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Appendix. On the Thom-Smale complex 
by François LAUDENBACH 

Morse theory has been much studied and still it is the source of very interesting 
papers (Witten [W], Floer [Fl], [F2] ; see also the review and comments by Bott 
[B]). Therefore, it seems very hard to write down any new ideas on the subject. 
Nevertheless, the generic structure of the gradient field of a Morse function is always 
hidden, though it should be very simple. The aim of this paper is to uncover this 
simplicity, at least partially. Then some applications to de Rham currents are given. 
The bifurcation theory in 1-parameter families of gradient fields is also considered. 

From now on, M is a C°° closed manifold (i.e. compact, without boundary), 
/ : M —• R is a Morse function and X is the gradient field of - / with respect to 
a metric on TM. If x is a critical point, Wu(x) (resp. Ws(x)) will denote the 
unstable (resp. stable) manifold of x for the vector field X. We recall that Wu(x) 
is a submanifold (non closed), diffeomorphic to an open ball whose dimension is 
the index i(x) of / at x. In the sequel, we make the assumption (T), which is 
genetically satisfied in the space of gradient vector fields [S]: 

(T) For any pair x,y of critical points, the manifolds Wu{x) and Ws(y) are 
transversal. 

A gradient vector field X satisfying (T) will be said to be Morse-Smale. Then 
it is known [R] that the closure Wu(x) of Wu(x) is obtained by adding a union of 
unstable manifolds of smaller index. This will be proved again in a special case. For 
an arbitrary Morse-Smale vector field, this closure may be very complicated ; but 
when the vector field is gradient and is of special Morse type near the singularities 
(see the condition (SM) below), the structure of Wu(x) is very simple and we 
will describe it. 
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F. LAUDENBACH 

a) Submanifolds with conical singularities 
We define submanifolds with conical singularities (abridged: smcs) of dimension k 
in a smooth manifold Np of dimension p by recursion on the dimension k. For 
k = 0, it is a discrete set of points. A stratified set E = (E0, E i , . . . , E^) in a 
manifold Np is a smcs of dimension if the following conditions are satisfied. 

(1) For any i < k, E2 - El+i is a smooth submanifold of dimension k — i . 

(2) For any point x E E j - Ei+1, there exist a neigbourhood V diffeomorphic to 
a product of discs Dk~~l x Dp~k+{ and a smcs T = (To,..., T2) of dimension 
i in Dp~k+i such that: 

yn (E0,E1, ...,Efc) = JDfc-ix(To,...,Tt-,0,...,0). 

(3) If iGSfc, there is a C1 p-ball S centered at x such that: 

E' = E n dB is a smcs of dimension (k - 1) in the (p - 1) -sphere , 

and 
(5 , £ H E0,. . . , B H Efc-i) = (B, cE j , . . . , cE^O, 

where cE^ denotes the cone on EJ with respect to the linear structure of the C1 -
parametrized ball B. 

Of course, a submanifold with boundary is a smcs. Also the singular locus of E 
lies in Ei, but some strata of Ei may consist of regular points of E. When one 
does not need to label each stratum, one denotes a smcs by E or by (E0,Ei). 

The following facts may be easily proved by recursion on the dimension: 

(4) There exists a neighbourhood F of Si in iV and a deformation retract of 
(V, V n E0) onto E L 

A submanifold S is said to be transversal to a smcs E if 5 is transversal to 
each stratum. 

Lemma 1. 1) If a submanifold S of codimension q in Np is transversal to 
E = (So, •.. , Efc), then (S D E0, . . . , S fl E^-q) is a smcs of dimension k-q 
in S. 
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2) Suppose that S has a product neighbourhood S x Dq in Np, with S = 
S x {0}. Then there exists a germ of diffeomorphisms H of SxDq along S x {0} 
commuting with the projection on Dq, such that H(E) C (E fl S) x Dq. 

Proof 1) The first part is local. For instance, take x £ S n k-q BY (2), there 
is achart near x such that E = Dq x (T0, ... ,Tk-q* where T = (T0, . . . , 2 * - , ) 
is a smcs in DP~9. The projection p : Dq x Dp~q -» JDp"9 induces a local 
diffeomorphism cp : S -> Dp~q. In the corresponding chart on 5 , 5 fl E = T, 
and so S fl E is a smcs. 

2) One has a local stratified projection cp^p : Dq x Dp-q —• 5 ; by stratified 
projection we mean a Cfl-map which is the identity on S and preserves the 
stratification T; -> 5 n T*. 

