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§1 Introduction. 

The theory of reductive dual pairs is important in the study of 
automorphic forms. This paper is an a t tempt to understand this theory in the 
language of L-groups. 

Let (G,G') be a reductive dual pair of subgroups of the symplectic group 
Sp(2n,IR). Let Mp(2n,R) be the metaplectic cover of Sp(2n,R), and let (G,G') be 
the inverse image of (G,G') in Mp(2n,R). Let co be the oscillator representation 
of Mp(2n,IR). Let TT(G) denote the set of equivalence classes of irreducible 
admissible representat ions of G. Taking quotients of the restriction of co to 
GxG' establishes a bijection between a subset of TT(G) and a subset of TT(G') 
[11]. We refer to this as the representation correspondence, and write 7t->7t\ It 
is of great interest to compute this correspondence explicitly; this is known 
only in a few cases (cf. for example [18], [1], [21]). We say an irreducible 
representation of G or G' occurs in the representation correspondence if it is 
contained in this subset, i.e. if it is a quotient of the metaplectic representation 
restricted to G or G'. 

Assume for the moment that co restricted to GxG' factors to GxG'; then 
the representation correspondence becomes a bijection between 
representat ions of G and of G\ Let LG and LG' denote the L-groups of G and G' 
respectively. It is natural to conjecture that there is a homomorphism 
Y:LG->LG' which "realizes" this correspondence via the principal of functoriality 
[19]. That is let WR be the Weil group of R, and let <!>(G) denote the set of 

equivalence classes of admissible homomorphisms of WR into LG ([20], [8]). 
Given <p€$(G), let TT(<p)cTT(G) denote the L-packet associated to <p. We use 
similar notation for G'. In [19] Langlands conjectured tha t if 7tcTT(<p) occurs in 
the representat ion correspondence, then the corresponding representation TT' 
of G' is contained in TT(Y°<p). This would compute the representation 
correspondence (up to L-packets). 

This conjecture is false in many known examples (unavailable at the 
time it was made) . Its validity would imply that if rr1 and TT2 occur in the 
representation correspondence and are contained in the same L-packet, then 
TT'J and 7t'2 are contained in the same L-packet. Even this weaker s ta tement is 
false: it may for example happen that TX} and 7T2 are tempered (even discrete 
series representat ions) , whereas Tt̂  is tempered and TT'2 is non- tempered. 
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A possible explanation for this phenomenon is that L-packets are not the 
correct notion here , bu t the larger packets whose existence was conjectured by 
Arthur [7]. These we call Arthur-packets . Thus let ¥ be an admissible 
homomorphism ^ W j ^ x S L ^ O - ^ G . Arthur conjectured that attached to ¥ is a 
finite set of irreducible representations 1\C¥) with properties similar to those 
for tempered L-packets. We sketch such a definition in §2. Then there is a 
natural analogue of the preceding conjecture with Wm replaced by 
WRxSL(2,C), and L-packets replaced by Arthur-packets . 

The main conjecture of this paper is a slight modification of this picture. 
We continue to assume that GO factors to GxG'. For each such irreducible pair 
we define Y:LG->LG' (after possibly exchanging G and G') and a fixed 
homomorphism T: SL(2,C)->LG'. Given ^ W ^ x S L ^ C H ^ G , we let 
xi/,(w,g)=(Yo^)(w,g)T(g) (weWR,geSL(2,€)). Conjecture A (4.3) says that if 
iXcTJiV) occurs in the representation correspondence, then TT 'eTK^'). Thus the 
conjecture would give a description of the representation pairing, up to 
Arthur-packets . It does not predict which it are in the domain of the 
representation correspondence. 

The fixed map T plays the role of the "tail" of [19] coming from the Weil-
group parameter of LG. If G and G' are roughly the same size then T is the 
identity map, and Conjecture A is closer to Langlands' original conjecture; see 
the discussion following 4.3. 

This conjecture is compatible with all evidence known (to this author) . 
Unfortunately the only cases in which we can prove the conjecture are those 
for which the representation correspondence is known a priori; hence this 
does not give any new explicit results of this form. This paper is intended as 
evidence for the conjectures, with the hope that a general direct proof can be 
found. 

A new explicit result which is included here (in §5) is a generalization of 
[1] to general groups. That is, we compute the pairing for certain discrete 
series in the stable range in terms of derived functor modules. 

We prove Conjecture A in the following cases. First of all we discuss the 
discrete series in the stable range just mentioned. If either member of the 
dual pair is compact the representation correspondence is known ([18], [10]). 
We use [2] which expresses this result in terms of derived functor modules. 
We also consider the case of (0(p,q),Sp(2m,lR)) with TT the trivial 
representation of 0(p,q) , which has been discussed in ([21], [17]). Finally we 
consider the case of (GL(m,R),GL(n,IR)) which is particularly simple and 
known completely ([21]); Conjecture A is true without qualification in this 
case. 

The first and third cases mentioned are in some sense opposite extremes. 
Thus if TT is a discrete series representation then TteTK^) with c)==1- 0n 
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the other hand the trivial representation TT of 0(p,q) is a unipotent 
representat ion, i.e. TT is contained in a unipotent Arthur-packet : ¥lc* = l 
(C*cwm) . The corresponding representation TT' of Sp(2m,IR) is also a unipotent 
representation. 

The conjecture only discusses representations TT which occur in Ar thur -
packets. This is a proper subset of TT(G), containing the tempered 
representat ions, which should be the set of representations of interest in the 
theory of automorphic forms for linear groups. In particular these 
representations are conjectured to be unitary. Together with Conjecture A this 
would imply that if TT is unitary and contained in an Ar thur-packet then TT' is 
unitary. This s ta tement is consistent with known (and expected) results. The 
conjecture does not make any prediction about which representations of G 
occur in the representation correspondence; it is not enough that TT is 
contained in an Arthur-packet . 

A definition of J\(W) has not appeared in the l i terature; in fact its final 
form has ye t to be determined. For the purposes of this paper a definition does 
exist, and is due to D. Vogan and D. Barbasch. We summarize this in §2. One of 
the notions which the definition of TTCY) requires is that of an E-group for a 
reductive group [6]. This is a generalization of an L-group and plays the role of 
the L-group in parametrizing representations of certain algebraic covering 
groups of G. 

In general G and G' are not algebraic groups, and in this case we make 
no a t tempt to include them in this scheme unless co factors to G and G'. One 
case in which oo does not factor to (G,G') and yet G and G' are algebraic is 
(G,G')=(U(p,q),U(r,s)). If r+s is odd, the group G is an algebraic group, and the 
representat ions of G occuring in the representation correspondence are 
genuine (they do not factor to U(p,q)). A similar s ta tement holds by symmetry 
for U(r,s). These representations are parametrized by maps of WR or 
WRxSL(2,C) into an E-group EG for G. Thus we state the conjecture with 
E-groups or L-groups (depending on pari ty) for G and G' in this case. In §3 we 
discuss E-groups for unitary groups. We also define an L-group and related 
notions for 0(p,q) , which is not standard because 0(p,q) is not the real points 
of a connected algebraic group. 

Suppose (G,G') and a representation Tt'cTKy') occuring in the 
representation correspondence are given. It may be the case that another 
representation a'eTK^') does not occur in the representation correspondence 
for this pair. One reason is that the L-group side does not distinguish between 
inner forms: it may be that a occurs for some dual pair (G2,G') where G2 is an 
inner form of G. Thus it is natural to collect inner forms of a given group 
together: consider an Arthur-packet to be a set of representat ions of any of 
these inner forms, and ask for a bijection between corresponding Ar thur -
packets of this type. This is the content of Conjecture B (4.5). Furthermore it 
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suggests a role for stable distributions and lifting from endoscopic groups. We 
discuss these mat ters briefly in §7. 

This paper was motivated in par t by the following example. Consider the 
dual pair (0(2),Sp(4,IR)). Let ix+ (resp. TT_, also known as 910) correspond to 
the trivial (resp. sign) representation of 0(2). Since the trivial and sign 
representation are in an Arthur-packet for 0(2) , TT+ and TT_ are contained in 
an Arthur-packet (this is known in this case). Thus the counterexample to the 
generalized Ramanujan conjecture constructed in [15] by exchanging 7t+ and 7t_ 
at the infinite place amounts to exchanging two representations in an Ar thur-
packet. Note that rr± are not contained in an L-packet: rr_ is tempered, whereas 
rt+ is non- tempered. 

Here is some notation we use. We let G be a reductive algebraic group 
defined over IR, and also use G to denote its real points. We write G(C) for the 
complex points. If G is notO(p,q) it will be (algebraically) connected, and we 
let LG be an L-group for G. If G is 0(p,q) LG is defined in §2. We fix a Cartan 
involution 8 with corresponding maximal compact subgroup K for G, and 
similarly for G'. Let (G,G') be a reductive dual pair (or dual pair for short) of 
subgroups of Sp(2n,IR). Fix an oscillator representation GO of Mp(2n,IR) (there 
are two, the other is the contragredient GO*). If (G,G') are not unitary groups, 
we assume GO factors to (G,G'). Suppose (G,G') = (U(p,q),U(r,s)). If GO factors to 
U(p,q) we let G=U(p,q). If GO does not factor we change notation and let 
G=U(p,qf, which is a subgroup of Mp(2n,R). We use similar notation for G'. 
Thus in general G is a subgroup of Sp(2n,R) (G^U(p,q)), and is a subgroup of 
Sp(2n,R) or Mp(2n,R) (G^U(p,q)). 

The organization of this paper is as follows. Section 2 discusses Ar thur-
packets. In §3 we discuss L-groups and E-groups explicitly for 0(p,q) and 
U(p,q). We define the maps Y and T in each case in §4, and state the main 
conjectures. In §5 we discuss the discrete series in the stable range for all 
groups (generalizing [1]). Some readers may be interested in this information 
independent of the other results of this paper; the presentation of this 
material was done with this in mind. In §6 we prove Conjectures A and B for 
some special cases. We conclude with some final remarks and conjectures 
involving endoscopic groups in §7. 

We would like to thank Steve Kudla, Colette Moeglin and Roger Howe for 
several motivating discussions. Dan Barbasch explained the unipotent 
representations of Theorem 6.10 to me, and David Vogan provided helpful 
comments and technical assistance. 
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§2 Arthur-Packets 

We sketch a definition of the Arthur-packet TK^) associated to an 
admissible homomorphism. This definition is still experimental in some of its 
details; in fact the considerations of this paper are intended partly as a guide 
to this definition. We will spell this out carefully in the cases we need. 

The definition of TT(^) has two steps: construction of a unipotent 
Ar thur -packet for G or for the Levi component L of a parabolic subgroup of 
G(C); and induction from L to G. The induction step is a combination of real 
parabolic induction, and holomorphic induction from a 9-stable parabolic 
subalgebra of q, and is well understood. The first step may be made explicit, 
for example, when the Ar thur-packet of unipotent representat ions is a single 
one-dimensional representation. This is the case that is needed for discussion 
of the pairing of discrete series in the stable range (cf. Theorem 6.1). In 
section 6 we spell out a special case of some particular unipotent 
representat ions of Sp(2n,R). 

We use a few notions which are not standard. The most important of 
these is that of an E-group for G [6]. Recall [2G] an L-group for G is (roughly 
speaking) a group LG which fits in a split exact sequence: 
2.1 LG° -> LG -> T . 

Here T is the Galois group of C over IR which acts on LG°. (The 
qualification refers to the fact that the splitting must be "admissible", and LG is 
in fact such a group together with an equivalence class of such splittings). An 
E-group for G is a group which fits in the exact sequence 2.1, bu t in which the 
sequence is not necessarily split. An element zeZ(LG°)r determines such a 
group up to isomorphism; and we refer to it as the E-group determined by z. 
In particular LG is the E-group determined by z= l . 

