Astérisque

Roland Quême
 On diophantine approximation by algebraic numbers of a given number field : a new generalization of Dirichlet approximation theorem

Astérisque, tome 198-199-200 (1991), p. 273-283
http://www.numdam.org/item?id=AST_1991__198-199-200__273_0
© Société mathématique de France, 1991, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON DIOPHANTINE APPROXIMATION
 BY ALGEBRAIC NUMBERS OF A GIVEN NUMBER FIELD :
 A NEW GENERALIZATION OF DIRICHLET APPROXIMATION THEOREM

by

Roland Quême

Introduction

It is well known that for all $\alpha \in \mathbb{R}, \alpha \notin \mathbb{Q}$ there are infinitely many p / q, $|p|, q \in \mathbb{N}$ such that $|\alpha-p / q|<1 / q^{2}$ (Dirichlet theorem), and that for any real algebraic number $\alpha \notin \mathbb{Q}$ and for any $\varepsilon \in \mathbb{R}, \varepsilon>0$, there exist only finitely many $p / q,|p|, q \in \mathbb{N}$ such that $|\alpha-p / q|<1 / q^{2+\varepsilon}$ (Roth theorem).
Let K be a number field of degree n, signature (r, s) and absolute value of discriminant D.
Let B be the Minkowski constant of $K\left(B=(4 / \pi)^{s} \cdot\left(n!/ n^{n}\right) \cdot \sqrt{D}\right)$.
Let $\sigma: K \rightarrow \mathbb{R}^{r} \times \mathbb{C}^{s}$ be the embedding defined by :

$$
\sigma(\rho)=\left(\sigma_{1}(\rho), \ldots, \sigma_{r}(\rho), \sigma_{r+1}(\rho), \ldots, \sigma_{r+s}(\rho)\right)
$$

where, as usually, $K=\sigma_{1}(K)$.
For $x, y \in \mathbb{R}^{r} \times \mathbb{C}^{s}$ we note $x=\left(x_{j}, j=1, \ldots, r+s\right)$. Then we note $x+y=\left(x_{j}+y_{j}, j=1, \ldots, r+s\right)$ and $x \cdot y=\left(x_{j} \cdot y_{j}, j=1, \ldots, r+s\right)$. We define, for $x \in \mathbb{R}^{r} \times \mathbb{C}^{s}$, the distance function and the norm function :

$$
\begin{aligned}
d(x) & =\left|x_{1}\right|+\cdots+\left|x_{r}\right|+2\left|x_{r+1}\right|+\cdots+2\left|x_{r+s}\right|, \\
N(x) & =\left|x_{1}\right| \cdots\left|x_{r}\right| \cdot\left|x_{r+1}\right|^{2} \cdots\left|x_{r+s}\right|^{2} .
\end{aligned}
$$

Let A be the ring of integers of K.

Then we obtain the diophantine approximation theorems :
(i) For $\alpha \in \mathbb{R}^{r} \times \mathbb{C}^{s}-\sigma(K)$, there exist infinitely many $\beta=p / q, p, q \in A$ such that $0<d(\alpha \sigma(q)-\sigma(p))<n^{2} . B^{2 / n} / d(\sigma(q))$, with arbitrary large distance $d(\sigma(q))$.
(ii) For $\alpha \in \mathbb{R}^{r} \times \mathbb{C}^{s}, \alpha_{j} \notin \sigma_{j}(K), j=1,2, \ldots, r+s$, there exist infinitely many $\beta=p / q, p, q \in A$ such that $0<N(\alpha-\sigma(p / q))<\left(B / N_{K / \mathbb{Q}}(q)\right)^{2}$.

We first summarize the state of the art with three types of generalizations found in the quoted literature for diophantine approximation by numbers of a given number field K. Let K be a number field of degree n, signature (r, s). For $\beta \in K$, let $P(\beta)$ be the field polynomial of β,

$$
\begin{aligned}
& P(\beta)=\left(x-\sigma_{1}(\beta)\right) \cdots \\
& \left(x-\sigma_{r}(\beta)\right)\left(x-\sigma_{r+1}(\beta)\right)\left(\overline{x-\sigma_{r+1}(\beta)}\right) \cdots\left(x-\sigma_{r+s}(\beta)\right)\left(\overline{x-\sigma_{r+s}(\beta)}\right) .
\end{aligned}
$$

Let $C \in \mathbb{N}$ such that $P_{1}(\beta)=C P(\beta)=b_{n} \beta^{n}+\cdots+b_{1} \beta+b_{0}$ is a polynomial with integer coprime coefficients $b_{i}, i=0,1, \ldots, n$. Then we define the height of $\beta \in K$ by $H_{K}(\beta)=\sup _{i=0, \ldots, n}\left|b_{i}\right|$.