It is easy to construct a stratified projection 7r' defined on a small tube U around 
S glueing together local stratified projections by means of partition of unity. 

On the other hand, one has the projection 7r" : U —• Dq given by the 
trivialization of the normal bundle of 5 . Then (7r', 7r") is a diffeomorphism near 
5 which is the wanted H. • 

b) The main result 

If x is a critical point of index k of the Morse function / , the Morse lemma states 
there exist coordinates x\,..., xn near x such that 

(5) f(Xi,..., sn) = /(*) - s? ... - x\ + x2k+1 + ... + x2n. 

The gradient vector field X is said to be Special Morse (SM) if, near every critical 
point, there exists a coordinate system (#i, . . . , xn) such that / can be written as 
in (5), and that X is the gradient of —/ with respect to the canonical Euclidean 
metric associated to the coordinates xu ..., xn. 

Proposition 2. Assume that X verifies (T) and (SM). 
a)If x is a critical point of index k, then (Wu(x),Wu(x)-Wu(x)) isasmcs 

of dimension k. 
b) Wu(x) - Wu (x) is stratified by unstable manifolds of critical points of index 

strictly less than k. 
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Remark 3. This proposition says that the unstable manifolds give rise to a structure 
of CW-complex on M, with one cell for each critical point, the attaching maps of 
the cells being given by the retractions of (4). In [T], Rene Thorn anticipated such a 
decomposition. 

This result can probably be extended to the case where X verifies only (T) . 
To do this, one needs to change the definition of a smcs by delinearizing the cone 
construction. 

Proof of Proposition 2. Let x be a critical point of / . For a E K, set 
Sa(x) = W (x)D{f = a}. Then if a < f(x) is close enough to /(#)> Sa(x) is 
a sphere. As a decreases, this picture remains stable, as long as a does not coincide 
with the value of / at a critical point x', which, by (T), is such that i(x') < i(x). 
The set W (x) D /_1 (/(#') — e) is no longer a smooth manifold. However the next 
lemma states it is a smcs and that its structure remains of the same type as we pass 
the other critical values of / . The singular strata of this set will be also described. 

Let W c Kn be the canonical Morse model: it is a cobordism from a level set 
VIi = 5*"1 x Dn-1 to V+i = Dl x 5n-i_1. It is equipped with the canonical 
Morse function q = -x\ • • • - x\ + xf+1 + • • • + x\. The gradient field X 
of — q is calculated with respect to the canonical Euclidean metric. Of course 
V±i = {q = ±l}C\W. 

Put S = S2-1 x {0} in VLi and S' = {0} x S71^1 in V+1. 

Lemma 4. Let (S^S^) be a smcs of dimension k in V+i, transversal to S' with 
non empty intersection. Let E (resp. Ei) be the closure in V_i of the set of points 
which lie on a gradient line descending from E' (resp E1). Then E contains S 
and (E.EilJ S) is a smcs of dimension k. 

Proof In VI i (resp. V+i), we use polar coordinates (<f>,ip,r) E S1'1 x5n~2-1 x 
[0,1]. With these coordinates and when r > 0, the map (V+i - S') (VLi - S) 
is the identity. Set K = E; n S\ which is a smcs by the transversality condition. 

First, suppose that E7 is D{ x K C D{ x S71'^1, that is : 

E; - K = {(<£, ^, r) |^ € sl-\ *PeK,r> 0}. 

In V_ i, E — S is given by the same formula and therefore one has: E = Sl ~1 x cif, 
which is a cone fibration, whose vertices lie in 5. More generally, by Lemma 1, 
there is a diffeomorphism H of the form H(cp,ip,r) = (<^,^(^,^,r),r) with 
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(̂<£>, </>,0) = %f), such that H(Di x K) = E near {0} x iif. Then E can be 
expressed locally as the image of S*"1 x cK by the map H, which is the map H 
considered as a map from 5'"1 x Dn~~* into itself. Because the radial derivatives 
of H exist and are continuous, one verifies easily that H is C1-diffeomorphism. 
Therefore ЗУ is a smcs. 

Remark 5. 1) E is not transversal to 5, both sides of the cobordism don't play the 
same role. 

2) The proof of the lemma shows that each stratum of Wu(x) is C°°. However 
the way in which strata adhere to each other may only be C1. 

