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ELLIPTIC CURVES, 

PRIMALITY PROVING 

AND SOME TITANIC PRIMES 

Abstract 

We describe how to generate large primes using the primality proving algorithm of Atkin. 

Figure 1: The Titanic*. 

1. Introduction. During the last ten years, primality testing evolved at great speed. Motivated 
by the RSA cryptosystem [3], the first deterministic primality proving algorithm was designed by 
Adleman, Pomerance and Rumely [2] and made practical by Cohen, H. W. Lenstra and A. K. Lenstra 
(see [9, 10] and more recently [5]). It was then proved that the time needed to test an arbitrary integer 
N for primality is 0((log A f ) c ' o g I o g l ° s W ) for some positive constant c > 0. When implemented on a 
huge computer, the algorithm was able to test 200 digit numbers in about 10 minutes of CPU time. 

A few years ago, Goldwasser and Kilian [11], used the theory of elliptic curves over finite fields 
to give the first primality proving algorithm whose running time is polynomial in log N (assuming a 
plausible conjecture in number theory). Atkin [4] used the theory of complex multiplication to give 
a practical version of this algorithm. 

"Taken from Titanic, Destination disaster, The Legends and the Reality by J. P. Eaton and C. A. Haas, W. \V. 
Norton and Company, New York 1987. 

S.M.F. 
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The aim of this paper is to present some results the author has obtained using his own imple
mentation of this algorithm in the search for large primes. 

2. Elliptic curves. Let K be a field of characteristic prime to 6. An elliptic curve E over K is a 
non singular algebraic projective curve of genus 1. It can be shown [7, 23] that E is isomorphic to a 
curve with equation: 

y2z = x 3 + axz2 -f 6z3, (i) 

where a and 6 are in K. The discriminant of E is A = — 16(4<z3 + 2762) and the invariant is 
Q Q a3  

3 4a3 + 27&2* 

We write E(K) for the set of points with coordinates (x : y : z) which satisfy (1) with 2 = 1, 
together with the point at infinity: OE = (0:1:0). We will use the well-known tangent-and-chord 
addition law on a cubic [13] over Z/7VZ (see [17] for a justification). 

Figure 2: An elliptic curve over R. 

In order to add two points M\ = (xuyi) and M2 = (^2,2/2) on E resulting in M3 = (x3,t/3), the 

eauations are 
£3 = A2 — X\ — Xi 
2/3 = A(xi - x3) - 2/1 

where 

A = 
(2/2 - yi){x2 ~ x\) 1 if x2 ^ zi 

(3x2 + a)(2y1)"1 otherwise. 
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3. Primality testing. Let us recall one of the converses of Fermat's theorem (see for example [6]). 

Theorem 1 Let a be such that gcd(a, N) = 1, q a prime divisor of N — 1. / / 

a""1 = 1 mod N andgcd^- 1)/* - 1,7V) = 1 

then each prime divisor p of N satisfies: p = 1 mod q. 

Corollary 1 Under the conditions of Theorem 1, if q > y/N then N is prime. 

A similar theorem can be stated for elliptic curves. 

Theorem 2 ([11, 16]) Let N be an integer greater than 1 and prime to 6. Let E be an elliptic 

curve over Z/NZ, m and s two integers such that s\m. Suppose we have found a point P on E that 

satisfies mP = OE, and that for each prime factor q of s, we have verified that ̂ P =̂  OE- Then if 

p is a prime divisor of N, #E(Z/pZ) = 0 mod s. 

Corollary 2 Under the conditions of Theorem 2, if s > (\/~N + l ) 2 , then N is prime. 

4. Atkin's algorithm. In order to use the preceding theorem, we need to compute the number 

of points m. This process is far from trivial in general (see [22]). From a practical point of view, 

it is desirable to use deep properties of elliptic curves over finite fields. This involves the theory 

of complex multiplication and class fields and requires a lot of theory [18]. We can summarize the 

principal properties: 

Theorem 3 Let p be a rational prime number that splits as the product of two principal ideals in K 

(i.e. (p) splits completely in the ring class field of K): p = mr' with TT an integer of K. Then there 

exists an elliptic curve E defined over Z/pZhaving complex multiplication by the ring of integers of 

K, whose cardinality is m = NK(7T — 1) = (7r — l)(7r/— 1) = p+1— t with \t\ < 2y/p (Hasse's Theorem) 

and whose invariant is a root of a fixed polynomial HD(X) (depending only upon D) modulo p. 