The first generalization of Dirichlet theorem found in bibliography is :
Assume that $r>0$ and choose a real embedding $\sigma_{1}: K \rightarrow \mathbb{R}$. For every $\alpha \in \mathbb{R}-\sigma_{1}(K)$, then there exist infinitely many $\beta \in K$ such that $\left|\alpha-\sigma_{1}(\beta)\right|<C_{1}(K) \max \left(1, \alpha^{2}\right) / H_{K}(\beta)^{2}$ where $C_{1}(K)$ is a constant depending only on K (see Schmidt [8] p.253).

The second generalization of Dirichlet theorem is :
Assume that $s>0$ and choose a complex embedding $\sigma_{2}: K \rightarrow \mathbb{C}$. For every $\alpha \in \mathbb{C}-\sigma_{2}(K)$, then there exist infinitely many $\beta \in K$ such that $\left|\alpha-\sigma_{2}(\beta)\right|<C_{2}(K) / H_{K}(\beta)$ where $C_{2}(K)$ is a constant depending only on K (see Schmidt [6] p.206).

The third generalization is :
Let $\beta_{1}, \ldots, \beta_{\ell} \in K$; let \mathfrak{b} be the fractional ideal of K generated by $\left(1, \beta_{1}, \ldots, \beta_{\ell}\right)$.

We define the generalized height of the ℓ-tuple $\left(\beta_{1}, \ldots, \beta_{\ell}\right)$ by :

$$
\begin{aligned}
\mathfrak{h}_{K}\left(\beta_{1}, \ldots, \beta_{\ell}\right)=N_{K / \mathbb{Q}}(\mathfrak{b}) & \prod_{j=1}^{r} \max \left(1,\left|\sigma_{j}\left(\beta_{1}\right)\right|, \ldots,\left|\sigma_{j}\left(\beta_{\ell}\right)\right|\right) \\
& \prod_{j=r+1}^{r+s} \max \left(1,\left|\sigma_{j}\left(\beta_{1}\right)\right|, \ldots,\left|\sigma_{j}\left(\beta_{\ell}\right)\right|\right)^{2}
\end{aligned}
$$

(i) if $r>0$, let $\sigma_{3}: K \rightarrow \mathbb{R}$ be a real embedding and $\alpha_{1}, \ldots, \alpha_{\ell} \in \mathbb{R}$, not all in $\sigma_{3}(K)$; put in that case $\nu=1$;
(ii) if $s>0$, let $\sigma_{3}: K \rightarrow \mathbb{C}$ be a complex embedding and $\alpha_{1}, \ldots, \alpha_{\ell} \in \mathbb{C}$, not all in $\sigma_{3}(K)$; put in that case $\nu=2$;
then there is a constant $C_{3}\left(K, \alpha_{1}, \ldots, \alpha_{\ell}\right)$ depending only on $K, \alpha_{1}, \ldots, \alpha_{\ell}$ such that there exist infinitely many $\beta=\left(\beta_{1}, \ldots, \beta_{\ell}\right), \beta_{i} \in K$, with

$$
\begin{equation*}
\left|\alpha_{i}-\sigma_{3}\left(\beta_{i}\right)\right|^{\nu}<C_{3}\left(K, \alpha_{1}, \ldots, \alpha_{\ell}\right) \cdot \mathfrak{h}_{K}\left(\beta_{1}, \ldots, \beta_{\ell}\right)^{-1-1 / \ell}, i=1,2, \ldots, \ell \tag{1}
\end{equation*}
$$

(see Schmidt [7] p.2).
The main difference between the quoted formulation and our theorem are summarized in the four next points :

1) In classical approximations above, $|\alpha-\beta|$ is obtained for one of the conjugates $\beta=\sigma_{1}(\beta)$. On the other hand, our estimate involves simultaneously all the conjugates of the same $\beta \in K$,
for the distance function,

$$
\begin{aligned}
& d(\alpha \sigma(q)-\sigma(p))=\left|\alpha_{1} \sigma_{1}(q)-\sigma_{1}(p)\right|+\cdots+\left|\alpha_{r} \sigma_{r}(q)-\sigma_{r}(p)\right| \\
& \quad+2\left|\alpha_{r+1} \sigma_{r+1}(q)-\sigma_{r+1}(p)\right|+\cdots+2\left|\alpha_{r+s} \sigma_{r+s}(q)-\sigma_{r+s}(p)\right|
\end{aligned}
$$

for the norm function,

$$
\begin{aligned}
& \left.N(\alpha-\sigma(p / q))=\mid \alpha_{1}-\sigma_{1}(p / q)\right) \mid \cdots \\
& \quad\left|\alpha_{r}-\sigma_{r}(p / q)\right| \cdot\left|\alpha_{r+1}-\sigma_{r+1}(p / q)\right|^{2} \cdots\left|\alpha_{r+s}-\sigma_{r+s}(p / q)\right|^{2}
\end{aligned}
$$