Now given zcZ(LG°), z2=l , we obtain a certain (algebraic) two-fold 
covering covering group G=G2 of G. If z=exp(27tiY) we write Gy=G2. A 
representation of G is said to be genuine if it does not factor to G. Then 
conjugacy classes of admissible homomorphisms <p:WR-» EG parametrize 
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L-packets of genuine representations of G [6]. If EG=LG, G=GX/ZZ and 
genuine representations of G are canonically in bijection with representations 
of G. 

The definitions of [6] are given in slightly different terms; here we use 
an equivalent version closer to the original definitions of [20] (cf. [6], chapter 
9). 

Let xF:WIRxSL(2/C) -> LG be a (quasi-) admissible homomorphism [7]. 
Thus first of all ¥ is a continuous group homomorphism. Secondly ¥ restricted 
to WR is a tempered admissible homomorphism of WRin the usual sense [8]: ¥ 
preserves projection on r and the image of C* is bounded and consists of 
semisimple elements. The prefix (quasi-) refers to the fact that we only 
assume V restricted to WR is admissible for the quasisplit form of G, i.e. we 
impose no condition involving parabolic subgroups. 

To Y we associate an infinitesimal character of G. The image of C* is 

contained in a Cartan subgroup LT° of LG°. As in [8] write ^ (zHz^z v for 
U,V€X#(LT°)®<C«LT«T*, for X a Cartan subalgebra of q. Let 
X=d^lSL(2 C)(diag(J,-i)); after conjugation we may assume XeLT^T*. Let 
be the infinitesimal character of G corresponding to X+ji via the Harish-
Chandra homomorphism. 

Now assume as a first case that the image of C* is contained in the 
center of LG°. Then to Y we associate an Arthur-packet of representations of G. 
These representations are unipotent when restricted to the derived group of G 
(it is convenient to reserve the term "unipotent" for semi-simple groups). For 
the moment let Y denote Y restricted to SL(2,C). By the Jacobson-Morozov 
theorem ^ corresponds to a unipotent orbit L0^ of LG° (by orbit we will 
always mean coadjoint orbit in the dual of a Lie algebra or conjugacy class in a 
Lie group; there will be no danger of confusion). For later use we note that if X 
as above is integral then it is singular unless L0^ is the principal unipotent 
orbit of LG°, in which case it is the infinitesimal character of the trivial 
representation. Now L0^ corresponds to a special unipotent orbit of G by 
[23] or ([9], Appendix). For example 0 ^ is the 0-orbit if L0^ is the principal 

unipotent orbit of LG°. Recall that the wave-front set of an irreducible 
representation Tt is a finite union of coadjoint G orbits [13]. The following 
definition is the analogue for real groups of ([9], Definition 1.17). 

2.1 Definition: 
Suppose xF:WRxSL(2.€) -» LG, and the image of C* is contained in the 

center of LG°. Then the (weak) Arthur packet TT(¥) is the finite set of  
irreducible representations Tt of G such that: 
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(i) The infinitesimal character of TT is X.v , 
(ii) The wave-front set of TT is equal to the closure of O^. 

We note tha t (at least in the case when L0^ an even orbit) condition (ii) 
is equivalent to (cf. [9], corollary 5.19): 

(ii)' The Gelfand-Kirillov dimension of TT is minimal among 
representat ions satisfying (i). 

For example if L0^ is the principal unipotent orbit, then TT is a one-
dimensional representat ion, determined (if G is connected) by its infinitesimal 
character (cf. Lemma 5.3). 

An Ar thur-packet is a refinement of a (weak) Arthur-packet . That is, 
note tha t the definition of TT(Y) makes no reference to the element ^ ( j ) 
(jeWR); incorporating this information decomposes UiV) into a (not 
necessarily disjoint) union of (true) Arthur-packets . For most of our purposes 
the above definition is all we need and we drop the prefix. We will have two 
occasions to refine this slightly (cf. Definitions 6.5 and 6.9). 

The packets thus defined are the special unipotent Arthur-packets , 
referring to the fact tha t the orbit 0 ^ is a special unipotent orbit. 

Let Ann(TC) denote the annihlator of TT in the universal enveloping 
algebra of q. Suppose L0^ is an even orbit. Then a useful fact about these 
Arthur-packets is: 

2.2 Lemma ([9], Lemma 5.10): 
In the setting of Definition 2.1. Ann(TT) is the same for all TTeJLOii). 

The restriction to even orbits in the discussion following Definition 2.1 
and in Lemma 2.2 is not essential; it may be removed by considering the 
integral root system of (cf. the end of the introduction to [9]). 

More general (non-special) unipotent representations of G are not 
necessarily related to maps xF:WIRxSL(2,C)->LG as above, for a discussion of 
these mat ters see [26]. 

A similar definition holds when LG is replaced by EG; we obtain 
representations of a covering group G of G. 

More generally if the image of C* is not necessarily contained in the 
center of LG°, let LC° denote the identity component of the centralizer of the 
image of C* in LG°. Let y = ^ ( j ) , which normalizes LC°. Let EC = <LC°,y>cLG, the 
group generated by LC° and y. Then EC is the E-group of a connected reductive 
group C defined over R. 
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Now ^ W ^ x S L t e j O - ^ C ^ G , and the image of C* is contained in the 
center of LC°. By the above construction applied to C we obtain the Ar thur -
packet J\CC¥) of representations of a covering group C determined by EC. 

By [8] conjugacy classes of Levi subgroups of G(C) are in bijection with 
conjugacy classses of Levi subgroups of LG°. Suppose L is a 9-stable Levi 
subgroup of G such that the conjugacy class of L(€) corresponds to LC°. 
Furthermore assume L is an inner form of C. Let 1TL(V{/) denote the Ar thur -
packet constructed in the preceding paragraph (taking L=C). This is a finite set 
of representations of L, which are special unipotent when restricted to the 
derived group. Given TtL€TTL(xF)/ choose a parabolic subgroup 
Q(C)=L(C)U(C)cG(C). We assume Q(€) is weakly-non-negat ive in the sense of 
([25], Definition 17.1(h)), this is a condition on the imaginary roots of u. 

Let !R(rrL) be the derived functor module of TTl . The normalization is as 
in [6], and is as follows. Let Cp(u) denote the one-dimensional representation 
of Lp(U) with weight p(u) [5]. Here Lp<U) is the ••metaplectic" cover of L defined 
by the element p(u) . Then L~Lp(u) , and rtL®Cp(u) is naturally a 
representation of L. Let S=Jdim(t/truB), and let ^(TtL)=rsopro(TrL<s»Cp(u)) 
(notation as in [241,6.3.1). This has the same infinitesimal character as TTl. See 
also ([6], Chapter 8). 

The role of E-groups in the definition of TT(V) is to make this 
construction functorial. This could be avoided: one could use LC in place of EC, L 
in place of L, and 2p(u) = Atop(g/q)* in place of p(u) . This is particularly 
simple when p(u) factors to L; this happens for example if G is GL(n) (cf. [25], 
§6). 

The construction of ^ (TT l ) may as usual be broken up into two steps. 
There exist LcLQcG with the following properties. There is a real parabolic 
subgroup P of Le containing L as its reductive part , and JBq is the Levi factor of 
a 8-stable parabolic subalgebra of q. Furthermore !R(TrL)^^0oind(rrL), where 
Ind is ordinary parabolic induction form P to Le, and y{Q is cohomological 
parablic induction from the 9-stable parabolic subalgebra q (up to one-
dimensional twists) ([25],Definitions 17.1 and 5.17). 

2.3 Definition: 
The Arthur-packet TTG(¥) associated to Y is the set of irreducible  

constituents of the modules ^(TT l ) A as L. TTl run over all possible choices given  
above. 

We write TTG(xi/) if it is necessary to specify the group G. 
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A similar procedure is used to define TKy) when W-.Wj^xSLiZ,^) -» EG, 
where EG is the E-group of G determined by some element 
z=exp(27tiY)cZ(LG°). Here EL is the E-group of L determined by p(u)+Y. Given 
TT a unipotent representation of Lp(u)+y, TT<8>Cp(U) is naturally a representation 

of LycGy. Then !R(Tt )=rs°pro(Tt«>Cp(U)) is a representation of Gy.The Ar thur -
packet TTC )̂ is thus a set of representations of Gy constructed as above. 

We freely identify representations and characters. We may on occasion 
identify TTC )̂ with a 2-module of virtual characters spanned by the 
irreducible characters it contains. 

Given G, suppose {G£ } is a set of groups which are inner forms of G with 
G=GQ. We identify the L-groups (and E-groups) for each G{ with those for G. 
We also identify the Lie algebras of G{ with q, universal enveloping algebras, 

infinitesimal characters, etc. Given ^:WmxSL(2,€)->LG, we obtain TTGl(^) as 
(G } G • 

above. In section 7 we will write TT { (xI/) = UiTT 
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§3 L-Groups and E-Groups 

We define some L-groups and E-groups which are not standard. First we 
define the notion of L-group for the group 0(p,q). Then we discuss E-groups 
for the groups U(p,q). The reader may wish to skip this section and refer back 
to it when necessary. 

The notation we use for L-groups is as follows. Let WR=C*UjC* be the 
Weil group of R. If G is a connected reductive algebraic group defined over R, 
we let LG=LG°xir be an L-group for G. Here T={l,o} is the Galois group of € 
over R. We write x in the case when a semi-direct product is actually direct. 
Let <f>(G) denote the set of LG°-conjugacy classes of admissible homomorphisms 
of Wm into LG. Given a conjugacy class {<p} of admissible homomorphisms WR -> 

LG, we let TT({<p})cTr(G) denote the corresponding L-packet. If there is no 
danger of confusion we write TT(cp) for TT({<p}). If it is necessary to specify G we 

will write TTG(<p). 
Because G=0(p,q) is not the real points of a connected algebraic group, 

the L-group of G is not defined. We proceed to make such a definition, and 
show it has the properties required of an L-group. 

Case I: p+qe2Z 
Let 2n=p+q. For the L-group of SO(p,q) we take S0(2n,€)xT, where we 

define S0(2n,C) with respect to the diagonal form. Let c be the element 
d iag( l , l , . . . l , - l )c0(2n ,€) \S0(2n ,€) . The action of T on S0(2n,C) is given by: 
3.1 a(g)= c g p-q= 0 (mod 4) 

\ cgc"1 p-q= 2 (mod 4). 
Note that 0(2n,C) is generated by S0(2n,C) and the element c. 

3.2 Definition: 
Let G=0(£,q.), p+q = 2n. Let LG°=0(2n.C). and let LG=0(2n,C)x£, where 

0(2n.C) is taken with respect to the diagonal form, the action of r on S0(2n,€) 
is as in 3.1. and a(c ) = €. 
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Now in fact L0(p ,q)»L0(p+l ,q- l ) , even though LSO(p,q)^'LSO(p+l/q-l). 

This is reflected in the fact that both LSO(p,q) and LSO(p+l,q-l) embed in 

L0(p,q). The embedding of LSO(p,q) is the obvious one; we call it i. 

Case II: p+qc22+l 
Let p+q = 2n+l. For the L-group of SO(p,q) we take Sp(2n,C)xT . 

3.3 Definition: 

Let G=0(jLa), E-+a=2n+l. Let LG° = Sp(2n . 0 x 2 / 2 2 . and let 

k i = ( Sp (2n .Ox2 /22 )x£. 

Let 7T:L0(p,q)->LS0(p,q) denote the obvious map. 
We now define admissible homomorphisms of the Weil group into these 

L-groups, and the L-packets corresponding to them. 

3.4 Definition: 
I- G = 0 a + g c 2 2 

a. An admissible homomorphism (p:Wm->LG is a homomorphism of 

the form <S>=\Q<D0. for o>0 an admissible homomorphism Wm-*LSO(p.q). 

b. ±(G)={ admissible homormorphisms Wm->LG }/ conjugation by LG°. 

n . G=o(p.,a), E+aczz+i 

An admissible homomorphism (x>:Wm->LG is a homomorphism such  

that <P0 = 7TQ<P is an admissible homomorphism Wm->LSO(p.q). We define 

£(G) as in (Lb). 

