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Inverse boundary value problems and applications 

Gunther Uhlmann* 

0. Introduction 
The main purpose of these lecture notes, which are a revised and ex­

panded version of the survey paper [S-U V ] , is to give an overview of the 
mathematical developments in the last few years in inverse boundary value 
problems. In these problems one attempts to discover internal properties of 
a b o d y by making measurements at the boundary. W e concentrate mainly in 
the problem of determining the conductivity of a b o d y from measurements 
of voltage potentials and corresponding current fluxes at the boundary. This 
problem which is often referred to as Electrical Impedance Tomography arose 
in geophysics from attempts to determine the composit ion of the earth. More 
recently it has been proposed as a potentially valuable diagnostic tool for 
the medical sciences. The methods developed to study this problem have 
lead to new results in inverse scattering and inverse spectral problems. W e 
also give an account of some of these developments in these notes. 

1. Electrical impedance tomography; the isotropic case. 
In this section we formulate the inverse conductivity problem and a 

similar problem for the Schrodinger equation at zero energy. 
Let C R n n > 2, be a smooth bounded domain. If the conductivity of 

Q is independent of direction (isotropic case) it is represented by a positive 
function, which we assume in C 1 , 1 ( Q ) , with a positive lower bound. If we 
assume that there are no sources or sinks of current in fi, the conductivity 
equation for the potential u in fi is 

( l . i ) L^u = div (yVu) = 0 in fî. 

If / represents the induced potential on the boundary (assume / € H* (9f2)), 
u € H1 (Cl) solves the Dirichlet problem 

(1.2) L~u = 0 in Q 
L~u = 0L~u = 
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G. ULHMANN 

The Dirichlet to Neumann map is then defined by 

(1.3) A 7 ( / ) = 7 
du 

du 

where u is the solution of (1.2) and u is the unit outer normal to the bound­
ary. T h e map 

Lau = 0 in Ct Lau = 0 in CtLau = 0 

is selfadjoint and is often called the voltage to current map because 7 ^ 
measures the current flux at the boundary. 

The inverse conductivity problem consists of the study of various prop­
erties of the map 

(1.4) 7 - t A 7 . 

These properties include the injectivity, range, and continuity of the map and 
its inverse (when an inverse exists). From the point of view of applications, 
an even more important problem is to give a method to reconstruct 7 (o r at 
least to deduce as much information as possible about 7) from A 7 . 

A closely related problem is to consider instead of the conductivity 
equation, the Schrodinger equation at zero energy 

(1.5) Lq = A - q 

where q € L°° ( f t ) . 
If 0 is not an eigenvalue of La, we can solve the Dirichlet problem 

(1.6) Lau = 0 in Ct 

u\oa = f 

and define the Dirichlet to Neumann map by 

(1.7) A , ( / ) 
du 
du 

where u is the solution of (1.6) . W e want to study the map 

(1.8) 5 A 

g - ^ A g . ^ A g 

A 7 and Aq are related in the following way: If it is a solution of (1.1) then 

1 
w = 7 2 ?x 
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INVERSE BOUNDARY VALUE PROBLEMS 

is a solution of Lqw = 0 with q = 
A v / 7 
Av/7 

It is a straightforward computat ion 

to see that 

(1.9) A . = 7 » A 7 7 2 
1 

2 7 

Av/7 

#77 

Thus if we know A 7 , 7 | a n and §^|an we can determine Aq. In the next 

section we shall see that A 7 determines 7 |an and §J|an, so that knowledge 

of A 7 determines Aq. 

2 . Results at the boundary 
Kohn and Vogelius ( [K-V, I]) proved that if 7 € C°°(Cl) one can deter­

mine dv3 V j . 

Theorem 2 . 1 . Let n(i = 1,2) be in L°°(Q) with a positive lower bound. 

Let XQ € dCl and let B be a neighborhood of XQ relative to Q. Suppose that 

7 i € C ° ° ( £ ) , » = 1,2 

and 
A 7 1 ( / ) = A 7 2 ( / ) V / € F * ( Ö O ) Q7i(*o) with 

supp f C B fi dÇi, then 

d 

dx 
Q 7 i ( * o ) 

d 

dx' 

Q7i(*o) 

where 

dx 
a denotes 

Ô 

dxi 
a i ... 

d 

dxn 

Q7i(*o) 

Sketch of proof. 
Kohn and Vogelius proved this result by cleverly choosing boundary 

data. W e outline here a different approach taken in [S-U, I] which makes use 
of the fact that A 7 is a pseudodifferential operator of order 1. This means 
that, in local coordinates near #0 € dCl which we denote by x\ and for / 
supported near XQ, 

(2.2) A 7 / ( z ' ) = 
A7/(z') = 

m A7/(z') = 0 0 € d 

XJx',n is the full symbol of A 7 and has an asymptotic expansion for large 
f 

[2.3; A7/(z') = 

A7/(z') = 

A7/(z') =A7/(z') = 
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with A 7 homogeneous of degree j in W e have A 7

 } ( x ' = 7 |dii0c')l£'l 

and it was proven in [S-U, I] that A i / ' ( # ' , f ' ) -determines inductively '(#', f') -
'(#', f') - dft 

(For a simpler proof of this see the paper [L-U] and also the sketch in section 
9 of this paper.) 

The previous result implies the injectivity of $ at real-analytic conduc­
tivities. Kohn and Vogelius extended this result further to cover piecewise 
real-analytic conductivities (JK-V, II]). 

Sylvester and Uhlmann ([S-U I]) used the proof of Theorem 2.1 outlined 
above to give continuous dependence estimates at the boundary. 

Theorem 2 .4 . Let ji, i = 1,2 be in L°°(Q) with a positive lower bound. 
Then 

(a) A 7 l - A 7 2 
2 » 2 

C Ti - 7 2 '(#', f') -

If 7 i , 72 are continuous, then 

|7i - 72 L°°(dsi) < Ci A 7 l - A 7 2 '(#', f') -

(b) If 7i ,72 are Lipschitz continuous then 

Bi = A 7 . - 7,-Ai satisfy 

\Bx-B2 hi C2 7i ~ 72 7i ~ 72 

and ||7! - 72||ivi.~(ön) + II¿(71 ~ 72)|U~(an) 

< c 3 
Bi — B2 i 1 

2>2 

A 7 1 - A 7 2 
2» 2 

On the operators we use the operator norm. C\ depends only on Q and 
the lower bound of the 7 t ' s . C21C3 depends only on Q and the j^s are 
normalized to have Lipschitz norm less than or equal to one. 

3 . Linearization at constants; Calderón's approach 
Calderón formulated the inverse conductivity problem in a different way. 

He considered the Dirichlet integral associated to the solution of (1.2) 

3.1 7i ~ 72 

f 
r | v « | 2 , 

Q1(f) measures the power necessary to maintain the potential / on the 
boundary. 
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Polarizing the quadratic form Q1 we obtain the bilinear form 

(3.2) QMg) = 7Vi¿ • V v 

where u is a solution of (1.2) and v solves 

(3.3) LyV = 0 in Q 

v\dü = 9-

The divergence theorem gives 

(3.4) 
v\dü = 9-v\dü = 

an 
dü 

In other words A 7 : H* (dQ) 2 (9f i) is the unique selfadjoint operator 

associated to the quadratic form Q~ with domain H*(dQ). The inverse 
conductivity problem can then be reformulated as the study of the map 

(3.5) 
dü Vu • + qu 

For the Schrödinger equation Lq we look at the Dirichlet form 

(3.6) Qq(f,g) =fhfg 
Vu • 

Vu • + quv 

where u, v solve 

(3.7) LqU = LqV = 0 in Q 

u\dn = / ; v\dii = 9 

and we can consider the map 

(3.8) 9 
Q 

Qq-

Calderón computed the formal linearization of Q near 7. He obtained 

3.9 lim 
e—o 

Vu • + qu 

e 
f,9 

$*ù$ 

Vu • + qu 

with u,v as in (1.2) and (3.3) . 
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A n analogous computation shows that 

3.10 lim 
£ — о 

Qq+€(f Qq, 

S 
f>9. 77 • 

cpuv 

with u<v as in (3.7) . 
Formulas (3.9) and (3.10) imply that the formal linearization of Q (resp. 

Q) at 7 (resp. q) is injective iff the linear span of the inner products of 
gradients of solutions to (3.3)(resp. products of solutions to (3.7)) is dense 
in L2(Q)\ or equivalently that any function orthogonal to all such inner 
products (resp. products) is identically zero. 

Calderón exploited this by proving: 

Theorem 3 . 1 1 . The linear span of the inner products of gradients of solu­
tions of harmonic functions (or the product of harmonic functions) is dense 
in L2(Q). 

P r o o f . Calderón chose the complex exponential harmonic functions 

Í3.12) 
и = ex'p 

— X' о 
V = e И 

where p G Cn. These functions are harmonic iff 

(3.13) 77 • к = 0, \r) 

For p = 7i + ik, with ту,fc G Rn, (3.13) is satisfied iff 77 • к = 0, \r)\ = |fc|. 
Inserting (3.12) into (3.9)(resp. (3.10)) yields 

ù*$$ 
(pVu-Vv = -2\k\2 

ù$ 

e2ix(x)dx(x)dx 

and 

ft 

ipuv — 

ù$ 
e2 lx ' k (p (x ) .dx 

In both cases we conclude by the Fourier inversion formula that <p = 0 in ÎÎ. 

4. Special solutions 
Motivated by Calderon's approach, Sylvester and Uhlmann constructed 

an analog for the elliptic equations (3.3) (or (3.7)) of the geometrical optics 
solutions for hyperbolic equations. These solutions behave like the complex 
exponentials ex"p, p • p = 0 for large complex frequencies p. 
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Theorem 4 . 1 . Let q <E L°°(ü) so that q = 0 in Qc. 

Let p 6 C n , n > 2 be such that 

(4.2) p-p = 0 

and 

(4.3; |p|>||(i + N2)*«|U«f 

tien there exists a unique solution to 

Lqu = 0 in R n 

of the form 

(4.4) u(x,p) = ex-p(l + ipq(x,p)) 

where 1>q(-,p) € L2

6(R
n), -1<6<0. 

Furthermore 

(4.5) 
Hm 1Hm

 1 C 

\P\ 
1\ Hm

 1 "s+i ' 
m > 0. 

¿1 R n ) is the weighted L -space 

Hm
 1 

R" 7; l / l 2 (1 + |a;|2)6da; < 00} , 

F Ä - ( R n ) is the corresponding Sobolev space. 
A n analogous statement is valid for the conductivity equation. Extend 

7 € C 1 ' 1 ^ ) to 7 G C 1 ' 1 ^ " ) with 7 = 1 outside a ball. Then the solution 
(4.4) is replaced by 

(4.6) u(x,p) = ex-pj l(l + i>^(x,p)) 

V>9 (resp. ^ 7 ) in (4.4) (resp. (4.6)) satisfy the "transport" equation 

(4.7) Al/jq + 2p • Vt/Jq -qi/jq=q 

(resp. A ^ 7 + 2p • VV>7 — q<yi/>q = g 7 with </7 = Av/7 The solution of 

the singular perturbation problem (4.7) with growth condition at infinity 
is easily seen to be a regular perturbation of the following proposition (see 
[S-U, II], Prop. 2.1) 
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Proposit ion 4 .8 . Suppose 

p. p = 0, \p\ > B > 0 , - 1 < 6 < 0 

and / G £ ¿ + 1 . Then there exists a unique 0 € L\ solving 

A<f> + p . V<t> = /. 

Moreover, 

I* FT-
c(JM) 

H 
11/11%' m > 0. 

Theorem 4.1 has been extended to more singular potentials (see for 
instance [Ch]). Isakov [Is I] has given a different construction of special solu­
tions which also applies to other equations with constant coefficient principal 
part. However, he doesn' t obtain weighted estimates for the solutions. 

5 . Uniqueness and continuous dependence, n > 3 

Sylvester and Uhlmann [S-U, II] proved that the map <& (resp. $ ) is in-
jective for smooth conductivities (potentials). The smoothness assumptions 

were relaxed to 7 G C 1 ' 1 ^ ) (q £ L°°(Q)) in [N-S-U]. 