2) Our approximation theorem cannot be immediately connected to usual simultaneous approximation theorems, because in simultaneous approximation $\left|f\left(\alpha_{1}-\beta_{1}\right)\right|, \ldots,\left|f\left(\alpha_{\ell}-\beta_{\ell}\right)\right|$ the simultaneous approximations $\beta_{1}, \ldots, \beta_{\ell}$ are not conjugate of the same $\beta \in K$ (see for instance (1)).
3) Our result contains not only effective but explicit constants with simple relationship to the structure of the number fields (the Minkowski constant for instance, with the distance function choosen).
4) Our proof is the exact generalization of the approximation by \mathbb{Q} to approximation by a given number field K, using geometry of numbers properties of number fields embedding in \mathbb{R}^{n}.

Acknowledgments are due to Professors Dubois, Györy, Leutbecher, Schlickewei and Toffin for helpful remarks which allowed me to write this new version of this note.

Prerequisites-Notations

$K \quad:$ number field
$n \quad:$ degree of K
$(r, s) \quad$: signature of K
$x \quad: x \in \mathbb{R}^{r} \times \mathbb{C}^{s}, x=\left(x_{j} \mid j=1, \ldots, r+s\right)$
$x+y \quad: x+y=\left(x_{j}+y_{j} \mid j=1, \ldots, r+s\right)$
$x . y \quad: x . y=\left(x_{j} . y_{j} \mid j=1, \ldots, r+s\right)$
$d(x) \quad:$ for $x \in \mathbb{R}^{r} \times \mathbb{C}^{s}$, the distance function is defined by :

$$
d(x)=\left|x_{1}\right|+\cdots+\left|x_{r}\right|+2\left|x_{r+1}\right|+\cdots+2\left|x_{r+s}\right|
$$

$N(x) \quad:$ for $x \in \mathbb{R}^{r} \times \mathbb{C}^{s}$, the norm form is defined by :

$$
N(x)=\left|x_{1}\right| \cdots\left|x_{r}\right| \cdot\left|x_{r+1}\right|^{2} \cdots\left|x_{r+s}\right|^{2}
$$

$U(o, \tau) \quad:$ for $\tau \in \mathbb{R}_{+}$, convex body of \mathbb{R}^{n} defined by

$$
U(o, \tau)=\left\{x \mid x \in \mathbb{R}^{r} \times \mathbb{C}^{s}, d(x)<n \tau\right\}
$$

where $\mathbb{R}^{r} \times \mathbb{C}^{s}$ is isomorphically identified to \mathbb{R}^{n} by

$$
x_{r+i}=\left(R\left(x_{r+i}\right), I\left(x_{r+i}\right)\right), i=1, \ldots, s
$$

where R and I are the real and imaginary part.
The volume of $U(o, \tau)$ is $v(U(o, \tau))=2^{r}(\pi / 2)^{s} n^{n} \tau^{n} / n!$ (see for instance Samuel [5] p.70).
$A \quad:$ ring of algebraic integers in K.
$\sigma(A) \quad:$ embedding of A in $\mathbb{R}^{r} \times \mathbb{C}^{s}$ defined, for $a \in A$, by

$$
\sigma(a)=\left(\sigma_{1}(a), \ldots, \sigma_{r}(a), \sigma_{r+1}(a), \ldots, \sigma_{r+s}(a)\right)
$$

where $\mathbb{R}^{r} \times \mathbb{C}^{s}$ is isomorphically identified to \mathbb{R}^{n} by

$$
\sigma_{r+i}(a)=\left(R\left(\sigma_{r+i}(a)\right), I\left(\sigma_{r+i}(a)\right)\right)
$$

$\sigma(A)$ is a lattice.
$D_{0} \quad:$ Let $w_{1}, \ldots w_{n} \in A$ such that $\sigma\left(w_{1}\right), \ldots, \sigma\left(w_{n}\right)$ is a basis of the lattice $\sigma(A)$.
we define classically the fundamental domain D_{0} by :

$$
D_{0}=\left\{x \mid x \in \mathbb{R}^{r} \times \mathbb{C}^{s}, x=u_{1} \sigma\left(w_{1}\right)+\cdots+u_{n} \sigma\left(w_{n}\right), 0 \leq u_{i}<1\right\}
$$