3.5 Definition: 

LetG=0(p.q) . and let Ind denote induction from SO(p.q) to G. Given an  

admissible homomorphism (p:Wm->LG. we let TT(q>) be the set of irreducible 

constituents of Ind(îT). as Tt runs over ïï^J-^((pQ) (<pQ as in Definition 3.4). 
Let TT((cr>))=TT(^). 
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The crucial par t of the definitions is that in fact TT(<p) only depends on 
the conjugacy class of <p, so that TT({<p}) is well-defined. If n is even there may 
exist cp and cp' such that <p is conjugate to <p' via LG°, whereas cp0 is not 
conjugate to <p'0 via LSO(p,q)°. In this case, however, the two corresponding 
distinct L-packets for SO(p,q) induce to the same L-packet for G. We obtain: 

5.7 Theorem: 
1. (i£.HTT({(e.}) is a well-defined map from $(G) to finite subsets of TT(G). 
2. TT(f<p))nTr((<p'))is empty if {c^{<£.'}. 

3. TL(G)=U ![({<£}), where this is a (disjoint) union over {<2.k$(G). 

We leave the details of the proof to the reader. 

We discuss E-groups for G=U(p,q). Let n=p+q, and let LG°=GL(n,C). 
5.8 Definition: 

Let c= / 

Let LG=LG°xr. where o(g) = €V1€"1. 

5.9 Definition: 
EG=<LG°.<7>. the group generated bv LG° and an element a. subject to  

the relations 
i. a2=-Id 
ii. a(g.)=c^glLd. 

By [6] homomorphisms of Wm into EG parametrize L-packets of 
representations of a certain algebraic two-fold cover G of G. We spell this out 
in this example, in which things are very simple; the following two results 
could be taken as definitions (without reference to [6]). Let TT:G->G be the 
covering map. Given a representation Tt of G, let TT'1 (Tt) denote the pullback of 
Tt to G. 

5.10 Lemma: 
i. The group G is isomorphic to G itself. The covering map is TT(g)=det(g)2g. 

ii. Let det* denote the unique genuine character satisfying 
det(TT(g))=(det*(g))2. 
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Then then the representat ions of G mav be canonicallv identified with the  
genuine representat ions of G via Tt—>TT~1 (Tt)<adet*. 

Let T: EG -» LG be the group homomorphsim defined by 
T(g)=(det(g)2g)xl (g€LG°^GL(n,C)), and T ( a ) = l x a . Given (p:WR ->EG, let 
<p'=T°<p. 

5.11 Theorem: 
Let «>:WM -> EG be an admissible homomorphism. Let TT(<P') denote the L-

packet of representat ions of G defined bv v. Then the L-packet 1Tg(<p) s i 
genuine representat ions of G defined bv cr> is (Ttadet* I Tt€TTG(w') }. 

The proofs of Lemma 3.10 and Theorem 3.11 follow immediately from 
the definitions of [6]. Everything reduces to the case of U( l ) , where the result 
is easy; we leave it to the reader to check this case directly. 
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§4 Conjectures A and B 

In this section we give precise s tatements of the conjectures. We star t by 
explicitly defining maps LG->LG\ We consider the irreducible reductive dual 
pairs one a t a time. 

In this section we reserve the notation EG for a proper E-group, i.e. for 
EG^LG. This occurs only for G=U(p,q) and was discussed in this case in the 
previous section. 

Let Ik denote the kxk identity matrix. 

L (0(p.q).Sp(2m.R))cSp(2m(p+q).1R) 
Let n=p+q. The oscillator representation factors to Sp(2m,IR) if and only 

if n€2Z We assume this holds. 
A. L-groups: 

a. For the L-group of Sp(2m,IR) we take the direct product S0(2m + l ,C)xI \ 
where we take S0(2m + l,C) with respect to the diagonal form. 

b. For the L-group of 0(p,q) we take 0(2n,C)xT as described in §3. 
B. Mapping of L-groups: 

a. n<m 
LetG=0(p,q) , G'=Sp(2m,IR). We define Y:LG->LG', i.e. 

0(2n,C)xr-»S0(2m+l,C)xr: 

4.1 i. Y(gxl)=diag(g,det(g)I2(tn.n)+1)xl gcO(2n,C) 
ii. Y ( l x a ) = ( I2rn+1 x a p-q=0(mod4) 

ld iag(c , - I9 . ... )xa p-q=2(mod4) 
(recall c^d iagd , ! , . . . , ! , - ! ) ) 
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b. n > m 
Let G=Sp(2m,IR), G'=0(p,q). We define Y:LG->LG\ i.e. 

S0(2m + l,C)xr-K)(2n,C)><ir: 
4.2 i. Y(gxl)=diag(g/I2(n.tn).1)xl geS0(2m + l,C) 

ii. Y(lxa)==f I2nxa p-q=0(mod4) 
\cxo p-q=2(mod4) 

11. (U(p.q)xU(r.s))cSp(2(p+q)(r+s).IR) 
Le tm=p+q, n=r+s.The oscillator representation factors to U(p,q) if and 

only if nc22. Suppose n€22+l. Then U(p,qfwas defined in section 3. The 
genuine representat ions of G are obtained by maps of WR , or WRxSL(2,C)y 
into the E-group for G defined in §3. These representations may be thought of 
as representat ions whose central character is det(k+^, kc2. 

Thus if nc22+l we use the E-group for U(p,q), and if nc22 we use the L-
group described in section 3. By symmetry similar s tatements hold for U(r,s). 

After relabelling if necessary we assume m<n. 

A. L-Groups and E-Groups 
The L-group and E-groups of U(p,q) were defined in §3. 

B. Mapping of L-groups 
Let G=U(p,q), G'=U(r,s), m<n. We define a map Y: LG (or EG)->LG' (or EG'). 

a. nc22, mc22 . Let s = (n-m )/2. Define Y:LG->LG' via: 
i. Y(gxl)==diag(Ig,g,Ig)xl (gcGLOn^O), 
ii. Y ( l x a ) = l x a . 

b. ne22+l , m€22+l . Let s = (n -m) /2 . Define Y:EG->EG' via: 
i. Y(g)=diag(Ig,g,Ig) (gcGL(m,C)), 
ii. Y(a)=c<? where c=diag(I , 1 - 1 ) . 

° 8 tTl 8 c. mc2Z, ne22+l . Define Y:EG->LG' via: 
i. Y(g)=(diag(g,In.m)xl) (g€GL(m,C)), 
ii. Y(a )=(exa ) where €= /0 I \ 

\h m 0 I 
d. me2Z+l , ne2Z. Define Y:LG->EG' via: 

i. Y(gxl)=diag(g, In_J (g€GL(m,C)), 
ii. Y ( l x a ) = e a where €= /0 I \ 

v n-m. ' 

III. (Sp(p.q).0*(2n))cSp(4(p+q)n.IR) 
This case is very similar to case I. 

100 



L-FUNCTORIALITY FOR DUAL PAIRS 

We recall tha t 0*(2n) is the group preserving a skew-Hermitian form on 
Hn (H is the quaternions). If gc0*(2n), then de t (g )= l , where the determinant 
is taken as a linear transformation of a real vector space of dimension 4n. That 
is 0*(2n)=S0*(2n). The group preserving a Hermitian form of signature (p,q) 
on HP+(i is Sp(p,q). 

The oscillator representation factors to yield a bijection between 
representations of the linear groups. 

Let m=p+q. 
A. L-Groups 

a. The group Sp(p,q) is inner to Sp(2m,R): for an L-group we take the 
direct product S0(2m + l ,C)xr (cf. I) 

b. The group 0*(2n) is inner to S0(2n,0). (This may be seen as follows: 
0*(2n) is inner either to S0(2n,0) or S 0 ( 2 n - l , l ) ; S 0 ( 2 n - l , l ) is ruled out 
because since 0*(2n) contains a compact Cartan subgroup, so must any inner 
form of it. 

We use the L-group of S0(2n,0), as in section 3: S0(2n,C)xT, where the 
action is given by: 

i- o(g)= ( g n = 0(mod2) 
(cgc 1 n = l (mod2) (e=diag( l , l , . . . l , - l ) ) . 

B. Mapping of L-groups: 
This is essentially the same as I.B. 

a. n<m 
LetG=0*(2n) , G' = Sp(p,q). We define Y:LG->LG', i.e. 

S0(2n,C)xr->S0(2m + l,C)xr. 
4.1 i. Y(gxl)=diag(g,I2(m_n)+1)xl gcS0(2n,C) 

ii. Y(lxa)=(I2m+1 x a n=0(mod2) 
(.diag(e,-I2(: Hl )xo n = l (mod2) 

The preceding groups are referred to as those of type I. Note that (except in 
the case of 0(p,q) , both p and q odd, each group has discrete series 
representations. Also note that in each case one member of the pair may be 
compact. The following case is of type II. 

IV. (GL(m.IR).GL(n.IR))cSp(2nm.IR) 

b. n>m 
LetG = Sp(p,q), G'=0*(2n). We define Y:LG->LG', i.e. 

S0(2m + l ,C)xr->S0(2n,C)xr. 
4.2 i. Y(gxl)=diag(g,I2(n_m)_1) geS0(2m + l,C) 

ii. Y ( l x a ) = U x a n=0(mod2) 
\cxo n = l (mod2). 
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This is the easiest case of all. We assume m < n , let G=GL(m,IR) and 
G'=GL(n,IR). The oscillator representation factors to G and G'. 

A. L-groups: 
For the L-group of GL(k,IR) we take the direct product GL(k,OxT 

( k = m , n ) . 
B. Mapping of L-groups: 

We define Y:LG->LG', i.e. GL(m,C)xr->GL(n,C)xr. 

i. Y(gxl)«diag(g,Ift_m) gcGL(m,C) 
ii. Y ( l x a ) = I x a 

In each case Y is clearly a group homomorpism when restricted to LG°. 
One checks directly in each case that the relations a 2 = l (or a 2 = - l if aeEG for 
G=U(p,q)) and oga"1=a(g) (gcLG°) are preserved by Y. Thus Y is a group 
homomorphism. 

We are now in a position to state the main conjectures. Let (G,G') be an 
irreducible reductive dual pair, with G the smaller group. We assume (G,G') is 
one of the cases t reated above in I-IV. Recall (cf. § l )we consider G (resp. G') 
either as a subgroup of Sp(2n,lR) or Mp(2n,lR). Let Y: LG (or EG) -> LG' (or EG' ) 
be the homomorphism defined above. Let LH'° be the identity component of 
the centralizer of Y(LG°) in LG'°. Let T:SL(2,CHLH'0 be the homomorpism 
corresponding to the principal unipotent orbit in LH'° (this is defined up to 
conjugacy by LH'°). 

4.5 Conjecture A: 
Suppose TT is an irreducible representation of G occuring in the  

representation correspondence for this dual pair. Let Tt' be the corresponding  
irreducible representation of G'. Suppose xF:WmxSL(2.€)->LG (or EG) is an  
admissible homomorphsim. such that Tt is contained in the corresponding  
Ar thur -packet TT(^). Let y':WmxSL(2.C)->LG' (or EG') be defined bv: 

4.4 i. ^ ( w x l ) = Y o ^ ( w ) wcWR 
ii. r(lX£)=Y<>ii(g.)T(gL) ££SL(2,C) 
ill. T(wxg)=r(wxl)r(lxg) wcWm, g€SL(2,C). 

Then xj/' is a (quasi-) admissible homomorphism (cf. §2). Let TT(^') 
denote the corresponding Arthur-packet . Then T T ' C T K Y ' ) . 

There is a small point to check to see that y¥l is in fact a group 
homomorphism: we need to check ^ ' (g) commutes with ^ ' ( w ) for all 
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gcSL(2,C), wcWR. This is immediate from the definitions for W€C*; and may 
be checked case by case for w=j. It follows immediately that ¥ is a (quasi-) 
admissible homomorphsim. 

