = Ox ¢ = k(E1)a6 = 0.
Directly from the definition one has O 4 ¢ = lim.; O 4 ¢/(t)"*'. By induction
on n, k(%1)4,¢ = k(dof) is a finite product of (n — 1)-dimensional local fields.
Lemma 3.3.3 says that Ox 4 ¢ is a finite product of complete DVRs, each with
parameter . Upon inverting ¢ we see that k(X); = k(X) ®0y . Oxaf 1 3
product of n-dimensional local fields. This proves part a). Now t € k(X)
and by induction k(Z;) — k(%)4,¢ is unramified, hence k(X) — k(X); is also
unramified, and part b) is verified.
The arguments presented above show that in fact

K1 (k(X)e) = I1 k(1) (a1, 02) = KX)o, -

(Z1,eesZ0)|(Z1,-0Tn)

By induction, for every component Z of X(%¢*1) and every chain (Z,,...,%,) in
Z lying over (1,...,%,), it holds

ki1 (K(Z)(z,.20)) = K(ZCV )5 sy -
Taking the product over all such Z and (%,...,%,) we end up with
Ri—l(k(X(zo'zl))(a:l,...,zn)) = k(X(zo'm,z’.))(z;,...,z") .

But k;_;(k1) = ki, so part c) is proved.

Since O1(k(X)¢) = Ilge Ox ap¢ is a finite Ox go¢-algebra, it is its integral
closure in k(X),. In order to prove part d) for i > 1 use induction and the fact
that 7(ze#1) : X(=0.21) _, X s a finite morphism.

a
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Corollary 3.3.4 Let X be an ezcellent noetherian scheme and let (zo, ... ,z,)
be a saturated chain in X. Then for all i = 0,...,n there is a canonical
tsomorphism of Ox-algebras

Ki(K(20) (z0,....25) ) @ir.szm) — Ki(K(Z0)(zo,...2n)) -

Corollary 3.3.5 Let X be an ezcellent noetherian scheme and let £ = (z,...)
be a saturated chain in it. Then the completion Ox ¢ of Ox along £ is a complete
noetherian semi-local ring with Jacobson radical m¢. In particular Ox g is an
excellent ring, and a faithfully flat Ox ,-algebra.

Proof By definition Ox¢ = lim.; (’)x,g/mé“, and by the theorem k(§) =
Ox¢/m¢ is a semi-simple artinian ring. a

From now till further announcement we shall assume X is a scheme of
finite type over a perfect field k. Given a chain ¢ = (zo,...,2,) in X, a
linearization of ¢ is by definition a finite k-morphism f : X — AP* s.t. f(§) :=
( (f(z0),...,f(xy)) ) is a linear chain in X (i.e. each {f(z;)}~ is a linear
subspace of A7*). By the strong form of Noether normalization (see [CA] ch. V
§3.1 thm. 1) any chain has a linearization.

Let A be a semi-topological ring. In §1.3 a topology was introduced on the
ring of Laurent series A((¢,...,t,)) := A((¢n))---((¢1)). Consider the affine
space A}' = Speck[ty,...,t,] and the linear chain y = (yo,...,yn), where y; is
the prime ideal (¢,...,t;). The completion of the function field k(t1,...,%,)
along 7 is a field of Laurent series k(t,41,--.,tm)((t1,.-.,%n)), and its topology
as a ring of Laurent series coincides with the topology specified in def. 3.2.1.

Recall the definitions of a topological local field (TLF) and of a cluster of
TLFs (definitions 2.1.10 and 2.2.1).

Proposition 3.3.6 Let X be a scheme of finite type over a perfect field k and
let & be a saturated chain of length n in it. Then the ST k-algebra k(£) is an
equidimensional, n-dimensional reduced cluster of TLFs over k.

Proof Say ¢ = (z,...). We may assume that X is integral with generic point z.
Fix some m € Speck(§) and set L := k(§)/m. We have to show that L is a TLF
over k. Choose a linearization f : X — A of &, with f(§) =7 = (y,...,2).
Then K := k() = k(2)((t1,...,t,)) is a TLF over k. By prop. 3.2.3

k() @iy k() = (£k(2))y = [] k(2)e

&'l
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giving rise to a finite homomorphism K — L, and L has the fine K-module
topology. From the proof of thm. 3.3.2 we see that the valuation on L extends
the valuation on K. According to cor. 2.1.20, L is a TLF. |

Combining the last proposition with cor. 3.2.8 and thm. 3.3.2 we have

Corollary 3.3.7 Let { = (z,...) be a saturated chain in X. Then the face
map 0 : k(z) — k(z)e = k(§) is a topologically étale (relative to k), dense,
unramified homomorphism of clusters of TLFs over k.

Conveniently, in working over a perfect field one can use coefficient fields.
The next theorem uses them, and the fact that the ring k(¢), for { saturated,
is semi-simple artinian.

Theorem 3.3.8 Let X be a scheme of finite type over a perfect field k and let
¢ be a saturated chain in it. Then the completion Ox ¢ of the structure sheaf
along £ 1is a Zariski ST ring. Moreover, every finitely generated ST Ox ¢-module
with the fine Ox ¢-module topology is complete.

Lemma 3.3.9 Let { = (z,...) be a saturated chain in X and let o : k(z) —
Ox,(z) be a coefficient field, i.e. a k-algebra lifting. Suppose the ST k-algebras
Ox¢ /mé+1 are separated for alli > 0. Then o extends uniquely to a continuous
k-algebra lifting o¢ : k() — Oxp.

Proof Fix i € N. The homomorphism o; : k(z) — Ox./mit! is a DO of
order < i over Ox relative to k. By prop. 3.2.2 it extends to a continuous DO
(0:)¢ : k(€) — Oxe/mit! over Ox¢. Because Ox,, — Ox is topologically étale
relative to k, and because Ox ¢/ mg"'] is separated, (o;)¢ is a ring homomorphism
(prop. 1.5.20) and is unique. Passing to the inverse limit we get o : k(§) —

O,\',g. (]

Assume the hypotheses of the lemma. Let D : k(z)" = Ox./mit! be any
k(z)-linear isomorphism. Then D is a DO, and D; : k()" 5 Ox¢/mgt! is
an isomorphism of ST k(£)-modules (cf. proof of prop. 1.5.20). In particu-
lar Ox ¢ /mé+1 has the fine k(£)-module topology. Since k(£) is a semi-simple
artinian ring, it follows that any finite length Ox ¢-module with the fine Ox (-
module topology is a free ST k(€)-module (via o).

Proof (of the theorem) The proof is by induction on the length of £. If
£ = () this is a standard fact, since Ox (,) has the m(,)-adic topology. So we
may assume § = (2,y,...) has length > 1.
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1) First let us prove that for any finite length Ox -module M, M; is a com-
plete separated module. Choose t € Ox,y as in lemma 3.2.13, s0 M = U;> t~'v,
where V :=im(Ox,, — M). Applying the completion (—)4,¢ We get an isomor-
phism of ST Ox g.¢-modules M = lim;_, t~'Vg,¢. Since Ox q,¢ is a Zariski ST
ring the homomorphisms ¢~V < ¢t'~1V,¢ are strict and these modules are
separated. According to prop. 1.1.7, M; is separated.

Now let us prove completeness. Choose a coefficient field 7 : k(y) — Ox ).
By lemma 3.3.9 it extends to T4 : k(do€) — Ox,a.e. As mentioned above,
(V/tV)aee is a free ST k(dof)-module. Thus we obtain an isomorphism of
ST k(do€)-modules My = Vi & [@,20 t"‘l(V/tV)dog]. By assumption the
summands are separated and complete, being finitely generated Ox 4.¢-modules.
According to prop. 1.1.5, M, is also separated and complete.

2) By step 1 we are in a position to use lemma 3.3.9. Choose a coefficient field
0 : k(r) = Ox,z), and consider Ox ¢ as an augmented ST k(£)-algebra via 0.
Let M be a finite length Ox ¢-module M with the fine Ox¢-module topology.
Then M = k(&)™ for some n, so it is complete and separated. If ¢ : M — N is
any injection of finite length Ox c~-modules with the fine Ox ¢-module topologies,
then ¢ splits continuously over k(£) and hence is strict.

3) Let M be a finitely generated Ox ¢-module with the fine Ox ¢-module topol-
ogy. For each ¢ > 0 put on M /mé“M the fine Ox¢-module topology, which
makes it separated and complete. Since Ox. is noetherian and m¢-adically
complete, according to prop. 1.2.20 the map M — lim.; M/ mé"”lM is a home-
omorphism. By prop. 1.1.5 a) it follows that M is separated and complete.
Now let ¢ : M < N be an injection of finitely generated ST Ox ¢-modules
with fine topologies. For i > 0 set N; := N/m;*'N and M; := M/M Nm'N.
By step 2, ¢; : M; — N; is a strict monomorphism, so by prop. 1.1.6 so is
¢: M=Zlim_; M; - N. O

Remark 3.3.10 It seems plausible that the theorem is true for any noetherian
scheme X; it certainly should hold for excellent schemes. However we could not
find a proof which does not resort to splitting. The difficulty lies in showing
that a direct limit of strict monomorphisms is strict.

We move on to the second geometric interpretation of completion, and once
more X is any excellent noetherian scheme. Given a chain { = (z,,...,z,) in
X set X¢ := SpecOx¢ and let i; : X; — X be the morphism corresponding
to the ring homomorphism Ox ., — Ox¢. Define X; := X and ¢; := identity
morphism. (See figure 2.) Note that X, is also a noetherian excellent scheme
(cor. 3.3.5).
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T

Xew) Xw) X
Figure 2: The morphism 7, : X — X

For a quasi-coherent sheaf M on X we may identify the completion M, with
['(X¢,igM). The morphism i is flat; it is also “quasi-finite”, in the following
restricted sense. Given points z € X and € X, we say that & is minimal
over z if {#}~ is an irreducible component of the fibre i;'({z}~). Then the set
{% € X¢ | & is minimal over z} is finite. Note that if { = (z,...) is a saturated
chain then every & € i3 () is minimal, because Spec k(z)q,¢ is 0-dimensional.

Remark 3.3.11 We may think of minimal points as “algebraic”, as the
following example suggests. Take X := A} = Speck[s,t], z := (0) € X,
z = (s,t) € X and £ := (z), so X = Speck[[s,t]]. Choose any element
f € k[[t]] - t transcendental over k[t]. Then the point § := k[[s,?]] - (f — s) € X¢
is in i; ' (z) but is not minimal. The fibre i;'(z) consists of the generic point &
of X¢ and infinitely many “transcendental” points of codimension 1, such as .