$D(\sigma(a))$: fundamental domain of $\sigma(A)$ deduced from the fundamental domain D_{0} by the translation $0 \rightarrow \sigma(a):$

$$
\left.D(\sigma(a))=\left\{\left(y_{j}\right) \in \mathbb{R}^{r} \times \mathbb{C}^{s}\left|\left(y_{j}-\sigma_{j}(a)\right)\right| j=1, \ldots, r+s\right) \in D_{0}\right\}
$$

Results

THEOREM 1. Let K be a number field of degree n, signature (r, s), and absolute value of discriminant D. Let B be the Minkowski bound of K $\left(B=(4 / \pi)^{s} \cdot\left(n!/ n^{n}\right) \cdot \sqrt{D}\right)$. Let A be the ring of integers of K. Let $\alpha \in \mathbb{R}^{r} \times \mathbb{C}^{s}-\sigma(K)$. Then, for any $m \in \mathbb{R}, m>0$, there are infinitely many different $\beta=p / q$ where $p, q \in A$, such that $d(\sigma(q))>m$ and

$$
0<d(\alpha \cdot \sigma(q)-\sigma(p))<\left(n^{2} \cdot B^{2 / n}\right) / d(\sigma(q))
$$

Proof:

1) Let $\varepsilon \in \mathbf{R}, \varepsilon>0$,

$$
\lambda=(1+2 \varepsilon)^{1 / n} \cdot B^{2 / n} / 2=(1+2 \varepsilon)^{1 / n} \cdot\left(n!/ n^{n}\right)^{2 / n} \cdot(4 / \pi)^{(2 s) / n} \cdot D^{1 / n} / 2 .
$$

Let $m \in \mathbb{R}_{+}$, arbitrary large and $\mu=\lambda m^{-1 / n}$.
Consider the set $E=U\left(o, m^{1 / n}\right) \cap \sigma(A)$ where U and σ have the meaning of notations paragraph. From $v\left(U\left(o, m^{1 / n}\right)\right)=2^{r}(\pi / 2)^{s} n^{n} m / n!$ and $v(D(o))=$ $2^{-s} \sqrt{D}$, we deduce

$$
t=\operatorname{Card}(E)=\left(2^{r}(\pi / 2)^{s} n^{n} m\right) /\left(n!2^{-s} \sqrt{D}\right)+O\left(m^{1-1 / n}\right)
$$

Therefore, for m sufficiently large, we have $t>\left\{2^{r} \pi^{s} n^{n} m /(n!\sqrt{D})\right\} .\{1-\varepsilon\}$. For any $a \in A$, for all $q_{i} \in A$ with $\sigma\left(q_{i}\right) \in E$, it is possible to define $p_{i}(a) \in A$ and $\rho_{i}(a) \in \mathbb{R}^{r} \times \mathbb{C}^{s}, i=1,2, \ldots, t$, such that $\rho_{i}(a)=\alpha \sigma\left(q_{i}\right)-\sigma\left(p_{i}(a)\right), i=1,2, \ldots, t$ and $\rho_{i}(a) \in D(\sigma(a))$. Notice that the approximation function $d(x)$ is meaningful because $d(\alpha \sigma(q)-\sigma(p))=0$ leads to $p=q=0$: from the definition of $d(x)$, $d(\alpha \sigma(q)-\sigma(p))=0$ implies $\alpha_{j} \sigma_{j}(q)-\sigma_{j}(p)=0, j=1, \ldots, r+s$, and thus $\alpha_{j}=\sigma_{j}(p / q), j=1, \ldots, r+s$ and therefore $\alpha \in \sigma(K)$, which is in contradiction with hypothesis. Thus the $\rho_{i}(a), i=1, \ldots, t$, are different each others.

Consider the set $G=\left\{U\left(\rho_{i}(a), \mu / 2\right) \mid i=1,2, \ldots, t, \forall a \in A\right\} . G$ cannot be a packing of \mathbb{R}^{n} (for packing definition, see for instance Lekkerkerker [2] p.169) because

$$
\begin{aligned}
t v(U(o, \mu / 2))> & \left\{(1-\varepsilon) 2^{r} \pi^{s} n^{n} m /(n!\sqrt{D})\right\} . \\
& \left\{2^{r}(\pi / 2)^{s} n^{n}(1+2 \varepsilon)\left(n!/ n^{n}\right)^{2}(4 / \pi)^{2 s} D m^{-1} /\left(2^{n} 2^{n} n!\right)\right\} \\
t v(U(o, \mu / 2))> & (1-\varepsilon)(1+2 \varepsilon) 2^{-s} \sqrt{D}>v(D(o)) .
\end{aligned}
$$