Theorem 5 .1 . (a) Let n > 3, 71,72 € C 1 , x (r2) with a positive lower bound 
and 

A 7 l — A 7 2 , 

then 

7i = 72 • 

(b) Let n>3, qi,q2 G L°°(Q) and 

A g i — Aq2 , 

then 

Qi = 92-

Proof. W e first prove ( b ) . A n easy application of Green's theorem gives 

(5.2) (91 - q2)ulu2 = 
f1Aq1f2 – f2Aq2f1 

where U{ is solution of LqiU{ = 0 and fc = u^n^ i = 1,2. Since Aq is a self 

adjoint map we obtain the identity proven by Alessandrini ([A]) 

(5.3) 
7n 

{qi - q2)uiu2 = 
J on 

h(K - A g a ) / 2 . 

160 



INVERSE BOUNDARY VALUE PROBLEMS 

If Aqi = Aq2 we have 

(5.4) (qi - 92)^1^2 = 0 

for all which solve LqiU{ = 0 , t = 1,2. W e let 

(5.5) u i = ex-"(l + 1>q.(x,pi)) 

with pi as in Theorem 4.1 and choose (in order to guarantee (4.2)) 

(5.6) 
Pi 1 

2 

i(ru + k) 

2 

P2 
1 

2 

i(—roj + k) 

2 

where f],u>,k € R " , |w| = 1, r € R with 

rj-k = T]-uj = u)-k = 0 

and 
\ v \ 2 = r2 + k \ 

Substituting (5.5) into (5.4) gives 

(5.7) 

'ft 

5i = ù$$ 
191 - 92) = ex-p(l 

ft 
elx'k\ 'fai + ^ 9 2 + 1>qi ̂ q2) (Cl - 92) . 

However, the estimate (4.5) implies that ipqi —> 0 in Q as r —• oo . Therefore 

5i = <Z2 .5i = <Z2 . 

and thus 

5i = <Z2 . 

A proof of part (a) follows from the fact that if A 7 l = A 7 2 then A ^ 7 i = 

A q 7 2 with </7. = ^ = p - because of (1.9) and Theorem (2.1) . Now it is easy to 

check (see for example [S-U II]) that qlx = ql2 implies 71 = 72. • 

A very interesting problem is to extend the uniqueness result above to 
the case of piecewise continuous conductivities. Isakov [Is II] has proven such 
a result for conductivities with j u m p type singularities across the boundary 
of an open bounded subset of Q. 
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Alessandrini ([Al]) used the identity (5.3) , the special solutions of The­
orem (4.1) and the continuous dependence estimate at the boundary (Theo­
rem 2.4) to prove a stability estimate (i.e. a logarithmic continuous depen­
dence result, which depends on an a-priori bound in a high Sobolev norm) 
for the conductivity. 

Theorem 5 .8 . Let s > § , n > 3, j { e HS+2(Q) with 

0 < a < ufa) x e Q 

and 

Il7t||ir-+*(n) < 
1. 

a 
t = 1,2. 

Then 

7i - 72 L~>(H) < C a ^ | | A 7 l - A 7 2 | | w ) 

where 

w(t) = 
1 

- l o g * 

6 
1 0 < t < 1 

and <5, 0 < 8 < 1 depends only on n and 5. 

It is not known whether this is the best possible continuous dependence 
result. However, for conductivities having special features better continuous 
dependence results are known. Friedman and Vogelius ([F-V]) have shown 
that if one seeks to find spheres of zero or infinite conductivity inside a 
medium with ambient constant conductivity, then the radii and diameters 
are Lipschitz continuous functions of the measurements in two dimensions. It 
would be useful to understand the mechanism of ill-posedness in the general 
problem in order to better study special problems where the dependence 
could be better. 

6 . C o m p l e x frequency Born approximation, n > 3 
In this section we discuss briefly the relationship between the Dirichlet 

to Neumann map A^ and the function T defined in the 9-approach to multi­
dimensional inverse scattering theory by Ablowitz and Nachman ([N-A]) and 
Beals and Coifman ([B-C I]). In one dimension it had been developed earlier 
in [B-C II]. For more details the reader should look at those papers and the 
more recent ones like [N-H], [N] and [No] and the references indicated there. 

Let us assume q € L°°(S}) with q = 0 outside fì. The scattering am­
plitude can then be written in terms of the outgoing eigenfunction (see for 
example [Ag]) 

(6 . i ) a(À,0,a;) = cn 

5i = <Z2 . 
r/(x) ,0_|.(A,x,a;)(ix, 
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where A G R , 8,u € Sn 1 and ^ + ( A , x , o ; ) is the outgoing eigenfunction of 
—A + q i.e. is the solution of the Lippmann-Schwinger equation 

(6.2) 
R, 8,u € Sn R, 8,u € 

G$(x - y)q(y)ip+(\,y,u)dy 

where G ì is the outgoing Green's kernel 

(6.3) 
R, 8,u 
€ Sn = ( 2 7 T ) - " 

R, 8 

k2 — X2 — iO 
•dk. 

The outgoing eigenfunction ip+ has the asymptotic expression for large \x\ 
(see [Ag]) 

(6.3 ') 7p+(\,X,ùj) 
R, 8,u 
€ Sn 

a(A,0,u;) 

| x | n 2 
3 a l x l + 0 ( | x | 

R, 8 

2 5 

where 6 = A . 

Moreover the following estimate holds (see [Ag]) 

(6.4) ! . _ ei\x-u, 

1̂2 
C 

A 
9 ¿2' 5 

2" 

^From (6.4) and (6.1) it is easy to derive the Born approximation for the 
scattering amplitude. 

Faddeev [F] proposed to construct exponentially growing eigenfunctions 
of 

(6.5) - A + q)u(x,C) = C2u(x,Q 

where £ € C " is arbitrary but non-real, by solving the integral equation 

(6.6) u(x,0 = e x < - Gç(x - y)q(y)u(y,()dy 

where G^(x) is a new Green's kernel for A — ( 2 : 

(6.7) GAx) = 
1 

( 2 7 T ) n 

R, 8 
R, 8,u 

-\k\2 + 2i<:-k 
dk. 

Notice that Gç satisfies formally 

(6.8) ( A - C 2 ) G C = 6(x). 
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Faddeev proposed using these generalized eigenfunctions for complex pa­
rameters C with imaginary part tending to zero as a generalization to 3 
dimensions of the Gelfand-Levitan approach to inverse scattering in one di­
mension. 

Notice that hr(x) = e x'(*Gr(x) is the solution of 

(6.9) ( A + 2C • V ) f c c = S(x). 

Proposition (4.8) implies, for C*C = 0 and |C| large, the integral equation (6.6) 
has a unique solution. These generalized eigenfunctions were also considered 
by Ablowitz and Nachman ([N-A]) and Beals and Coifman [B-C 1,11] in 

their 9-approach to the study of the scattering amplitude. In particular, in 
analogy with (6.1) they considered the function 

(6.10) Tq(k,o = e-ix-k q(x)u(x,Ç) R, Sndx 

with u solution of (6 .6) . The point is that the compatibility conditions for 

the d-equation leads to compatibility conditions for the range of the map 

(6.11) q^Tq. 

Henkin and Novikov ([N-H]) gave a characterization of T for sufficiently 
smooth potentials (the derivation in [N-A] is formal and Beals and Coifman 
[B-C] gave proofs for small potentials and (•£ = 0 ) . The relationship between 
T(fc,(j and the physical scattering amplitude has been studied ([L-N ]) and 
[N-H] but there is still not complete understanding of this. W e want to point 
out here the relation between T(fc ,£) (or rather a closely related function; 
see below) and A g . For this we shall give yet another proof of Theorem 4.1 
which appeared in [N-S-U]. We define 

(6.12) t(k,p) = e - i x . k e - x . p q { [x)u(x,p) R, 8,udx 

where u(x,p) is the solution of Lqu = 0 in Theorem 4.1 and we require, for 

k e R n , that p e C n satisfy: 

(6.13) p-p = 0, (ik + p) • (ik + p) = 0, \p\ > 11(1 + |s| 2)*<z(aO|| L~ • 

W e then have 

(6.14) 
^eix>k+x-p 

= 0, Au — qu. 
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Using (6.14) and Green's theorem we see that 

(6.15) t(k,p) = 
€ Sn 

R, 8,u € Sn 

Aqu\da + (ik + p) • vu\dn] dS 

with dS euclidean surface measure on dd. 
Hence we can compute t(k,p) for (fc,p) satisfying (6.13)) if we know Aq 

and the boundary values of the special solution u(x,p). moreover, we prove 
next (see [S-U, I]) that u\da is actually determined uniquely by Aq. 

Proposition 6 .16 . Let qi,q2 G L°°(Q) such that 

Aqi — Aq2. 

Let u\,u2 be solution of 

LqiUi = 0, i = 1,2 

as in Theorem 4.1. Then 
€ Sn

 qiw = 0qiw = 0 

Proof. Let us consider the solution of 

(6.17) Lqiw = 0 

Man = U2-

Let us define 

(6.18) z = 
w in CI 
u2 in Qc. 

Now, z obviously satisfies (6.17) in R n \ c? f2 ; in addition, 

(6.19) 
dz 

qiw an Aqiz\ A 9 l (u2 |an) Aq2 u2\dft 
du2 

du an-

Hence z G CXil(Q) and solves (6.17) in all of R n . Because z satisfies the 
required growth conditions at oo , the uniqueness part of Theorem 4.1 implies 
that w = u\, concluding the proof. • 

Proposition (6.16) implies that, if Aqi = A 9 2 , then <i(fc,p) = t2(k,p) 
with (fc,p) as in (6.13). 
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Now for these (fc,p) 

(6.20) lim t(k,p) = 
|p|-+oo 

qiw = 0 q(x)dx = q(k). 

Proposition (6.16) and (6.20) provide another proof of Theorem 5.1. Equa­
tion (6.20) may be thought of as an analog of the Born-approximation for 
complex-frequencies. Nachman ([N]) observed that u(-,p)\dn as in (4.4) sat­
isfies a Fredholm integral equation on the boundary. Because q = 0 in 
u(x,p) must satisfy 

(6.21) Au = 0 in fic 

du 

dv 
an qiw = 0 

Because u has the same asymptotics as Gp in (6.7) , it must be a c o m ­
bination of the single and double layer potentials 

(6.22) SPf(x) = 
an 

Gp(x - y)f(y)dSy 

(6.23) Bpf(x) = 
Jan 

dGp 

dv 
[x -y)f{y)dSy. 

Nachman showed that U(X,P)\QCI was the unique solution to 

(6.24; f{x,p) = e*-'- SpAq — Bp — 
1 

2 
qiw = 0 

for every x G 
The point is that equation (6.24) does not depend on q and therefore 

provides a direct method for finding u{x,p)\drt without a priori knowledge 
of g. Novikov [No] studied similar integral equations. 
7. T h e two dimensional case 

The Schwartz kernel of the Dirichlet to Neumann map is a distribution 
of (n — 1) + (n — 1) = 2n — 2 variables, while the conductivity itself is a 
function of n variables. Hence the inverse conductivity problem is formally 
overdetermined in dimension n > 3 and formally determined in dimension 2. 
This is reflected in the lack of freedom to choose enough exponential solutions 
as in the proof of Theorem 4.1. The first result in this case was proven by 
Sylvester and Uhlmann [S-U III] for conductivities (resp. potentials) close 
to constant (resp. zero). 

Theorem 7 .1 . 
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(a) Let 7,- G W3>°°(Q), ¿ = 1,2 with positive lower bound. There exists e > 0 
such that if 

Y i - l W 3 .°°(i i) : e, t 1,2 

and 
Aj1 — A 7 2 , 

then 

7i =72-

(b) Let qi G W1,00(Cl) such that t = 1,2 does not have zero as an 
eigenvalue. There exists e > 0 such tiiat if 

q qiw = 0 qiw = 0 = 1,2 

and 
A Ç l — A g 2 , 

then 

qi = 92-

Brief Sketch of proof. Again we only indicate how to prove ( b ) . As in 
the proof of Theorem 5.1, we substitute the special solutions (5.5) into the 
identity (5.4). However, in two dimensions we may not choose pi as in (5.6), 
but must be content with 

(7.2) Pi = 
l + ik 

2 

P2 = 
-l + ik 

2 

where I • k = 0 and \l\2 = \k\2 = | | p | 2 is sufficiently large. This yields esti­

mates for the Fourier transform of q\ — q2 for all sufficiently large frequencies. 
W e may estimate the Fourier transform of q\ — q2 at sufficiently low 

frequencies by inserting into (5.4) solutions of LQIU{ = 0 of the form 

(7.3) ui — e x p + 6ui, ôïïi\dn = 0, 

u2 = e x p + 6u2, Su2\dQ = 0. 