As mentioned in the introduction T is similar to the "tail" used in [19], 
and that if G and G' are roughly the same size (i.e. if LH'° is abelian) then T is 
equal to the identity map. Then if Tt is tempered Conjecture A would imply Tt' 
is tempered, and the nature of the representation correspondence for these 
representations should be quite simple. In particular in this situation 
Conjecture A is similar to [19]. This is not the case (even when T = l ) if Tt is 
contained in a non- tempered Arthur-packet . The nature of the representation 
correspondence can be quite complicated and appparently non-functorial; 
perhaps functoriality can only be expected to hold on the subset of 
representations of TT(G) and TT(G') which occur in Arthur-packets . 

Given (G,G'), let {(G^G1)} (i=0,l,...,k) be a set of representat ives for the 
equivalence classes of dual pairs such that G{ is an inner form of G, with G0=G. 
For example if (G,G') = (0(2m,0),Sp(2n,IR)) let (Gi,G')=(0(2m-2i,2i),Sp(2n,IR)) 
(i=l,2,...,m). As another example if (G,G')=(U(m),U(r,s)), then 
{(Gi,G')} = {U(m-i,i),U(r,s))| i = 0,l,...,m}. 

Note that all (G£ ,G') have the same L-groups (or E-groups), maps Y, etc. 

Given ¥:WmxSL(2,CHLG (or EG) we let TT(Gi>(̂ ) be a set of irreducible 

representations of some G{: TT 1 (vi/)=Ui TT 

4.5 Conjecture B: 
Suppose we are in the situation of the preceding conjecture, with (G.G1) 

in the stable range (stable range is defined in §5). Thus we are given 
IXCTI0^). it occuring in the representation correspondence for G. 

1. Suppose q is an irreducible representation of G2. for some i. and q is 
contained in TT-(¥). Then a occurs in the representation correspondence for  
the dual pair (G^G1). Let a' denote the corresponding representation. Then 
^eTL-(r). 

2. a -» a' is a bisection between T T — a n d TTG'(y'). 

This conjecture is not true without the assumption of stable range: the 
trivial representation of 0(4) occurs for the dual pair (0(4),Sp(4,IR)), bu t the 
sgn representation does not. It is not clear what the correct range of validity of 
this conjecture should be. 

We extend Conjecture B to one about endoscopic groups in §7. 
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§5 Discrete Series in the Stable Range 

In this section we explicitly describe the representation correspondence 
for certain discrete series representations in the stable range. This section may 
be read independently of the rest of the paper. 

A reductive dual pair (G,G') is said to be in the stable range if G is small 
with respect to G' in a certain sense [12]. We will spell out this condition below 
for each pair. The discrete series of G then occurs in the representation 
correspondence. Let Tt be a discrete series representation of G. The 
corresponding representation Tt' of G' may or may not be tempered. Assume 
further tha t Tt' has regular infinitesimal character; this may be expressed as a 
conditon on the infinitesimal character of Tt. Then it is possible to identify Tt' 
as a representaion with (g,K)-cohomology, i.e. as the derived functor module 
of a one-dimensional representation of a 9-stable parabolic. We state a precise 
result for each pair. This was done for the pair (0(p,q),Sp(2m,IR)) in [1]. 

Consider an irreducible type I dual pair (G,G') in the stable range, with G 
small. If G or G' is 0(p,q) we assume tha t both p and q are even. Then G (resp. 
G') contains a compact Cartan subgroup TcK (resp. T ' C K ' ) which we fix. Let X 
be the complexified Lie algebra of T. Let W be the the Weyl group W(g,X) of q 
with respect to X, and let WK be the Weyl group W(K,T) of T in K. We use 
similar notation for G'. The orbit correspondence establishes a bijection 
between elliptic coadjoint G orbits, and elliptic coadjoint G' orbits. 
Equivalently, this is a bijection between *t0*/WK and X0'*/WK,. It is convenient 
to multply by i (the square-root of -1) and obtain iX0*/WK -» iX0'*/WK, ; we 
write this as \->Xl (AciX0*, X'€rt0'*). 

We define some p-shifts. Supposing T) is an ad(X)-stable subspace of q, 
such that if a is a weight of X acting on Fj then - a is not such a weight, we let 
p(F)kX* denote one half the sum of the roots of X in Fj. Let g=t+p be the 
Cartan decomposition of q. Fix a 9-stable Borel subalgebra & containing X, and 
let p=p(&), pn=p(bflp) , and pc=p(bflt). Suppose q=J0+u is a 9=stable 
parabolic subalegbra of q. We assume & contains u, and let p(jB)=p(bfuQ). 
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Given X€iT0*, we let q(X)=J0(X)eu(X) be the usual 9-stable parabolic 
subalgebra associated to X ([24], Defintion 5.2.1). After conjugating by K we 
may and do assume X is dominant for the roots of X in frPlt. 

Recall G is either a subgroup of Sp(2n,R) or a subgroup of Mp(2n,R) 
which is a two-fold cover of such a subgroup (cf. §1). In the latter case, T is a 
two-fold cover of a torus in Sp(2n,R). 

5.1 Definition: 
X is integral if the following two conditions hold: 

L X + £.(IL) exponentiates to a character of T. 
ii. this character is genuine in the case that GcMp(2n.IR). 

Given XcX* integral, we define A(X)=A^(X) as in [1]. Thus let q=q(X) 
and let L be the stabilizer of 2 in G. As in §2 let Lp(u) be the "metaplectic" 
cover of L defined by p(u) [5]. If L is connected, let €x denote the unique 
genuine one-dimensional Lp(u) module with weight X. In the notation of 
section 2, A(X)=^(C^). Thus A(X) has the same infinitesimal character as Cv 
i.e. X+p(J0). In the case of the orthogonal group L may be disconnected. In this 
case Lp(u) is isomorphic to LxZ/2Z; take to be the genuine one-dimensional 
representation of Lx2/22 with weight X, trivial on any factor of the form 
0(r,s). 

5.2 Definition: 
X is good if (X+p(l).o<)>Q for all roots of X in u. 

If X is good, A(X) is irreducible, has regular infinitesimal character, and 
has lowest K-type X+pn~pc (we identify irreducible K-modules with their 
highest weights). In particular if X is regular then A(X) is the discrete series 
representation with Harish-Chandra parameter X. If X is good then the 
following conditions are equivalent: A(X) is tempered, A(X) is a discrete series 
representation, L is compact. 

We use the same notation for G', with ' appended: p \p 'n , etc. 

5.5 Theorem: 
Given a stable reductive dual pair (G,G )̂ as above, with G small. Suppose 

XcX* is the Harish-Chandra parameter of a discrete series representation 
IL=A(X.) of G. Let X'cT'* correspond to X via the orbit correspondence. Assume  
X' is good, and let Tt'=A(X'). Then Tt corresponds to Tt' in the representation  
correspondence-
proof: 
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The proof is exacly as in [1]. It amounts to a few calculations. We sketch 
the a rgument below, and then for each irreducible dual pair we tabulate the 
key steps in the calculation. This is mainly intended as a reference for the 
explicit representat ion correspondence in this case, in terms of X and X', 
lowest K-types, infinitesimal character, etc. 

Consider the following diagram: 
5.4 

к. 
G 

H 
KH 

G" 
H' è 

r r 

O -о' 
KH 

Here K and K' are as usual, and KH is a maximal compact subgroup of H. 
The groups appearing on the same line are members of a dual pair. Let 
TT=A(X ) be a discrete series representation of G, and let Tt' be the 
corresponding G' module. Assume the infinitesimal character of TT' is regular. 
Let X ' correspond to X via the orbit correspondence. We are claiming T T ' ^ A C X ' ) . 
By [27] it is enough to show Tt' has the correct infinitesimal character and 
contains the lowest K'=type of A ( X ' ) . Explicitly, it is enough to show: 

5.5 i. Tt' has infinitesimal character X'+p(j&') 
ii. TC' contains the K'-type X ' + p ^ - p ^ . 

The infinitesimal character of it' is known, and satisfies 5.3(0. Assume X ' 
is good, and let ^ ' ^ X ' + p ^ - p ^ be the lowest K'-type of A ( X ' ) . Let a denote the 
corresponding representation of H corresponding to a' in the dual pair (H,K'). 
This is known explicitly, since K' is compact. It is enought to show a' is 
contained in Tt' restricted to K', or equivalently that Tt is contained in a 
restricted to G. Let TH be the minimal KH-type of a. Now the restriction of a to 

G is known explicitly by ([14], cf. also [22]): <^IndKG(THlK). Thus by 
Frobenious reciprocity it is enough to show HomK(THlK,7tlK)^0. Let 6 denote 
the minimal K-type of TT. Then 5.5(ii) follows from: 

5.5 (ii') S is contained in THIK. 

In fact it is enough to show the much weaker s ta tement that the highest 
weight vector for KH inTH is a highest weight vector for K, with weight S. We 
note tha t in these cases h and a' are found in the space H(K,K') of joint 
harmonics, and S corresponds to a' in the sense of [11]. 

К' 
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This completes the sketch of the proof; the necessary calculations for 
each dual pair are completed below. 

We identify irreducible modules for a compact group with their highest 
weights. In the case of the orthogonal group, it may in addition be necessary 
to specify ±1. Thus if TT is an irreducible representation of 0(2n) such that TT 
restricted to S0(2n) is irreducible, it is necessary to specify the scalar ±1 by 
which diag( 1,1,..., 1,-1) acts. In our situation this is always +1, and we omit it 
from the notation. 

I. (Sp(2m.R).0(2p.2q)): 
A maximal compact subgroup K of Sp(2m,IR) is isomorphic to U(m). 

Choose the usual Cartan subgroup T of K, and choose the usual coordinates 
X=(a1 ,a2,...,am) for i t0*. We choose positive K-roots so X is dominant if 
a1 >a2>...>am. We make similar choices for 0(2p,2q) and wri te 
(a1 ,a2,...,ap;b1 ,b2,...,bq) for coordinates for iTQ* for 0(2p,2q) . We choose 
posi t ive K-roots so X is dominan t if at >a2> . . .>ap>0; b1 > b 2 > . . . > b q > 0 . 

Let n=p+q. This pair is in the stable range if and only if m<min(p ,q) or 
2n<m. We consider the two cases seperately. 

A (Sp(2m,IR).0(2p,2q)). m<min(p .q) 
Let G=Sp(2m,R), G'=0(2p,2q). Then K«U(m), K '^0(2p)x0(2q) , 
H^Sp(2m,R)xSp(2m,IR), KH^U(m)xU(m). 

1. Orbit Correspondence: 
X = (a1 ,a2,...,ak,b1 ,b2,...,bA) X' = (a1 ,a2,...,ak,0,0,...0;-bA,-bA_1 ,...,-b1,0,0,...,0) 

a 1 > a 2 > . . . > a k > 0 > b t > b 2 > . . . > b A . 
Then X is regular if and only if all inequalites are strict, in which case L=T 

and L'^U(l)mxO(2p-2k,2q-2jQ). Furthermore the following conditions 
are equivalent: X is integral, X' is integral, all a£,b. cl. We assume these 
conditions hold. 

2. Infinitesimal Character: 
The correspondence on infinitesimal character is given by: Xy->Xy, , where 
Y=(c1,c2,...,cm), Y'=(c1,c2,...,cm,n-m-l,n-m-2,...,l,0) . 
It follows that 5.5(0 holds. 