Therefore, for m sufficiently large, there exist $\rho_{i}(a)$ and $\rho_{i^{\prime}}(b)$ with

$$
\begin{align*}
& \rho_{i}(a)=\alpha \sigma\left(q_{i}\right)-\sigma\left(p_{i}(a)\right) \tag{1}\\
& \rho_{i^{\prime}}(b)=\alpha \sigma\left(q_{i^{\prime}}\right)-\sigma\left(p_{i^{\prime}}(b)\right) \tag{2}
\end{align*}
$$

such that $U\left(\rho_{i}(a), \mu / 2\right) \cap U\left(\rho_{i^{\prime}}(b), \mu / 2\right) \neq \emptyset$.
Then $d\left(\rho_{i}(a)-\rho_{i^{\prime}}(b)\right)<n \mu$ from the definition of the convex set $U(\rho(a), \mu / 2)$.
Let $p=p_{i}(a)-p_{i^{\prime}}(b), p \in A$ and $q=q_{i}-q_{i^{\prime}}, q \in A$. Then, from the value of μ, we deduce

$$
d(\alpha \sigma(q)-\sigma(p))<n \mu=\left(n(1+2 \varepsilon)^{1 / n} \cdot B^{2 / n} / 2\right) m^{-1 / n} .
$$

Consider the sequence of values of ε defined by $\varepsilon_{1}=1, \varepsilon_{2}=1 / 2, \ldots, \varepsilon_{k}=$ $1 / k, \ldots$ Therefore, for m given, for any ε_{k} there exist $p\left(\varepsilon_{k}\right), q\left(\varepsilon_{k}\right) \in A$ such that

$$
d\left(\alpha \sigma\left(q\left(\varepsilon_{k}\right)\right)-\sigma\left(p\left(\varepsilon_{k}\right)\right)\right)<\left(n B^{2 / n} / 2\right) \cdot m^{-1 / n} \cdot\left(1+2 \varepsilon_{k}\right)^{1 / n} .
$$

From $\sigma\left(q\left(\varepsilon_{k}\right)\right) \in 2 E$, we deduce that $d\left(\sigma\left(q\left(\varepsilon_{k}\right)\right)\right)$ is bounded above independently of ε_{k}. From inequality ($\left.2^{\prime \prime}\right)$, we then deduce that $d\left(\sigma\left(p\left(\varepsilon_{k}\right)\right)\right.$ is also bounded above independently of ε_{k}. Like $\sigma(A)$ is a lattice, it is possible to take out an infinite subsequence $k_{1}, k_{2}, \ldots, k_{j}$ such that $p\left(\varepsilon_{k_{1}}\right)=p\left(\varepsilon_{k_{2}}\right)=\cdots=$ $p\left(\varepsilon_{k_{j}}\right)=p$ and $q\left(\varepsilon_{k_{1}}\right)=q\left(\varepsilon_{k_{2}}\right)=\cdots=q\left(\varepsilon_{k_{j}}\right)=q$ and then

$$
\begin{equation*}
d(\alpha \sigma(q)-\sigma(p)) \leq\left(n B^{2 / n} / 2\right) m^{-1 / n} . \tag{3}
\end{equation*}
$$

From $\sigma\left(q_{i}\right) \in E$ in (1), we have $d\left(\sigma\left(q_{i}\right)\right)<n m^{1 / n}$, From $\sigma\left(q_{i^{\prime}}\right) \in E$ in (2), we have $d\left(\sigma\left(q_{i^{\prime}}\right)\right)<n m^{1 / n}$, and thus $d(\sigma(q))<2 n m^{1 / n}$ or $m^{-1 / n}<2 n / d(\sigma(q))$.

We then have from (3)

$$
\begin{align*}
& d(\alpha \sigma(q)-\sigma(p))<\left(n B^{2 / n} / 2\right)(2 n / d(\sigma(q))) \\
& d(\alpha \sigma(q)-\sigma(p))<n^{2} B^{2 / n} / d(\sigma(q)) .
\end{align*}
$$

2) We shall now prove that there are infinitely many different $\beta=p / q$ with

$$
\begin{equation*}
d(\alpha \sigma(q)-\sigma(p))<n^{2} B^{2 / n} / d(\sigma(q)) . \tag{4}
\end{equation*}
$$