Now, we prove Proposition 2. By condition (T), Wu(x) (1 f~1(f(x/) + e) is 
transversal to the sphere S' of the Morse model of x'. Then Wu(x)nf"1(f(x,)-e) 
is a smcs with a new singular stratum. One then proceed by recursion. The proof 
of Proposition 2 is completed. 

c) The Thom-Smale complex 

In this section, we make the same assumptions as in Proposition 2. An orientation is 
chosen on each Wu(x). 

For critical points x and y of / , with i(y) = i(x) - 1, we define the integer 
n(x,y) as follows: n(x,y) — 0 when Wu(y) does not lie in the closure of Wu(x)\ 
otherwise, near Wu(y), Wu(x) consists of n+ + ra_ connected components, 
Wu(y) being the oriented boundary of n+ of these. Then n(x, y) = n+ - n_. 

Here is an alternative definition for n(x,y). As Ws(y) is co-oriented (i.e. 
transversally oriented), to each gradient line in Wu (x) fl Ws (y) (which is the union 
of a finite number of gradient lines), one can attach a sign and n(x, y) is the sum of 
these signs. 

Let Ck denote the free abelian group generated by the critical points of index k. 
The boundary operator d : Ck —• Ck-i is defined by 

(6) dx = Zn(x,y)y, 
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the sum being over all critical points of index i(x) — 1. On the other hand, as 
the geometry of Wu(x) is "finite" near its boundary, we can consider the oriented 
Wu(x)'s as currents, and we have the following Stokes formula. 

Proposition 6. For any smooth differential form u> of degree k - 1 on M, one 
has : 

(7) /_ du = Vn(x ,y ) _ u. 
Jwu(x) y Jwu(y) 

Proof Let U be a neighborhood of Wu(x) - Wu(x) which has property (4) in 
Section a). We apply Stokes theorem to v on Wu(x) - U. As we let U shrink, the 
Stokes formula is seen to converge to the right-hand side of (7), because the singular 
locus of W (x) - Wu(x) is negligible with respect to the (k - 1)-dimensional 
Lebesgue measure. • 

Corollary. dod = 0. 

Proof For any critical point y of index k - 2, there exists a (k — 2)-form whose 
integral over Wu(y) is nonzero and which vanishes over the other (k — 2) -unstable 
manifolds. The result then follows from (6), (7) and from the fact that d o d = 0. • 

Let i* : C* —• R* be the map, with values in the complex i?* of de Rham 
currents, which associates to each critical point x the current of integration over the 
oriented manifold Wu(x). By (7), J* is a morphism of complexes. Of course, as 
the Wu(x) 's are the cells of a CW-complex, it is known that the homology of C* 
is canonically isomorphic to the singular homology of M [Ml, Appendix A]. But, 
in our context, the weaker result with real coefficients may be stated as follows. 

Proposition 1. I* : C* ® R —* R* induces a homology isomorphism. 

Proof The stable manifolds are naturally co-oriented and give rise to a complex 
(C*, 5), graded by the co-index of critical points : i(x) = n — i(x). The pairing 
(x,x) = l,(x,y) = 0 when x / y , satisfies (dx, y) = ±(x,dy) and creates a 
duality between Cn_* and C*. Then Hn-k(C*;R) ^ Hom(iJfc(C*);lR). 

Like the unstable manifolds, a co-oriented stable manifold of dimension n - k 
defines a current, which can be paired with smooth n — k forms twisted by 
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the orientation bundle of TM. The de Rham regularization operator [Rh,§15J 
transforms such currents into smooth differential forms of degree k, and maps d to 
d. 

Let a e Ok be a cycle. If a is not homologous to 0 in C* , there exists a 
cycle a in Cn-fc such that (a, a) ^ 0; then the de Rham regularization operator 
transforms a into a closed k- form u such that (a,o) = $au. Therefore a is 
not homologous to 0 as a current, and so, i* is injective in homology. 

By duality, to show that 7* is surjective in homology, we only need to prove 
that if a; is a closed A;-form on M such that / u = 0 for any a E Ck with 
da = 0, then u is exact. In fact, there exists £ € Cn-k ® R such that for any 
critical point x, (E, j) = Jwu(x)Um Since (£,cr) = 0 for any cycle cr, one has 
£ = drj, r) e Cn-ib+i. By de Rham regularization, £ is smoothed into a form u'9 
which is the differential of the de Rham regularized of 77. Then, Sw* ̂  (u - J ) = 0 
for any x. The form u — u' is shown to be exact by climbing the skeleton, and 
applying the Poincaré lemma to each cell ; this is detailed in [ST ; 6.2, Lemma 3]. 
In fact the structure of the closure of the unstable manifolds allows us to proceed in 
the same way as with the simplices of a triangulation. • 

d) The Thom-Smale complex with local coefficients 

Let F be a real flat vector bundle on M. Let Ck(F) be the vector space generated 
by the x ® / , where x is a critical point of index k, and f £ Fx. Then if x, y 
are critical points of / such that i(y) = i(x) — 1, Wu(x) n Ws(y) consists of a 
finite number of gradient lines. To each of these gradient lines, one can attach a sign 
€ and an identification a : Fx —* Fy. Set d = Sea. Then the obvious analogues 
of the results of c) still hold. 