3. Minimal K-types: 
The minimal K-type of the discrete series representation A(X) is S: 
S = (a1-x1,a2-x2,...,ak-xk,b1+y1,b2+y2,...,bA+yA) + (I,2,...,k,-JB,-JB+1,...,-1) , 

where xi =|{ j I a ^ b ^ O }|, y{ =|{ j I b ^ a ^ O }|. 
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Now X' is good if and only if ak, b ^ n - m - 1 . Assume this holds. 
Then A(X') has minimal K'-type o ^ X ' + p ^ - p ^ , a ' - a ' ^ a ^ (S denotes 

outer tensor product): 
<j,1=(a1-xl,a2-x2,...,ak-xk,0,0,.../0) + (q-p+l,q-p+2,...,q-p+k,0,0,... ,0) , 
^,2=(-bA-yA,.../-b2-y2,-bryv0/0/.../0) + (p-q + l,p-q+2,...,p-q+JB,0,0,...,0) . 

It is convenient to rewrite this as follows. The lowest K-type of A(X) is 6: 
#oc2 «fc#j31 #P2 PA) «1>«2>...>«k>0>|31>)32>...>PA . 

The lowest K'-type of A(X') = ol=o\®ol2 : 
a,1=(«1,«2,...,«k,0,0,...0) + (q-p,q-p,...,q-p,0,0,...,0) 
^ ' 2 = ( - P ^ - ^ - v - , - 1 3 ^ 0 , 0 0)+ (p-q,p-q p-q,0,0,...,0) . 

4. The H-module a and the KH module TH: 
The H-module o corresponding to ol in the dual pair 

(H,K,)«(Sp(2m/IR)xSp(2m/IR)/0(2p)xO(2q)) is a discrete series 
representat ion with lowest KH-type f H"f H ®rn2: 

rH =(a1 -x1 +q + l,a2-x2+q+2/.../ak-xk+q+k#pJp,...#p) 

rH2 = ( - ^ ' ' q - - " ^ ' B 1 + y i " P " ^ ' B 2 + 7 2 " P " ( ^ " l ) - - A + y A " P " l ) 

5. TH restricted to K: 
Now K^U(n) embeds in KH^U(n)xU(n) on the diagonal. The highest weight 

vector of rH has weight TĤ  +TH2=S for K, as is easily seen, verifying 
5.5 ( i i ) \ 

Bx(S£(2nLJt),Q(2£,2a» 2n<m : 
Let G=0(2p,2q), G'=Sp(2m,R). Thus K**0(2p)xO(2q), K'^U(m), 

H«*U(2p,2q), K„^U(2p)xU(2q). 

1. Orbit Correspondence: 
X = (a1 /a2/...,ap;b1 ,b2,...,bq) -> X'=(a1 #a2#...#ap#0#0#...0#-bq/-bq.1 ,...,-b2,-b1 ), 

a , > a ~ > ,.>a > 0 , b, >b 9 > . . > b n >0 .1 
Then X is regular if and only if a{^b. for all i,j, and all inequalites are strict 

except that possibly either ap=0 or bq=0y but not both. Then L=T and 
assuming ap/bq>0/ L'^U(l)nxSp(2(m-n),]R). The following conditions are 
equivalent: X is integral, X' is integral, all a£,b. cZ We assume these 
conditions hold. 

2. Infinitesimal Character: 
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The correspondence on infinitesimal character is given by: Xy-^Xy, : 
Y=(c1/c2,.../cn) , Y'=(c1,c2,...,cn,m-n,m-n-l,...,l) . 
Then 5.5(i) holds. 

3. Minimal K-types: 
The minimal K-type of the discrete series representation A(X) is 5= S1 ®62: 

S1 =(at +x1 ,a2+x2,...,ap+xp)+(-p+l,-p+2,...,0) 
52=(b1+yl/b2+y2,.../bq+yq)+(-q+l/-q+2/...,0) 
where x{ =|{ j I a r b j > 0 }|, y. =|{ j I b . -a .>0 }|. 

Assume X' is good; equivalently ap, bq>m-n. Then A(X') has minimal 
K'-type a'=X'+p n-p'c : 

a'=(a1 +Xl ,a2+x2 ap+xp AO,... A - b q - V ~ V i -yq_, ,.,.,-b, - y , ) + 
(-q + l ,-q+2/. . . / -q+p/p-q/p-q/. . . /p-q/p-q,p-(q-l)/ . . . ,p-l) . 

We may rewrite this as follows: 
The lowest K-type of A(X) is S=8^S2: 

S r ^ ! ^ CCP) . 52=(j3v|32 J3q) , «1>«2> . . .>Ap > 0 , |31>|32>...>Pq>0 . 

The lowest K'-type of A(X') is: 
a' = («1/«2/...,«pyO,0/...0,-|3qy-Pq„1;.../-|31) + (p-q,p-q,. . . ,p-q) • 

4. The H-module a and the KH module TH: 
The H-module a corresponding to a' in the dual pair 

(H,K')^(U(2p,2q),U(m)) is a discrete series representation with lowest 

V ^ P * tH='rH1SrH2: 
rHi=(a1-xl a2-X2,...,ap-xp 0,0,...,0) + (*m+q-p+l im+q-p+2, 

,...,Jm+q,Jm,Jm,...,Jm) 
T H 2 = ( b r y i , B 2 - 7 2 — V y q , 0 ' 0 ' - ' ° ) + (im+p-q + l , im+p-+2, 

,...,2m+p,im Jm,...,2m) 

5. rH restricted to K: 
Now K^O(2p)xO(2q) embeds in KH^U(2p)xU(2q) in the natural way. It 

is elementary to check that the highest weight vector of rH has weight h 
for K, verifying 5.5(ii)\ 

II. (Ii(B,a),H(L£)): 
LetG=U(p,q) (r+se2Z) or U(p,qf (r+sc2Z+l); letG'=U(r,s) (p+qc2Z) or 

U(r,sf (p+qc22+l) where the coverings are as in §4,(11). We may and do 
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assume p+q<r+s. This pair is in the stable range if and only if p+q<min(r ,s) , 
which we assume. Up to coverings, K^U(p)xU(q), K'^U(r)xU(s), 
H^U(p,q)xU(p,q) , KH^U(p)xU(q)xU(p)xU(q). 

Choose the usual compact Cartan subgroup T of G. Choose coordinates 
(a1 ia2/...,ap;b1 ,b2,...bq) for i t0* , and choose positive K-roots as usual. We write 
( ... ) to specify the group if necessary. 

1. Orbit Correspondence: 

X = <AI -a2 AK>1 'b2 *VC1 <C2' -'Cm<d1 ' d 2 ' A ^ Q 
X'=(a1 /a2/...,ak,0,0,...0/d1 ,d2/...,dn;c1 /c2,.../cm,0/0/.../0/b1 ,b2,...,bA)r^ 

a1 > a 2 > . . . > a k > 0 > b 1 > b 2 > . . . > b A ; c1 >c2 > . > c t t >0 > d 1 >d 2 >.. 

Then X is regular if and only if all inequalities are strict, except tha t a 
single entry may be zero. Then L=T and L'^U(l)p+qxU(r-k-n,s-jQ-m) 
(assuming no entry is zero). Furthermore X is integral if and only if X' is 
integral, if and only if all entries are equivalent to J(r+s+p+q+l)mod(Z). 
We assume these conditions all hold. 

2. Infinitesimal Character: 
The correspondence on infinitesimal character is given by: , 

where 
Y=(eve2,...ep+q)pq 

V,"(e1#e2#...ep+q#i(t-l)#i(t-3)J...#i(-t+l))r#ll for t=(r+s)-(p+q). 

3. Minimal K-types: 

The minimal K-type of the discrete series representation A(X) is &=&y®&2: 

51 =(a, -Xl ,a2-x2 ak-xk/b1 +z, ,b2+z2 bA+zA)p+ 

J ( q - p + l / q - p + 3/.../q-p + (2k-l) ,p-q-(2JB-l)#. . .Jp-q-l)p 

52 = <C1 -7l ¿ 2 ^ 2 Cm"7^d1 +W1 / V W 2 - A + W a V 

J (p -q + l ,p -q + 3 , . . . , p -q+(2m- l ) ,q -p - (2n- l ) ,q -p - (2n-3) , . . . / q -p - l ) . 

Here x{ =|{ j I a.-c.<0 }|, y{ H< j I c.-a,<0 )l, z. =|{ j I b . - d > 0 }|, 

w{=\{] | d . - b . > 0 }|. 

X' is good if and only if ak, crn>i( t - l ) , i ( - t+ l )>b1 id1. Assume X' is good. 

Then A(X') has minimal K'-type <7,asX,+p,n-p,caB!0,1 ®a'2: 
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o\-(a, -X, ,a2-x2#...,ak-xk,0,0,...,o,d1 +w, / V w 2 ' - A i + W A + 
i(s-r+l,s-r+3,. . . ,s-r+(2k-l)j>-qj>-q,. . . ,p-q, 

( -s+r) - (2n- l ) , ( -s+r) - (2n-3) , . . . , - s+r- l ) r 

a 2 = (ci "7l 'C2"y2—Cm-y^0'°-°>1 +Z1 >2+Z2'-'VZA >s + 
i ( r -s+l , r -s+3, . . . , r -s+(2m-l) ,q-p,q-p, . . . ,q-p, 

(-r+s)-(2JB-l)#(-r+s)-(2JB-3)#...#(-r+s)-l)f . 

It is convenient to rewrite this as follows. 
The lowest K-type of A(X) is 5=5, ®52 : 

*i ,«2 «k^t ,J32 J3A)p a, >«2>..>ock>0> j3, > j32>~> PA 

*2-<Y1 'Y2 V S 1 ¿ 2 K \ *1 > V - > Y - > 0 > S 1 >S2>">*n ' 

The lowest K'-type of A(X') is ol=o\®a'2: 

o\ ,oc2,...,ock,0,0,...0,51 ,52,...,5n)r 

+J( ( (p-q)+(s-r) } \ { (p-q) rk-n, { (q-p)+(r-s) }n )r 

*2= <VY2 Vm,0,0 O,pt,02 J3,)g 

+i( ( (q-p)+(r-s) >m, { (q-p) J*"**-*, { (p-q)+(s-r }* \ 

n 

Here { a }n denotes (a,a,...,a) . 

4. The H-module o and the KH module TH: 

The H-module corresponding to a' in the dual pair (H,K') is a discrete 

series representation with lowest KH~type rH. Write 

rH=-rH^' tH^TH3§rH corresponding to the decomposition 

KH=U(p)xU(q)xU(p)xU(q) (up to covering). Then: 

rHi = (a, -xt #a2-X2 a ^ x ^ O A - . O )p 

+Ks+q-p + l ,s+q-p + 3,...,s+q-p+(2k-l),r,r,...r)p , 

- ^ - (OA- . -O ,* , +w, ,d2+w2 dk+wk )q 

+i(-r , -r , . . . , - r ,s+q-p-(2n-l) ,s+q-p-(2n-3)J. . .Js+q-p-l)q , 

rH3=fc,-yi'c2-72 ck-yk,0,0,...)p 

+Kp-q+r+l,p-q+r+3,...,p-q+r+(2m-l)/s,s,...ys)p , 

rH4=(0,0,...0,b1+zpb2+z2 bk+zk)q 

+ J(-si-s/ . . . /-s,p-q-r-(2JB-l)/p-q-r-(2JB-3)/. . . /p-q-r-l)q . 

5. tH restricted to K: 

Now K=U(p)xU(q) embeds in KH as the diagonal, so rH restricted to K is 

isomorphic to (rH ^ i ^ p ^ ^ ^ h ^ V The highest weight vector in rH 



/. ADAMS 

has weight (rH +TH3̂ p<8>^H2+rH4̂ q for K- From this equals &, the 
minimal K-type of A(X), verifying 5.5(ii 

III. (S0*(2n).Sp(p.q)) 
Fix a maximal compact subgroup K^U(n) of S0*(2n). Choose the usual 

Cartan subgroup T of K, and choose the usual coordinates (a1 ,a2,...,an) for 
iXQ*. Make similar choice for Sp(p,q), with K^Sp(p)xSp(q) Write 
(a1 ,a2,...,a ;bt ,b2,...,bq) for coordinates for iX'0*. Letm=p+q. This pair is in 
the stable range if and only if m<[n /2] or n<min(p,q). We consider the 
two cases seperately. 

