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Some remarks on equivariant bundles and classifying spaces 
by J. P. May 

Let 17 be a normal subgroup of a topological group V with 
quotient group G; subgroups are understood to be closed. A principal 
(TT;D-bundle is the projection to orbits E -* E/TT of a TT-free T-space 
E. (Function spaces excepted, our T-spaces are to be of the homotopy 
type of r-CW complexes, and similarly for other groups.) For a G-space 
X, let BG(TT;D(X) denote the set of equivalence classes of principal 
(TTiD-bundles over X. For a space X, let B(TT)(X) denote the set of 
equivalence classes of principal TT-bundles over X. Let XQ denote the 
Borel construction EG XQ X associated to a G-space X. We write 

BG(TT;r)(EG x X) = B(TT;r)(XG) 
to emphasize that this set depends only on XQ as a space over BG. 
Equivalently, B(TT;D(XG) is the set of equivalence classes of free 
T-spaces P with a given equivalence P/TT = EG x X of G-bundles over 
P/r = XG- We shall see that the calculation of this set reduces to a 
nonequivariant lifting problem, and we think of it as essentially a 
problem in ordinary nonequivariant bundle theory. In fact, in the 
classical case T = G x TT, passage from P to P/G specifies a natural 
bijection 

8: £(TT;G x TT)(XG) -> B(TT)(XG). 
The projection EG x X —> X induces a natural map 

*: BG(n;D(X) -* B(TT;D(XG). 

S.M.F. 
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In the classical case, $ = 0$ is just the Borel construction on bundles. 
One of our goals is to determine how near the passage \P from 
equivariant bundle theory to ordinary bundle theory is to 
being an isomorphism. For example, we shall obtain the following result, 
which is essentially just an exercise in covering space theory. 

THEOREM 1. // r is discrete, then v SG(TT;D(X) -> B(U;TXXG) is a 
bijection for any G-space X. If TT (but not necessarily G) is discrete, 
then $: SG(TT;G X TT)(X) -> B(TTXXG) is a bijection for any G-space X. 

We shall see that the following deeper result is a consequence 
of the Sullivan conjecture. The phrase "(strong) mod p equivalence" will 
be explained in due course. 

THEOREM 2. Let G be an extension of a torus by a finite p-group. If 
r is a compact Lie group, then the natural transformation 
w SG(TT;D(X) —* S(TT;D(XQ) is represented by a mod p equivalence of 
classifying G-spaces. Therefore, if TT is a compact Lie group, then 
$: &G(TT;G * TT)(X) —> S(TT)(XQ) is represented by a mod p equivalence 
of classifying G-spaces. If G is a finite p-group, then the 
transformations !? and $ are represented by strong mod p 
equivalences of classifying G-spaces. 

Restricting TT instead of G, we obtain the following theorem, 
which is the main result of [7]. 

THEOREM 3. // G and TT are compact Lie groups with TT Abelian, 
then $: SG(TT;G X TT)(X) -* BCUXXQ) is a bijection for any G-space X. 
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In a preprint version of this paper, the following assertion was 
claimed as a theorem. 

ASSERTION 4. Under the hypotheses of theorem 3, there is also a 
natural bijection 

BG(TT;G x TT)(X) = B(TT)(X/G) * Nat(n0(X), Rn). 

The fact that this assertion is false was discovered by John Wicks, 
a student at Chicago, who showed that, with TT = S1 and G = Z2, it 
implies an incorrect calculation of characteristic classes. Since the 
nature of the assertion and the mistake in its proof may be of interest, 
we shall discuss these matters in an Appendix. 

The three theorems above are direct interpretations of results 
about equivariant classifying spaces, namely Theorems 5, 9, and 10 
below. There is a universal example E(TT;D -* B(TT;D of a principal 
(TT;D-bundle. Up to T-homotopy type, the T-space E(TT;D is 
characterized by the requirement that, for Q C T, the fixed point 
space E(TT;D^ be contractible if Q D TT = e and empty otherwise. 

By universality, we have a natural bijection 
(*) BG(TT;r)(X) a [X, B(TT;r)]G, 
where homotopy classes of unbased G-maps are understood. In 
particular, we have natural bijections 

BG(TT;D(EG x X) s [EG x X, B(TT;r)]G = [X, Map(EG, B(TT;r))]G. 
Let p: XG —» BG be the evident bundle and let q: T —> G be the 
quotient homomorphism. Let [XG, BT]/BG be the set of homotopy 
classes of maps f: XG —>BT such that Bqof = p and define 
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Sec(EG, BP) to be the G-space of maps cp: EG —» Br such that 
Bqocp = p: EG —• BG. A central idea in this paper is the modelling of 
classifying spaces by such spaces of sections. We introduce this idea by 
observing that the previous bijections are equivalent to 
(*) B(TT;r)(XG) = [XG, BH/BG = [X, Sec(EG, BD]G. 