Let $m_{1}, m_{2} \in \mathbb{R}_{+}, m_{1}$ given, $m_{1}<m_{2}$ with $m_{2} \rightarrow+\infty$. We have $m_{2}>m_{1}$ and $\mu_{1}>\mu_{2}$ with the meaning of m and μ above.
From (3^{\prime}) inequality, we have

$$
\begin{align*}
& d\left(\alpha \sigma\left(q_{1}\right)-\sigma\left(p_{1}\right)\right)<n^{2} B^{2 / n} m_{1}^{-1 / n}, \tag{5}\\
& d\left(\alpha \sigma\left(q_{2}\right)-\sigma\left(p_{2}\right)\right)<n^{2} B^{2 / n} m_{2}^{-1 / n}, \tag{6}
\end{align*}
$$

If $\beta_{2}=\beta_{1}$ then $p_{2} / q_{2}=p_{1} / q_{1}$ and $\sigma_{j}\left(p_{2} / q_{2}\right)=\sigma_{j}\left(p_{1} / q_{1}\right), j=1, \ldots, r+s$. $\alpha_{j} \sigma_{j}\left(q_{2}\right)-\sigma_{j}\left(p_{2}\right)=\sigma_{j}\left(q_{2}\right)\left(\alpha_{j}-\sigma_{j}\left(p_{1} / q_{1}\right)\right)$ and thus $N\left(\alpha \sigma\left(q_{2}\right)-\sigma\left(p_{2}\right)\right)=$ $N_{K / \mathbf{Q}}\left(q_{2}\right) N\left(\alpha-\sigma\left(p_{1} / q_{1}\right)\right), N\left(\alpha \sigma\left(q_{2}\right)-\sigma\left(p_{2}\right)\right) \geq N\left(\alpha-\sigma\left(p_{1} / q_{1}\right)\right)$. From the geometric mean inequality, $d\left(\alpha \sigma\left(q_{2}\right)-\sigma\left(p_{2}\right)\right) \geq n N\left(\alpha-\sigma\left(p_{1} / q_{1}\right)\right)^{1 / n}$ and then $\mu_{2}>N\left(\alpha-\sigma\left(p_{1} / q_{1}\right)\right)^{1 / n}$, which is possible only for m_{2} bounded above. Then, for any $\beta_{1}=p_{1} / q_{1}$ given which verify (5), there are finitely many couples (p_{2}, q_{2}) such that $\beta_{2}=p_{2} / q_{2}=p_{1} / q_{1}$ and such that (2) is verified. Relation (4) is
verified by infinitely many couples (p, q), because in (3) $d(\alpha \sigma(q)-\sigma(p))$ can be made arbitrary small for m sufficiently large. Therefore there are infinitely many different $\beta=p / q$ such that (4) is verified. 3) We shall prove that there are finitely many different $\beta=p / q$ for one value of q given :
Let $\beta_{1}=p_{1} / q$ and $\beta_{2}=p_{2} / q$. If $q_{1}=q_{2}=q$ then

$$
d\left(\alpha \sigma(q)-\sigma\left(p_{1}\right)\right)<n^{2} B^{2 / n} / d(\sigma(q)) \text { and } d\left(\alpha \sigma(q)-\sigma\left(p_{2}\right)\right)<n^{2} B^{2 / n} / d(\sigma(q))
$$

Then, we deduce $d\left(\sigma\left(p_{1}-p_{2}\right)\right)<2 n^{2} B^{2 / n} / d(\sigma(q))$, which is possible only, for p_{1} given, for a finite number of p_{2}.
4) From 2) and 3), there are infinitely many different q, thus with arbitrary large $d(\sigma(q))$ such that

$$
d(\alpha \sigma(q)-\sigma(p))<\left(n^{2} B^{2 / n}\right) / d(\sigma(q)), \quad \text { Q.E.D. }
$$

Remark: If α is such that $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{r+s}$, then an immediate consequence of the Dirichlet approximation theorem is that there are infinitely many $p / q, p, q \in \mathbb{Z} \subset A$ such that $d(\alpha \sigma(q)-\sigma(p))<n / q=n^{2} / d(\sigma(q))<$ $\left(n^{2} B^{2 / n}\right) / d(\sigma(q))$: in that particular case, the theorem 1 is an immediate consequence of Dirichlet theorem.