If qi q2 are small enough, both estimates combine to produce an inequality 
which can be satisfied only when q\ — q2 is identically zero. • 

The uniqueness question for the inverse conductivity problem for smooth 
conductivity remains open. We report in this section on the progress ob ­
tained. The "transport" equation (4.7) has special features in two dimen­
sions. 
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Let o G C2 be such that 

(7.4) p-p = 0,\p\> ( î + H 2 ) ^ - . 

W e write such a p in the form 

qiw = 
rj + ik 

2 
77 • fc 

qiw = 
| f c | ; i / ,*€R2, k = (ki,k2). 

Then the equation for ifr in two dimensions can be written in the form 

(7.5) ddij) + (&2 + iki)dip — qil> = q 

where 

(7.6) d = 
1 

2 9xi 
+ * 

d 

dx2 
d = 

1 

2 

d 

dxi 
i 

d 

dx2 

In [S-U, III] it was proven that ip can be written in the form 

(7.7) ijj(x,k) -
a(x) 

k2 + iki + 
b(x,k) 

(k2 + ih)2 

with 

(7.8) IMIir»>llaIU<»(n)ilHlHj ^ c|kllwi.«>(n)-

Moreover a solves 

(7.9) da — q 

¿^0111 Proposit ion (6.16) and the expansion (7.7) we conclude 

Proposit ion 7 .10 . Suppose qi G L°°(Q), i = 1,2, qi = 0 in Qc and Lqi has 
not zero as eigenvalue. Suppose 

AQl — Aq2 

then 
ai = a2 in Qc 

where ai are as in (7.7). 
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We can write a 2 in terms of qi using the Cauchy integral representation 

(7.11) di(x) 
1 

2ni 

X — w 

X — w 
iw A dw. 

For \x\ sufficiently large, we can write 

(7.12) di(x) 
1 

2mx 

oo 

71 = 0 ' 

dw. 
wn 

xn 
dw A dw 

Therefore we conclude from Proposition 7.10 the following result proven in 
[S-U, IV] and [Su, I] 

Theorem 7 .13 . (a) Let ji, i = 1,2 be in W3'°°(Q) with a positive lower 
bound. Assume Q simply connected and 

A 7 l — A 7 2 , 

then 

dw. 
dw. dw. h = 0 

for all h harmonic in Cl. 

(b) Let qi be in W1,co(Q) so that Lqi has no eigenvalue 0, i = 1,2. 
Assume Q simply connected and 

Aqi A q 2 , 

then 

ù$ 
[Qi - Q2)h = 0 

for all h harmonic in Q. 

In particular one can prove the global uniqueness result 

Corollary 7 .14 . Let *yi € W3i°°(Q) with a positive lower bound. Suppose 
72 = constant > 0 and 

A 7 l — A 7 2 , 

then 
7 X = 72 = constant. 

Sun ([Su, II]) has observed that Theorem 7.13 gives the following global 
uniqueness result for conductivities: 
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Theorem 7 .15 . Let ji G W3>°°(Q), i = 1,2 with positive lower bound. 
Assume 7^ is harmonic for some a G R or log 72 is harmonic. If 

A 7 l — A 7 2 , 

then 
7i =72-

Sun also gave a logarithmic continuous dependence result for conductivities 
71,72 as in the hypothesis of Theorem 7.15 under an priori C4(Q) bound 
on 7i 's, i = 1,2. For local uniqueness Sun ([Su, II]) improved on the local 
result, Theorem 7.1, to prove 

Theorem 7 .16 . Let 7» G W3'°°(Q), i = 1,2 with positive lower bound. 
Let 70 G C 3 ( f i ) be such that either (a) 7^ is harmonic for some a G R or 
(fa) 70 = e R e ^ where (/> is an injective conformed map in Q. Then there is 
e > 0 such that if 

\Ы -7o | | ty3,oo ( n ) <e, г = 1,2 

and 
A 7 1 — A 7 2 , 

then 
7i = 72-

All the results assume some a priori restriction on the conductivities or 
potentials besides smoothness. Recently Sun and Uhlmann [Su-U I] proved 
that for almost all conductivities or potentials injectivity and local injectivity 
for the map $ and $ holds. More precisely: 

Theorem 7 .17 . (a) There exists an open and dense set О in И^Д£° (£})*. If 
7 G О there exists an e > 0 such that if 

Wli -l\\w*><~m) < e, t = 1,2 

and 
A 7 l — A 7 2 , 

then 
7i = 72-

r r pos ft) denotes the set of positive functions in W 3 - ° ° ( f t ) . 
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(b) There exists an open and dense set O in W1,OQ(Q). Ifq G O there exists 
e > 0 such that if 

hi - q\\w^(Q) < e , i = 1,2 

and 
Aqi — Aq2 

then 

9i = 92-

For global uniqueness it was proven in [Su-U I]: 

Theorem 7.18. 

(a) There exists an open dense set O in dw. A7l — A72dw.x A7l — A 7 2w.such that 

if (71,72) G O and 
A 7 l — A 7 2 

then 

7i = 72 -

fb) There exists an open dense set O in W^°°{Q) x W^°°{Q) such that if 
U7i ,<7?) G O and 

Aqi — Aq2 

then 

9i = 92-

Sketch of proof. 
We indicate how to prove part (b) of Theorems 7.17 and 7.18. Part (a) 

follows in a similar way to the proof of part (a) of Theorem 5.1 from part 
( b ) . 

The proof of Theorem (7.17) is reduced to show that 

L e m m a 7.19. Let q G L°°(Ü). Then 

Dq = {uv; u, v are solutions of Lqu = Lqv = 0 in Q} 

is complete in L2(Q) forqEÖ where Ö is an open and dense set in W 1 , 0 0 ( Í 2 ) . 

Sketch of proof of L e m m a 7.19 
Consider the g's in W 1 , 0 ° ( í í ) , g = 0 in Qc with ||g||wi,oo(ft) < R. By 

Theorem 4.1 there exists LR > 0 and solutions u,v of. Lau = LnV = 0 in R 2 

of the form 

(7.20) u i (x , fc) = ex'p(l + 1>{x,k)) for \k\ > LR 

u2(x, k) = e-x'p(l + i¡){x, k)) for > L R . 
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W e require further that Lq does not have zero as an eigenvalue (this set of 
g's is easily seen to be open and dense in Wli00(Q)) and denote by U{ the 
solutions of the Dirichlet problem (7.3) . 

Next we define the operator 

(7.22) Aqf(k) = 
fetxk 

txk 

A7l — A72 {i> + i> + i> • i>) for \k\ > LR 

A7l — A72 

txk f(ïïiïï2 - eix'k) for \k\ < LR 

The operator Mq is defined by 

(7.23) Aqf = f + Mqf 

and Kq is defined by taking the inverse Fourier transform 

(7.24) {AqfY = f + Kqf. 

It is easy to see that Dq is complete in L2(Q) if Aq is injective in £ 2 ( R 2 ) . 
The next two propositions are the main technical points of the proof. 

Because of the decay in \k\ of the lower order terms ip and tp and the repre­
sentation (7.7) one can prove: 

Proposit ion ( 7 . 2 5 ) . Kq : L2(TLn) £ 2 ( R n ) is compact . 

Moreover the explicit construction of i/> as in (7.7) allows to prove 

Proposit ion ( 7 . 2 6 ) . Kq depends analytically on q, that is, Kqo+\qif has a 

convergent power series in L2 ( R 2 ) for those X's so that \\qo+Xqi\\w1'00^) < R 

and Lqo+\qi does not have zero as an eigenvalue. 

Then for A € C 
(AXqfy = (Id + KXq)f, 

K\q is an analytic function of A for A's so that |A|||g||^/i,oo(^) < R and L\q 

does not have zero as eigenvalue. By the analytic Fredholm theorem then 

(A\qf)
v is an isomorphism except for a discrete set of A's. This sketches the 

proof of Theorem 7.17. For more details see [Su-Ul. • 

The proof of the global result Theorem 7.18 proceeds along similar lines. 

If Aqi = Aq2 relation (5.4) motivates the definition of a similar operator to 

Kq above. Let 91,92 € Wli00(Q) so that HftHw'i.oojn) < R and Lqi, i = 1,2 

does not have zero as eigenvalue. W e define 

(7.27) {Aqi,q2fY — / + Kqijq2f 
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when 

( • ^ 9 i , 9 2 / ) A 

ft , eixkf(4>qi + i>q2 + ipgM, \k\ > LR 

f(uqiuq2 
_ etx-k \k\ < LR 

(7.28) U i = e*r(l + i>qi), 
tx 

ktxk 

is a solution of LqiU{ = 0 i = 1,2 as in theorem 4.1, and uqi solves 

(7.29) Lqiuqi = 0; ïïgi|an = ^xp\dn] uq2\on = e x ' p |an. 

Again, i f g i , g 2 : L 2 ( R n ) —• L 2 ( R n ) is compact and K \ q i i \ q 2 depends analyt­
ically on A for A such that ||A<fc||jy'i,oo < i?, i = 1,2. Then by the analytic 
Fredholm theorem A \ q i i \ q 2 is an isomorphism except for a discrete set of 
A's. 

Now if Aqi = A 9 2 , then 91 — 92 is in the kernel of A q u q 2 (see (5 .4)) . Then 
for an open dense set O in Wli°° x W 1 , < x > if (91,92) € 0 and A 9 l = A 9 2 , then 
9i = 92- This finishes the sketch of proof of Theorem 7.17. • 

8. Determining L a m é parameters by boundary measurements 

Another inverse boundary value problem which arises in applications 
is to determine the elastic properties of a material by measuring the stress 
energy to maintain it in a prescribed shape. W e formulate below more 
precisely the mathematical problem. 

Let fi C R n be a bounded domain with smooth boundary which will 
be considered in this paper as a linear, inhomogeneous, isotropic, elastic 
medium. The elastic properties of Q are determined by the pair of Lame 
parameters 7 = (A,/x) € L°°(Q). Moreover we assume the strong convexity 
assumption 

(8.1) a > 0, n\ + 2a > 0 on fi. 

Under the assumption (8.1) we can solve uniquely, with u € i ? 1 ( f i ) , the 
displacement boundary value problem: 

(8.2 

CijkidXkU£ n 
1 d*i CijkidXkU£ 0 in í í , ¿ =• 1 , . . . ,n , 

CijkidXkU£CijkidXkU£CijkidX 

where the elasticity tensor is given by 

(8.3) 0 in íí,¿ =• 1,... ,n,0 in íí,¿ =• 1,... ,n,0 in íí,¿ 
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the displacement vector is denoted by ~u = ( u i , . . . , ^ n ) ? and 6{j denotes the 
Kronecker delta. 

Associated to the displacement vector ~u', there are two tensor fields 

(8.4) u = (ui,.. V u + t v u 

and 

8.5; r ( l ? ) : A(trace e( u ))I + 2/xe( u ) 

which are called the strain tensor and stress tensor respectively. Here "u = 

Oui,.. . ,un), Vu = 
% i l , . . . , n 

j l , . . . , n 
trace 6 (1?) ~u 

• 

I 
-idxjUj. The 

equation in (8.2) simply means that the stress tensor is divergence free (i.e. 
there no source or sinks of stress): 

(8.6) L1~u = V • T(~U) = 0 in 

The energy associated to a solution ~u of (8.6) is given by 

(8.7) Q1(4>) = inf 
u = (ui,.. 

trace( T(~u)e(~v))dx 

ù* 
u = (ui,.. 