This should be clear from the equivalent bundle theoretic 
descriptions of the left sides already given, but we want to see it directly 
on the classifying space level. Since Er is TT-free, the universal 
property of E(TT;D gives a T-map v: ET —* E(TT;D, unique up to 
T-homotopy. The T-map (Eq,-u): ET —» EG x E(TT;D is clearly a 
T-homotopy equivalence, where T acts through q on EG, and it is a 
fiber r-homotopy equivalence provided we choose a model for ET such 
that Eq: Er —> EG is a T-fibration. Passing to orbits over Y by first 
passing to orbits over TT and then over G, we obtain a homotopy 
equivalence 

Br EG xG B(TT;D = B(TT;DG 

over BG. (Lemma 11 at the end will generalize this equivalence.) We 
have an evident G-homeomorphism Sec(EG, XQ) = Map(EG, X) for any 
G-space X, and there results a G-homotopy equivalence 

Sec(EG, BD ^ Sec(EG, B(TT;DG) = Map(EG, B(TT;D). 

Via the projection EG —» pt and use of a chosen homotopy inverse 
to E1 we obtain a G-map 

oc: B(TT;D Sec(EG, BD 
which induces the transformation * under the isomorphisms (*) and 
(*0. In order to prove Theorem 1, we model E(TT;D as a space of 
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sections and use this model to obtain an explicit description of oc. In the 
classical case r = G * TT, we agree to abbreviate 

EG(TT) = E(TT;G x n) and BG(TT) = B(TT;G x TT); 
here Br = BG x BTT and therefore Sec(EG, BD = Map(EG, BTT). 

THEOREM 5. Let r act through q: T —> G on EG and by conjugation 
on the space Sec(EG, ED of maps <p: EG -* Er such that Eq°<p = id. 
Then Sec(EG, ED satisfies the fixed point criteria characterizing 
E(TT;D, hence the orbit space Sec(EG, ED/TT is a model for B(TT;D. 
With this model, oc: B(TT;D -* Sec(EG, BD is the G-map induced by 
SecO'd, p), -where p: Er —> Br is the universal r-bundle. If r is 
discrete, then oc is a homeomorphism. If r = G * TT, then 
MapiEG, ETT) is a model for EG(TT), MapiEG, ETT)/TT is a model for BQTT, 

oc: B(TT;D -* MapiEG, BTT) is induced by p: ETT -* BTT, and oc is a 
homeomorphism if TT is discrete. 

When r is discrete, elementary covering space theory shows that 
any map cp: EG —> Br such that Bq«>cp = p lifts to a section cp: EG —> Er 
of Eq and that any two such lifts are in the same TT-orbit. The last 
homeomorphism is seen similarly, and Theorem 1 is an immediate 
consequence of these homeomorphisms. 

To prove Theorem 5, we need a kind of topological analog of the 
standard comparison of projective and acyclic resolutions. 

LEMMA 6. Let G be a topological group, let X be a free G-CW 
complex, and let Y be a nonequivariantly contractible G-space. Then 
the space MapG(X,Y) of G-maps X —> Y is contractible. 
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PROOF. If X = G x K for a space K, then MapG(X, Y) = Map(K, Y) 
and the conclusion is clear. Since MapG(?, Y) converts pushouts to 
pullbacks, G-cofibrations to fibrations, and colimits to limits, the 
conclusion follows in general by use of the cell structure on X. 

PROOF OF THEOREM 5. Recall that we have a fiber T-homotopy 
equivalence (Eq,tO: Er -* EG * E(TT;D over EG. Applying the functor 
Map(EG, ?) and restricting to the fiber over id £ Map(EG, EG), we 
obtain a r-homotopy equivalence 

Sec(EG, ED -» Map(EG, E(TT;D). 
Let Q C T. Since EG is TT-trivial and E(TT;D is TT-free, there are 
no Q-maps EG -* E(TT;D if Q n TT * e. If Q fl TT = e, then Q acts 
freely via q on EG while E(TT;D is Q-contractible since E(Q;D^ is 
contractible for all A C Q. Therefore MapQ(EG, E(TT;D) is contractible. 
The compatibility of Sec(id, p) with the earlier map oc is checked by 
an easy diagram chase. 