Theorem 3.3.12 Let X be an ezcellent noetherian scheme and let § = (z,...)
be a saturated chain in it. Then there is a canonical isomorphism X, =
Hzje(Xae)(z) of schemes over X, where 2|z stands for & € igoé(x).

Proof Set X := Xdao¢ and 7= idoe- Form > 0 let A, := Ox,/mzt!l. By
definition we have Ox ¢ = lim,_,, T’ (X' , i'*A,,). Adjunction gives for every n > 0
a homomorphism u,, : i*4, — Is: Ox 5 Jm*! of quasi-coherent sheaves on X.

Since T'(X,7*k(z)) = k(x)ae = k(€) is a reduced artinian ring (cf. thm.
3.3.2), for n = 0 we have an isomorphism ug : *k(z) S [I;}, k(£). Thus i is
unramified at all points |z and in particular (*m,); = m;. For each n > 0
consider the exact sequence on X

0—>m:+1—+0x_¢—>x4n—>0.
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Upon applying i* and taking stalks at any Z|z one sees that (un)s : (1*An)s
— Ox.: Jm3*! is bijective. Therefore u, itself is bijective, and in the inverse
limit so is im.p un : Ox¢ = [z Ox (5)- O

Corollary 3.3.13 Let{ = (...,y) and n = (y,...) be saturated chains in X.
Then there is an isomorphism Xeyd,y = Uélﬁ(X")f of schemes over X, where

£|¢ means € is a chain in X, lying over €.

Proof Use induction on the length of § = (z,...,y), noting that X, =
1y (X))

Kevaon = [ [(Xaoevaon) @) = [ LT (Xn)e)ee = L1(X0)e -

&= 2|z £|dog 113

Corollary 3.3.14 If X is normal then so is X,.

Proof By the theorem and induction it suffices to consider { = (z). Now Ox ,
is a normal excellent integral noetherian local ring, so by analytic normality
([Ma] thm. 79) so is its m,-adic completion Oy (). a

Lemma 3.3.15 Let X be a normal scheme of finite type over a perfect field k
and let £ = (...,y) and n = (y,...) be saturated chains in it. Then the face
map 0 : Ox, — Oxgvdy 18 @ strict monomorphism.

Proof By induction on the length of £ it suffices to consider { = (z,y). Set
X = X,. For every jly the homomorphism Ox, — Oy y is faithfully flat,

so there exists some £ € X with £ > § and #|z. Since Oy ; is a noetherian
integral domain we have injections

Oxny & HOX,Q - Hoxx - H Oz = Ox gvdon -

ily |z iz
Now use thm. 3.2.14 and thm. 3.3.8. O

In general we have:

Theorem 3.3.16 Let X be a reduced scheme of finite type over a perfect field
k and let n = (y,...) be a saturated chain in it. Then there ezists a finite set S
of chains in X satisfying:
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i) Every € € S is saturated, begins with the generic point of some irreducible
component of X and ends with y.

ii) The face map 0 : Ox,y — [lces Oxgvdon 8 a strict monomorphism of ST
k-algebras.

Note that the trivial case when y itself is a generic point is included, taking
S={}

Proof Let 7 : X — X be the normalization (71 : X1 — X in the previous
notation) and let #,...,7, be the distinct chains in X lying over 5. Since
Ox — mOy is injective it follows that Ox, — (mOx), & ;. Ox 5 is a
strict monomorphism (remember that Oy, is a Zariski ST ring).

For each 7; = (¥, ...) choose a saturated chain E,- = (Zi,..., %) in )~(, with
Z; being the generic point of the component of X containing ;. By lemma
3.3.15, Oz s = Ox givaois = k(éi V dyi};) is a strict monomorphism.

Let S be any finite set of chains in X as described in i) which contains
all the chains 7(§;), i = 1,...,7. Since 7 is a birational morphism one gets
Iees k(6 V don) = Tees vy, $(C); and ITi=; k(& V dofi) is a direct factor of
this ring. Therefore [I;_; Ox 5 — Ilees Igjevagn k(C) is a strict monomorphism.
Putting it all together we see that 0 : Ox, — Ilces k(£ V don) is a strict
monomorphism. O
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4 Residues on Schemes

4.1 The Parshin Residue Map

Parshin found a definition of a residue map that generalizes the residue map
for curves used by Serre in [Se] ch. II no. 7. We present a variant of this
residue map, which depends on geometric data (a chain in X) and algebraic
data (a pseudo-coefficient field). The main result of this section is cor. 4.1.16,
which establishes the transitivity of the residue maps with respect to compatible
coefficient-fields. In this section X is a scheme of finite type over a perfect field
k.

Definition 4.1.1 Let (A, m) be a local k-algebra. A pseudo-coefficient field
(resp. quasi-coefficient field, resp. coefficient field) for A is a k-algebra homo-
morphism o : K — A where K is a field and the extension ¢ : K — A/m s
finite (resp. finite separable, resp. bijective). If A = Ox () = @X,, for some
point x € X, we say that o 1s a pseudo-coefficient field (resp. quasi-coefficient
field, resp. coefficient field) for x.

By Hensel’s lemma every quasi-coefficient field gives rise to a unique coef-
ficient field. Thus if K C k(z) is a subfield s.t. K — k(z) is finite separa-
ble there is a bijection 0 + 0|k between the sets Homag(r)(k(z), Ox,(»)) and
Homapgky (K, Ox,(z)). In particular a closed point z has a unique coefficient
field. If X is reduced and z is the generic point of an irreducible component
then z has a unique coefficient field, since Ox , 35 k(z).

Let £ = (z,...,y) be a saturated chain of length n in X and let o : K —
Ox,y) be a pseudo-coefficient field. Let & be the composed k-algebra homo-
morphism

g: K5 Oxy(y) —3> Ox’f—»k(f)
where 0 is the face map. According to prop. 3.3.6 and thm. 3.3.2 c), 7 is
a morphism in CTLF4(k) of dimension n. Recall that given any morphism
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f: A — Bin CTLF.q4(k) there is a canonical residue map
Resy = Resp/a : Qg — Q0% - (4.1.2)
*,5ep

It is a homomorphism of differential graded ST Q,%P-modules (see §2.4).
The next definition is taken from [Lo| p. 516.

Definition 4.1.3 (Parshin’s Residue Map) Let { = (z,...,y) be a saturated
chain in X and let 0 : K — Ox,,) be a pseudo-coefficient field. Parshin’s
residue map 1s the composition

. 8 yxsep Resi(¢)/ K *5ep
ReS&, - ReSE,K : Qk(z)/k —_ Qk(f)/k _— QK/’C .

The residue map Res¢ , is a homomorphism of differential graded k-modules
of degree —n, where n is the length of £.

Proposition 4.1.4 Let { = (z,...,y) be a saturated chain in X and let o be
a coefficient field for y. Then the residue map Res¢o @ Qi — Qg n 15 @
locally differential operator over Ox relative to k.

Proof Since these are skyscraper sheaves it suffices to check stalks at y. Given
a form o € Q) we will show that Res¢o|ox,. is a differential operator.
Consider the k-linear homomorphism ¢ : Ox , — Qi) /x, #(a) = Res¢ o (ac). It
factors through the continuous k(y)-linear homomorphisms

8 e * se| Resa *
Ox,y) = Oxe—k(§) = Qk’(g)‘}k - Qk(y)/k .
The module )/ is discrete, so ¢(mz;')1) =0 for  >> 0. Hence Res¢ ;|0 .o
factors k(y)-linearly through the finite length Ox ,)-module (O X,(y) ° a) /
(mé;')l . a). According to prop. 1.4.4 it is a differential operator of order <. O

Definition 4.1.5 Let £ = (z,...,y) be a saturated chain in X and let o and
7 be coefficient fields for x and y respectively. We say that o /T are compatible
coefficient fields for € if o¢ : k(§) — Ox¢ is a k(y)-algebra homomorphism, i.e.
iof the diagram below commutes:

k(y) —— Oxg
X

k() —— k()
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Suppose € = (z,...,y) and n = (y, ..., z) are saturated chains and suppose
o is a coefficient field for y. Consider the continuous k-algebra homomorphism

Gy k(1) 3 Oxy 2 Ox evaon—>k(€ V don) .

Say ¢ has length n. According to cor. 3.3.4 one has [k,( k(€ V don)) : k(n)] =
[kn(k(€)) : k(y)] < oo. Therefore , : k(n) — k(£ V don) is a morphism in
CTLFed(k) of dimension n.

The next lemma shows that compatibility of coefficient fields is transitive.

Lemma 4.1.6 Let§ = (z,...,y) and n = (y,...,2) be saturated chains. Let
p,0 and T be coefficient fields for x,y and z respectively, s.t. pfo and o/ are
compatible for £ and n respectively. Then p/T are compatible coefficient fields

forévdon =(z,...,y,...,2).

Proof It suffices to show that the diagram
k() —2e Oxgvdon
\‘_’n /P;vdon (4.1.7)
k(€V don) —— k(§V don)

is commutative. By assumption if we replace n with (y) everywhere in the
diagram it becomes commutative. Hence pevq,y © 7, and o, are k(y)-algebra
homomorphisms. But k(y) — k(n) is topologically étale, so by uniqueness for
every 1 > 0

Pevaon © Ty = 0y : k(1) = Ox gvdon/Meayn -

Now pass to the inverse limit in <. a

Proposition 4.1.8 Let{ = (zo,...,z,) be a saturated chain in X. There exist
compatible coefficient fields o; : k(x;) — Ox,z;) s.t. each pair 0;/0;, i < j, is
compatible for (z;,...,z;).

In characteristic 0 this is an immediate consequence of Noether normaliza-
tion. In general we reduce this to a problem in linear algebra:

Proof It suffices to find quasi-coefficient fields K; which fit into a diagram

83



A. YEKUTIELI

Kn —_— n—-1 _— —_— KO
| | |
Oxen — Oxgay — -+ — Oxg
| |
k(z,) k(zn_1) k(zo)

(cf. proof of lemma 4.1.6). To do so we find k-vector spaces V,, C --- C V, C
Ox,z, s.t. for all ¢,

1®d: k() O Vi = Qi (4.1.9)
is bijective. Then tr.deg, k(z;) = rank; V; and the polynomial ring k[V;] embeds
into k(z;). Letting K; be the fraction field of k[V;] we see that K; — Ox,, is a
quasi-coefficient field.