A (S0*(2n).Sp(p.q)) ( m<fn/21 ): 
Let G=Sp(p,q), G '=S0*(2n). Then K«Sp(p)xSp(q), K'«U(n), H^U(2p,2q), 

K~*U(2p)xU(2q). 
1. Orbit Correspondence: 

X=(a1 ,a2i...,a;p;b1 ,b2,...,bq) -» X'=(a1 ,a2/...,ap,0/0,...0,-bq,-bq.1 ,.,.,-b,) , 
a1 > a o > . . . > a ^ > 0 ; b- >b 9 > >b n >0 . 

' 
Then X is regular if and only if all inequalites are strict; then L=T and 

L'^U(l)rtlxS0*(2(n-m)). Furthermore X is integral if and only if X' is 
integral, if and only if all a^b. cl. We assume these conditions hold. 

2. Infinitesimal Character: 
The correspondence on infinitesimal character is given by: , where: 
Y=(clic2#...#cRl) , Y,=(c1/c2,...,cm,n-m-l,n-m-2y...il,0). 

3. Minimal K-types: 
The minimal K-type of the discrete series representation A(X) is 5=S1 §S2: 
S1=(al+xl/a2+x2/.../ap+xp)+(-p/-p+l,...,-l) , 
S2=(b1+y1,b2+y2,...,bq+yq)+(-q,-q+l,...,-l) . 
Here x. =K j I a.-b .>0 }|, y. =K j I b.-a .>0 }|. 

Now X' is good if and only if a bq>n-m- l . Assume this holds. Then A(X') 
has minimal K'-type o,==X'+p'n-p'c: 

a,-(a1 +xt /a2+x2#.../ap+xp#0,0,.../0/-bq-yq/-bq.1 -yqH ,.,.,-b, -y , )+ 
(-q,-q+l,...,-q+(p-l)/p-q,p-q#...,p-q/p-(q-l)/p-(q-2)#...Jp) . 

It is convenient to rewrite this as follows. The lowest K-tVDe of A(X) is 
S1=(al+xl/a2 

^ = ( ^ , « 2 , . . . ^ ) , S2=(j31#j32,...,p ) oc1>«2>...>ocp>0, P1>p2>...>pq>0. 

The lowest K'-type of A(X') is a': 1 
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al-(«1#a2/...#«p#0#0/...0/-Pq#-Pq.1#.../-pi) + ( p - q , p - q , . . p - q ) . 

4. The H-module a and the KH module TH : 
The H-module corresponding to a' in the dual pair (H,K')«(U(2p,2q),U(n)) 

is a discrete series representation with lowest KH-type TH=THi ®TH2' 
tHi=(a1+xva2+x2y.../ap+xp,0/0/.../0) + ( in-p J n - ( p - l ) , . . . J n - l , | n ,in,...ln) 

TH2 = (b1+yi'b2+y2'- • 'bq+yq'0 '0--0) + ( ^ - q Jn- (q-1) , . . . Jn~ 1 J n J n , . . i n ) . 

5. TH restricted to K 
Now K^Sp(p)xSp(q) embeds in KH^U(2p)xU(2q), and it is an elementary 

exercise to see the highest weight vector for TH has weight S, the minimal 
K-type of A(X), verifying 5.5(ii)'. 

B (S0*(2n).Sp(p.q)) ( n<min(p.q) ): 
Let G = S0*(2n), G'«Sp(p,q). Then K*U(n), K'^Sp(p)xSp(q), 
H^S0*(2n)xS0*(2n) , KH^U(n)xU(n). 

1. Orbit Correspondence: 
X-(at ,a2#...#ak#b1 ,b2,...,bA) -» X,-(a1 ,a2,...yak,0/0/...0;-bA/-bA.1 ,.,.,-b, ,0,0,...,0) 
a1 > a 2 > . . . > a k > 0 > b 1 > b 2 > . . . > b q . 
Then X is regular if and only if all inequalites are strict except possibly 

ak=0. Then L=T and L*^U(l)nxSp(p-k,q-jB) (assuming ak>0). 
Furthermore the following conditions are equivalent: X is integral, X' is 
integral, all ai#b^ cl. We assume these conditions hold. 

2. Infinitesimal Character: 
The correspondence on infinitesimal character is given by: Xy....Xy, where 
Y=(c1 ,c2,...,cn) , Y'=(c1 yc2y...,cn,m-n/m-n-l/...,l) • 

3. Minimal K-types: 
The minimal K-type of the discrete series representation A(X) is 5: 
S=(a1 -Xl /a2-x2,.../ak-xk/b1 +yy ,b2+y2,-,bA+yA) 

+(0,1,...,k-l,-(JB-l),-(JB-2),...,•) , 
where x{ =K j I a.+b.<0 }|, y. =|{ j I b.+a.>0 }|. 

Assume X' is good, which holds if and only if ak, bA>m-n- l . Then A(X') 
has minimal K'-type 
^, = X'+P,n-P,c < a ^ a ' ^ o ' : 

a' =(a1-x1,a2-x2/...#ak-xk,0,0,...i0) + (q-p,q-p+l, . . . ,q-p + (k-l),0,0,. . . ,0) 
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<7,2 = (-bA-yv-bq.1-7q.l/...,-b1-yl/0/0/.../0) + (p-q,p-q + l,...,p-q+(JB-
1),0,0,...,0) . 

It is convenient to rewrite this as follows. The lowest K-type of A(X) is : 
§ = ( « ^ « 2 , . . . , ^ ^ ^ ^ , . . . , ^ ) #oc1>«2>...>ock>0>p1>j32>...>PA. 

The lowest K'-type of A(X') is Q1=O1^Q12 : 

a,1=(o<1,cx2,...,o<kA0,...0) + (q-p,q-p,...,q-p,0,0,...,0) 
a ' ^ - ^ , - ^ , . . . , - ^ ^ ^ 0)+ (p-q/p-q,...,p-q/0/0,...,0) . 

4. The H-module a and the KH module TH 
The H-module corresponding to a' in the dual pair 

(H,K')«*(S0*(2n)xS0*(2n),Sp(p)xSp(q)) is a discrete series 
representation with lowest KH-type fH-fHl ®rH2' 

TH =(a1 -x1 +q/a2-x2+q+l/.../ak-xk+q+(k-l)/p1p#.../p) 

^H2 = ("^'"^'-"'"^'b1+yi'P"(i"1)'b2+y2"P"(^'2>'"A+7A"P)-

5. TH restricted to K 
Now K^U(n) embeds in KH^U(n)xU(n) on the diagonal. The highest vector 

of rH has weight rHi +rH2=£ for K, as is easily seen, and 5.5(ii)' is verified 
one last t ime. 

This completes the proof of Theorem 5.3. 
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§6 Proof of Conjectures A and B in Special Cases 

In this section we prove some of the conjectures in the preceding section 
in special cases. We s tar t off with a discussion of the discrete series in the 
stable range. We then discuss the case when one member of the dual pair is 
compact. The third case considered is that of the trivial representation of 
various orthogonal groups, corresponding to some unipotent representations of 
Sp(2m,R). We conclude with a discussion of the case of (GL(m,IR),GL(n,]R)). 

Let (G,G') be an irreducible reductive dual pair, in the stable range with 
G small, such that G and G' have discrete series representations. Let Y:LG (or 
EG)-»LG' (or EG') be as in §5. Given ^:WRxSL(2,C)->LG (or EG), let 
^ W ^ S L ^ C H k } ' (or EG') be defined as in §4. 

6.1 Theorem: 
Suppose TT is a discrete series representation of G. Let TT' be the  

representation of G' which corresponds to TT via the representation  
correspondence. Assume TT' has regular infinitesimal character. Then 
Conjecture A holds in this case. That is suppose xi/:WmxSL(2.€) -» LG (or EG). 
and rtcTKV). Then Tt'cTK^'). 

proof: 
For the proof we drop the distinction between EG and LG. Choose SeLg 

such that EG is the E-group determined by S (cf. §2), and similarly for G\ Thus 
6=0 and EG=LG unless G=U(p,qf, and a similar s ta tement holds for G'. 

Let ^:WRxSL(2,C) -> EG be an admissible homomorphism such that 
TteTK^). Since TT is a discrete series representation, a possibility for T is the 
ordinary tempered parameter ^W^^ -» EG. We first consider this case. Thus 
^'sLte O is trivial> anci the centralizer of the image of C* is a Cartan subgroup 
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LT° of LG. Let ^':WmxSL(2yC) -> EG' be the map constructed in Conjecture A. We 
need to show Tt'eTKY'). 

Write Tt^A(X) as in Theorem 5.3, Tt'^A(X'). Recall L' is the centralizer of 
X' in G', and q^JB'+u' is the 9-stable parabolic subalgebra of q' defined by X'. 
Then Cv is a one-dimesional representation of L' (q[I)/ and TT'^:R (Cv) (cf. the 
discussion following 5.1). The conclusion will follow from the definition of the 
Ar thur -packe t TT(Y'). 

Thus we describe TK^') more carefully in this case. Recall LH'° is the 
identity component of the centralizer of Y(LG°) in LG'°. Let LT'°=Y(LT0). It 
follows from the above facts and the additional assumption tha t TT' has regular 
infinitesimal character tha t the identity component of the centralizer of ¥ ' (£*) 
in LG'° is Lc,0=<LT'°,LH,0>. Let EC=<LC°)>. The following lemma follows 
immediately from these facts and a simple case-by-case check. 

6.2 Lemma: 
(i) LC'° is isomorphic to LL'° 
(ii) EC is isomorphic to the E-group for L' determined bv the element 

6>£(lL). 

Now T':WmxSL(2/C) -» EC\ ¥'lc* is contained in the center of LC'°, and 

^'sLte c) corresPon<*s to the principal unipotent orbit in LC'°. 

6.3 Lemma: 
Suppose we are given G. EG. and a (quasi-) admissible homomorphism 

^ :WRxSL(2,C) -> EG, such tha t Y(C*) is contained in the center of LG°. 
Furthermore assume V\ZL(2 $) corresponds to the principal unipotent orbit in 

LG°. Then the Ar thur-packet of representations IKY) attached to Y is a set of  
one-dimensional representations. If G is connected T\(V) consists of a single  
representat ion TT. which is determined bv its infinitesimal character. 

proof: 
Suppose TtcTK^). By definitinon 2.1 the infinitesimal character when 

restricted to the semisimple par t of G is that of the trivial representation. 
Furthermore 0 in this case is the 0-orbit. The only representations whose 
wave-front set is contained in the 0-orbit are finite-dimensional 
representat ions. Thus TT is finite-dimensional; hence TT is one-dimensional. The 
remaining s ta tement follows immediately. 
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Returning to our discussion, we apply the lemma to C\ Suppose 
TT^cTT^C^'). If C has a factor isomorphic to 0(r,s) we take 7tc, to be trivial on 
that factor. First suppose EG'=LG'. By Lemma 6.2 EC is the E-group determined 
by the element p(u') . Choose q'=JB'eu' as above. By Definition 2.3 ft(7tcl) is 
contained in TTC^'). We may choose an isomorphism L'~C' to take Cv to 7tc,; 
this follows immediately from a consideration of infinitesimal characters. Thus 
7T,^!R(Cv)^(7Tcl)eTT(xi',)/ proving the Theorem in this case. 

Next consider EGVLG', so G'=U(r,sf. We need to chase the coverings a bit. 
In the notation of §5, G' is isomorphic to the covering of U(r,s) determined by 
b\ Let L'0 be the image of L' in U(r,s) under the projection map. Furthermore 
L'~(L'0)~, (the covering of L'0 determined by 6'). Now Cv is a genuine 
representation of (L')p(u^. It follows that Cv®Cp(u-) is naturally a genuine 
representation of L,^(L'0)8,cG,sl. Furthermore C'~L'0. By Lemma 6.2 EC is the 
E-group for C determined by S'+p(u'). Thus 7tcl«>Cp(u') may also be considered 
a genuine representation of (L'0)$1, and :R(CV)^:R(7Tc1) as before. 