e) Bifurcation of the Thom-Smale complex in a 1-parameter 
family 

Now we consider a smooth path of pairs (ft,Xt)9 te [0,1], where Xt is the 
gradient of -ft with respect to a metric ut. We assume that /0 and /1 are Morse 
functions, and that X0 and X\ verify (T) and (SM). One may ask how the 
Thom-Smale complexes of X0 and Xi are related to each other. Observe that 
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the given path can be modified into any other path having the same ends. We allow 
ourselves modifications which are based on classical tranversality arguments, as well 
as on a by-product of the universal unfolding of the x3 singularity. So we assume 
that the following assumptions are verified: 
a) Except on a finite set {*!,..., tk} with 0 < tx < ... < tm < 1, ft is a Morse 

function. 
b) Near tk, the path ft is an "elementary" path of birth or death of a pair of critical 

points. The word "elementary" means the path is described as in [C, p. 244 -
246]: near the degenerate critical point the path of functions is given by, 

(8) ft(x) = ^xl -(t- tk)x! ±x\...±x2n+ const. 

for t G [tk - 6, tk + e], when the birth happens for increasing t. 
c) For t G [tk - 6, tk + e], the metric fjbt is constant. In the chart where (8) holds, 

fit is a small C° -perturbation of the canonical Euclidean metric, so that (SM) 
holds at the two new critical points (±y/e, 0, . . . , 0) of /tfc+€. 

d) The stable and unstable manifolds of Xtk are transversal ; at the cubical 
singularities, they are manifolds with boundary. 

e) For any t and any critical point x of ft9 distinct from the critical points which 
appear in the birth/death process when t e]tk -e,tk + e[, the condition (SM) 
is satisfied at x with respect to the metric fit. 

f) At the end points t = tk ± e, assumption (T) is verified. 
To describe the modification of the Thom-Smale complex along such a path, we 

consider in succession the following two problems: how does the complex change 
when one passes a birth-death point, and how does it vary along a path of Morse 
gradient fields, at the points where (T) is not satisfied. 

f) Modification of the Thom-Smale complex near a birth-death 
point 

Change the orientation of the t-axis if necessary and assume that tk is the birth 
point of a pair of critical points of index i, i + 1. 

Set g- = ftk-€, g0 = fik, g+ = /tfc+c. Let x be the cubic singularity 
of g0 ; let x' (resp. x") be the index i (resp. i + 1 )-critical point of g+ just 
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created from x. The point x is a degenerate critical point with index i. Its local 
unstable manifold is a half-disc of dimension i +1 and its local unstable manifold is 
a half-disc of dimension n — i ; they meet only at x which lies in their boundaries. 
The kernel of the Hessian at x is the unique direction tangent to the stable and 
unstable manifolds. The singularities of g+, all quadratic, are those of g- plus x' 
and x". 

If y (resp. z) is a critical point of index i+1 (resp. i)of go, the integer n{y,x) 
(resp. n(x, z)) is well defined because the transversality condition is assumed for 
go = ftk : it is the algebraic number of gradient lines descending from y to x 
(resp. from x to z). 

The formulae which calculate the complex (C+, d+) associated to (3+, grad#+) 
from the complex (C_, d_) associated to (g- , grad#_) are the following : 

d+p = d-p for any critical point p of g+ 
(9) 

with i (p) ̂ ¿ + 1,2 + 2 and p ^ x1\ 

(10) d+x" = x'+ n(x,*)z> 
i(z)=i 

(11) d+x' = - ^ n(x,z)d-z, 

i(z)=i 

(12) d+y = d-y+ n(y,x)[x'+ ^2 n(x>z)z]i 
i(z)=i 

for any critical point y of g+,i(y) = i + 1 and y ^ x" ; 

(13) d+y = d-y- n(d-y,x)x" 

for any critical point i/ of g+,i(y) = i + 2. 