Suppose we succeeded in finding k-vector spaces V. C V,_; C...C V! C
Ox,z, satisfying (4.1.9). The Ox,-module QY .. is spanned by d(V/) and
d(p;), where p; C Ox,, is the prime ideal of z;. Hence d(V}) + d(p;) span
Qh(zi_1)/k- We can modify V}, i < j < n, to some subspace V; C Vj®p; C Oxp,
s.t. V; = V] (modp;), rank; V; = rank, V] and 1®d : k(zi-1) ® Vi = Qi)
is injective. Next extend V; to an appropriate subspace V;_y C Ox (z,).

Let o : K — Ox () be a pseudo-coefficient field for z € X andlet { = (z,...)
be a saturated chain. Assume that & : K — k() is purely inseparable. If 7 is
bijective set K, := k(£), and let v := 0 : K — K. Otherwise chark = p and
we define K below, using “purely inseparable descent”.

Suppose k has characteristic p. Given a k-algebra A let A®/%) be the k-
algebra defined in (1.4.7) and let F 4/ : A®/*¥) _ A be the relative Frobenius
homomorphism. The map Fyyx : k()PP — k(€) is a finite morphism in
CTLF,ea(k) of degree equal to the differential degree of k(§), i.e. ranky) Q,lc(see)‘;k
(cf. prop. 2.1.13). Since k(z) — k(£) is topologically étale and unramified,
the same is true of k(z)®/¥) — k(¢£)®/¥). Comparing degrees one finds that
k(z) @pzywrm k(6)®/%®) — k(£) is an isomorphism of clusters of TLFs.

In our situation we get k(:c)(”j/ k) ¢ K for j >> 0 and we define
Ke 1= K @, 001 KT | (4.1.10)

a cluster of TLFs. The homomorphism u : K — K is also topologically étale
and unramified, and k(z) ®x K¢ = k(£). Because there exists some continuous

k-algebra homomorphism K¢ — Ox ¢ (e.g. take K¢ — k() % Oy arising from
some coefficient field 7 : k(z) — Ox(z)), 0 extends uniquely to a homomorphism

O¢ . Kf — Ox’f . (4111)
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In §2.2 we find the notion of finitely ramified base change. It is a universal
construction in the category of clusters of TLF's, generalizing the tensor product.

Theorem 4.1.12 Let ¢ = (z,...,y) and n = (y,...,2) be saturated chains in
X and let 0 : K — Ox ) be a pseudo-coefficient field s.t. @ : K — k(y) is
purely inseparable. Let u : K — K, be the finitely ramified homomorphism
defined above. Then the diagram

k() —2~ k(€ Vdon)
o Ty

Uu Kr]

s a finitely ramified base change.

Proof Let K, — B’ be the morphism gotten by the finitely ramified base
change K — K,. By universality there is a finite morphism B’ — k(¢ V don)
in CTLF(k). The ring B’ is reduced, because K — K, is topologically étale
relative to k (cf. proof of thm. 2.4.23). For each n € Spec k(§ V don) lying over
some m' € Spec B’, the finite morphism of TLFs B'/m’ — k(£ V don)/n is an
isomorphism since k(z) — k(§Vdon) is unramified. Thus it remains to show that
the map of sets Spec k({Vdon) — Spec B’ is bijective. Taking n-th residue fields,
where n is the length of £, we reduce to showing that k,(B') — k,( k(€ Vden))
is bijective. It is known (cor. 3.3.4) that

kn(k(€)) ®k Ky = Ka(k(£)) Brey) k() = £a(k(€) )g — £n(k(E V don) )

is bijective. By the following lemma the same holds for B’ (using the fact that
in characteristic p any topologically étale homomorphism is separable, cf. cor.
2.1.16). O

Lemma 4.1.13 Let K, K' and L be TLFs over k, let f : K — L be a mor-
phism of dimension n, and let u : K — K' be a finitely ramified, separable
homomorphism. Let f' : K' — L' be the morphism gotten by finitely ramified
base change, and let v : L — L' be the corresponding finitely ramified homo-
morphism. Then the canonical homomorphism

kn(L) @k K' — k(L") (4.1.14)

s an isomorphism.
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Proof Let F be the separable closure of K in k,(L). Then one can lift F
into L and get f : K — F — L. Correspondingly we get f' : K' — F' — L',
where F' := F ®k K'. But k,(L) r F' = k,(L) ®k K', so we may assume
that K — k,(L) is purely inseparable. Let (¢,...,t,) be an initial system of
regular parameters in L. Counting degrees we have

[kn(L) @k K': K') = [ka(L) : K] = [L : K((t1,. .., t))]

=L K ((tny. .. ta))] 2 [5nl(T) : K] , (4.1.15)
the gap going towards ramification in K'((¢,...,t,)) — L'. However in our
case K,(L) ®k K' is a field so (4.1.14) is a bijection (and there is equality in
(4.1.15) ). 0

Corollary 4.1.16 (Transitivity) Let { = (z,...,y) and n = (y, ..., 2) be satu-
rated chains in X and let o /T be compatible coefficient fields for n. Then

Resgvdonﬂ- = Res,,,.,. o ReS£,0- . QZ(Z)/k g QZ(Z)/k .

Proof Apply the preceding theorem and thm. 2.4.23 to the diagram
k(e) —— k() — k(£ Vdon)

4 o

k(y) ——  k(n)

7

k(z)

4.2 Poles of Meromorphic Differential Forms

In this section we consider a high dimensional version of a pole of a differential
form. Even though the residue map depends on a choice of coefficient field, the
order of pole of a form along a chain is independent of this choice. The key
result is:

Lemma 4.2.1 Let{ = (z,...,y) be a saturated chain in X and let M C Q;(S;)';k
be a left Q}s/ekp ,-submodule. Then the following conditions on M are equivalent:

i) For any pseudo-coefficient field o : K — Ox ), Resye),x (M) = 0.
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ii) For any coefficient field o : k(y) — Ox ), Res(e)/ry),c (M) =0.

iii) For any saturated chain n = (y,...,z) with z a closed point, Resk(evdon)/k
(M) =0.

Proof i) = ii): Trivial.
ii) = iii): As in the proof of cor. 4.1.16.

iii) = i): Let L be the separable closure of K in k(y). Then o factors through
L, so we can assume that K — k(y) is purely inseparable. Choose a chain 7
as in iii). Now Resk(evdon)/k is continuous, k is separfmted and Q% /., — Ui,
is dense. Condition iii) implies that Resi(evdyn) (€2 )",72‘:" - M) = 0, so we can

assume that M is an Q%7 -module.

Suppose for some « € M the form B := Resye)/x(a) € (%, is non-zero.
Define o, : K, — Ox, like in (4.1.11). Then the image of 8 in Q% =
I, ®k Q). is also non-zero. Because the residue pairing (—, =)k, /& is perfect
(see thm. 2.4.22) there is some v € Qg7 s.t. Resk, k(7 A 8) # 0. But then
ay(7) € QYJins 50 Ty(Y) A € M with

Resi(evdon)/k(Tn(7) A @)
= Resk, /& © Resk(evdon)/k, (F7(7) A @) = Resk, k(YA B) #0 ,

a contradiction. (]

Definition 4.2.2  a) Let K be a TLF over k of differential degree d. Define
WK = K/k .

b) Let A = [Imespeca A/m be a reduced cluster of TLFs over k. Define
WA = Dmespeca Wa/m, a free ST A-module of rank 1.

c) Let £ be a saturated chain in X. Define w(§) := wi(e)-

For ¢ = (z) we shall write w(z) instead of w((z)); thus w(z) = Qz(z)/k,
where d = tr.deg; k(z) = dim{z}~. Recall that given a saturated chain { =
(z,...) the face map 0 : k(z) — k(£) is topologically étale relative to k, so
w(€) = k(£) Qu(z) w(z). If X is integral with generic point = then the elements
of Q57 = D7k are called the meromorphic forms on X along ¢.

Definition 4.2.3 (Holomorphic Forms) Let § = (,...,y) be a saturated chain
mn X.
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a) A form o € w(€) is said to be holomorphic if the equivalent conditions of
lemma 4.2.1 hold for the module Ox , - o C w(). Define

wW(€)hot := {a € w(€) | @ is holomorphic } .

b) A form a € w(z) is said to be holomorphic along £ if its image in w(£) is
holomorphic. Define

wW(Z)not¢ = {a € w(z) | @ is holomorphic along £} = w(z) Nw(€)pa -

Let A — B be a morphism in CTLF,4(k). In §2.4 the residue pairing

1 Resp/
(= —)B/a: B X wp ——s wp — s wy (4.2.4)

is defined. It is a perfect pairing of ST A-modules. Now let { = (z,...,y) be a
saturated chain and let o : K — Ox (,) be a pseudo-coefficient field. Then the
K-module w(§)na C w() is precisely the perpendicular space to Ox, under
the pairing (—, —)(e)/k-

Lemma 4.2.5 Given saturated chains £ = (z,...,y) and n = (y,...,2), the
face map w(§) — w(§Vdon) sends w(€)no mto w(€Vdon)ne. Therefore w(x)nowe
C w(x)hol:{'vdon‘

Proof Choose compatible coefficient fields /7 for  and use lemma 4.2.1. O

Lemma 4.2.6 Let { = (z,...,y) be a saturated chain of length > 1 and let
0 : K — Oxy) be a pseudo-coefficient field. Then Resk(f)/K(nge(',z(f)) /k) = 0.

Therefore the image of the canonical homomorphism Q}’j‘;’? 4ot — QZ'(?)‘;k = w(¢)
is inside w(€)nol; here d is the differential degree of k().

Proof By lemma 4.2.1 we can assume that y is a closed point and that K = k.
Let m € Speck(§) and let L := k(§)/m. Then L 2 F((t,,...,tqs)) and Oy(L) &
F((ta,...,ta))[[t1]], with [F : k] < co. Since F[ty,...,ts] = F((t2,.--,ta))[[t1]]
is topologically étale relative to k we get Qéﬁ‘i)/k = F((ty,...,ta))[[ta]] - dts A
-+ A dtg, so by definition the residue map vanishes on it. O

Theorem 4.2.7 Given a saturated chain € in X, the k-submodule of holomor-
phic forms w(€)not C w(§) is open.
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Proof The proof is by induction on the length of £. For ¢ = (z) the module
w(z) is discrete so w(z)ho = 0 is open. Suppose that { = (z,y,...,2) is of
length > 1 (so possibly y = 2) and that w(doé)na C w(do€) is open. Choose
compatible coefficient fields /7 for dof. Let & = g, : k(do§) — k(£) and
7 : k(z) — k(do€) be the induced morphisms in CTLFeq(k). We claim that

w(€not = {a € w(¢) | Va € Ox,;, Ress(aa) € w(doé)hat} - (4.2.8)

This follows from condition ii) of lemma 4.2.1, since Reszo» = Res: o Res,.