Finally we need to consider the case when ^lSL(2 c) *s non — tr~ivia.1. 
Because of the assumption of regular infinitesimal character for G', this differs 
from the previous case only in compact factors for L and L', which causes no 
serious difficulty. 

Thus suppose ¥ is given and rtcTKV). Let L,q, and rrL be as in the 

definition of TT(y), such that Tt^^(TtL). Let y':WmxSL(2,C) -> EG' be the map 
constructed in §4 corresponding to XJ/. By the preceding discussion we choose 
^ f a s above such that TX'CJI(^). Thus Tt'^^Uv), for Lf, q^JB'eu* etc. as above. 
We need to show TT'cTK^'). 

Recall Tt has regular integral infinitesimal character, and this is the same 
as the infinitesimal character of TTl. Thus we have that 7TL (restricted to the 
derived group of L) is a unipotent representation with regular integral 
infinitesimal character. Hence TtL must be one-dimensional and ^lSL(2 o 
corresponds to the principal unipotent orbit of LL° (cf. §2). Since Tt is a 
discrete series representation, L must be compact. 

Now consider Let LC'°, q^JG'+u', etc. be as in the definition of TTW). 
From the above discussion we have that ^'lSL(2 c) corresponds to the principal 

unipotent orbit in LC'°. We have q'=>qf, L'^Lf, and ttCC^.JcTW), for some 
one-dimensional representation Cv. A case by case check shows that we may 
take L7Lf compact (by carrying over the fact that L is compact, and using the 
assumption that TT' has regular infinitesimal character). By induction by 
stages ([24], Theorem 6.3.6 ) we have T T ' ^ t C ^ ^ ^ C ^ t k U ^ ) , completing 
the proof of the Theorem. 
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We discuss Conjecture B in this case. Assume G' is connected. Consider 
{G{} (0<i<k) as in the s ta tement of tha t conjecture. Fix a discrete series 
representat ion Tt0=A(XQ) as in Theorem 6.1. Write the corresponding 
representat ion Tt' in the form A(X'Q) as in Theorem 5.3. We identify g, X etc. 
for {G.}. Let X be the infinitesimal character of Tt; we think of this as an 
infinitesimal character of G. for any i. We note that the condition in Theorem 
5.1 on the infinitesimal character of Tt' may be writ ten as a condition on X. 

Let TTG°W={A(wX0)| wcWK\W(g/t) be the ordinary L-packet of 

discrete series representat ions of GQ containing TtQ. Then for rt€lXGo(Y), Tt 
occurs in the representation correspondence. By Theorem 5.3 and the explicit 
orbit correspondence we see the corresponding representation TT' is of the 
form A(w'X'0) for some w ' cW^Wtg ' / t ' ) . Let q,0=^'0eu,0 be the parabolic 
subalgebra of q' defined by X'0, and let S=WKI\W7W(je,0/t') (with the obvious 

notation, cf. [4]). It follows from the definition of TTG (V) tha t 

TTG,(Y')={A(w,X'0) | w'€S}. Thus Tt -> Tt' establishes an injection TTG°(Y) 

TTG'(y). 
Fur thermore, given w'cS, from the orbit correspondence we see tha t 

there exists G{ such that w'X'0 occurs in the orbit correspondence for the pair 

(G^G1), and G{ is determined uniquely. It follows that TT 1 (Y) is in bijection 

with TrG,(xF'). 
If G' is 0(2p,2q) the same result holds, except tha t TTG,(XF') contains more 

representat ions, obtained from one-dimensional representat ions of L' which 
are non-trivial on an orthogonal group factor 0(r,s). Note tha t in this case 
G = Sp(2n,R) is the only inner form of G occuring. 

This proves: 

6.4 Theorem: 
Suppose we are in the setting of Theorem 6.1. 

(1) Suppose G'3*0(2p.2q). Then Conjecture B holds: H{Gi)(Y) ->JLG\T.) 
is a bijection. 

(2) Suppose G'=0(2p.2q). Then TTG(XF)̂ TTG'(XF') is an injection. 

Par t (2) could be strengthened by by using the '"true" Arthur-packets 
which are a refinement of these (cf. §2). 

We next discuss the case of dual pairs where one member of the pair is 
compact. This is similar to the preceding case with one important difference. 
The most interesting cases for the following theorem are for degenerate 
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representat ions, with (very) singular infinitesimal character, a case which was 
excluded in Theorem 6.1. 

We begin by summarizing the explicit representation correspondence; 
we will be quite brief, since this is discussed in detail in [2]. 

The situation is similar to the case of discrete series in the stable range. 
Suppose G is compact. Then the irreducible representations of G may be 
thought of as discrete series representations. Suppose Tt occurs in the 
representation correspondence, corresponding to TT'. Write r c ^ A ( X ) as above, 
with X regular. Thus L ( X ) ^ T , for T a compact Cartan subgroup of G. Let X ' e l ' * 
correspond to X via the orbit correspondence. Then, roughly speaking, 
T r ' ^ A ( X ' ) . 

The qualification is necessary for the following reason. Suppose the 
small group G is compact. For generic X as above/with corresponding X ' , JB(X' ) 

remains unchanged; call it J9q (JBq depends only on (G/}')). However for certain 
values of X , JB(X ' ) may increase in size; this happens if X ' becomes singular on 
a single extra simple root wall, even though X remains regular. Let TT=A(X ) as 
above, and let TT' correspond to TT (if G is 0(n) we may only have T T ' A ( X ' ) , see 
below). We write ftA or to distinguish between the corresponding functors. 

Now there is a one-dimensional representation Cv of L0 (or a covering 

group) such tha t T T ' C ^ (C^,). Here Lo satisfies L0=L0(X'0) for some X'0 
satisfying JB(X'0)^JB0. Furthermore ftA ( C ^ J ^ ^ d t ^ ) where TT'l is a unipotent 

representation of L=L (X ' ) (or a covering group). 
This situation may occur if (G,G')=(U(m),U(r,s)), m<r+s. In this case 

7r,^^Ao(C^1)^^A(7t,L). It may also arise if (G,G')=(0(m),Sp(2n,IR)), m<2n. 
Suppose A ( X ) is reducible, i.e. A (X )^Tte i t# , where iXn&TXu<s>sgn. Then either 
rr,^^Ao(C^1)^^A(Tt,L), or ^ ( ^ . ^ ^ ( T t ' L J ^ T t ' e T t ' , , where Tt'* corresponds to 
7ttt. The latter case may only occur if m<n. These are the only situations in 
which this occurs. 

The representations TT' occuring here are all highest weight modules, so 
it is not hard to identify them with modules of the form A ( X ' ) [3]. However we 
are making no restriction on the infinitesimal character of TT'; it is allowed to 
be quite singular, and as mentioned above these are the interesting cases. 

6.5 Theorem: 
Suppose either G or G' is compact. Suppose TT corresponds to TT' in the  

representation correspondence. Then TT is tempered. Choose_Y:WR -» LG (or EG) 
such that TTcTKY). this is possible because it is tempered. Then Conjecture A  
holds in this case: rtcJLiVl), for W constructed in §4. 
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Note there is no restriction on the infinitesimal character of TT' as there is 
in Theorem 6.1. As in Theorem, 6.1, it may be that TT' is contained in some 
other Ar thur -packe t TT(^f) with V\L(2 c> non-trivial. For example the trivial 
representation of G when G is compact may be obtained this way. As in 
Theorem 6.1 the conclusion of the Theorem should still hold; however since we 
do not restrict to regular infinitesimal character there are many more 
possibilités here , and we do not pursue this matter . We discuss the case of 
G=0(n) and TT one-dimensional below. 

proof: 
This follows from the main result of [2] just as Theorem 6.1 follows from 

§5. Thus suppose TT corresponds to TT' in the representation correspondence. If 
G is not compact Tt is a highest-weight module; in fact it follows from the 
explicit representation correspondence ([18], [10]) that TT is a discrete series 
representation. This obviously also holds if G is compact. In particular Tt has 
regular infinitesimal character. 

Suppose TtcTK^). Then TIW) is described as in the proof of Theorem 
6.1. Except in the exceptional cases mentioned preceding the s ta tement of the 
Theorem, TT '^ :R8(Cx ^ ^ ( T T ^ k T U ^ ' ) as in the proof of Theorem 6.1, proving 
the Theorem in these cases. 

So suppose G=0(m), G'=Sp(2n,IR), m=2k<2n. Suppose A(X) is reducible. 
Write A(X)^TT+eTT_, where TT± has highest weight of the form (a, ,a2,...,ak_1,0)± 
for a, >a2>...>ak_1 >0 in the usual notation. Then EC is isomorphic to the L-
group of C'=U(l)k"1xSp(2(n-k+l),IR), in particular LC'°^SO(2n-m + 3,C). 
Consider the map RxSL(2X) -» EC\ Then ^'lSL(2 c) corresponds to LC'°»0, 
where 0 is the prinicpal unipotent orbit of SO(2,C)xSO(2n-m + l ,C ) cSO(2n-
m+3,C). It follows that the irreducible representation of C with highest weight 
(a, +k-l,a2+k-2,...,ak_1 + l )S ( l , i , . . . , i ) is contained T T 0 ' ^ ' ) . Now TT+ occurs in the 
representation correspondence, and it follows from [2] that the corresponding 
representation TT'+ satisfies TT'C:RS(TTc1). Furthermore it follows that if TT_ 

occurs also, then Tt,+eTt,_^^8(Ttcl) (where TT'_ corresponds to TT'_). This proves 
the Theorem in this case. 

The case of U(r,s) is similar, and in fact simpler since G is connected. We 
omit the details. This completes the proof of the Theorem. 

Our next case is that of the Type II dual pair (G,G')=(GL(m,R,GL(n,IR)), 
m<n. The result in this case is complete and simple to state. 

We use the usual notation for induced representations of GL(n,R). Thus 
we let P be a parabolic subgroup of GL(n,R) and write Indp(o) for ordinary 
parabolic induction from P to G, where a is a representation of the Levi 
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component, extended to P by letting the nilradical act trivially. The Levi 
component of P will be products of groups of the form GL( ,IR) embedded on 
the diagonal. 

The representation correspondence is known completely and is very 
simple [21]. All representations of G occur. Suppose n=m. Then the 
representation Tt' of G' corresponding to a given representation TT of G is 
isomorphic to TT* (TT* denotes the contragredient). 

Suppose m < n , and let P' denote the upper triangular parabolic subgroup 
of G' with Levi factor GL(m,R)xGL(n-m,IR). Then Tt' is a constituent of 
Ind(7T*«>trivial). Here Tt* is taken as before on the GL(m,R) factor and the 
trivial representation is taken on GL(n-m,R). If Tt is unitary then this induced 
module is irreducible ([25],Theorem 17.6). 

Arthur-packets for G=GL(n,R) are described as follows. 
6.6 Definition: 

Suppose xF:WmxSL(2.C) -> LG , where y restricted to C*cWm is trivial. 
and y restricted to SL(2.€) corresponds to the principal unipotent orbit. Then 
HOL) is a singleton: TT(xi/)=(trivial representation) if vi/(j)=Id. and 
TF(xI/)={sgn representation) if Y(j )=-Id. 

This is a refinement of Definition 2.1; as defined there TT(Y) consists of 
both the trivial and the sgn representation. 