The computation of the polynomials HD is dealt with in [18, 19] (see also [14, 15]). 

We now explain how the preceding theorems are used in a factor and conquer algorithm similai 

to the DOWNRUN process of [24]. The first phase of the algorithm consists in finding a sequence 

NQ = N > N\ > - • - > Nk of probable primes such that: Ni+\ prime AT, prime. The second then 

proves that each number is prime, starting from Nk. 
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Procedure SearchN 

1. i := 0; N0 := TV; 

2. find a fundamental discriminant — D such that (TV,-) splits as the product of two principal ideals 

in Q(V=0); 

3. for each solution of (N{) = (7r)(7r'), find all factors of mn = (n — l)(ir' — 1) less than a given 
bound B and let NT be the corresponding cofactor; 

4. if one of the N* is a probable prime then set Ni+i := Nn, store {Ni, D, 7r, ra}, i := i + 1, and 
go to step 2 else go to step 3. 

5. end. 

The second phase consists in proving that the numbers 7Vt are indeed primes: For each i, find a 
curve E whose invariant is a root of Hp^X) modulo p and check the condition of theorem (2). For 
technical details, we refer to [18]. 

5. Implementation and some timings. I have implemented Atkin's algorithm on a SUN 3/60 
(12 Mo) using the BigNum package described in [12]. For a comparison of my arithmetic with the 
one used by Cohen and Lenstra, see [20]. 

We list in Table 1 the time needed to test a number of d words of 32 bits with my program, for 
d = 2(2)20. Time are in seconds. 

d min max mean st. dev. d min max mean st. dev. 

2 4.7 15.7 8.8 2.6 12 485.7 1278.7 746.4 227.3 

4 14.6 40.5 25.5 7.1 14 700.5 1413.0 1037.3 153.2 

6 46.8 126.6 85.9 22.2 16 1106.6 3577.1 1909.6 668.0 
8 102.4 266.7 159.1 43.8 18 1578.7 5164.7 2858.4 802.4 

10 191.2 609.7 357.5 97.0 20 3233.8 9025.3 5252.6 1483.0 

Table 1: Time for testing a d word number for primality. 

6. Titanic primes. Following Yates [25], a prime number with more than 1000 digits is called a 
Titanic prime (see also [21]). Let us explain how the author found some Titanic primes with Atkin's 
algorithm. 
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Let D be a squarefree integer congruent to 1 or 2 mod 4. Let a0 = a + by/—D and ct\ = c+e\/—D 

be two integers of K = Q(y/—D) (a, 6, c, e are in Z). Let A; be a positive integer. We define an Elliptic 

Mersenne Number to be a number belonging to the following sequence of integers: 

ME{D, a, 6, c, e) = NK(aoc£ + 1). 

These numbers were first introduced by D. V. and G. V. Chudnovsky in [8]. They can be seen as 

the analogous of the Mersenne primes when considering the N + 1 primality testing algorithm. As a 

matter of fact, Atkin's algorithm works fast for N as soon as we can find a D such that N = TVA'(TT) 

in K and m = NK(K — 1) is smooth. Here, we see that ME(D, a, 6, c, e) is trivially written as TTTT' in 

K with 7r = ao<̂ i + 1 and moreover, 

NK(« - 1) = NK(a0aî) = NK(ao)NK(ai)
k, 

which is smooth, provided the at's are of small norm. 

Using some idle time from a network of Sun workstations, the author found that the numbers 

given in Table 2 are primes: These are the first Titanic Elliptic Mersenne Primes. 

7. Conclusions. We have seen that Atkin's algorithm is a very powerful algorithm that can test 

small numbers for primality in a very short time and also find some huge primes in a reasonable 

amount of time. 

D a b c e k # digits D a b c e k # digits 

1 -1 -1 2 1 1631 1141 2 0 -1 1 1 3833 1830 

1 1 1 2 1 1636 1144 1 -1 -1 2 1 2786 1948 

1 -1 1 2 1 1812 1267 2 0 -1 1 1 4743 2264 

1 1 -1 3 2 1179 1314 1 1 -1 1 2 1 4414 3086 

1 -1 1 2 1 2062 1442 

Table 2: Some Elliptic Mersenne Primes. 
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