Choose elements ay,...,a, € m() C Ox ) which span m(,) /m(zz). Then the
continuous k(z)-algebra homomorphism k(z)[[a,...,a.]] = Ox,;) extending 7
is surjective. Let A be the polynomial ring k(z)[ai,...,a,]. An open subgroup
U C w(§) is also closed, so such U is an Ox .-module iff it is an Ox (;)-module,
iff it is an A-module. In particular, w(doé)hol is an A-submodule of w(d¢€). By
continuity of the residue map,

W(€)hot = {a € w(€) | Resg(A - @) C w(do)nol} -

Let M := Qéfe(‘,:(f))/k C w(f). It is a free ST O1(k(§))-module of rank 1,
and k(§) - M = w(§). By lemma 4.2.6 we get Res;(M) = 0. Choose a regular
parameter ¢ in O;(k(£) ), so w(€) = U;»ot™7"' M. Since mg,¢ C tO1(k(§)), for
every 7 > 0 we have mﬁjflt’j‘.lM C M. According to prop. 1.4.4, the k(do&)-
linear homomorphism Resz|;-j-1p is a DO of order < j over Ox gp¢. From
formula (1.4.2) we see that for any fixed o € 7971 M,

Res;(Aa) C Y. A-Resy(af ---aja)
(1,--,ir)EI(G)

where I(j) is the finite set {(¢1,...,¢,) € N" | ¢+ --- + i, < j}. Therefore

w(€)h0] Nt 1M = {Ct’ € ti M l E Res‘-,(a‘i‘ e af.ra) € w(dof)hol}
(i1,...,ir)EI(J)

is open in w(§). By definition of the direct limit topology, w(€)ne C w(§) is
open. a

Corollary 4.2.9 Let ¢ = (z,...,y) be a saturated chain. The canonical map
wz) W)

W(@)hote  wW(E)nol

s bigective.
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Proof By definition the map is injective and according to cor. 3.2.12 it is
dense. But by the theorem the module w(€)/w(€)no is discrete. a

From prop. 4.1.4 and prop. 1.4.6 it follows that w(z)/w(z)hol¢ is an artinian
Ox,-module.

Definition 4.2.10 (Poles of Meromorphic Forms) Let { = (z,...,y) be a sat-
urated chain in X.

a) Given a differential form a € w(x), let I be the length of the Ox ,-module
(Ox,y - o + w()hote)/w(2)hote- Then a is said to have a pole of order |
along €.

b) If1 <1 then « is said to have a simple pole along £. Define
w(x)sime := {a@ € w(z) | @ has a simple pole along £} .

For any Ox,-module M denote its socle Homo, , (k(y), M) by soco,,
M. Then one has

W(Z)sim:e /W (2 )hote = s0Coy , (W(z)/w(T)hove) - (4.2.11)
Proposition 4.2.12 Let § = (z,...,y) and n = (y, ..., 2) be saturated chains

in X, let 0 : k(y) — Ox,y) be a coefficient field and let 7 : K — Ox ;) be a
pesudo-coefficient field. Then for any form o € w(z)sme one has

Resgvdonr (@) = Res,, - o Resg » () .

Proof We can assume that K — k(z) is purely inseparable. Choose a saturated
chain ( = (z,...,w) with w a closed point and define K, as in thm. 4.1.12.
Define 3; := Res¢yggn,-(@) and B, := Res,, o Res¢, (). If B # B, there
exists some ¢ € K s.t. Resg /i(c(B2 — 1)) # 0. Let 7 : K — k(n) be the
morphism induced by 7, and let g, : k() — Ox,, be the lifting extending o.
Define ¢ := 0, 0 7(c) € Ox,. Then Resevdon)/K,o,0r(C0) = cf2. We claim
that Resg(evdyn)/k,r(Ca) = cf1. This leads to a contradiction, since by theorems
2.4.23 and 4.1.12, one has

RESI((/k(C,Bz) = Resk(gvdonvdoo/k(éa) = ResK(/k(cﬂl) .

In order to prove the claim, note that 7(c)— ¢ € m,, C Ox,,. The submodule
w(€ V donhot C w(€ V don) is closed, and it contains w(€)ne (by lemma 4.2.5).
On the other hand m, C m, is dense. Since m, - & C w(§)ho1, the continuity of
multiplication implies that m, - & C w(§ V don)not. Therefore

Resk(evdon)/k,r(E) = Resyevdon)/k,+(T(c)@) = cfh .
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Corollary 4.2.13 Let £ = (z,...,y) be a saturated chain in X. There is a
canonical Ox ,-linear homomorphism Res¢ : w(Z)sime — w(y). If o is any
coefficient field for y, then Rese = Res¢ o |u(e)yim: -

Proof Taking 7 = (y) in the proposition it follows that for any two coefficient
fields 0,0’ and all @ € w(Z)sim:¢, one has Res¢ () = Res¢o(a). The Ox -
linearity follows from equation (4.2.11). a

Proposition 4.2.14 Let a € w(z) be a form. Then a is holomorphic along all
but finitely many saturated chains € = (z,...).

Proof Because X is quasi-compact we can assume that X = Spec A. The
proof is by induction on the length of £. First consider chains of length 1,
€ = (z,y). For all but finitely many points y € {z}~ of codimension 1, « is in
the image of 2%, ; by lemma 4.2.6 « is holomorphic along such (z,y).

Now fix (z,y) and consider chains £ = (z,y,...,z) of length n > 2. Write
€ = (z,y) Vdon with n = (y,...,2) a chain of length n — 1. Choose a coeffi-
cient field o : k(y) — Ox,(y). Since Res( ) o|a is @ DO over A (prop. 4.1.4),
there are forms f,...,0, € w(y) s.t. Reszy) (A @) C i, A - Bi. By induc-
tion each (; is holomorphic along all but finitely many chains . For each 7,
Res(z,y),0(Ox,z - @) C X Ox,, - Bi because A — Oy, is formally étale. Using
lemma 4.2.1, if all §; are holomorphic along 7, then a is holomorphic along
(z,y) V don. a

The following important theorem is due to Parshin. For surfaces see [Pal]
and for schemes of higher dimensions see [Lo]; cf. also [Be]. By prop. 4.2.14
it makes sense to consider, for fixed x > y and for a pseudo-coefficient field
0: K — Ox ), the sum ¥._(, ) Rese, :w(z) = wg.

Theorem 4.2.15 (Parshin-Lomadze) Let X be a scheme of finite type over a
perfect field k.

a) Let{ =(...,z) andn = (y,...,z2) be saturated chains in X s.t. z >y and
codim({y}~,{z}~) =2, and let 0 : K — Ox,.) be a pseudo-coefficient
field. Then

> Resqyqune=0.

weX,z>wdy
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b) Suppose X is proper over k, and let £ = (...,x) be a saturated chain in
X st. dim{z}~ =1. Then

E Resfv(w),k =0.

weX,z>w

Proof By lemma 4.2.1 we can assume that in part a), z is a closed point and
K = k. Then this is an instance of [Lo] thm. 3. O

4.3 The Residue Complex Ky - Construction

In [RD] ch. VI §1 we find the following definitions. Let X be a locally noetherian
scheme. For a point z € X let I be an injective hull of k(z) as an Ox ,-module,
and let J(z) be the skyscraper sheaf which is I on the closed set {z}~ and 0
elsewhere. Then J(z) is a quasi-coherent, injective Ox-module.

Definition 4.3.1 A residual complex on X is a complez R’ of quasi-coherent,
njective Ox-modules, bounded below, with coherent cohomology sheaves, and
such that there is an isomorphism of Ox-modules

PrRr=P JI(z) .

PEZ z€X

Now suppose X is a reduced scheme of finite type over a perfect field k. In
this section we will construct a complex Ky on X. We will show that it has all
the properties of a residual complex, apart from having coherent cohomology
sheaves. This last property shall be verified in §4.5. The complex K is called
the Grothendieck residue complez of X (relative to k).

Definition 4.3.2 Let x € X be a point and let 0 : K — Ox ;) be a pseudo-
coefficient field. Define

K(o) := Homc,‘(’"‘(Ox,(x),wK) ,

considered as a skyscraper sheaf supported on the closed set {x}~. K(0o) is called
the dual module of the local ring Ox . (relative to k) determined by o.

K(o) is a quasi-coherent sheaf. By Matlis duality it is an injective hull of
k(x) over the local ring Ox,. Thus (o) = J(z) in the notation used above.
In [Gr] these dual modules are the building blocks of the residue complex, and

the same is true here. The main effort will be to identify the various K(o) to a
single module K(z).
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Lemma 4.3.3 Let £ = (z,...,y) be a saturated chain in X and let o/T be
compatible coefficient fields for £. Denote by loc : Oxy, — Ox . the localization
homomorphism. Given any ¢ € K(o) put

6(¢) = 8¢ 0/r(®) :==Res¢ o poloc: Ox,y — w(y)
(see diagram). Then
a) The k-linear homomorphism 6(¢) is continuous for the my-adic topology.

b) The continuous homomorphism §(¢)(y) : Ox ) — w(y) extending 6(¢) is
k(y)-linear (via 7).

Ox. —2—~ w(z)
lloc ‘Resf,r (4.3.4)
Ox, 8L w(y)

Proof a) Since ¢ is continuous, ¢(mit!) = 0 for i >> 0, so it is a DO over
Ox. By prop. 4.1.4, Res¢ ; is a locally DO. Thus the composition §(¢) is a DO
over Oy, (see lemma 3.1.9) and §(¢)(mi*') = 0 for j >> 0.

b) Let ¢ : Ox¢ — Ox¢/mit! = (Ox . /mi)e — w(€) be the k(€)-linear map
obtained by applying the completion (—); to ¢. Then by definition of Rese .
we get

8(8)w) = Resk(e)/ktw)r © 96 © 9 Ox,) = w(y)

where 9 : Ox ) — Ox is the face map. Since o/7 are compatible for £ it
follows that ¢, is k(y)-linear, and hence so is 6(¢)(y)- O

Remark 4.3.5 We adopt the following convention: operators denoted by the
symbol “6” are Ox-linear, whereas operators denoted by the symbol “Res” are
locally differential operators.