It follows from this definition that if Y:WRxSL(2,C) -> LG, with Y 
restricted to C* trivial, then there is a parabolic subgroup P such that 
TT(xF)={Indp(a)}, where a is the trivial or sgn representation of each GL( ,R) of 
P. Finally in general TT(Y)={Indp(a)} is a singleton, where o is either tempered 
or the trivial, sgn, or a "Speh" representation on each GL( ,R) factor of P. In all 
cases Indp(a) is irreducible. The only fact which we need is the following, 
which is immediate: if TtcTTCY), then Tr*cTT(r<»xF), where T is the outer 
automorphism of LG given by g-»*g"1 (gcLG°). Note that this property also holds 
for TT(¥) defined by 2.1 

6.7 Theorem: 
Conjecture A is t rue in the case of (GL(m.IR.GL(n.IR)). 

proof: 

Suppose TteTKY), and Tt1 corresponds to Tt. Assume m=n. Then T T ' ^ T T * , 

and identifying LG and LG' we have Y ^ r w . The result follows immediately in 
this case from the discussion preceding the Theorem. For m<n let P' denote a 
parabolic subgroup of G' with Levi component H'=GL(m,IR)xGL(n-
m,IR)cGL(n,IR). Now LH' embeds in LG' in the obvious way, and W factors 
through LH\ It follows immediately from the previous case and the 
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construction of T tha t (7t*§trivial)€TTH,(^,)/ and TT(y')={Indp((7t*®trivial)}. 
Since Tr,^Indpi(7t*§trivial) the proof of the Theorem is complete. 

We turn next to a consideration of the case of (0(p,q),Sp(2n,IR))/ 
p+q=2k<2n, and the Ar thur-packet for 0(p,q) consisting of the trivial and the 
sgn representat ion of 0(p,q). Let G.=0(2k-2j,2j) (0<j<k) , and let Tt. + denote 
the trivial representation of G.. Then Tt. + occurs in the representation 
correspondence; let TT'. + be the corresponding representations. Then TT'. + has 
been computed in [21]. Thus the lowest K'-type of TT'+ is one-dimensional, and 
is (k-2j/k-2j/.../k-2j). This representation has infinitesimal character (n -k ,n -k -
l , . . . , l ,0 , - l , -2 , . . . , - (k- l ) ) . Furthermore, it is not hard to see that the wave front 
set of Tt' is contained in the Sp(2n,C) orbit 0 through the element Y: 

6.8 Y= / 0n X \ k 
\ 0 n 0ft / where X=diag(M^T,0 ,0 / . . . /0 ) . 

Let L0'=LG'o#ft, where Q is the principal unipotent orbit of 
S0(2k,OxS0(2n-2k + l,C)cS0(2n+l,C)*LG'°. Then 0 ' is dual to L0' in the sense 
of [23]. It follows that Tt'. + is a unipotent representation corresponding to this 
orbit. 

Now suppose T:WmxSL(2,C) -» LG with ¥ | v trivial, and Y\sU2 o 

corresponding to the principal unipotent orbit in LG°^0(2k,C). 

6.9 Definition: 
The Ar thur-packet TTCY) for O(p.q) is (trivial.sgn). 

Again this is a refinement of Definition 2.1: as defined in §2, 
TT(xI/)={trivial,sgn,Tt1 ,Tt2}, the four one-dimensional representat ions of 0(p,q). 

Now for constructed as in §4, ^ ' l ^ ^ o corresponds to L0'. Thus by 

definition, Tt'j +cTTG,(vF') (0<j<k). We have proved: 

6.10 Theorem: 
Let ( G ^ ) = ( 0 ( p . , a ) , ^ ( 2 n , l J ) , p.+qr=2k<2n. 
(i) Conjecture A holds for V as above. Tt equal to the trivial  

representat ion of G. 
(ii) Conjecture B.l holds for ^ as above, a the trivial representation of 

0-, for Q, an inner form of G. —1/ t 
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In the next section we will discuss super-stable distributions, of which 
I { it. + is an example. Conjecture 7.5 says in this case that O ^ I T T ' . + is a stable 
distribution of Sp(2n,R). For example if 2k=2n then 0' is equal (as a character) 
to a representation induced from a one-dimensional representation of a 
maximal parabolic subgroup with Levi component GL(n,R). Since a one-
dimensional representation (in fact any representation) of GL(n,R) is stable, 
and parabolic induction preserves stability, 0' is stable. These characters are 
studied from a different point of view in [ 17 ] . 

It is of interest to study Tt'. . (corresponding the the sgn representation 
of G.) and Z{ ( it'. _ ). Recall TX\ _ is a quotient of a certain reducible module 
module TT'. which is itself a quotient of restricted to G' [ 1 1 ] . It may be that 
it is TT. _ rather than Tt'. _ which is the proper object of study. 
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§7 Concluding Remarks 

We conclude with a few further remarks , and a conjecture about 
endoscopic groups. 

The results of this paper may be extended in a number of ways. 
However, these methods are not intended as a method of proof in general, so 
pushing these results as far as possible is probably not worth the effort. For 
example the results on discrete series can certainly be strengthened quite a 
bit, both to representat ions with singular infinitesimal character, and to 
groups outside of the stable range. 

A comparison with the extensive results of Moeglin for the dual pair 
(0(2p,2q),Sp(2n,R)) [21] is very instructive. In broad terms Moeglin's result is 
the following, which is very similar to the p-adic case treated in [16]. 

Let G = Sp(2n,R), and G'=0(2p,2q), with n<p+q and p>q. Let Gk = Sp(2k,IR) 
(k=l,2,.. . ,n) and let G'2=0(2(p-q)+2z,2z) (z = 0,l,2,...). Consider any irreducible 
representation TT of Gk. Then TT occurs in the representation correspondence 
for the pairs (Gk,G2) for all z >N(TT ), for some N(TT ) depending on TT. We refer to 
this integer N(TT ) as "the first occurence of Tt". Suppose the first occurence of TT 
were known for all discrete series representations TT of Gk, for all k<n . Then 
the representat ion correspondence is obtained by real parabolic induction as 
follows. 

Suppose a representation TT of G occurs, corresponding to Tt' of G'. We 
write (P,a) for the Langlands parameters of a representation of G. Thus P is a 
parabolic subgroup of G, and a is a relative discrete series representation of 
the Levi component M of P. We use similar notation for G'. Now M is 
isomorphic to 

7.1 GL(l,IR)rxGL(2,IR)8xSp(2t,IR) 

for some r,s and t. Write o=o}®o2®X corresponding to this 
decomposition. Let N=N(T), and let r' denote the representation of 
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G'N~0(2k,2JB) corresponding to T in the first occurence of r . Then there is a 
parabolic subgroup P' of G', such that M' is isomorphic to 

7.2 GL(l,IR)r,xGL(l,IR)rxGL(2/IR)8xO(2k,2jB)y 

Let a '=a0§a1 ®a2®T', where oQ is a certain character of GL(l ,R)r. Then 
TT' is a constituent of the module obtained by inducing a1 from P' to G'. 

Suppose f' is a discrete series representation. Then this essentially gives 
the Langlands parameters of TT'. The most severe restriction of ([21], Condition 
(t)) insures that r ' is a discrete series representation. This forces k+JB=t or t+1. 

Thus it appears that the difficulty in computing the Langlands 
parameters is largely concentrated on the case of first occurence. It seems 
likely that this is where the derived functors play their essential role. Thus 
suppose the first occurence of TT is naturally described in terms of derived 
functor modules. Then perhaps the above construction may be pushed to give 
a complete description of the representation correspondence. This will not be 
expressed naturally in terms of Langlands parameters , except in the case 
k+JB=t or t+1 of the preceding paragraph. However it should be compatible 
with Ar thur-parameters . 

For example, in § IV.7 and IV.8 Moeglin studies certain discrete series TT 
of Sp(2n,R) for which condition (t) fails. The corresponding representations of 
0(2p,2q) may be realized in terms of derived functor modules. Given such TT 
there is a natural derived functor module A (A') which has the correct 
infinitesimal character and minimal K'-type; by ([21], IV.7, (5)') A(X') 
corresponds to TT. This holds even for the representations Tt' of 0(2p,2q) with 
almost trivial lowest K'-type. 

A true understanding of the conjectures should probably involve 
understanding the oscillator representation itself in terms of L-groups, 
something which is beyond us at the moment. 

We conclude with a conjecture about stable characters and lifting from 
endoscopic groups. We will gloss over details about embeddings of L-groups, 
E-groups and covering groups. We hope to discuss this issue in more detail in a 
later paper. 

Suppose we are in the setting of conjecture B, and as in that conjecture 

there is a bijection T T ^ Y ) -» TT0'^'), where TT{Gi>(̂ ) is considered as a set of 
representations of {G{}. By a virtual character of a group we now allow a finite 
complex linear combination of irreducible characters. 
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7.3 Definition: 
1. A virtual character of {Ĝ } is a formal sum ©=©1 +©.2+...+©k where ©i is a  

virtual character of G.. 
2. The virtual character © corresponds to the virtual character 0'=E. a.0^ 

of G' if ©i corresponds to ©'. for all i. 
3. The virtual character © is super-s table only if ©i is stable for all i. 

The complete definition of super-s table is stronger than this, which we 
leave to a later paper and use only this pa r t of the definition. An example of a 
super-s table distribution is the following. Let {G{ } be a complete set of 
representat ives for the isomorphism classes of inner forms of G. Let 
^:WR -> LG be the parameter corresponding to an L-packet TTG(XF) of discrete 
series representat ions. Let ©=1.0. be the stable sum of discrete series 
characters in TTG(XI/). The same definition holds for G{, let S{ be the 
corresponding stable virtual character of G.. Then I . 0. is a super-s table 
virtual character. Another example is E{ ciTti where Tti is the trivial 
representat ion of G£, and cL = ±1. 

We now consider an Arthur-packet to be a complex vector space of 
virtual characters (spanned by the irreducible characters in it). In general an 
Ar thur -packet is conjectured to contain a distinguished super-s table virtual 
character. For example the Arthur-packets of Theorem 6.1 are either discrete 
series packets, or those discussed in [4]. Thus we have: 

7.3 Theorem: 
Suppose we are in the setting of Theorem 6.1. Then there is a  

distinguished super-s table virtual character ©Q (resp. ©^) in T\(V) (resp. 
H O O ) . 

In any event , assume there is such a virtual character © qCTKY ) . Write 
TT(xJ/)=<7ti .>, where (for all i and j) rt. . is an irreducible representation of G., 
and < > denotes complex span. For S. .e€ write ©0=Ei . S. . ^ . ; this defines 

<8u>-

Supppose we are in the setting of Conjecture B. Write the bijection 
T K ^ H T W ) as Tti . ->it\ . . Define 6. . and S'. . as above (applied to G or G'). 
Define a new bijection Y:TT(^ HTT(^'') via T t .J -^ ' .yS .^ . 1X\.. Thus Y(©0) = ©'0. 

Now suppose H is an endoscopic group for G, and xF:WmxSL(2,C)^LH->LG. 

Thus LH° is the centralizer of a semi-simple element h of LG°. Then LiftHG is 
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defined, taking super-s table virtual characters in TKY) to virtual characters in 
TKY), where these Arthur-packets are considered as spaces of virtual 
characters of the inner forms of G and H. Leth*=Y(h) , and letLH*° be the 
centralizer of h* in LH'°. Note that LH*° contains the fixed group LH'°. Suppose 
LH'° is extended to LH', with corresponding endoscopic group H'. Then we have 
Y,:WmxSL(2/CHLH,^LG,/ and we obtain TT^Y'). We have the following 
diagram: 

7.5 Conjecture C: 
Suppose we are in the setting of Conjecture B. With Y^CY) -> TT(^) as 

above: 

7.4 WmxSL(2,C) LG LG LH.0 
T 

SLC2.C) 

LH LH' 

1. l ( f i o ) - f i ^ . 
2. Suppose ©=LiftI[G(©I[ )cTT(vl/). for ©I[cTTH(V) a super-s table virtual  

character. Then there is a super-stable virtual character ©I[.€TrH,(Y') such that 

Y(©)=LiftI[.G'(©I[.)€TT(V'). 
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