Cij M dXiUidXlUk dx 

^£ 
[A| div l t \ 2 + 2ii\e{lt)\2}dx. 

The stress energy form obtained by polarization of (8.7) is given by 

(8.8) 
u = (ui,..u = (ui,.. 

£^ù 
(A div ~u • div ~~u + 2fie(li) • e(~v)dx 

where ~u"v* are solutions of 

[8.9 L1~u — Ly~v = 0 in Q, lJt\dn = <t> > ~v*\dn = V> 

B y using Green's theorem one can easily prove that 

(8.10) 
u = (ui,..~u)u - ~vdS 

ù$^$ 
r(~u)u - ~vdS = 

dQ 
A 7 <j> • ip dS 
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where v denotes the unit outer normal to dQ and dS denotes surface measure 
on dQ. The Dirichlet to Neumann map is defined by 

(8.11) (A 7 ~ ? ) i TÇÏÏ)\dn -v)i 

n 

dn -vdn 

VjCijk£dXkU£\dn. 

Physically, A 7 / = TUl where T measures traction on the boundary. 

The inverse problem is whether knowledge of A 7 <f> for any (/> G H* (dQ), 
which involves only boundary measurements, determines the Lame param­
eters A and /i in fi. That is we want to determine the injectivity of the 
map 

L°°(Q) x L°°(fi) 3 7 = (A,/x) A a 7 . 

Because of (8.10) knowledge of the selfadjoint map 

,7 :H*(dQ) -^H~*(dQ) 

is equivalent to knowledge of Q1( <f), V ) for any (f>, ij) G H* (dQ). 

In [N-U] it was proven, in two dimensions, local injectivity of A in a 

W31>°°(Q) neighborhood of constant A,/ / . 
Let 7* = (A* , / /* ) denote a pair of constant Lame parameters in Q 

satisfying (8.1) . Then we have 

(8 .12) Theorem. Let n = 2. There exists e > 0 such that if jj = (Aj, /xj) 

satisfy (8.1) , 

VjCijk£dXkU£\dn.VjCijk£dXkU£\dn.VjCijk£dXkVj$ùù* 
Cijk£ 

and 
A 7 l — A 7 2 , 

then 7i = 72 on fi. 

There are several new difficulties in extending the method used in [S-UII] for 
the conductivity problem to this case. First of all L1 is an elliptic system and 
second we have to determine two functions A, /x of 7 = (A, /i). To underscore 
these difficulties let us look at the linearized problem. The Frechet derivative 
of A at a constant pair 7* = (A*,/x*) in a direction h = (hi,h2) is given by 

( d A 7 * ( ^ ) ( ^ * l d n ) , ( ^ * | d n ) ) = 
(8.13) 

^$ 
hi div ~u* • div ~v* + 2fi2(e(~u*) - e(~v *))}dx 
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where 1 ? * , ! ? * are solutions of 

(8.14) L>ym(~u*) = £ 7 „ ( V * ) = 0 in R 2 . 

W e first construct analogous solutions of (8.14) to the ones considered 
by Calderon for the linearized problem for the inverse conductivity problem. 
Namely we take 

(8.15) 1 ? . = Vex<

t~tfm = V e - * c with C € C 2 ,C "C = 0. 

Notice that ~u+, ~v * are vector-valued harmonic functions. Substituting 
(8.15) in (8.13) we find that 

(8.16) dA*(h)(1i *\dn))(~v*\dn). \k\2 

$ù 
2h2e

ixkdx, 

where 
A* = A 7 with 7 = 7* 

and 

(8.17) C 
1 

2 
Jk + z fc ) , J = 

0 1 

- 1 0 
,fc = (kuk2) € R 2 . 

If dA*(h) = 0, then we get by the Fourier inversion formula h2 = 0 in Q. 

So we need different solutions of (8.14) to get information about hi. 
Ikehata [I] used a different set of solutions of (8.14) other than (8.15) that 
allowed him to prove injectivity of the linearized map (8.16) at the constant 
pair 7*. 

Ikehata found these by constructing new solutions of the biharmonic 
operator Then he used the so called Boussineq-Somigliana- Garlekin method 
to construct solutions of the elasticity system at a constant pair. Namely if 
g solves 

(8.18) A2g = 0 in fi 

then 

(8.19) « = (A* + 2/x,)A<7 - (A. + / x . ) V ( V • g) = F(g), 

solves 

(8.20) Lym (u) = 0 in Q. 
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Ikehata considered 

(8.21) 
m 4 C - 2 ( x - O e - x < x - O e 

92 
_ 1 

~ 2 
c - 2 ( x • -Qe*<, 

with C as in (8.17), as solutions of (8.18) and u* = F(gi),v* = F(g2) as 
solutions of (8.14). Plugging thèse in (8.13) we find that 
(8.22) 

VjCijk£dXkU£\dn.VjCijk jCijk 
jCijk 

4 ù$ 
eix'khx(x)dx + ^l 

\k\2 

4 
eixkh2(x)dx. 

+ ( A * + //*)2J 

jCijk 

3 3 

VjCijk£dXkU£\dn. 

W e already know that h2 = 0 if dA 7 *( / i ) = 0, therefore we conclude 
that /ii = 0 concluding the proof that the linearized problem is injective at 
constant Lame parameters. 

The main difficulty in the non-linear case is to construct for high fre­
quencies the analog of the solutions (8.21). This was done in [N-U]. W e 
outline some of the ideas. 

Akamatsu, Nakamura and Steinberg [A-N-S] proved the analog of the 
Kohn-Vogelius result in this case. W e have 

(8 .23) Theorem. (Akamatsu, Nakamura, Steinberg) Let jj G C2(Cl)(j = 
1,2) satisfying (8.1). Assume 

Ai = A2 where Aj — A 7 with A = Aj(j = 1,2). 

Then 
d"yi\dçi = d a y 2 \ d n ( H < 2 ) . 

Hence we may assume 71 - 7 2 G C$(fi),7j - 7 * € C o ( B ( 0 , r o ) ) ( j = 1,2), 

where 5 ( 0 , r 0 ) = {x G R 2 ; \x\ < r 0 } D H. 
Another important fact is that in two dimensions one can diagonalize 

the elasticity system to a system whose principal part is the biharmonic 
operator A 2 . 

(8 .24) Proposition. Let n = 2 and 7 = (A,/x) G C2(Q) satisfying (8.1). 
Moreover let 

T(D) = 
Di D2 

D2 -Dx 
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where Dj l d 
i dxj ' Then 

(8.25) 

T(D)L1(x,D)T(D) = 
A + 2/i 0 

0 
( - A 2 ) / + M 3 ( x , D) + M 2 ( x , £ > ) , 

where 
(8.26) 

M 7 3 ( x , 0 : 2 ^ | 2 
x-Oex-Oe 

x-Oex-Oe 
- ( ( A V ) ^ 

)/ + M3(x, 
)/ + M3(x, D) + M2(x 

3X2 
" 6 

dxi 

and M2(x, D) is a system of second order differential operators whose coef­

ficients consist of second order derivatives of 7. 

Let 

(8.27) MJx,D) = - A 2 J + 
A + 2/i 0 

0 fi 

. - 1 

{M*Jx,D)) + M2Jx,D)). 

Factorizing —A in (1.25) we get 

(8.28) M 7 ( x , D) = ( - A ) { A / + M,} D) + M ° ( x , £>)} 

where 

(8.29) 
)/ + M3(x, D) 
+ M2(x)/ + M3(x 

A + 2 ^ 0 

0 /x 

- l 

M73(x ,oiei"2 

and M ^ ( x , D) is a pseudodifferential operator of order 0 such that 

(8.30) My(x,D) = (-A)M°(x,D) 

is a system of second order differential operator whose coefficients are p-th 
(2 < p < 4) order derivatives of 7. 

For each compact set high frequency solutions of 

(8.31) (AI + Ml(x, D) + M^(x,D)lv = 0 or a constant vector in R2 

are constructed of the form 

(8.32) 1Ü = ex<(A0(xX) + A^(xX))X e C2,C • C = 0, 

where AQ(XX)> \C\^-I(xX) are uniformly bounded. Here we remark that 

although ~w is constructed on a compact set, Alv has a natural extension 

to R2 so that it satisfies (8.31). 

178 



INVERSE BOUNDARY VALUE PROBLEMS 

One difference with the conductivity equation is that in that case Ao(x, £) 
is independent of ( (in fact Ao(x,Q = 7"* where 7 is the conductivi ty) . 
Moreover one does not solve the transport equation for A^i in a unique 
fashion in an appropriate weighted class. However, it is solved in every 
compact set. Everything works out since one can check that 

D1{Lj(x,D)T(D)U)} e LP

6(R2) = L P ( R 2 ; (1 + | x | 2 ) ^ d x ) ; 

1 < p < 00, — 
2 

V 
<6<1-

2_ 1 

V 

L~ 
U = = 1, 

where Dk = (da/dxa; \a\ < k) for k e N. Since T(D)2 = -AI one gets by 
standard estimates that in fact 

L 7 ( x , D)T(D)lv = 0 in R 2 . 

One must also match the two types of low frequency solutions that are con­
structed (as in [I], but slightly different) with the high frequency solutions. 
Full details are in the paper [N-U]. 

9. Electrical impedence tomography; the anisotropic case 
If the conductivity of fi depends on direction then it is represented by 

a positive definite symmetric matrix 7 = (7 2 J ) in ft which we assume to be 
smooth. Kohn and Vogelius ( [K-V III]]) suggested a constructive approach 
to the isotropic case based on an algorithm developed by Wexler et al ( [W-
F-N]). This consists of minimizing an appropriate functional. The functional 
is not quasi-convex and, therefore, a minimizing sequence will not in general 
converge to a solution, but will in general have limit points which are solu­
tions to the "relaxed problem". Kohn and Vogelius computed the relaxation 
of one such problem which turned out to be a variational problem for an 
anisotropic conductivity. Numerical performance of this method has been 
recently studied by Kohn and McKenney ( [K-M]) . Thus the anisotropic prob­
lem occurs naturally even when considering isotropic conductivities. W e now 
formulate more precisely the inverse conductivity problem in the anisotropic 
case. 

The conductivity equation is 

(9.1) L~/U = 

n 

L~/U = 

d 
L~/U = h i 3 

d 

L~/U = 
u : 0 in U. 

The Dirichlet to Neumann map is defined by 

(9.2) A 7 / = 

n 

)/ + M3 

)/ + M3(x, 
D) + M2(x 

du 

dxj 
dndS 
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where vx is the i-th component of the unit euclidean conormal, dS represents 
the (n—1) dimensional euclidean surface measure on dCl and u is the solution 
of the Dirichlet problem 

(9.3) L~u = 0 in Q 

L~u = 0 in Q 

It is convenient to define the Dirichlet to Neumann map as a (n—1) form since 
in actual measurements one integrates the current flux rather than measure 
it pointwise. Moreover it helps to understand the invariance properties of A 7 

under the action of diffeomorphisms. W e have, again, using the divergence 
theorem 

(9.4) 
an 

L~u = 0 
n 

i,.7 = 1 

dx{ du dv 

dx{ dxj 
•dV 

where dV is the euclidean volume element in f i , , u as in (8.3) and v solves 

(9.5) L^v = 0 in Q 

v\dn = 3-

Again, instead of considering the map 

(9.6) 7 - ^ A 7 

we can consider the map 

(9.7) 
L~u = 0 in Q 

where Q~ is the quadratic form 

(9.8) L~u = 0 in Q 
n 

1,3 = L 

du du 

dx{ dxj 
dV 

with u solution of (9.3) . 
Unfortunately injectivity of $ (or Q) is not valid in the anisotropic case. 

The following observation can be found in [K-V IV] : Let \£ : Q -+ Q be a 
C°° diffeomorphism so that = Id. Let 

(9.9) 7 

L~u = 0 in QL~u = 0 in Q 

\detDV\ 
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where Z?\£ denotes the differential of \I> and (D^f)T its transpose. The rele­
vant point is that 

(9.10) A ~ = A 7 ( Q ^ = Q 7 ) . 