In (13), n(aiyi + --- + û?ibî/ib,a:) = otin(yuxi) H + afcn(?/fc,z), where the 
aj's are integers and the yj's are critical points of index * + 1. These formulae 
are complicated, but, except when i is 0, n - 1 or n - 2, one can easily make all 
the n(x,z) and n(y, x) zero, in which case they become trivial. This is the case 
when the box where the new pair of critical points of index i, i + 1 is far from the 
unstable manifolds of points of index i + 1 and from the stable manifolds of points 
of index i. 
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All these formulae are consequences of the following geometrical fact: if L is 
a level set of g+ just below x'9 then Lfl Wu(x') is the boundary of Lr\Wu(x") 
which is a small deformation of L n Wu(x) ; if L is a level set just above x" 
then L n W5(z") is the boundary of L fl W^z') which is a small deformation of 
LHWs(x). 

Now we put these formulae in a more concentrated form. For this, we introduce 
the split extension (CI, dt) of (C_,a_) by the acyclic complex 0 —• Zx" —• 
Zx' -+ 0. 

Consider the following automorphism A of CI : in degree distinct from 
i, + 1 it is the identity. For i(y) = i + l,y ^ z", put A(j/) = y + n(y,x)x" and 
A(x') = x' + E,-(̂ )=1- n(x,z)z This automorphism is "elementary" in the sense of 
algebraic if-theory. We get 

Propositions. (C+,<9+) is obtained from (C_,<9_) by setting C+ = CI and 
d+ = A-1 odloA. 

g) The Thom-Smale complex near points where (T) is not satisfied 

After the above discussion, we are reduced to consider a path of Morse functions 
ft, t G [0,1], where both ends fi, i = 0,1, are equipped with gradient vector 
fields Xi satisfying (T) and (SM). The Morse lemma holds with parameters and 
the space of Morse charts of a given Morse function, near one fixed critical point, is 
connected, up to the Euclidean symmetries of the model (Alexander trick). Then it 
is easy to construct a path of metrics \i% such that Xt = -grad^/t satisfies (SM) 
for every t e [0,1] and coincides with the given vector fields for t = 0,1. 

Now, by approximation, we can suppose that Xt satisfies the transversality 
condition (T) except for 0 < t[ < ... < t'p < 1 ; moreover, the ftr 's have 
distinct critical values. The lack of transversality in a 1- parameter family can be 
described generically as follows: let L be a regular level of / = ft*k, L = /~1(a), 
just above a critical point x of index i. In /"1([a,+oo[) and in /"1(] — oo,a]), 
the transversality condition (T) is valid for the stable and unstable manifolds of each 
cobordism considered alone. The unstable manifolds of critical points of / , with 
critical values > a, induce on L some stratification St with conical singularities. 
Let S C L be the trace of the stable manifold of x: 5 is non transversal to 
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exactly one stratum E of St\ there is a unique point p where E and S meet non 
transversally and the tangency at p is a "codimension 1 " singularity. 

The stratification of the space of embeddings S —» L induce by E is described 
in[C, p.123]. When going from ft'k-e to /t'fc+€» the picture of the stable-unstable 
manifolds is itself stable above L and below L. But the glueing of both pictures 
in L is not stable; it crosses a codimension 1 stratum in the space of embeddings 
mentionned above. 

In the following, we only consider failures of transversality which a priori 
generate modifications of the associated algebraic complex. They are of two types: 

First type. dimE + dimS = dimL = n-1. In this case E = Wu (y ) fl L, where 
y is a critical point of index i + 1 ; during the transition, some pair of gradient 
lines descending from y to # is created or cancelled. But the integer n(x, y) is 
preserved and the algebraic complex does not change. 

Second type. dimE + dimS = dimL - 1. 
In this case y is a critical point of index i. The transition is pictured in L : 

we have a small disc A cutting S in one point and one moves from E_ to E+ 
through A. 

z : 
д 

2 + 

s 

As unstable manifolds are oriented, E is oriented and 5 is transversally oriented; 
therefore, the above operation comes with a sign e. The boundary morphism changes 
from 5_ to d+ according to the following formulae : 

(14) &+(z) = d-(z) - 6 n(z,y)x if ind(z) = i + l , 

(15) d+(z) = d-(z) if ind(z) = i and z ^ y, 
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(16) d+(y) = d-(y) + ed.(x), 

and, for the other critical points, d+ = <9_. 
Here is a sketch of proof for (16). Let L1 be a level set of / just below f(x); as 

A is a small meridian disc of S, the gradient lines descending from dA intersect 
V along a sphere parallel to V fl PFw(x). If E+ (resp. EL ) denotes the trace in 
V of the gradient lines descending from E+ (resp. E_)then E'+ is the connected 
sum of EL with a sphere parallel to V C\Wu(x). Formula (16) follows. 