To prove Theorem 2, we must first obtain a nonequivariant 
description of the fixed point maps oĉ . At least if V is a Lie group, the 
fixed point structure of the G-space B(TT;D is given as follows [6, Thm 
10]. Let Nr*Q and ZpQ be the normalizer and centralizer of Q in T. 
If Q fl IT = e, then an easy check shows that TT n Nr-Q = TT n ZpQ; 
we agree to write TT̂  for this intersection. 

THEOREM 7. For H C G, B(TT;r)H = 11 BTT&, where the union runs 
over the TT-conjugacy classes of subgroups Q c T such that 
Q D TT = e and q(Q) = H; B(7T;nH is empty if th ere are no such 
subgroups Q. 
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LEMMA 8. For Q C T such that Q (1 TJ = e and q(Q) = H, define 
p.: H X TT& —> r by id(q(X), n) = Xrc and note that qop. = i°n±. The 
restriction of c*H to BTT^ is the adjoint of the classifying map 

B/UL: BH x BTT& = B(H xU^) -> BH 

PROOF. Let oc: EG x E(TT;D —> Er be a r-homotopy equivalence over 
EG inverse to (Eq,iO. Since the adjoint of oc is obtained from oc by 
passage to orbits and since BTT̂  = E (n ;D^ /n^ as a subspace of 
B(TT;D, it suffices to observe that the restriction of oc to the free 
contractible (H x TT^)-space EG x E(TT;D^ is |jt-equivariant: 

oc(yq(X), XTC) = oc(yq(ixA), XATT) = oc((y,x)ATr) = (cx(y,X»ATT 
for y 8 EG, x e E(TT;DQ, X e Q, and TT e TT̂ . 

Given this interpretation of oĉ , Theorem 2 follows directly from 
the application of the Sullivan conjecture to the study of maps between 
classifying spaces given by Dwyer and Zabrodsky [3] and Notbohm [10]. 
We say that a map f: X —» Y is a mod p equivalence if f induces an 
isomorphism on mod p homology. We say that f is a strong mod p 
equivalence if the following conditions hold. 
(i) f induces an isomorphism TUO(X) —> TTO(Y); 

(ii) f induces an isomorphism TTI(X,X) -* Tri(Y,f(x)) for any x e X; 

(iii) f induces an isomorphism H*(Xx,Zp) -* H*(Yf(x),Zp) for any 
x 8 X, where XX and Yf(x) are the universal covers of the 
components of X and Y containing x and f(x). 

We say that a G-map f: X —» Y is a (strong) mod p equivalence if 
fH: xH -» YH is a (strong) mod p equivalence for each H C G. The 
results of Dwyer and Zabrodsky and of Notbohm admit the following 
interpretation (their G and TT playing opposite roles from ours). 
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THEOREM 9. // r is a compact Lie group and G is an extension of a 
torus by a finite p-group, then the G-map oc: B(TJ;D —» Sec(EG, BD is 
a mod p equivalence. If G is a finite p-group, then oc is a strong mod 
p equivalence. 

When r = G x TT, Sec(BH, BD = Map(BH, BIT) and the second 
statement is Dwyer and Zabrodsky's [3, 1.1] while the first result is 
Notbohm's [10,1.1]. When G = Zp, the result is [3, 4.5]. The result for 
general extensions follows from the result for trivial extensions exactly 
as in the deduction of [3, 4.5] from [3, 4.4]. Incidentally, as observed 
by Notbohm [private communication], the components of oĉ  induce 
injections but not surjections on the fundamental groups of 
corresponding components when G is an extension of a non-trivial 
torus by a finite p-group. 

Of course, Theorem 2 is a restatement of Theorem 9. Some 
discussion of the significance of the represented form of the result is in 
order. For G-spaces Y, [9] constructs a functorial "fundamental 
groupoid G-space TTY" and a natural G-map %: Y —» TTY. For 
H C G, %H: YH -> (TTY)H induces a bijection on components and an 
isomorphism between the fundamental groups of corresponding 
components, while each component of (uY)H has trivial higher 
homotopy groups. For y e Y ,̂ let Yy be the homotopy fibre of % 
regarded as a based map with respect to the basepoints y and %(y). 
Then (Yy)H is the homotopy fibre of the restriction of XH to the 
component of Y*~* containing y. Clearly Yy is G-simply connected, in 
the sense that all of its fixed point spaces are simply connected. We can 
p-adically complete G-simply connected (or G-nilpotent) G-spaces and 
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characterize the completion in terms of the usual homological 
characterization of completion on H-fixed point spaces for all H [8]. If 
f: Y —* Z is a strong mod p equivalence, then the map Tif: TTY -> TTZ 
and the p-adic completions fp : (Yy)p —* (Zf(y))p for у e YB are all 
G-homotopy equivalences and so induce bijections on application of the 
functor [X,?]G-