This is a consequence of the following observation: 

Proposition 9 .11 . Let ^ : Q —• Q be a C°° diffeomorphism so that ^\dQ = 
Id. Then if u solves 

L~u = 0 in Cl 

L~u = 0Q be a C°° 

then uoifj 1 = u solves 
L~u = 0 in Q 

y>\dtl = f 

with 7 as in (9.9). 

More generally, let \t : Q —> Q be a diffeomorphism so that \P|an = V*-
Then 

(9.12) Q 7 ( / ) = ^ ( / ° ^ " 1 ) 

with 7 as in (9.9) . 
W e disgress a little to discuss the corresponding relation for A 7 given 

by (9.4). It is convenient to give an invariant interpretation of (9.9) , (9.10) 
and (9.12). For more details see the discussion in the introduction in [Sj. 
Ohm's law (or rather its differential version) in a wire is given by 

z(x) = j(x)du(x) 

where u{x) is the voltage potential, i(x) the current flowing through x and 
j(x) = l/p(x) where p(x) is the resistivity. 

In higher dimensions the current i is represented by an (n — 1) form. 
Then it is natural to interpret the conductivity as a map from 1 forms (du(x)) 
to (n — 1) forms (i(x)). The conductivity is then a map 

(9.13) 7 : A 1 (f i) -> A " - 1 (f i) 

which is symmetric and positive definite as explained below. 
In standard Euclidean coordinates x1,... , x n and the (n — 1) forms 

(9.14) uk = ( - l ) * " 1 ^ 1 A • • hdxk-x A dxk+1 A . . . A dxn 
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then the components 7^ of 7 are given by 

.7)a = *.(7(**a) 
n 

i=l 

.7)a = *. 

with 7U a symmetric, positive definite matrix in fi. 

If : fi —• fi is a diffeomorphism then the push forward of 7 as in (9.13) 
is riven by 

(9.15) ( * . 7 ) a = * . ( 7 ( * * a ) ) 

where ^ c c denotes the pull back of the 1-form a and = ( ^ , - 1 ) * denotes 
the pull back by V-1 acting on the (n — 1) form 7(\P*or). In coordinates 
(9.15) reads 

(9.16) ( * . 7 ( y ) ) ' m 

d*1 
dx* dx> 

del 
dx 

which is exactly the relation (9.9) . Thus we may rewrite the relation (9.9) 
in an invariant way as 

(9.17) 7 = * * 7 

Now we define the Dirichlet to Neumann map by 

A 7 / = jdu\dçi 

which, in coordinates, is just (9.2) . 

If \£ : fi —* fi is a diffeomorphism with * |an = we can define the push 
forward \P*A7 by 

( V U 7 ) / = M*hWf)) 

where ip*f = f o tp'1. Then the relation (9.12) can be rewritten as 

(9.18) A * „ 7 = ^*A7 

Of course, if \P|cM = Id we obtain 

(9.19) A * „7 = A7 

which is (9.10). 
The natural conjecture is that (9.19) is the only obstruction to unique­

ness 
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Conjecture 9 .20 . Let 71,72 be smooth anisotropic symmetric and positive 

definite conductivities in Q. Suppose 

A 7 l = A 7 2 . 

Then there exists a diffeomorphism \I> : Q —• Q diffeomorphism such that 
^f\dçi = Id so that 

^*7i = 72 -

Progress has been made in proving the conjecture even though the general 
case remains unsolved. In the two dimensional case Sylvester ([S]) proved 

Theorem 9 .21 . (n = 2) Let 7,- be C3 anisotropic conductivities with 

C3(Ü) M, ¿ = 1,2. 

Then there exists e(Q, M) such that if 

log(det7;] C 3 ( H ) e 1 = 1,2 

and 
A 7 1 = A 7 2 

then there exists a C 3 diffeomorphism \I> with 

71 = #*72, V\dn = Id. 

Sketch of Proof of Theorem 9 .21 . The first step in the proof to use the 
existence of isothermal coordinates (see for instance [A]) to reduce the proof 
to a new isotropic problem. 

Proposition ( 9 . 2 2 ) . (Isothermal coordinates) Given a C 3 anisotropic con-
ductivitv 7 with 

#*72, V\dn =#*72, 

we can ûnd a constant k = k(M), and a C3 diffeomorphism \fr such that 

* : U D = {x e K2;\x\ < 1 } , 

lltflU < k 

and 

(9.23) W * 7 is isotropic. 
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Let ji belong to C3(Q). Then there exists a diffeomorphism #i : Q —• D so 
that 

(9.24) (* i )*7 i = OLie i = 1,2 

where at- € C 3 ( f i ) has a positive lower bound, ¿ = 1,2 and e is the euclidean 
conductivity. 

Let tf;|an = fa for z = 1,2. Then using (9.24) and (9.18) we obtain 

(9.25) A a i e = A ( V l ) # 7 l = C0i )*A 7 l . 

Using the hypothesis A 7 l = A 7 2 , ( 9 . 1 8 ) , and (9.24) we have 

(V>i).A 7 l = ( ^ i ) . ( ^ 2

 1 ) * (V ; 2 ) .A 7 2 = ( ^ ) * A ( ^ 2 ) ^ 7 2 = </>*A a 2 e 

where 

(9.26). <f> = 1>i1>2

 1 

W e conclude that 

(9.27) ( 0 ) * A a 2 e = A a i e 

which is a relation between two isotropic conductivities. The main technical 
result in [S] is 

L e m m a ( 9 . 2 8 ) . Let OLI be C3 isotropic conductivity, i = 1,2 such that 
(9.27) is satisfied. Then there exists a C3 conformal map $ : D —> D, such 
that 

(9.29) $\dD = <f>. 

Assuming the lemma for a moment we complete the proof of Theorem 
9.21. Let $ be as in (9.29). Then by (9.18) and (9.27) 

(9.30) A a i e = (<£)*A a 2 e = A $ ^ ( a 2 e ) . 

Since OL2 is isotropic and $ is conformal, then ($)*(a2e) is also isotropic. 
The smallness hypothesis in Theorem 9.21 and the bounds for \Pt- imply that 
ai is close to 1, i = 1,2. Using now the local result of [SU-II] (see Theorem 
(7.1)) for the isotropic case in dimension 2 we conclude 

ai = $*(a 2e) 
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and by (9.9) since 3> is conformai 

#*72, V\dn =l(t>i)2 

Unwinding the definitions then yields 

71 = (tff 1 № ) * 7 2 . 

It follows from (9.26) that, on the boundary, 

*4>i l(t>i)2 — Id 

which proves the theorem. 

The proof of the lemma begins by constructing a C 2 -diffeomorphism 

$ : Dc Z > c , $ = I d for |x | > R,$\dD = <t> 

such that the (anisotropic) conductivity given by 

(9.31) 712 
0L2 for Ix I < 1 
$*c*i for \x\ > 1 

is in C 1 , : L ( R 2 ) where a2 has been extended as a C 1 ' 1 function to R 2 . To see 
that such a $ exists involves the formal solution to a Beltrami equation as 
well as the computation of the two first two terms in the expansion of the 
full symbol of </>*Aai and A a 2 (see [S], Prop. 3.1). 

A more precise version of the existence of isothermal coordinates allows 
the construction of a unique C 2-difFeomorphism F12 : R 2 —• R 2 such that 

(9.32) ( ^ 1 2 ) . 7 1 2 ( d e t 7 i 2 o ( F 1 ' 2 1 
2e 

where e is the euclidean conductivity. If we consider F12 as a complex valued 
function, it is the unique solution to the Beltrami equation 

(9.33) OF12 = m i 2 F 1 2 . 

which is asymptotic to z at infinity (see [S], Prop 2.1) for a more precise 
description). In (9.33), /¿12 is a rational function in the coefficients of 7 
which is called the complex dilitation. In particular, 

(9.34) / x 1 2 = 0 712 is isotropic . 

Therefore, 

(9.35) F12 = Id <=> 712 is isotropic . 
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This version of isothermal coordinates can be used to prove that the 
special solutions of Theorem (4.1) exist in the anisotropic case; that is, there 
exist unique solutions u(z,k) which are asymptotic to e k z at infinity (it is 
convenient to use complex notation, fc, z £ C ) which solve 

(9.36) L112u = 0 in R 2 . 

Moreover, one can show that 

(9.37) lim 
|*|->oc 

logu(z,k) 

k 
F12 

uniformly on compact sets. 
Arguments similar to those used in the proof of Proposition 6.16 can be 

used to show that 

(9.38) u = 
V 

^ Ui o $ _ 1 

for \x\ < 1 
for \x\ > 1 

where 3> is as in (9.31), v solves the Dirichlet problem 

(9.39) La2v = 0 in D 

v\dft = ui\dn o</> 1 = u1o® 1 \ d Q , 

and ui(z,k) is the special solution of 

(9.40) Laiui = 0 in R 2 

which is asymptotic to e k z at infinity. Now since 712 is isotropic in D we 
have 

(9.41) dF12 = 0 in D. 

For points on the boundary of D, (9.37) implies that (recall that u is smooth 
across 3D) 

(9.42) F12 lim 
|/c| —oo 

\ogu 

k 
lim log 

K —•oo 

Ui(z,k) ol(t>i)2 

k 
F1 o 0 - 1 . 

where F\ is the solution to the Beltrami equation associated to the con­
ductivity ai. Since ai is isotropic (9.35) implies that ^1(2:) = z and hence 
that 
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(9.43) F 1 2 \ 9 D = r 1 . 

¿^0111 (9.41) and (9.43) we conclude that F12 is the conformal map with 

boundary value <jrl. Therefore ( F 1 2 ) - 1 is the desired conformal map. • 

The proof above relied heavily on the construction of isothermal coor­
dinates This is not available in dimension n > 3. 

J. Lee and G. Uhlmann ([L-U]) have proved conjecture 9.20 in dimension 
n > 3 in the real-analytic category under certain restrictions. 

First we note that in dimensions n > 3 we can identify Riemannian 
metrics and anisotropic conductivities. 

Let j be a smooth Riemannian metric in Q. W e denote by the 
Laplace-Beltrami operator associated to g. In local coordinates 

(9.45) AgU 

n 

1,1=1 

det gki 

-1/2 a 
[det gki)2 gij 

du 

dxj 

where glJ is the inverse of the metric gij. 
W e can solve the Dirichlet problem 

(9.46) Agu = 0 in Q 

u\dn = f 

and define the Dirichlet to Neumann map as map from functions on the 
boundary to (n — 1) forms in the boundary, by 

(9.47) Agu = 0 in QAgu = 0 in Q 

where denotes the gradient with respect to the metric g, dVg is the Rie­
mannian volume element and J denotes interior differentiation. (We recom­
mend the b o o k by Spivak [Sp] for the reader unfamiliar with the differential 
geometric terms used.) 

Let 7 be an anisotropic conductivity given in local coordinates by 7 U . 
Then if n > 3 

(9.48) gi3 = ( d e t 7

k e ) ^ ( ^ r \ 

is a Riemannian metric with 

(9.49) Ag = A 7 . 
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Conversely, if g is Riemannian metric given in local coordinates by gij, then 

(9.50) y i ( d e t ^ ) 1 ' 2 ^ ; ) " 1 

is an anisotropic conductivity satisfying (9.49). W e shall identify in the rest 
of this section conductivities and Riemannian metrics. 

W e first compute the full symbol of Ag if g is a smooth Riemannian 
metric. For this it is convenient to use boundary normal coordinates. For 
each XQ G dQ, let j X o be the unit speed geodesic starting at XQ and normal 
to dQ. If { x 1 , . . . ,xn~1} are local coordinates for dQ near p G dQ, we can 
extend them smoothly to functions in a neighborhood of p in Q by letting 
them be constant along each normal geodesic j X Q . If we then define xn to be 
the parameter along each yXQ, it follows that { x 1 , . . . , x n } are coordinates in 
Q, which we call boundary normal coordinates determined by {x1,... ,xn~~1}. 
In these coordinates xn > 0 in Q and dQ is locally characterized by xn = 0. 
The metric g takes the form 

(9.51) 9 = 

n-l 

«,/3=1 

gQp(x)dxQdxP + (dxn)2, 

and the Laplace-Beltrami operator is given by 

(9.52) -Ag = D%n +iE(x)Dx~ +Q(x,Dx.) 

where 

E(x) 
1 

~ 2 

n - l 

a,/3=1 

ga^(x)dx«ga0(x), 

Q(x,Dx>) 
n - l 

a,/9=l 

gafi(x)DxaDxfi-i 
n - l 

a,/3=l 

1 

2 
? a / , ( s ) 0 x . l o g r ( x ) + ^ ^ ( x ) ) ^ 

and x = (x',xn). Moreover 

r(x) = det(gij). 