If A is the "elementary" automorphism of the module C* defined by A(p) = p 
for any generator p ^ y and by A(y) = y + ex, then we get: 

Proposition 9. (C+,<9+) is obtained from (C_,cL) by setting C+ = C_ and 
5+ = A'1 o d_ o A. 

The formulas from (9) to (16) still make sense with local coefficients. Then, 
if for some adhoc system of coefficients the complex becomes acyclic, its torsion 
(Franz-Reidemeister or Whitehead) does not depend on the pair - function, gradient 
vector field - chosen at the beginning. Of course, this fact is well known (compare 
Milnor [M2, §9]). 

h) Final comments and complements 

The only new fact proved in this appendix is that the pair (/, X) of a function 
and a gradient vector field (with some conditions) produces an embedding i* of 
the Thom-Smale complex C* into the complex i2* of de Rham currents, because 
the unstable manifolds of critical points are currents. Then, by Proposition 7, we 
have a canonical isomorphism between the Thom-Smale homology (homology of 
the Thom-Smale complex) and the de Rham homology. In this Section, we will 
verify directly that the identifications of complexes of Proposition 8 and 9 induce the 
corresponding canonical identifications of their homology groups. 

When we need to specify the pair (F, Y) which is used, C*(f,X) and I*(f,X) 
will denote the Thom-Smale complex and the corresponding embedding into the de 
Rham complex. 

First, let us consider a one-parameter family (ft,Xt), t e [0,1], of Morse 
functions and gradient vector fields satisfying both conditions (T) and (SM) on 
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the whole interval. In this case, C*(/0,^o) and C*(/i,Xi) are the same as the 
critical points of both functions are in canonical correspondance and we have two 
embeddings of the same Thom-Smale complex. We claim that J*(/0,-Xo) and 
I* (f1, X1) are homotopic; this means that there exists a morphism K of degree 
+1 from C* to i?* such that 

htfuXi) - /*(/o,XQ) = doK + Kod 
This equation is satisfied if for each generator x of Ck(fo,X0), we set K(x) = 
\JWu(xt). Here xt is the critical point of ft corresponding to x and K(x) is 
t 

of course a (fc + 1)-dimensional current; it is the direct image by the projection 
M x [0,l]toM of the obvious current (J Ŵ O*?*) X {t} in M x [0,1]. As a 

t 
consequence, one has the following result. 
Proposition 10. J* (/o, X0) and J* (/i , Xi) induce the same isomorphism in homology. 

The crossing of an "accident" along the path (/*, Xt) - failure of transversality 
or birth-death point - involves a little bit more technicality. But with the notation of 
Propositions 8 and 9, and using homotopies like above, one can prove the following. 

Proposition 11. 1) Near a generic no-transversality point, the morphisms /*(/+, 
X+) and /*(/-, X-) o A induce the same isomorphism in homology. 

2) Near a birth point, /*(/+, X+) and / * ( /_ , X_) o po A induce the same 
isomorphism in homology, where p is the natural projection of Ce_ onto C_. 

To conclude this Appendix, we give a Fubini formula which only makes sense by 
our use of currents. Here (/,X) is a pair satifying the (T) and (SM) conditions, 
a; is a closed A;-form, Q is a closed orientation-twisted (n - fc)-form; the k-
dimensional unstable manifolds are oriented and the (n - k) -dimensional stable 
manifolds are co-oriented. 

Proposition 12. 

(17) 
M 

и) Л Q = 
X W (x) 

W 
W (x) 

O 

where the sum is taken over all the critical points of index k. 
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Proof. The transpose of h maps the cocycle u to a cycle of Cn_fc, given by 

which itself gives rise to the twisted closed current 
X W (x) 

w) x1 

a = 
x W (x) 

w 

Thus the homology class of o only depends on the cohomology class of u. 
Therefore, the right-hand side of (17) only depends on the cohomology classes 
of u and Q. The same is obviously true for the left-hand side. So we are reduced to 
the case where u vanishes near the (k -1)-skeleton of the stratification by unstable 
manifolds and Q vanishes near the (n - k — 1)-skeleton of the stratification by 
stable manifolds. Then u A Q vanishes everywhere except on blocks Dk x Dn~~k, 
usually called handlebodies. On each handlebody the formula reduces more or less 
to Fubini. • 

W (x) 
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