The following result is the represented equivalent of Theorem 3 and 
was proven in [7]. (The maps studied in [7] were defined a bit 
differently, but an easy diagram chase gives the conclusion in the form 
stated.) Recall that a G-map f: Y -» Z is said to be a weak 
G-equivalence if each f̂ : Y^ —* Z^ is a weak equivalence and that 
f*: [X, Y]Q —* [X, Z]Q is then a bijection for any G-CW complex X. 

THEOREM 10. // 77 and Г are compact Lie groups with TT Abelian, 
then oc: BQCTT) Map(EG, BIT) is a weak G-equivalence. 

As a final remark, we give an equivariant generalization of the 
usual Borel construction model for the classifying space of an extension. 

LEMMA 11. Let Л с TT с Г, where Л and TT are normal subgroups 
of the topological group Г. Then, as (Г/ТТ)-spaces, 

В(ТТ;Г) ^ ЕСТТ/Л; Г/Л) * JT/A В(А;Г). 
PROOF. For Q c T , Q П TT = e if and only if both Q П A = e and 
Э П (ТТ/Л) = e, where Э is the image of Q in ТТ/Л. Therefore, as 
Г-spaces, 

E(TT;D s Е(ТТ/Л; Г/Л) * Е(Л;Г) 
by the characteristic behavior on fixed point sets. Now pass to 
TT-orbits by first passing to Л-orbits and then to (TT/A)-orbits. 
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APPENDIX 

Let G and TT be compact Lie groups. A TT-bundle over X/G 
may be regarded as a G-trivial (TT;G x TT)-bundle, and it determines a 
(TT;G x TT)-bundle over X by pullback. This gives a natural map 

C: B(TT)(X/G) — BG(H;G X n)(X). 
When TT is Abelian, the false proof of Assertion 4 to be described here 
would show that C is a naturally split injection. 

The complementary factor would be Nat(-iiQ(X), R^), which we 
proceed to define. Let O be the topological category of orbit 
G-spaces G/H and G-maps between them. Let hO be its homotopy 
category. For any n and any G-space X, there is an evident 
contravariant functor irn(X): hO —» Sets which sends G/H to irn(X^). 
There is also a contravariant functor R :̂ O —» Sets which sends G/H 
to the set of TT-conjugacy classes of Lie group homomorphisms H —» TT; 
R^ factors through hO since homotopic homomorphisms lie in the 
same TT-conjugacy class by the Montgomery-Zippin theorem [2, 38.1]. 
Let Nat(iTQ(X), R^) be the set of natural transformations TTQ(X) ->R 

A principal (TT;G x TT)-bundle over G/H determines and is 
determined by an element of Rn(G/H). A principal (TT;G x TT)-bundle 
over X determines a natural transformation TTQ(X) —• R^ by pulling 
the bundle back along G-maps G/H —» X which represent elements of 
TTQ(X^). This gives a natural map 

p: B(TT;G x n)(X) -» Nat(u0(X), Ru). 
When TT is Abelian, the false proof of Assertion 4 would show that p is 
a naturally split surjection. A left inverse X would construct a global 
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bundle over X from compatible bundles over the domains of the 
representative G-maps G/H —» X. Given X, a natural bijection 

B(TTXX/G) x Nat(TT0(X), Rn) - BG(TT;G X TT)(X) 

would be obtained by using the Abelian structure of TT to add bundles 
in the images of the transformations C and X. 

The following is the represented equivalent of Assertion 4. 

ASSERTION 12. There is a weak G-equivalence 
BTT x K(Rn,0) -> Map(EG, BIT), 

where G acts trivially on BTT. 

To explain this assertion, we must say a bit about diagrams of 
G-spaces and about Eilenberg-MacLane G-spaces K(TT,0). Define an 
0-space to be a continuous contravariant functor from 0 to the 
category of spaces; a map of 0-spaces is a natural transformation. A 
G-space X determines the 0-space $X specified by ($X)(G/H) = XH. 