W e use (9.52) to factorize and give an easy way to compute the full 
symbol of the Dirichlet to Neumann map (see [L-Ul Proposit ion 1.1). 

Proposit ion 9 .53 . There exists a pseudodifferential operator A(x,Dx') of 
order one in x1 depending smoothly on xn such that 

(9.54) —A9 = (Dxn +iE(x)-iA(x,Dx>))(Dxn +iA(x,Dx>)) 
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modulo a smoothing operator. 

W e can actually write the full symbol , a(x,£'), of A(x,Dx>) 

(9.55) a(x,£') ~ 

(ak) + 

a j ( x , n t ' e n " - 1 , ( a k ) + 

with a,j homogeneous of degree j in £' and 

(9.56) 
Agu = 0 in Q 

with 92 the principal symbol of Q as in (9.52) 

(x,n t'en"(x,n t 1 

(x,n t'en" 

m<j,k<l 
\K\=j + k-m 

1 

t'en" 
Op(&j)D$(ak) + dxnam - Eam) 

The main point is that 

Proposition 9 .57 . Aaf = 
Op(&j)D$(ak) + dxnam - Eam(ak) + dxna modulo a 

smoothing ooerator. 

Sketch of Proof. This follows from the factorization (9.54). Let u satiusfies 
(9.46). Then using the factorization (9.54) we get that 

(9.58) (Dxn + iA)u — v 

(ak) + dxnam - Ea 

with 

(9.59) (Dxn + Œ - iA)v = he C ° ° ( [ 0 , T ] x R * - 1 ) for T > 0. 

It follows, since (9.59) can be viewed as a backwards generalized heat equa­
tion (make the substitution t = T — # n ) , that v is also smooth (see [T]) . 
Therefore from (9.58) and elliptic regularity we conclude (Dxnu) = —iAu 
modulo a smooth function and Agf = \Dxnu\xn=Q in boundary coordinates. 

The computation (9.56), together with Proposition (9.57) shows (see 
[L-U], Prop. 1.3) that one can determine from dj the full Taylor series of g 
in boundary normal coordinates. This is the analog in the anisotropic case 
of the Kohn-Vogelius result theorem in the isotropic case. 

Theorem 9 .60 . Let n > 3. Let { x 1 , . . . , x n 1} be any local coordinates 
for an open set U C dM and let { a J 5 j < 1} denote the full symbol of A in 
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these coordinates. For anyp 6 U, the full Taylor series ofgatp in boundary 
normal coordinates is given by an explicit formula in terms of the functions 
{ r 1 / 2 ^ } and their tangential derivatives at p. 

Now in case that dCl, g\ and g2 are real-analytic and = A92 we 
can use the last result to easily find a collar neighborhood of dCl and a real-
analytic diffeomorphism \I>o ' U —* fi, = so that (see [L-U], Lemma 
2.1) 

®o9i =92-

One needs to extend the diffeomorphism $ o to l ì . In [L-U] this was 
done by analytic continuation along geodesies. W e mention one of the results 
obtained (For a more general statement see Prop. 2.2 in [L-U]). 

Theorem 9 . 6 1 . Let gi, i = 1,2 be real-analytic Riemannian metrics so that 

Agi = A92. Assume Q is simply connected and Cl is strongly convex with 

respect to the metrics gi,Q2- Then 3\& : Cl —* Q real-analytic diffeomorphism 
so that 

V*9i=92,V\dn=Id. 

Theorems (9.21) and (9.61) use special features. In two dimensions 
isothermal coordinates are used to break the diffeomorphism invariance. In 
dimension n > 3, in the real-analytic case, geodesic flow is used to break the 
diffeomorphism invariance. 

Jack Lee has suggested the use of harmonic maps to break this invari­
ance. W e discuss this idea in more detail. The material that follows is taken 
f rom[S-U V I ] . 

For a general reference on harmonic maps see [Ha]. W e shall only con­
sider the case where the domain and range of a map is Q, with Q a smooth 
bounded domain in R / \ 

Let / : (Q,g) —• (£î, h) be a smooth map where g and h are Riemannian 
metrics in Q. The energy associated to the map / is given in local coordinates 
by 

(9.62) £ ( / ) = 

n 

dxi dxj in 
gt3(x)ha(3 

dfa of? 

dxi dxj 
detgdx. 

The Euler-Lagrange equation associated to the quadratic form (9.62) is given 
by the non-linear elliptic system 

(9.63) 
- 2 

f3eTg 

n 

a,i,j=\ 

d 

dxj 
'det g 9ij> ha3 

dfa< 

dxi ' 

n 

dxi dxj 

9ij 

dfa 

df° 

dxi 

dp 

dxj 
0 V/?. 
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Definition 9 .64 . A C°° map / : (ft, 5) —> (ft , / i) is called harmonic if it is 
a critical point of (9.62) (i.e., it is a solution of (9.63)) . 

Note that if h is the Euclidean metric, then (1.13) simply states that 
the components of / are harmonic functions with respect to the metric g. 

W e are going to reduce conjecture 9.20 to the proof of a uniqueness 
theorem by means of the following Proposition, which follows readily from 
the definition of a harmonic map. 

(9 .65) Proposition. Let (ft, g) and (ft, h) be two smooth bounded domains 
with Riemannian metrics g and h. Suppose there is a harmonic map 

(9.66) 
V> : (ft,g) —• (ft,/i) such that -0|dft = Identity and V> a, diffeomorphism. 

Then the Identity: (ft, g) —» (Çt,ip*h) is harmonic. 
W e shall show that conjecture 9.20 is reduced to prove 

Conjecture 9 .67. Suppose g and h are Riemannian metrics on ft and that 
Identity: ( f t ,g) —• ( f t , / i ) is harmonic and Ag = A ^ . 

Then a = h. 

(9 .68) Proposition. Conjecture 9.67 9.20 if there exists harmonic ip 
satisfying (9.66). 

Proof. If A o = Ah, and there is a ifr with ip\dQ = Identity and An = 
A^*h = Afc. Then using Proposition 9.65 and Conjecture 9.67 we conclude 
that h = t/j*g. 

The solvability of the harmonic Dirichlet problem (9.66) is known if h 
has nonpositive sectional curvature ([H]) or if g and h are sufficiently close 
in the C 3 topology to the euclidean metric ([L-M-S-U]). 

Thus, we have reduced the proof of Conjecture (9.20) to the uniqueness 
statement in Conjecture (9.67), under the additional assumption of the exis­
tence of an harmonic diffeomorphism which is the identity on the boundary. 

In [S-U VI] it was proven that the linearization at the identity of conjec­
ture (9.67) holds. W e sketch the proof. In analogy with (9.8) the quadratic 
form associated to A ^ is given by 

(9.69) Qg{f>9) 

n 

du dv ft 
9i3 

du dv 

dx{ dxj 
det gdx 

with u,v solution of A ^ ^ = Agv = 0 in ft; U\QQ = g. W e consider the 
linearization of Q at the euclidean metric in the direction of the quadratic 
form m e Co°(f t ) 

(9.70) dQm{f,g) lim Qe+em(f,g) ~Qe(f,g) 

€ 
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A computat ion yields: 

(9.71) dQm(f,g) 

n. 

«»¿=1 
+ kßt 

rriij 
1 

2 
•trra 

v du dv 

dx{ dxj 
dx 

where A u = At; = 0 in fi; U\Q^\ = / ^ l a n = S and t rm = 5^=1 m ^ . 
W e assume that dQm = 0 . As Calderón did for the isotropic case, we 

take 

(9.72) u = e *,v = e s 

where £ eCn,£ = n + ik with r),k e Rn and (t],k) = 0 , \rj\ = |&|. Substi­
tuting (9.72) in (9.71) we obtain 

n 

k e Rn 

rriij 
1 

2 
k k e Rn k e Rn = 0 . 

W e rewrite (9.72) in the form 

(9.73) 
1 

2 
trrh k + rf(fh — 

1 

2 
trrh lr? = 0 

where £ denotes transpose and ^ the Fourier transform. 
Now the fact that the identity is a harmonic map implies the following 

system of n first order linear partial differential equations for m = g — h (g 
is the euclidean metric in this computat ion): 

(9.74) - 2 

n. 

*,v = e 

d 

dxj 
*,v = e 

d 

dx0 
trm 0 in Q, 

*,v = e + kßtrfh(k) 

Taking the Fourier transform of (9.74) we obtain 

(9.75) - 2 

n 

7 = 1 

kjfhjß(k) + kßtrfh(k) = 0 , + kßtr+ kßtrffh(k) 

Let us take = ( 1 , 0 , . . . , 0 ) , 77 € fcx with \r)\ = \k\ = 1. Using (9.75) we get 

(9.76) mlß(k) = 0 , ß = 2 , - - - , n + kßtrfh(k) 

mn(Ä;) = 
1 

2 
trm(fc). 
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Using (9.73) we obtain 

(9.77) rhß^ - trrn(k) = -(rhu - trfn)(k), ß = 2, . . . ,n, 7 = 2,. . . ,n. 

Combining (9.76) and (9.77) we conclude 

trin(k) = 0 

Using (9.76) again we see that rhij(k) = 0 i, j = 1 , . . . ,n . Rotating coor­
dinates shows that fn(k) = 0 Vfc and therefore m = 0. 

10. T h e Borg-Levinson theorem. We consider in this section an ap­
plication of the methods developed for the inverse conductivity problem to 
study an inverse spectral problem. This involves, in an essential way, the 
study of the Dirichlet to Neumann map for the equation A — q + A. 

W e consider the equation 

(10.1) Lq-x = A-q + X 

with q € L°°(n) and A G C . 
The following theorem appears in [N-S-U] : 

Theorem 10 .2 . Let n>2 and qi € L°°(Q,), i = 1,2. Suppose that, as 
meromornhic overator valued functions of A, 

(10.3) A 9 I _ A = A q 2 - \ VA e R . 

Then 
Qi = 92 . 

R e m a r k 10 .4 . For n < 3 it is enough as a consequence of Theorem (5.1) 
to assume A G I _ A 0 = A G 2 _ A 0 f ° r not an eigenvalue of Lqi or Lq2. 

Sketch of proof of Theorem 10 .2 . 
Because we know the Dirichlet to Neumann map Aq-\ for all A (except 

for a discrete set) we may use the scattering solutions (6.2) instead of the 
exponentially growing solutions from theorem (4.1). Let us take 

(10.5) V»+ = eix* + Of » = 1,2 

where & € R n and (assume A > 0) 

(10.6) 
+ kßtrfh(k) 
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and 

(10.7) l i a i l L J < 
C 

'X' 
li ¿2' 

1 

2 
6. 

Using the hypothesis of the theorem we conclude, as in the proof of theorem 

(5-1), 

(10.8) 
la 

(qi - q2)uiu2 = 0 

for all Ui solution of L q i - \ U i = 0, i = 1,2. 

W e fix k € R " and choose 

(10.9) 
L1{U 

L1{ 

U [k + e), k-£ = 0, \k\2 + \£\2 = X 

+ kßt 
1 

2 
+ kßtrfh(k) 

Now replacing (10.5), with £ as in (10.9), in (10.8) and letting I and A —» oo 
we conclude 

5i(*0 = 02 (*0 

which proves the theorem. 

The Dirichlet to Neumann map Aq-\ can be related to the eigenvalues 
and eigenfunctions of the Schrodinger operator A — q. W e give only a formal 
argument here. The reader is referred to [N-S-U] for complete proofs. 

Let q € L°°(Cl) be real-valued and let { A i } ? ^ denote the Dirichlet 
eigenvalues of Lq. Let G ( A , x , y ) , A ^ A z , be the Green's kernel for the 
Dirichlet problem 

( A - ç + À)G = fi(a-i,), G ( À , . , y ) | a n = 0, V y e f t . 