The crucial ingredient of our construction is the coboundary map 6 between
dual modules.

Definition 4.3.6 Let { = (z,...,y) be a saturated chain and let o /T be com-
patible coefficient fields for £. The coboundary map & o/ : K(0) — K(7) is by
definition the Ox-linear homomorphism ¢ +— & ;/.(¢) of lemma 4.3.3. Also
define &, : w(x) — K(7) by 6 -(a)(a) := Res¢ - (ac), a € w(z), a € Ox ).
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The map §(z),, is a canonical isomorphism w(z) = soce,, K(0), and under
isomorphism we have

6{,0‘/1‘ o 5(2)’0 = 6{,1’ : w(.’l,') — K(T) . (4.3.7)

Note also that ker(é ) = w(Z)nole-

Suppose { = (z,...,y) and = (y,...,2) are saturated chains and p,o,
are coefficient fields for z,y, z respectively, s.t. p/o and o /7 are compatible for
€ and 7 respectively. Then by lemma 4.1.6 and cor. 4.1.16 one has

bevdon,r = by,r 08¢0 - (4.3.8)

Recall that a module M over a noetherian local ring (A4, m) is called cofinite
if M = Homu(N,I) for some finitely generated A-module N and for some
injective hull I of A/m.

Proposition 4.3.9 Let{ = (z,...,y) be saturated chain. Then w(x)/ w(Z)noke
15 a cofinite Ox ,-module. As such it can be regarded as a skyscraper quasi-
coherent Ox-module, supported on {y}~. The map Res¢ of cor. 4.2.13 induces
a canonical isomorphism of Ox-modules Resg : w(T)sime/w (T )hote — w(y).

Proof Choosing a coefficient field 7 for y one gets an injection &, : (w(z)/
w(Z)hole) — K(7). By Matlis duality submodules of K(7) are duals of quotients
of Ox ) with respect to the duality Homo, ,(—,K(7)). Since the residue map
Resk(¢)/k(y),r is nonzero, and since the socle of K(7) is simple, it follows that & -
induces an isomerphism on socles. a

Definition 4.3.10 A system of residue data on X consists of the data ({K(z)},
{6¢},{®.}), where:

a) For every x € X, K(z) is a quasi-coherent sheaf, called the dual module
of the local ring Ox . (relative to k).

b) For every saturated chain £ = (z,...,y), 6 : K(z) — K(y) is an Ox-
linear homomorphism, called the coboundary map along €.

c) For every x € X and every coefficient field o : k(z) — Ox (), @5 :
K(o) = K(z) is an isomorphism of Ox-modules.

The following condition must be satisfied:
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(t) For every saturated chain £ = (z,...,y) and all compatible coefficient
fields o /T for &, the diagram below commutes:

K(o) 2o K(2)
'%a/r l5e

K(r) 2~ k()

Before stating the next result we have to broaden our definitions regarding
differential forms and coboundary maps.

Definition 4.3.11  a) Let S be a finite set of saturated chains in X. Define
k(S) = Tleesk(€) and w(S) = wis) = Deesw(§)- IfG C X isa
finite subset, define k(G) and w(G) by replacing G with the set of chains
{(z) | = € G}.

b) Lety € X be a point and let 0 : K — Ox ) be a pseudo-coefficient field.
Suppose G C X 1is a finite subset and S = U, S: 15 a finite set of chains,
s.t. each £ € S, begins with x and ends with y. Define §s, : w(G) — K(0)
by 65,:7 =3 seq Efes, 65,0-

c) Let Xgen be the set of generic points of irreducible components of X. If
X is a reduced scheme define w(X) := W(Xgen) = Baex,e, W(T)-

Recall that the total ring of fractions of X is denoted by k(X). Thus for X
reduced we have k(X) = k(Xgen) and w(X) is a free k(X )-module of rank 1.
In part b) of the definition we don’t require that z > y forallz € G;if z ¥ y
then S, = () and 45, still makes sense.

Lemma 4.3.12 Let S and o be as in def. 4.3.11 b). Then the k-submodule
W(G)hot:s = ker(bs,) C w(G) ts independent of o.

Proof Copy the proof of lemma 4.2.1. O
The main result of this article is:

Theorem 4.3.13 (Internal Residue Isomorphism) Let X be a reduced scheme
of finite type over a perfect field k. Lety € X be a point and let 0 : K — Ox )
be any pseudo-coefficient field. Then:
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a) There exists a finite set of chains S = U,eq S: as in definition 4.3.11 b)
s.t.
0s,0 1 w(G) — K(0) is surjective. (4.3.14)

One may choose G = Xgey.

b) Let ¢’ : K' — Oxyy,) be another pseudo-coefficient field and let S =
Uzeg Sz and S' = Uy S, be sets of chains as in def. 4.3.11 b), with
bs,0 surjective. Let @, , be the map which makes the lower triangle in the
the diagram

65’,6/
w! G"! 1]
W(G, hol: S/ K(a )
bst,0 b5,01
w(G
K(o) w(G)not:s

commute. Then ®, . is an isomorphism and the upper triangle commutes
too.

Proof a) By thm. 3.3.16 there exists a set of chains S = U,ex,,, Sz s-t. the face
map 0 : Ox,y) — [l¢es Ox¢ = k(S) is a strict monomorphism. Since the topol-
ogy on k(S) is K-linear (prop. 3.2.5), any continuous K-linear homomorphism
¢ : Ox,y) — wk extends (not uniquely) to a continuous K-linear homomor-
phism ¢ : k(S) — wk. The residue pairing (4.2.4) is a perfect pairing of ST
K-modules (thm. 2.4.22); there exists a form 8 € w(S) s.t. ¢ = (=, B)i(s)/x-

Let w(S)hot C w(S) be the perpendicular space to Ox, under the pairing
(=, =)k(s)/k- Since Pees w(€)nol C w(S)hol, and by thm. 4.2.7, it follows that
w(S)hot is an open submodule of w(S). According to cor. 3.2.12, w(X) C w(S)
is dense; so we can assume that 3 € w(X). Doing so we get ¢ = 5,(0).

b) First note that the surjectivity of 85, implies that Ox ) — k(S) is a strict
monomorphism. This is because Oy, is a separated ST K-module with a
topology generated by K-subspaces of finite codimension. Hence g, is surjec-
tive too.

To show that the upper triangle is commutative amounts to proving the
following statement: if & = Y g0, € w(G) and & = Y i ) € w(G') are
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forms s.t. 8s,(a) = 6g,(a’), then also 8s,/(a) = bs1o1(a’). Now bsq(a) =
65/,,,(0/) iff

forall a € Oxy, >, Y. Resgo(aaz)= Y > Resgo(aay). (4.3.15)

z€G E€S: z'eG’ eles;,

But just like in the proof of lemma 4.2.1, if p = (y, ..., 2) is any saturated chain
with 2 a closed point, condition (4.3.15) is equivalent to

forall a € Oxy, >, Y Resevgoni(aas) = > Z Resgrvdonk(a0y,)

2€G £€S, 2/€G' ¢'es!,
which is independent of . O

Let ({(2)}, {8}, {®-}) and ({K'(z)}, {8}, {®, }) be two systems of residue
data. An isomorphism between them is a family of isomorphisms ¥, : K(z) =
K'(z) s.t. ¥y 08 = & o ¥, and ¥, 0 &, = & for all chains { = (z,...,y) and
all coefficient fields o for z.

Corollary 4.3.16 There exists a system of residue data on X, unique up to a
unique 1somorphism.

Proof If © € X,en, set K(z) := w(z). For any y € X we identify the Ox-
modules K(o), where o ranges over the coefficient fields for y, via the iso-
morphisms ®,,. Let X(y) be this identified module. The coboundary map
b6, : K(y) — K(z) attached to a saturated chain 7 = (y,...,z2) is represented
by 6,0/ : K(6) — K(7), where o/7 are compatible coefficient fields for .
Suppose o'/7' are other compatible coefficient fields for . Let S be a set
of chains as in part a) of the theorem, so 6s, : w(G) — K(0) is surjective.
Setting SV don := {{ Vdon | £ € S} we get bsvdgnr = Opo/r © bs0. Let
M := im(8svdyn,r) C K(7). By the theorem @, ./|pr = Esvdgn,~ © (6svdgn,r) "
Hence

(5,”6//,./ o (I)o,a’ = 6,,10//1.: o 65’01 o (5510)—1
= 6SVdon,‘r’ o (6SVdon,-r)_] o (617,6/T o 65,0) o (65,0)—-1
= (I)‘r,'r’ o 61},0/1’

s0 6, : K(y) — K(z) is well-defined.

Given another system of residue data ({K'(z)}, {6}, {®,}), for every y €
X and every coefficient field o the map ¥, : K(y) % K(o) 2% K'(y) is an
isomorphism of Ox-modules. Using compatible coefficient fields one has ¥, o
b¢ = 6¢ o W, for any saturated chain ¢ = (z,...,y). Thus {¥,} is the unique
isomorphism between the two systems. a
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Remark 4.3.17 Theorem 4.3.13 actually implies more: there is a canonical
isomorphism @, : K(o) = K(z) for any pseudo-coefficient field o : K — Ox ().