Corollary 2 : Let K be a number field of degree n, signature (r, s) and absolute value of discriminant D. Let B be the Minkowski bound of K $\left(B=(4 / \pi)^{s}\left(n!/ n^{n}\right) / \sqrt{D}\right)$. Let $\alpha \in \mathbb{R}^{r} \times \mathbb{C}^{s}, \alpha_{j} \notin \sigma_{j}(K), j=1, \ldots, r+s$. Then there are infinitely many $\beta=p / q, p, q \in A$ such that

$$
0<N(\alpha-\sigma(p / q))<\left(B / N_{K / \mathbf{Q}}(q)\right)^{2} .
$$

Proof: From geometric mean inequality, we deduce from the theorem 1

$$
n^{n} N(\alpha \sigma(q)-\sigma(p))<n^{2 n} B^{2} / d(\sigma(q))^{n}
$$

From geometric mean inequality $n^{n} N(\sigma(q))<d(\sigma(q))^{n}$, and then

$$
N(\alpha-\sigma(p / q))<(B / N(\sigma(q)))^{2}=\left(B / N_{K / \mathbb{Q}}(q)\right)^{2}
$$

From $\alpha_{j} \notin \sigma_{j}(K)$ we deduce $\left|\alpha_{j} \sigma_{j}(q)-\sigma_{j}(p)\right|>0, j=1, \ldots, r+s$, and then

$$
N(\alpha-\sigma(p / q))>0, \quad \text { Q.E.D. }
$$

Corollary 3: Let K be a number field of degree n, signature (r, s) and absolute value of discriminant D. Let A be the ring of integers of K. For $x \in \mathbb{R}^{r} \times \mathbb{C}^{s}$, let $d_{2}(x)$ be the distance function defined by

$$
d_{2}(x)=\left(\left|x_{1}\right|^{2}+\cdots+\left|x_{r}\right|^{2}+2\left|x_{r+1}\right|^{2}+\cdots+2\left|x_{r+s}\right|^{2}\right)^{1 / 2} .
$$

(i) then, for every $m \in \mathbf{R}, m>0$ and every $\alpha \in \mathbb{R}^{r} \times \mathbb{C}^{s}-\sigma(K)$, there exist infinitely many different p / q with $p, q \in A$ such that

$$
0<d_{2}(\alpha \sigma(q)-\sigma(p))<n\left\{\Gamma(1+n / 2)(4 /(\pi n))^{n / 2} \sqrt{D}\right\}^{2 / n} / d_{2}(\sigma(q))
$$

with $d_{2}(\sigma(q))>m$.
(ii) then, for $\alpha \in \mathbb{R}^{r} \times \mathbb{C}^{s}, \alpha_{j} \notin \sigma_{j}(K), j=1, \ldots, r+s$, there exist infinitely many $\beta=p / q$ where $p, q \in A$ such that :

$$
0<N(\alpha-\sigma(p / q))<\left\{\Gamma(1+n / 2)(4 /(\pi n))^{n / 2} \sqrt{D} / N_{K / \mathbf{Q}}(q)\right\}^{2} .
$$

Proof: it is exactly of the same nature than the proofs of theorem 1 and corollary 2 with function $d_{2}(x)$ instead of function $d(x)$.

Some generalizations

It is possible to study some generalizations of preceding results : we mention some obtained generalizations or problems to solve.

1) In the corollaries 2 and 3 , it would be possible to search for a proof that not only $d(\sigma(q))$, but also $N_{K / \mathbf{Q}}(q)$, can be choosen arbitrary large.
2) A "Roth type" theorem could have one of the formulations :
(i) Let $\varepsilon \in \mathbf{R}, \varepsilon>0$, for $\alpha \in \mathbb{R}^{r} \times \mathbf{C}^{s}-\sigma(K), \alpha_{j}, j=1, \ldots, r+s$ algebraic, then there would be only finitely many $\beta=p / q, p, q \in A$ such that $d(\alpha \sigma(q)-\sigma(p))<1 / d(\sigma(q))^{1+\varepsilon}$.
(ii) if the assertion 1) is true (arbitrary large $N_{K / \mathbf{Q}}(q)$), then for $\varepsilon \in \mathbb{R}_{+}$, for $\alpha \in \mathbb{R}^{r} \times \mathbb{C}^{s}, \alpha_{j} \notin \sigma_{j}(K) j=1, \ldots, r+s, \alpha_{j}$ algebraic $j=1, \ldots, r+s$, there would be only finitely many norms $N_{K / \mathbb{Q}}(q)$ such that

$$
0<N(\alpha-\sigma(p / q))<1 / N_{K / \mathbf{Q}}(q)^{2+\varepsilon} .
$$

Compare to Mahler [4] result (appendix C) : let $\alpha \in \mathbb{C}^{n}$, let $\beta \in K$ and $H_{K}(\beta)$ the height of β as previously defined.
Let $f(\beta)=\prod_{j=1}^{n} \min \left(1,\left|\alpha_{j}-\sigma_{j}(\beta)\right|\right)$.
Let $\delta \in \mathbf{R}, \delta>0$. There are only finitely many β in K with