The solution of 

(10.10) Lq-\u = 0 

+ kßtrfh(k) 

has the representation 

(10.11) u(x) = 

/an < 

dG 
\,x,y)f(y)dSy 

where dSy is the euclidean surface measure on dfì. 
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G can be written in term of the A^'s and the corresponding set of or-
thonormal eigenfunctions { < / ^ } ^ i 

(10.12) G(X,x,y) 

oo 

i=l 

+ kßtrfh(k) 

A — A; 

Inserting (10.12) into (10.11) we obtain 

(10.13) u(x) : 
'an 

oc 

i=l 

<Pi(x) 

X,x,y 

du 
(y)f(y)dSy 

and therefore 

(10.14) L1{U du 

du dû i=i 

oo X,x,yX,x,yX,x,y,x,yX,x,y 

A - Xi 

Formula (10.14) and Theorem 10.2 lead directly to the following result ([N-
S-U]; Novikov [No] proved this result independently) which states that the 
Dirichlet eigenvalues and normal derivatives at the boundary of an orthonor-
mal set of eigenfunctions uniquely determine the potential. 

Theorem 10.15. Let qi € L°°{Vt) i = 1,2 be real-valued. Let \j(qi), 
j — 1 ,2 , . . . denote the Dirichlet eigenvalues of L^, i = 1,2 with Xj > Aj+i 
and eigenvalues repeated according to their multiplicity. Assume 

(10.16) Aj(<7i) = Xj(q2) Vj . 

For qi, i = 1,2 we choose orthonormal sets of eigenfunctions {^j(-?^)}iSi 
with 

(10.17) 
d<pj 

du 
> , < 7 i 

difj 

dv 
fa,©)-

Then 
,x,yX,x,y 

Remark 10 .18 . Theorem (10.15) can be thought of as an n-dimensional 
analog of the one-dimensional Borg-Levinson theorem, which states that 
the Dirichlet eigenvalues and the norming constants determine the potential 
uniquely. Alessandrini and Sylvester ([A-S]) have given stability estimates 
for the result Theorem 10.2. Roughly speaking, they showed that if q is a-
priori bounded in some Sobolev norm, then, in some lower Sobolev norm, q 
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depends continuously on its Dirichlet eigenvalues and the normal derivatives 
of an orthonormal set of Dirichlet eigenfunctions. 

1 1 . T h e hyperbolic Dirichlet to N e u m a n n m a p 
W e consider the mixed problem for the wave equation associated to the 

Schrodinger equation 

(11.1) 
a2 

dt2 
- A + 9 u = 0 in Q x ( 0 , T ) 

u\t=o 
du, 

at1 t=o = W, 

,x,yX,x,y,x,yX,x,y 

where q € L°°(Q). 
T h e (hyperbolic) Dirichlet to Neumann map is then defined by 

(11 .2) A j ( / ) 
du 

with u solution of (11.1). Notice that (p,ijj are fixed throughout. As shown 
in [Ra-S] the choice of (p,ip is inmaterial. Rakesh and Symes ([Ra-S]) proved 

Theorem 1 1 . 3 . (n > 2) Let quq2 G L°°(Q). Assume A ¿ = A£ 2 for t e 
[0 ,T] withT> d i am( i2 ) . Then 

5i = 52-

R e m a r k 11 .4 
If one knows A£ ( / ) for all t, then taking Fourier transform in the time 

variable, one obtains the Dirichlet to Neumann map Aq^\2 considered in 

Theorem 10.2. In Theorem 11.3, we require only knowledge of A£ in the 

interval [ 0 , T ] . 

Sketch of proof. 
Rakesh and Symes use geometrical optics solutions concentrated near 

lines with direction u € 5 n _ 1 and an identity similar to (5.4) to prove that 

one can recover the X- ray transform of q knowing A£. 
W e indicate here another way of obtaining this information from the 

hyperbolic Dirichlet to Neumann map. W e consider for simplicity the case 
q e Cg°(Q). Let 51,52 € C ^ ( f i ) such that 

(11.5) 
51,0 < 

Ah 0 < t < T, with T > diam (Q). 
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Let ta,, i = 1,2 be the solution of 

(11.6) 
d2 

dt2 
A + qi)ui = 0 

m = S(t — x • o;),t <C 0 

where u G 571"1 is the direction of the plane wave 6(t — x • u). W e proceed 
now to show that the information (11.5) implies tai = u2 in Clc x [0 ,T j . W e 
proceed as in (6.18). Let 

(11.7) z = 
w in fix [ 0 , 2 ] 
«2 in ficxO,T 

where w solves the initial boundary value problem 

(11.8) 
d2 

at2 
- A + qi)w = 0 

w = < 5 ( t - x - w ) , t < 0 

wlanx(o,r) = «2 |anx(o,r)-

Now 
diu 

du 
Aj1(w |8nx[o ,n) A'1 "•2|ônx[0,T], 

0U2 

Therefore 2 solves 

(11.9) 
d2 

at2 
- A + qi)z 0 in R " x R 

z = 6(t — x • u), t < 0 . 

By the uniqueness of the solution of (11.9) we obtain 

Z = Ui 

proving that 

(11.10) ui = u2 in fic x [ 0 , T ] . 

Now one can use the progressive wave expansion of Courant-Lax ([C-L]) to 
conclude for U{ as in (11.6) 

(11.12) m = 6(t — x • u) + ai(x,u)H(t — x • u) + bi(t,x,u) 
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where 6, E C ° ( R x Rn x 5n_1) i = 1,2, H(x) is the Heaviside function and 

Vai • w = 
- g t ( g ) 

2 
¿ = 1,2, 

a2- = 0 for x • u <C 0. 

Since = u2 in Qc x [0 ,T] we conclude 

ax = a,2 in 12 . 

But a2-, z == 1,2, can be obtained as integration of the potential qi in the 
direction a;, therefore implying that the X- ray transform of gi and q2 coincide 

— oo 

»oo 

qi(x + tu))dt = 
r-oo 

q2(x + tu)dt Va;, a;. 

Now by the inversion of the X- ray transform (fHl) we conclude 

(x + tu))dt 

Stefanov [St] and R a m m and Sjostrand [R-Sj] have extended Theorem 
11.3 result to the case of potentials depending on time. Isakov [Is III] has 
considered the case of wave equation plus first order perturbations. In all 
these works geometrical optics solutions and the relationship between the 
hyperbolic Dirichlet to Neumann and the X- ray transform play a crucial 
role. 

W e now consider the hyperbolic Dirichlet to Neumann map in the 
anisotropic case. In particular we would like to describe the relationship 
of this map and the inverse kinematic problem in seismology. The material 
that follows is taken from [S-U VI] and is part of work in progress of the 
author with Jack Lee, Gerardo Mendoza and John Sylvester [L-M-S-U]. 

Let Q be a smooth bounded domain in R n and g a smooth Riemannian 

metric on Q. W e consider the initial boundary value problem 

(11.13; 
d2 

dt2 " A , u = 0 in Q x ( 0 , T ) , T > 0 

(x + 
du 

dt (x + 
0 in ft 

u|nx(0,T) = / . 

We define the (hyperbolic) Dirichlet to Neumann map by 

(11.14) A j ( / ) 

n 

(x 

(x + du 

dxj da 
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where u is a solution of (11.13). 
As in the elliptic case, it is easy to see that the map 

(11.15) A * a h 
9^g 

is not injective since A ^ „ = Ag for any diffeomorphism i/> : Q —* Q such that 

ip\dn = Identity. One can show,as in the elliptic case, that knowledge of Ag 

determines the Taylor series of g at dCl in boundary normal coordinates. 
If Ago = A9l one can extend go = g\ to Qc such that both are smooth 

and both are euclidean outside a ball. Using similar arguments to the ones 
used in the proof of Proposition 6.16 we have 

(11 .16) Proposition. Let go,g\ the smooth Riemannian metrics on Q. 

Assume A%Q = A ^ . Let ( u 0 , u i ) € £ ' ( R n ) x £ ' ( R n ) , supp uk C ftc, k = 0 ,1 . 

The solution vk of the initial value problem 

a2 

dt2 

0 in R" Vk 0 in R " x ( 0 , T ) 

Vk 0 in R" 

dvk 

at \t=0 
\t= 

satisfìes VQ = vi in Çlc x ( 0 , T ) . 

One can use the proposition above and the geometrical optics construc­
tion (2.7) to solve the wave equation with data supported outside fic (saj 
UQ = 6y,y 6 Qc,ui = 0) to conclude that the geodesic distance function foi 
points y, x € fic is the same. W e are going to use an alternative methoc 
which is the Hadamard parametrix construction (see Hormander [Ho], sec­
tion 12.4). 

Let Fk(t,x,y) be the solution of 

d2 

dt2 
n Çlc x Fk 

= 0, k = 0,1 

Fk(0,x,y) = 6(x-y),yenc 

dFk 

dt 
(0,x,y) = 0. 

Then, assuming that the exponential map for each of the metrics gk is a 
global diffeomorphism near Q (i.e., no caustics in a neighborhood of Q,), we 
may write 

(11.17) Fk(t,x,y) 

N 

j=0 

A ^ y ) t 2 - (sk(x,y))2) 
- i + i ( n - l ) n Çlc x (0 

,T). 
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where F% G c W - l i M ^ R ^ R ^ x R J ) and A) G C ° ° ( R n x R n ) , k = 0 ,1 . 
Here Sk(x,y) denotes the geodesic distance between x and y in the metric 
gk-, k = 0 ,1 . The distributions 

: ^ 2 - ( ^ 2 / ) 2 ) i 

[t2-(s(Xiy))2 — A 

r ( l - A ) 
0 

for t 2 > ( s ( x , y ) ) 

t 2 < (s(x,y)) 

are defined for Re A <C 0 and have an analytic continuation to A € C . 

Now from proposition (11.16) we know that if Ago = , then Fo(t, x, y) = 

F i ( t , x , y ) in ftc, for t > 0. Therefore, comparing the most singular terms in 

(2.20) we conclude that 

t2 - (s0(x,y))2 
i ( n - l ) 

'f - Mx,y))2) 
Ì ( n - l ) 

Thus we have proved 

Theorem 11 .18 . Let go and g\ be Riemannian metrics with A£ o = A ^ . 

Then if the exponential map is a global diffeomorphism in ft for gk, k = 0,1 
and Sk{x,y) denotes the geodesic distance from x to y in the metric gk, we 
have 

n Çlc x (0,T). n Çlc x (). V x , y G aft. 

The inverse kinematic problem in seismology is to recover g from sg(x, y),x,y G 

ôft. Again this is not possible since if I/J : ft —» ft is a diffeomorphism such 
that i/j\da = Identity, then s ^ + g — s g . As in conjecture 1, the question is 
whether this is the only obstruction to uniqueness. It is proven in [S-U VI 
that the linearized version at the euclidean metric of this conjecture is valid 
using again the harmonic map equation. 

Let g€ be a family of Riemannian metrics in ft, g€ = e + eh, where e is 
the euclidean metric. W e also assume that ge = e in ftc and 

(11.19) Sg€(x,y) = se(x,y) Vc. 

A n easy computat ion shows that 

(11.20) 
(hij) 

(hij)(v,v)dt = 0 

where y(x,t,v) denotes a straight line through x with direction v at time t. 
Formula (11.20) means that the X- ray transform of the quadratic form hij 
vanishes in the direction v. 

W e recall that the linearization at the identity of the harmonic map 
equation (in the direction h) is 

(11.21) - 2 

n 

i=l 

d 

dxi 
hip 

d 

(hij) 
trh = 0, 8 = 1,. . . , n . 
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Integrating (11.21) along the lines with direction v yields 

7(0:, 

Vj^ijjWß — 0 \/w G R with (w,v) = 0. 

Vrguments similar to those at the end of section 9 show that 

j(w,w) = 0 
(hij(w,w) = 0 Vw G R n 

proving that the A-ray transform of hij(w,w) is zero for all w and therefore 
that h = 0. 