Corollary 4.3.18 Given y € X there is a canonical isomorphism of Ox-
modules 8, : w(y) S socoy, K(y). If o is a coefficient field for y then one has
b) = s 0 8y),0-

Proof We must show that if ¢’ : k(y) — Ox, ) is any other coefficient field
then @, ./ 0 §), = §(,) 0. Choose any saturated chain { = (z,...,y) with
T € Xgen. According to the theorem @, o|soc k(o) can be computed using & ,.
Let 8 € w(y); by prop. 4.3.9 we can find & € w()sim:¢ s.t. Res¢(@) = 8. Then
using prop. 4.2.12

D000 8310 (8) = Baygr 0 b 0(0) = b r(0) = 8.0 (8)
a

Lemma 4.3.19 a) Let{ = (z,...,y) andn = (y,..., z) be saturated chains.
Then 8¢vdyn = 6y 0 .

b) Let y € X and let ¢ € K(y). Then for all but finitely many saturated
chains n = (y,...) one has é,(¢) = 0.

c) Let (z,2) be a chain in X with codim({z}~,{x}~) =2. Then

Y 8408y =0.

yeX,z>y>z

Proof a) Choose coefficient fields p, 0,7 for z,y, z respectively s.t. p/o and
o/1 are compatible for £ snd 75 respectively. Use formula (4.3.8) and the iso-
morphisms ®,,®,,®,.

b) Choose a set of saturated chains S = U,¢x,,, S¢ as in thm. 4.3.13 a), and let
bs = Y¢es b¢ : w(x) — K(y) be the corresponding surjection. Then ¢ = és(a)
for some o € w(zr) and 6,(¢) = dsvden(a) by part a) of the lemma. By prop.
4.2.14, for all but finitely many such chains 7, a € N¢es W(X )hol:evdyn, and for
those 7 one has 6,(¢) = 0.

c) By part a) this sum equals ¢ x z>y>: 0(z,y,:)- Choose coefficient fields as in
a). For any ¢ € K(p) and any a € Ox . we have by definition

> Sewnr(@)@)= 3 Resiys(4(a))

yeX,z>y>z yeEX,z>y>z
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which is zero by theorem 4.2.15. O

The stage is set to present the residue complex. For every natural number
q let X, C X be the subset {z € X | dim {z}~ = ¢}.

Theorem 4.3.20 Let X be a reduced scheme of finite type over a perfect field k
and let ({K(z)},{6},{®Ps}) be the unique system of residue data on X. There
exists a complez (Kx,6x) of Ox-modules, together with homomorphisms of
Ox-modules ¥, : K(z) — Kx for all x € X, s.t. for every integer q the

homomorphism
T, P K(x) — Ky (4.3.21)

z€X, z€X,
is an 1somorphism. The coboundary map 6x satisfies the formula

bxo0 Y U, => T,06,,: P KE)—Kx . (4.3.22)

zeX (z,y) z€X

The complex (Kx,8x) is unique up to a unique isomorphism, and is called the
Grothendieck residue complex of X (relative to k).

Proof Use formulas (4.3.21) and (4.3.22) to define the complex Kx. From
lemma 4.3.19 b) it follows that 3, ) §(zy) : Dzex K(z) = Dyex K(y) is well-
defined, and from part c) of the same lemma it follows that 6% = 0. a

4.4 Functorial Properties of the Complex Ky

Let X be a reduced scheme of finite type over a perfect field k, with structural
morphism 7. In this section we will examine the behavior of the residue complex
Kx with respect to finite morphisms and open immersions. We will also show
that when 7 is proper there is a canonical nonzero trace map Tr, : H'7, Ky — k.

Proposition 4.4.1 Let f : X — Y be an open immersion of reduced k-schemes
of finite type. There is a canonical isomorphism of complezes of Ox-modules
75 Kx S f*Ky. If g: Y — Z is another such open immersion then

YTor = F1 () 077 : Kx = f*9"K7 = (9f)'K7 -

Proof f induces an isomorphism between the system of residue data on X
and the restriction to f(X) of the residue data on Y. Since Ky is a sum of
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skyscraper sheaves K(y), f*Ky is the sum of the sheaves f*X(y) for y € f(X).
a

Remark 4.4.2 In prop. 4.4.1, “open immersion” can be replaced with “étale”.
Indeed, suppose f : X — Y is étale. Giveny € Y, f*K(y) = D.), f*K(y).,
since f is quasi-finite. For any coefficient field o : k(y) — Oy, and any
x|y, we have an induced coefficient field o, : k(z) — Ox (z), and Ox ) =
k() ®k(y) Oy,y)- This induces an isomorphism f*Ky (o), = Kx(o,) which is
compatible with the coboundaries.

Let f : X — Y be a finite morphism of noetherian schemes. Following
[RD] ch. ITI §6 we let f : (X, Ox) — (Y, f.Ox) be the corresponding morphism
of ringed spaces, and we denote by Mod(Y, f.Ox) the category of sheaves of
f+Ox-modules on Y. The functor f* : Mod(Y, f.Ox) — Mod(X) is exact.

Definition 4.4.3 Given a finite morphism f : X — Y define a functor f° :
Mod(Y') — Mod(X) by

fb = f*HomY(f*OXa _) .

If U = SpecB and V' = Spec A are affine open subsets in X and Y re-
spectively s.t. U = f~!1(V), and if M is a quasi-coherent Oy-module, then
(U, M) = Homu(B,T'(V,M)). If X 4, Y % Z are finite morphisms then
(9f)" = f*¢’ naturally.

Remark 4.4.4 In [RD] the functor f’ is a derived functor, defined using RHom
instead of Hom. However we shall only apply f° to injective Oy-modules,
making this discrepancy disappear.

Theorem 4.4.5 Let f : X — Y be a finite morphism of reduced k-schemes
of finite type. There is a canonical isomorphism of complezes of Ox-modules
’y'} :Kx = f°Ky. If g: Y — Z is another such finite morphism then

v =)o Ky S feky = (9f)Ky -

Before proving the theorem we need to establish some more notation. Sup-
pose G,H C X are finite subsets and suppose S = Uyeg Sw = Uzer ST is a
finite set of chains in X s.t. each ¢ € S,,NS* begins with w and ends with z. Sup-
pose also for that every x € H we are given a pseudo-coefficient field o, : K, —
Ox,(z)- Define 0 :=[I,eq 0, and K(0) := @,y K(0,). Let 855 : w(G) — K(0)
be the Ox-module homomorphism 65,y := ¥ yecc Xzen Lees,nse 6,0, -
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Now let f : X — Y be a finite morphism, let y € f(X) be a point and let
H C f(X) be a finite subset. Suppose T' = U,en Tw is a finite set of chains
in Y, s.t. each n € T, begins with w and ends with y. Let G := f~!(H) and
write z|y for z € f~!(y). Then S := f~1(T) decomposes into S = Uyeg Sw =
U,y S* as above. Given a pseudo-coefficient field 7 : K — Oy, the local
homomorphisms f* : Oy ,) — Ox,) induce pseudo-coefficient fields f*r, :
K — Oxz). Set f*7 :=[l,), f*7.. As explained above, there is an Ox-linear
homomorphism g s+, : w(G) — K(f*7). Define w(G)noi.s := ker(és,f+r)-

Let

6, : w(G) > fw(H) = Homyg) (k(G),w(H)) (4.4.6)

be the isomorphism induced by the trace map Trie)/kn) : w(G) = w(H), and
let

0, : K(f'7) =P K(f*r.) S f'K(r) = @Homo,, (Ox,., K(7))  (44.7)

zly zly

be the isomorphism of adjunction.
Lemma 4.4.8 The diagram of Ox-modules below is commutative:
(@) e po)
i‘ssyf'r \f "(6z,r) (4.4.9)
K(f'r) e pK(r)

Proof We can localize at any z € f~!(y). Choose o € w(G)., a € Ox, and
b€ Oy,. Then

(fb((STy,.) 0o 91)(a)((l)(b) = Z ReS,,YK [o) Trk(c)/k(y)(baoz) € wg .

neT

On the other hand

(63 0 85 4+-)(a)(a)(b) = D Res¢ k(bacr) € wi .
¢es

According to prop. 3.2.3, k(S) = k(G) ®xu) k(T) as reduced clusters of TLFs.
Since k(H) — k(T) is topologically étale relative to k, we know by thm. 2.4.23
(cf. proof of cor. 4.1.16) that

> Resyk 0 Tryayeemy = 9 Rese k1 w(G) = wi .
neT €S

101



Proof (of the theorem) Fix y € Y and ¢ € f~'(y). It suffices to give an
isomorphism K(z) = f*X(y), which is compatible with the coboundaries 8x
and dy. Let o : k(z) = Ox ;) and 7 : k(y) — Oy, be coefficient fields, and let
F*1 : k(y) = Ox,(z) be the induced pseudo-coefficient field. The isomorphjsm
®, f+r, of thm. 4.3.13 is an isomorphism of OX-modules K(c) = K(f*r.). By
adjunction we get an isomorphism K( f*T,,) f"IC(T)z (called 6, in lemma
4.4.8), and the composmon is by definition 7%, : K(0) S fPK(r)..

Suppose ¢’ and 7' are other coefficient fields for r and y respectively. By
thm. 4.3.13

DRy pors 0 Roor = Ppory prrs © g por,

It remains to show that
020 ®pur, pors = f(Br0) 00y : K(f*7) S (T, . (4.4.10)

Then the isomorphism 7f K(z) S f*K(y). represented by % %07 15 well defined.
Choose a finite set of chains § = U, Xegen S, in X s.t. each ¢ € S, be-

gins with w and ends with z, and s.t. the face map Ox ) — k(S) is a strict

monomorphism. Define H := f(Xgen) CY, T := f(S) G:= f"}Y(H) C X and

S := f~Y(T). Then S C S, so k(S) = k(S) x k(S — S) and Ox ) — k(S) is a

strict monomorph.lsm The isomorphism ®+., s+, can be computed using S:

Dper, frrs = s, pors 0 (85,p07,) ™+ K(f'72) S K(f*7,) .
By thm. 4.3.13 the isomorphism ®,, on Y, restricted to im(ér,) C K(7),

equals 67, 0 (67,)~'. According to the previous lemma we have
) ) g

01—1 o fb((ST,.,-)-l 06y = (6S,f'-r)—l : ’C(f‘T) 5 W(G)/W(G)holzs

and the same for 7/, together yielding formula (4.4.10). Similar arguments
show that 'y"} commutes with the coboundaries. The transitivity of the trace on

differential forms implies that ’y; ;= f"(fy;) o 7}. O

Definition 4.4.11 (Traces)

a) Let f : X —»Y be a finite morphism of reduced k-schemes of finite type.
Define a homomorphism of complezes of Ox-modules

Trs: fuKx — Ky
by taking the composition of fu(v%) : fiKx = f.f*Ky with the homomor-
phism f.f*Ky = Homy (f.Ox,Ky) — Ky given locally by ¢ — ¢(1).
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b) Given z € Xy (a closed point) let o : k(z) — Ox, ) be the unique
coefficient field. Then there is a canonical isomorphism ®, : K(o) =
Homi‘z:;‘((?x,(,),k(a:)) S K(z). Define

Res(o) 1 K(x) = k

by Res(e)k () := Tri(z)e 0 (271(¢))(1), ¢ € K(z)-
c) Let m: X — Speck be the structural morphism. Define

Tr,: MK = P K(z) =k

z€Xo
by Try := 3 e x, ReS(z) k-

Corollary 4.4.12 a) Let X Ly & 7 be finite morphisms of reduced k-
schemes of finite type. Then

Trgp = Try 0 g«(Try) : (9f )« Kx = K7 .

b) Let f : X — Y be a finite morphisms of reduced k-schemes of finite type
and let p: Y — Speck be the structural morphism. Then

Trr = Tr, 0 p.(Try) : MKy — k.