Conversely, by Elmendorf [4, Thml], an O-space T determines a 
G-space *PT and an 0-map e: $$T —> T such that each component 
map e: (\PT)H —*T(G/H) is a homotopy equivalence. In particular, with 
H = e and T = $X, the G-map e: \£$X —* X is a weak G-equivalence. 
With the evident notion of homotopy in the category of O-spaces, a 
slight refinement of [3, Thm 2] gives an adjunction on the level of 
homotopy classes of maps 
U ) [X, *T]G s [*X, T]0 
when X has the homotopy type of a G-CW complex. 
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A space Y is homotopically discrete if each of its components is 
contractible, that is, if the discretization map 8: Y —> TCQY is a 
homotopy equivalence. A G-space Y is homotopically discrete if each 
Y*~* is homotopically discrete. These are the K(TT,0)'S referred to above, 
where n is a continuous functor from 0 to discrete spaces or, 
equivalently, a functor from the homotopy category hO to sets. Given 
such a functor TC, we can construct K(TC,0) by setting K(TC,0) = $TC; 
(-L) and the discreteness of TC then give 

[X, K(TC,0)]G = [$X, Trie = Nat(ir0(X), TC). 
Since we obviously have [X, BTTIQ S [X/G, BTT], it is now clear that 
Assertion 12 implies Assertion 4. 

For a G-space X, the discretization maps of fixed point spaces 
specify an O-map 8: $X —»TCQ(X), and application of $ therefore gives 
a natural G-map X = $ $ X —» K(TCQ(X),0). It seems reasonable to expect 
this map to admit a section, but it usually doesn't. To obtain a section, 
it would suffice to obtain a right inverse TCO(X) —» $X to 8, but there 
is usually no such natural choice of basepoints of components of fixed 
point spaces. This train of thought leads to a 

"PROOF OF ASSERTION 12". The intuition is that there should be such a 
section of 8 when X = Map(EG, BTT). With the standard functorial 
construction of EG, we have the two continuous covariant functors B 
and B' from 0 to spaces specified on objects by B(G/H) = EH/H and 
B'(G/H) = EG/H. We may identify $X with the contravariant functor 
Map(B', BTT). Therefore 
(A) Map(EG, BTT) s *$Map(EG, BTT) = *Map(B', BTT). 
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On the other hand, passage to classifying maps defines an O-map 
p: Ru -> Map(B, BTT). By [7, Prop. 4], 

B: Hom(G, n) -» [BG, BTT] 
is a bijection. Therefore iroMapCB, BTT) = Rn and we have a map 
(B) *p: KCR̂ O) -> *Map(B, Bn). 
It seems reasonable to expect there to be a weak G-equivalence 
(C) *Map(B, BTT) = $Map(B\ Bn). 
Given this, $p would transport under the equivalences (A) and (C) to 
give the desired section 

X: KCR̂ O) — Map(EG, BTT). 
Letting C BTT —* Map(EG, BTT) be induced by the projection EG —» pt 
and cp be the product on Map(EG, BTT) induced by the product on the 
topological Abelian group BTT, the composite 

cpo(c,x): BTT x K(Ru,0) -> Map(EG, BTT) 
would then be a weak G-equivalence (compare [7, p.173]). 

In fact, (C) fails. The obvious way to try to prove (C) would be to 
exploit the equivalences B(G/H) = EH/H -» EG/H = B'(G/H) induced by 
the inclusions EH —> EG. However, these equivalences fail to define a 
map B —» B" of O-spaces. The requisite naturality fails, as we see by 
taking H = e and observing that the map from the point Ee into EG 
cannot be a G-map. 

Assertion 12 would imply an incorrect calculation of the 
characteristic classes of principal (TT,G x TT)-bundles in Bredon 
cohomology. For a commutative ring k, a k-module valued coefficient 
system is a contravariant functor from hO to the category of 

251 



MAY 

k-modules. Write ExthO for the Ext functor in the resulting Abelian 
category of hO-k-modules. For a contravariant functor 
TT. hO —» Sets, let kic denote the hO-k-module obtained by letting 
krc(G/H) be the free k-module generated by TT(G/H). Let G and TT be 
compact Lie groups with TT Abelian and let M be an hO-k-module, 
where k is a commutative ring such that H*(BTT; k) is k-free. Then 
there is a universal coefficients spectral sequence converging from 
H*(BTT; k) ®k Ext^ptkR^, M) to HQ(BG(TT); M) [11]. Assertion 12 
would imply that E2 = Em in this spectral sequence, and this 
conclusion is usually false. 
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