12 . T h e scattering amplitude at fixed energy 
In the previous section 10 we related the Dirichlet to Neumann map 

Aq_A to spectral information about q. One can also relate this to scattering 
information, now fixing the frequency À (this is more or less implicit in the 
hyperbolic Dirichlet to Neumann map and in the analog to formula (6.15) 
for the scattering amplitude). 

In the same way that we obtained (6.15), it is possible to show that the 
scattering amplitude satisfies 

(12.1) j(w,w) = 0 
dQ 

j(w,w) = 0 j(w,w) = 0(w,w) = 0 Vw G Rn 

where -0-4- is the outgoing eigenfunction. 
(In [N] and [No] an integral equation was derived for V '+ ldn in terms 

of Aq_\2 similar to (6.24). See also the nice exposition of Colton and Kress 
[C-K] on integral equation methods in scattering theory). 

Arguments analogous to those in proof of Proposition 6.16 show that if 

(12.2) (w,w) = 0 Vw G Rn 

for qi,q2 e L°°(Q) then 

(12.3) v 4 1 } = ^ 2 ) müc. 

with V ' + \ i = 1,2 the outgoing eigenfunction associated to qi. Then using 
(12.1) we conclude that if (12.3) is satisfied, 

ai(Xo,e,u) = a2(X0,e,u) W , w G(w, 

with at- % = 1,2 the scattering amplitude associated to q^. One can prove the 
converse 
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Theorem 12 .4 . (n > 3 ) . Let q{ € L°°(Rn) , supp q{ C ft = { x ; |x | < i ? } , 
i = 1,2 such that 

(12.5) a i (Ao ,0 ,o ; ) = a2(Ao,0,a;) 

for some AQ ^ 0, V0, w G S n 1. Then i f AQ is not an eigenvalue of LQl or Lq2 
(in ft with Dirichlet boundary conditions), 

(w,w) = 0 Vw G Rn 

and therefore 
qi = 92 • 

Sketch of proof 
Let Gq(x,y,Xo) be the outgoing Green's kernel for —A + q — AQ. The 

single-layer operator, which is an invertible operator from (9ft) to H* (dQ), 
is defined by 

(12.6) Sxofi*) = 
rdB(0,#) 

Gq{x,y,X0)f(y)dS)f(y)dS 

where dS denotes surface measure. 
It was proven in [N] (see Theorem 1.6; the proof is also valid in two 

dimensions) that 

(12.7) 
(w,w) = 0 Vw G Rn 

is injective. More precisely (see (1.40) in [N]) 

12.8 A ^ = A _ A j + 5 ^ 1 - ( 5 + ) - 1 ) f ( y ) d S 

where S* is as in (12.6) with q = 0. Next we sketch how to prove that the 
map 

(12.9) S\0 -* A\0 

is injective, where A\0(q) = CL(XQ,Q,UJ). 
This is an old result of Berezanskii ([B]) who showed how to go from 

the far field (*4A0) to the near field ( ^ A 0 ) ^n a quite explicit fashion. One can 
see the injectivity of (12.9) using the asymptotic expansion of the outgoing 
Green's kernel, namely 

(12.10) Gq(x,y,X0) 
ei\0\x\ 

\ x \ ^ 
^(x0,y, e) + o(\x\ 

( n - l ) -I , 
2 _ i 
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with 9 = — -[fy and if>+ the outgoing eigenfunction. Now if A\0(qi) = A\0(q2), 

by (12.10) and (6.3') we eet 

(12.11) Gqi(x,y,\o) - Gg2(x,y,XQ) : 0( |X| 
( n - l ) 

2 - 1 
|y| 

( n - l ) 
2 - 1 ) -

Now 
</?(£,y) = G g i ( a , y , A 0 ) - G 9 2 ( x , y , A 0 ) 

solves 
(-Ax-\2

0)<p = 0 for |x | > R, \y\ > R. 

Therefore by Rellich's lemma we obtain that 

Gqi(x,y,\0) = Gq2(x,y,\o) for \x\,\y\ > R 

proving the injectivity of the map (12.9). 
In two dimensions Novikov [N II] proved injectivity of the map 

(12.12) )f(y)dS)f(y)dS 

for q close to 0. This result can be also proven using the method outlined in 
the proof of Theorem 12.4 and the local result in [S-U II] stated in section 
7. Sun and Uhlmann [S-U II] used the generic results in Su-U I] to prove 
generic injectivity of the map (12.2). More recently in Su-U III] it was 
proven that in two dimensions for a singular potential having j u m p type 
discontinuities across a subdomain, knowledge of the map (12.2) determines 
both the location of the singularity and the j u m p at the singularity. This 
result follows from a corresponding one for the Dirichlet to Neumann map. 

Remark 12 .13 . R a m m stated Theorem 12.4 in several papers. However 
some of his proofs, as indicated by Novikov ([No]), are incorrect (for in­
stance [R I]) . A corrected proof appears in [R II].The proof sketched above 
was communicated to us by A . Nachman. Stefanov [St II] has used similar 
ideas to obtain continuous dependence results for the map (12.12). Henkin 
and Novikov ([N-H]) had proved Theorem 12.4 earlier in the case of small 
potentials. Novikov ([No]) sketched a proof of Theorem 12.4 without the 
smallness assumption using the results in [N-H]. 

13 . A n analogous discrete problem 
A discrete version of the inverse conductivity problem described in sec­

tion 1 is to consider a network of resistors. The problem is to determine 
the resistances in the network by making voltage and current measurements 
at the boundary of the network. Of course the geometry of the network 
is important for uniquely determining the resistors. For instance it is easy 
to see that two resistances wired in series cannot be determined by making 
voltage and current measurements at the boundary. 
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W e consider rectangular network Q of resistors in the plane. W e follow 
here the approach of [Cu-M 1]. The nodes of Q are the lattice points p = (z, j) 
for which a < i < b and c < j < d with the four corner points ( a , c ) , (6, c ) , 
(a, d) and (6, d) excluded. The set of nodes is denoted by QQ. The interior 
int QQ consists of those nodes in Qo all of whose four adjoint points are in 
QQ. The edges of fii are the horizontal and vertical line segments which 
connect each pair of adjacent points in QQ. The conductivity is a function 

^ : fii ^ R + 

where R"1" is the set of positive numbers and 
7(") 

is the resistance of the 
edge. 

The conductivity equation is easily obtained used Kirkhoff's law: The 
sum of all currents at an interior node is zero 

(13.1) Lyu(p) = 
q~p 

r(p> - u(p)) = 0, pe int Q 0 

where q ~ p means that q and p are nodes connected by a resistance; y(p, q) 
represents the conductivity associated to the edge joining p and q. 

The discrete Dirichlet to Neumann is then defined by 

(13.2) A ? / ( j > ) = j(p,q)(u{q) - u(p)),p E dQo/(p)A 

where q is the unique node in ÇÎQ connected to p by an edge and u is the 
solution to the Dirichlet problem 

(13.3) 
L^u = 0 in int QQ 

)f(y)dS)f(y 

Again A^f(p) is the induced current at p by the potential u induced by the 
voltage / . 

In analogy with the continuous case it is easy to see that if we consider 
the total power to maintain the potential / on the boundary, with u solution 
of (13.3) 

(13.4) Qi(f) = 
9~P 

/(p)A?/(p)./(p)A?/(p). 

then 

(13.5) Qiif) 
pedüo 

/ (p)A?/(p). 

204 



INVERSE BOUNDARY VALUE PROBLEMS 

The inverse conductivity problem for the network of resistances can then be 
reduced to study the map 

(13.6) 
/(p)A?/(p). 

with as in (13.2) or equivalently the map 

(13.7) 7 * 3 

with Q* as in (13.4). 
Lawler and Sylvester ([L-S]) proved the injectivity of the map $ (or 

Q) for conductivities which are a small deviation of constant conductivities. 
They used the analog of the growing exponential solutions of Calderon (sec­
tion 2) . In [Cu-M I] completely different solutions of (13.1) are constructed 
which don' t have an analog in the continuous case. This allows to prove not 
only injectivity for $ (or Q) and to give a reconstruction method to get 7 
from A^ but also to give a characterization of all possible A^ which arise 
([Cu-M II]). W e first state 

Theorem 13 .8 . Let QQ be a network of resistors in the plane with edges 
Qi. Let 7i, i = 1,2 be two conductivities 7» : fii —> R + . Assume 

/(p)A?/ 
(p). 

71 = 72 • 

then 
71 = 72 • 

Sketch of proof. 
Similar to the approach taken in the continuous case, we look at 7 1 = 72 • 

Polarizing the quadratic form (13.4) we obtain the bilinear form 

(13.9) 71 = 72 • 

71 = 7 
7(P><Z)M?) - u(p))(v(q) - v(p)) 

where u is a solution of (13.1) and v solves the Dirichlet problem. 

(13.10) L^v = 0 in int QQ 

v\dn0 = 9-
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One can easily prove the corresponding identity to (5.4) in the case 
of a network of resistors. Namely if 7 ; ,z = 1,2, are conductivities so that 
A £ = A ^ 2 , then 

(13.11) 
L1{U 

[7i(p,q) ~ I2(p,q))(ui(p) - ui{q)){u2{p) - u2(q)) = 0 

where U{ is solution of 
L1{Ui = 0, i = 1 ,2 . 

The main technique used in [Cu-M I] is "harmonic continuation". More 
precisely given a conductivity 7 one can show that there exist solutions of 

Lyu = 0 in QQ 

so that u = 0 below any line of slope plus or minus one (of course there is no 
analog of these solutions in the continuous case). B y choosing u\ in (13.11) 
to be zero below the appropiate line of slope one, and u2 to be zero below a 
line of slope minus one, Curtis and Morrow proved 

Proposit ion 13 .12 . Given an edge joining po and qo and two conductivities 
'Yi , ^ 9 in a network, one can construct solutions 

LYIU{ = 0 in int QQ 

so that for q ~ p 

(13.13) (ui(q) - ui(p))(u2(q) - u2(p)) = 6qoPo 

where 

àqopo 
1 q = qo,p = po 
0 otherwise. 

The theorem follows immediately from Proposition (13.12) since we may 
insert ui and u2 as in (13.13) into (13.11) to get 

7i(Po,<Zo) =72(^0,20), 

which proves the theorem. 

This method of proof allowed Curtis and Morrow to give a reconstructive 
procedure to get 7 from A^ and moreover to formulate necessary conditions 
for a matrix A{j to be the Dirichlet to Neumann map associated to a con­
ductivity. They have recently proved that these conditions are also sufficient 
( [Cu-M, II]). 

Let f^o be a square network of side nxn and 7 : Qi —* R + a conductivity. 
The Dirichlet to Neumann map A^ is represented by the matrix Aij (if we 
number the boundary nodes clockwise, then the functions which are one at 
the j ' t h node and zero elsewhere form a basis for functions on the boundary) . 
Curtis and Morrow proved 
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Theorem 13 .14 . Let A; j be a 4n by An matrix representing the linear map 

A. Then there is a unique conductivity function 7 on Qi, such that A = A^ 

iff A{j satisfies the four properties listed below. 

( R l ) Let k be an integer with 1 < k < n, and take m = 4n — k + 1. 
Then there is a unique set of numbers a ? i , a 2 , . . . , «fc such that for each i 
with k < i < m, 

A am ~f" 

L1 

¿ = 1 

AijOij = 0 

A similar relation holds for any node in any face, and columns from faces 
either clockwise or anti-clockwise from that node. 

(R2) A 7 is symmetric: A{j = Aj^.Thus, there are relations similar to 

( R l ) involving the rows of A 7 . 

(R3) For each i = 1 , 2 , . . . , 4n, 

4n 

7=1 

L1{U 0 

(DP) Each of the six n x n blocks which lie entirely above the diagonal, 
and each of their transposes has the Determinant Property - A matrix has 
the determinant property if any k by k submatrix M satisfies: det M < 0 if 
k = 1 or 2 m o d 4; det M > 0 i f f c = 3 o r 4 m o d 4 . 

A n interesting open question is to analyze the relationship between the 
discrete and continuous Dirichlet to Neumann map. 

Department of Mathematics 
University of Washington 
Seattle, W A 98195 
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