Proof Both assertions are consequences of thm. 4.4.5 and some diagram chas-
ing. a

Corollary 4.4.13 The homomorphism Tr, : I'(X,K%) — k is nonzero. More-
over, given any nonzero element a € I'(X, Ox), there exists some o € I'(X,K%)
s.t. Trp(aa) # 0.

Proof Since X is reduced, there is some closed point z € X s.t. a(z) €
k(zr) is nonzero. If p : Speck(x) — Speck is the structural morphism, then
Tr, = Tri)k. Consider the finite morphism f : Speck(z) — X. By the
corollary, Tr, o m,(Trs) = Tr,. Choose any b € k(z) s.t. Try)/x(ab) # 0 and
set a := 7, (Trs)(b). O

Theorem 4.4.14 Suppose m : X — Speck is proper. Then Tr, o m.(6x)
(mKx') =0, so Try : m Ky — k is a homomophism of complezes of k-modules.
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Proof We have 7.Kx' = @,¢x, K(z). Choose z € X3, let o : k(z) — Ox )
be a coefficient field and let ¢ € K(c). For any y € X, N {z}~ we have
Res(y),k 0 8z y) © B () = Resz,g)k © $(1), s0

Tr, om(6x) 0 @o() = Y Resieypa(9(1) =0

y€Xo,z>y

by the classical residue formula (cf. thm. 4.2.15 b)). O

Definition 4.4.15 Suppose X is an n-dimensional, equidimensional scheme.
Define wx to be the sheaf H"K.

Observe that &x is a subsheaf of KX" = w(X) = Qf x),x- Now suppose X
is integral. In [Ku2] E. Kunz introduced the sheaf of regular differential forms
wh/x (cf. [Lil] §0). It is a subsheaf of w(X), coherent, and coincides with Q%
if X is smooth.

Theorem 4.4.16 Let X be an integral scheme of finite type over a perfect field
k. Then @x is the sheaf of reqular differential forms.

Proof Say X has dimension n and generic point v. We claim that for
any open set U C X, I'(U,@x) = Niex,_,nU W(X)hol:(vz)- This is because
DU, KX = @.ex,_,nv K(z) and for each such , w(X)hol(v,2) = ker(6(v,z))-
If X is smooth over k then w(X)hol(v,z) = Q}/k)z since Ox . is a DVR for-
mally smooth over k (cf. proof of lemma 4.2.6). Hence for any y € X we have
(:)X:.'l = nxexn_n,IZy QnX/k,z' = g(/k,y'

It remains to show that given a finite surjective morphism f : X = Spec B —
Y = Spec A with X integral and Y smooth over k, then

I[(X,ox) ={a € w(X) | Trs(B-a) C i} -

Since Try sends f.wx into @y = QF/,, the inclusion “C” is trivial. Let us prove
the other inclusion. Fix o € w(X$ st. Trg(B - a) C Q7. Let v and w be
the generic points of X and Y respectively. It suffices to show that for every
T € Xn_1, @ € W(X)hol:(v,e)- Fix such z and let y := f(x).

Define K := k(Y),) = k((w,y)) and L := k(X)) = k(X) Q) K =
Iy k((v,2") ). Since Try is Oy-linear we get upon completion along (y):

Tr/k((£:O0x)w) - @) C Qyjily) = (W, ¥) Ihol -
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Let e € (fiOx)(y) = 1)y Ox,=) be the idempotent which projects onto Ox,(z)-
Choose a coefficient field o : k(y) — Ox,(y). Then

Resy/k(y),o (f+Ox) ) - ea)
Resk/k(y),e © Trr/x ((fOx)@y) - e@) =0

Resk( (v,2))/k(y),0 (Ox,(z) - @)

so & € w( (v,Z) )ho (cf. lemma 4.2.1). a

Remark 4.4.17 When X is integral of dimension n and 7 is proper we get a
canonical k-linear homomorphism

- H°(Trx)
fx : H*(X,0x) — HY(X,Ky) —— k. (4.4.18)

It follows from thm. 1 of the appendix that the pair (&x, fx) is a dualizing pair
in the sense of [Lil] §0. A separate local calculation is needed to check that 0x
equals Lipman’s map, up to a sign (cf. [Lil] thm. 0.6 (d), and [SY]).

4.5 Exactness for Smooth Schemes; More Functorial
Properties

In this section X is a reduced scheme of finite type over a perfect field k.
We shall exhibit a canonical quasi-isomorphism Cx : Q%,[n] — K for X
smooth of dimension n over k. Using the variance of Ky with respect to finite
morphisms we will prove that it is a residual complex for any X. Finally, we
shall show that when m : X — Speck is proper (and some extra hypothesis) the
pair (K, Tr,) represents the functor 7* +— Homy(Rm.F", k) on the category
Do (X).

Suppose X is integral, of dimension n. Following [EZ] ch. III §3.1 we call
the canonical homomorphism of Ox-modules Q% /. — Qfx)/, = KX" the fun-
damental class and denote it by Cx. According to lemma 4.2.6, 6x o Cx = 0.
The augmented residue complex on X is the complex

C —n 6 - é 6
--—)0—»9?\,/k—>XICX"—X)ICX"+1—X)---AICg(——»O—)--- .

Remark 4.5.1 The fundamental class Cx is defined on any reduced scheme
X. It is a global section of the double complex Ky := Homx (¥, K), and
dx(Cx) = 8x(Cx) = 0; see [EZ] ch. III §3.1 and our digression 4.5.13.
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Theorem 4.5.2 Let X be a smooth irreducible scheme over k. Then the aug-
mented residue complez on X is ezxact.

First let us set up some notation. Suppose X is an irreducible smooth n-
dimensional scheme over k, z € X is a point and p is an integer in the range
[0,n]. The stalk of K3” at z, K3,, can be identified with @, ¢x, >, L(2); it
is a direct summand of the group of global sections I'(X,Ky’) = @,cx, K(z).
Any section o € I'(X,K) is a sum o = T,cx, 0z, and a, is identified with
the germ of a at . The module K(z) is an artinian Ox ,-module, so the cyclic
submodule Ox , - a, has finite length. We shall call a point z € X bad if it is
not contained in any smooth hypersurface Y C X.

Given a = ¥,cx, @z € I'(X, Kx’) define:

Ass,(a) = {re€X,|z>2 a,#0}

length, (@) = Yseas,(alengtho, (Ox; - o)
codim(a) := n—p
badness,(«) := number of bad points in Ass,(a)
weight,(a) := (codim(a),badness,(a),length,(a)) € N* .

We say that a € Ky, is a cocycle if 6x.(a) =0, and that is a coboundary
if @ = 6x,.(B) for some B € K3, ! (or a = Cx,(B) for some 3 € D% k00 if
p = n). Note that for o € Ky, C T(X, K%?), the support of o is precisely the
closure of Ass,(a).

Suppose Y C X is a smooth hypersurface, with ideal sheaf 7, and inclusion
morphism i. The canonical isomorphism Q% ® 7 1® Oy & Q’,‘,;,: gives rise
to a surjection of Ox-modules, the Poincaré residue map, Res(x,y) : Q}/k ®
T '1—»(2;7,: (we are omitting the functor ¢,). There is also a canonical injection

% @I = Qi) = KX", which identifies %/, ® T~ with the sheaf of
meromorphic forms with simple poles along Y. The trace map Tr; : Ky — Ky
is an injection of complexes; for any z € X, im(Tr;), consists of those germs
@, € K, annihilated by Z,.

Lemma 4.5.3 The diagram of Ox-module homomorphisms below s commu-
tative

n - -n 6 -n
QX/k®Il —— Kx" —%~ ’CX+l

\Res(x,y) Tr;

91}1/7,: C ’C}—/n+1
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Proof Let r and y be the generic points of X and Y respectively. For any
y' € X,y other than y, both paths are 0, since (%, ® T™')y C W(2)hol(z)-
Therefore we can localize at y. Then Z, = m, = (t) for some ¢t € Ox,,
and (%, ® 1, =t1. %k, Which equals W(Z)sim:(z,y) (cf. proof of lemma
4.2.6). Since Res(xy)(a A t7'dt) = a(y) € Q;:('y;/k for all a € Q% , we get
Res(x,y) = Res@zy) @ (% ® I7')y — w(y) (see prop. 4.3.9). Now (Tr;), :
Ky (y) = w(y) — Kx(y) is given by (1), = bx,(z,y) © Res(_zl’y) (cf. proof of thm.
4.4.5), so the diagram commutes. O

Proof (of theorem) Using induction on weight in the well-ordered set (N3, lex),
it suffices to prove the following claim:

(f) Let X be an irreducible smooth scheme over k, let 2 € X be a point,
let p be an integer in the range [0,dim X] and let o € K", be a cocycle.
Suppose that for all quadruples (X', 2’,p', o) as above with weight,, (o) <
weight,(a), @ is a coboundary. Then « is a coboundary.

The claim is proved case by case. We may assume that a # 0 and dim {2z}~
<p. Let n:=dim X.

case 1  codim(a) =0, so a € K", = w(X). Apply thm. 4.4.16.

case 2 codim(a) > 1 and o € Homp,,(Oy,:,K%",) for some smooth hy-
persurface Y C X. Denoting the inclusion morphism of Y by ¢ we have
a € (PKYF)., so a = Try(B) for some B € Ky%. Since Tr; : Ky — Ky is
an injection of complexes, § is a cocycle. We have codim(8) = codim(a) — 1,
so by the hypothesis § = by ,(y) for some v € IC;";_I, or f = Cy,(7) for some
v € Q;;,:z ifp=n.If p<n wegeta=0bx,0 (Tr).(y). If p=n we can lift
7 to some ¥ € (Q};k ® Z71),, where 7 is the ideal sheaf of Y. According to

lemma 4.5.3, 6x.(%) = a.

case 3  codim(a) > 1 and there is some & € Ass,(a) which is not bad. So
z € Y where Y C X is a smooth hypersurface. Let U = SpecA C X be
an open affine neighborhood of z s.t. UNY = Spec A/(t) for some t € A,
and let 7 : U — X be the inclusion morphism. Applying the isomorphism
vf : Ky = i*K, and observing that weight,, being defined locally at z, remains
unchanged, we see that it is possible to assume that X = Spec A.