$$
f(\beta)<H_{K}(\beta)^{-2-\delta} .
$$

3) Let $\alpha \in \mathbf{R}^{r} \times \mathbb{C}^{s}-\sigma(K)$. It is always possible to find $q_{1} \in A$ such that

$$
d\left(\alpha \sigma\left(q_{1}\right)-\sigma\left(p_{1}\right)\right)<n^{2} B^{2 / n} / d\left(\sigma\left(q_{1}\right)\right)
$$

and such that for all $q^{\prime} \neq q_{1}, q^{\prime} \in A$ with $d\left(\alpha \sigma\left(q^{\prime}\right)-\sigma\left(p^{\prime}\right)\right)<$ $n^{2} B^{2 / n} / d\left(\sigma\left(q^{\prime}\right)\right)$ then $d\left(\sigma\left(q^{\prime}\right)\right)>d\left(\sigma\left(q_{1}\right)\right): \sigma(A)$ is a lattice, therefore
$d\left(\sigma\left(q_{1}\right)\right)=\min \left\{d(\sigma(q)) \mid q \in A, \exists p, d(\alpha \sigma(q)-\sigma(p))<n^{2} B^{2 / n} / d(\sigma(q))\right\}$
exists. It is always possible to find in the same way $q_{2} \in A$ such that

$$
\begin{gathered}
d\left(\alpha \sigma\left(q_{2}\right)-\sigma\left(p_{2}\right)\right)<d\left(\alpha \sigma\left(q_{1}\right)-\sigma\left(p_{1}\right)\right) \text { with } \\
d\left(\sigma\left(q_{2}\right)\right)=\min \left\{d\left(\sigma\left(q^{\prime}\right)\right) \mid d\left(\alpha \sigma\left(q^{\prime}\right)-\sigma\left(p^{\prime}\right)\right)<d\left(\alpha \sigma\left(q_{1}\right)-\sigma\left(p_{1}\right)\right)\right\} .
\end{gathered}
$$

It is then possible to consider $\left(\sigma\left(p_{1}\right), \sigma\left(q_{1}\right)\right), \ldots,\left(\sigma\left(p_{i}\right), \sigma\left(q_{i}\right)\right), \ldots$ as a sequence of best approximations of $\alpha \in \mathbf{R}^{r} \times \mathbf{C}^{s}-\sigma(K)$ by elements of $\sigma(K)$, generalizing the concept of sequences of best approximations of elements $\alpha \in \mathbf{R}-\mathbb{Q}$ by elements of \mathbb{Q}. This concept is studied in [10].
4) It is possible to generalize theorem 1 and corollaries 2 and 3 to simultaneous approximaticn. For instance, let $\left(\alpha^{1}, \ldots, \alpha^{\ell}\right) \in\left(\mathbf{R}^{r} \times \mathbf{C}^{s}\right)^{\ell}-\sigma(K)^{\ell}$. Then, there exist infinitely many ℓ-tuples $\left(q_{1}, \ldots, q_{\ell}\right) \in A^{\ell}$ and $p \in A$ such that

$$
0<d\left(\alpha^{1} \sigma\left(q_{1}\right)+\cdots+\alpha^{\ell} \sigma\left(q_{\ell}\right)-\sigma(p)\right)<n^{\ell+1} B^{\ell+1} / d\left(\sigma\left(q_{m}\right)\right)^{\ell}
$$

where $d\left(\sigma\left(q_{m}\right)\right)=\max _{i=1, \ldots, \ell}\left(d\left(\sigma\left(q_{i}\right)\right)\right)$.

REFERENCES

[1] A. Baker. Transcendental number theory, Cambridge Univ. Press, (1979).
[2] C.G. Lekkerkerker. Geometry of Numbers, North Holland, (1969).
[3] K.F. Roth. Rational approximation to rational numbers, Mathematica 2 (1955), corrigendum, Ibid (1968).
[4] K. Mahler. Lectures on diophantine approximation, Notre Dame Univ., (1961).
[5] P. Samuel. Théorie Algébrique des Nombres, Herman, (1971).
[6] W.M. Schmidt. Approximation to algebraic numbers, Enseignement Math. 17 (1971), 183-253.
[7] W.M. Schmidt. Simultaneous approximation to algebraic numbers by elements in a number field, Monatsh. Math. 79 (1975), 55-66.
[8] W.M. Schmidt. Diophantine approximation, Lecture notes in Math. 785, Springer Verlag, (1980).
[9] K.B. Stolarsky. Algebraic numbers and diophantine approximation, Marcel Dekker, New-York, (1974).
[10] R. QuÊme. A generalization of best approximations method to algebraic number fields, draft manuscript, 11/89.

Roland Quême
32 Hameau de la Caravelle Port Sud
91650 Breuillet