Since the class t(z) of ¢ in the residue field k(z) is zero, it follows that
lengthy, (Ox, - ta) < lengthy, (Ox,. - @), and hence also weight,(ta) <
weight,(a). By hypothesis ta is a coboundary: ta = éx.(83) for some 8 €
K3F-!. Since t is a non-zero-divisor on Ox,. and since K", is an injective

I
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Ox,.-module, there is some v € K:}f’z_l s.t. ty = . Thus ¢(6x .(7) — @) = 0 and
we reduce the problem to case 2.

case 4  codim(a) > 1 and all points in Ass,(a) are bad. Choose some z €
Ass,(a) and let f : X — Y = A7 be a finite surjective morphism which
linearizes (z). Since X and Y are regular schemes f is a flat morphism (cf. [AK]
ch. V cor. 3.6). By choosing a small enough affine neighborhood of v := f(z)
in Y we can assume that X = Spec B, Y = Spec A and B is a free A-module
of rank N = deg f.

Choose an A-basis €;,...,ey for Hom4(B, A). We get an isomorphism of
complexes of Oy-modules

ft("/b) N
fKx — £ 'Ky = Homy (£.0x,Ky) 2P Oy - @Ky (45.4)
=1
s.t. fu(0x)(Z €i®06;) = X €: @6y (6;) for all global sections §; € I'(Y, Ky ). There
is an exact sequence of complexes of Ox-modules

0—J — fKy, %Ky, —0 (4.5.5)

where ¢ is localization at z and J = @,ef-1(s)2p. K(2'). For every B8 €
I'(X, J") the support of § does not contain z; therefore there is some ¢t € B s.t.
t8 = 0 but t(z) #0.

The sequence (4.5.5) is naturally split as a sequence of Ox-modules, al-
though not as complexes. Applying f.(—), to this sequence and recalling
that 6x.(@) = 0 we get fu(6x)o(@) = fuf'(bvy)(@) € fJ, = I(X,T).
Let t € B be s.t. tfu(6x).(a) = 0 but t(z) # 0. Write ta = LN, & ® i,
Bi € Kyh. Then Y€ ® dyo(Bi) = fu(6x)o(ta) = 0, so each f; is a cocycle.
Since Ass,(8;) C f(Ass,(ta)) C f(Ass,()) and since {f(z)}- C Y = A}
is a linear subspace, we see that badness,(8;) < badness,(a) = #Ass,(a).
The codimension hasn’t changed, so weight, (5;) < weight,(«). By hypothesis
B; = by,s(7:) for some v; € K3%~'. But t € O%, (a unit at z), so we conclude
that @ = éx ., (t 7' L &; ® 7). a

Corollary 4.5.6 For any reduced scheme X of finite type over k, Kx s a
restdual complez.

Proof We have to show that Ky has coherent cohomology sheaves. Since this
is a local question we may assume that X is a closed subscheme of Y = A}
for some n. Then for all p the Ox-module HPKy =& HPHomy (Ox,Ky) =
Exty™(Ox, 0y, is coherent. a
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Corollary 4.5.7 Suppose X is a Cohen-Macaulay, n-dimensional, equidimen-
stonal, reduced scheme. Let wx([n] be the complex consisting of the sheaf wx
in dimension —n. Then the homomorphism of complexes Ox[n] — Kx is a
quasi-isomorphism.

Proof The question is local so we may assume X is a closed subscheme of
Y = AP. Then HPKy = Ext}™(Ox, M), is 0 for p # —n (cf. proof of [Ha)
ch. ITII thm. 7.6). a

Let D(X) be the derived category of complexes of Ox-modules, localized
with respect to quasi-isomorphisms. Let DF (X)) be its full subcategory consist-
ing of bounded below complexes with coherent cohomology sheaves. Consider
the category FT/k of schemes of finite type over k and k-morphisms. From
[RD] ch. VII cor. 3.4 it follows that there is a contravariant pseudofunctor
! on FT/k. To every morphism f : X — Y in FT/k it assigns a functor
f1:DF(Y) — DF(X), with the following properties:

1) For two morphisms X LY 4 Z there is an isomorphism c}‘f; c(gf)' >
f'g"
2) For a finite morphism f : X — Y there is an isomorphism d?D S

3) For a smooth morphism f : X — Y of relative dimension n, there is an
isomorphism efP : f' 5 wy/y[n] ®oy f*, where wx/y is the invertible
sheaf %y .

4) For a proper morphism f : X — Y there is a trace morphism Tr'l,?D :
Rf.f' — 1in DF(Y). It induces a functorial isomorphism

680 . Rf.RHomx(F', £'G") 5 RHomy (Rf.F',G)
for all 7 € D (X) and G € DF(Y).

In particular, taking the structural morphism 7 : X — Speck and the
complex k € Df(Speck), we get an object 7'k € DF(X). The next corollary
says that in many instances there is an isomorphism 7'k & Ky in D(X) (e.g.
when X is quasi-projective).

Corollary 4.5.8 Suppose the structural morphism 7 : X — Speck factors as
m=pf with f: X =Y finite and p: Y — Speck smooth. Then there is an
isomorphism ( : Ky = 7'k in D(X).
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Proof Say Y has dimension n. By thm. 4.5.2 one has isomorphisms
Cyoeg®: p'k = wypln] = wyln] = A uln] = Ky
in D}(Y'), and by thm. 4.4.5 one has
(7;)—1 o deD ) f!(Cy o e":‘D) o clf‘,? kS ok S f!ICi, 5 beC;, S Ky .
O

Now assume that 7 is proper. In thm. 4.4.14 we produced a morphism
Tr, : mx — k in D(k).

Theorem 4.5.9 Assume that m : X — Speck is proper and that there is some

isomorphism Ky = w'k in D(X). Then there is a unique isomorphism (x :
Ky S 7'k in D(X) s.t.

Trr = TreP o Rmu(Cx) : MKy — k .

Proof Say we are given an isomorphism ( : Ky = 7'k in DF(X). Then TrRP
induces an isomorphism of I'(X, Ox)-modules

0 . HOR"‘(C) 0 ] 05[)
H'n Ky —— H'Rm.m'k —— Homy(m.Ox, k) .

Now I'(X, Ox) is a finite reduced k-algebra, hence a semi-simple artinian ring.
It follows that H°(X,KY) is a free I'(X, Ox)-module of rank 1. By cor. 4.4.13
the trace H’(Tr,) is nondegenerate, so H(Tr,) = H°(Tr®P) o H°R.,(¢) 0 a for
some global unit a € T'(X, Ox)*. Then (x := (oa~"' is the desired isomorphism.
O

Observe that thm. 4.5.9 applies when X is projective over k - this follows
from cor. 4.5.8.

Remark 4.5.10 In the appendix (thm. 1) it is shown that there exists a
canonical isomorphism (x : Kx — 7'k in D(X), as in thm. 4.5.9, on any proper
reduced scheme X. Moreover, the exercise at the end of the appendix shows
that there is a canonical isomorphism of complexes (x : Ky = 7%k on any
reduced scheme X. Here 72 is the pseudo-functor of [RD] ch. VI.

Remark 4.5.11 Suppose X is both smooth and proper over k. Are the
isomorphisms ¢ and (x of cor. 4.5.8 and thm. 4.5.9, respectively, equal? In
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other words, what is the unit a € I'(X, Ox) occurring in the proof of thm.
4.5.97 In [SY] it is proved that a = %1.

To conclude the paper, let us indicate some applications of our construction.
These shall appear in detail in a future publication [Ye2].

Digression 4.5.12 Let K be a TLF over k. Denote by D the ring Diﬂ'}?}‘,:(K )
K) of continuous differential operators over K. We can show that there is a
canonical right Dg action on wg. This action gives an isomorphism of filtered
k-algebras
Dy = Diff i (wi, w)

where DY is the opposite ring. A topologically étale homomorphism (relative to
k) K — K’ extends to a k-algebra homomorphism Dg — Dk, and with respect
to it the map wg — wgs becomes a homomorphism of right D g-modules.

On the other hand, if ¥ — K is itself a morphism in TLF(k), the residue
pairing (—, —) k/x induces an adjoint action of Dk on wk. A calculation shows
that this adjoint action coincides with the canonical right action.

Now let 2 € X be a point. For any coherent sheaf M define M, :=
Homyx (M, K(z)), the “canonical Matlis dual” of M at z. Using the results
on D-modules over TLFs mentioned above we prove that any DO D : M —
N between Ox-modules induces a DO (of equal order) Dy, : N}y — M.
The assignment D +— DE’I) is functorial. Moreover, given a saturated chain
§ = (z,...,y), the natural transformation & : (-){;) — (—){;) induced by the
coboundary & : K(x) — K(y) respects DOs.

Consider the sheaf of DOs on X, Dx := Dif fx/k(Ox,Ox). An immediate
consequence is that Ky = @,ex(Ox)f;) is a complex of right Dx-modules.
One checks that if X is smooth of dimension n and the characteristic is 0, then
the induced action on Q% , = H™"KY is by the Lie derivative (cf. [Bo] ch. VI
§3.2). For any left (resp. right) Dx-module M, MY, is a right (resp. left) Dx-
module. So M" — Homx(M",KY) is a functor D(Dx)° « D(D%), inducing
an equivalence D?(Dx)° < D®(D%) (where “c” means coherent over Ox).

Digression 4.5.13 In [EZ] ch. IT §2.1 the bigraded Ox-module Ky is defined.
For any p, ¢ set K&? := Hom X(Q}/k,lC"X). Using our construction we get a

canonical structure of double complex on Ky* (independent of embedding and
for arbitrary characteristic; cf. [EZ] §2.1.3). The first differential 6% is simply
¢ +— 6x o ¢. The second differential dy is a DO of order < 1, defined using the
results sketched in digression 4.5.12. We have Ky' = @,ex (%)) and we
may set d’y := ¥,¢x df;)- Then (dx)? = 0 and dy 06y = &5 od/y. Given a finite
morphism f : X — Y there is a canonical trace map Try : f.Xy¥" — Ky*. When
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X is smooth of dimension n the isomorphism Ky = Px/k Box wx' Qoyx Ky
sends d,) to Hz7?(d) for € X, which is the differential used in [EZ)].
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