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UNIPOTENT AUTOMORPHIC REPRESENTATIONS: CONJECTURES 

James Arthur 

Foreword. 

In these notes, we shall attempt to make sense of the notions of semisimple and unipotent 
representations in the context of automorphic forms. Our goal is to formulate some conjectures, 
both local and global, which were originally motivated by the trace formula. Some of these con­
jectures were stated less generally in lectures [2] at the University of Maryland. The present 
paper is an update of these lectures. We have tried to incorporate subsequent mathematical 
developments into a more comprehensive discussion of the conjectures. Even so, we have been 
forced for several reasons to work at a level of generality at which there is yet little evidence. 
The reader may prefer to regard the conjectures as hypotheses, to be modified if necessary in the 
face of further developments. 

We had originally intended to describe in detail how the conjectures are related to the spec­
tral side of the trace formula. However, we decided instead to discuss the examples of Adams 
and Johnson (§5), and the applications of the conjectures to intertwining operators (§7) and to the 
cohomology of Shimura varieties (§8) . We shall leave the global motivation for another paper 
[5]. 

1 would like to thank Robert Kottwitz and Diana Shelstad for a number of very helpful 
conversations, particularly on the topic of endoscopy. Any remaining inaccuracies are due 
entirely to me. 

Notational Conventions: Suppose that H is a locally compact group. We shall write n(H) 
for the set of equivalence classes of irreducible (continuous) representations of H, and nunit(H) 
for the subset of representations in 11(H) which are unitarizable. The symbol Z(H) will denote 
the center of H, and 7t0(H) will stand for the group of connected components of H. 
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§1. Introduction. 
Suppose that G is a connected reductive algebraic group over a field F. We shall always 

assume that F has characteristic 0. For sections 1 and 2 we shall also take F to be a number 
field. The adeles AF of F form a locally compact ring, in which F is embedded diagonally 
as a subring. We can take the group G(AF) of adelic points of G, which contains G(F) as a 
discrete subgroup. The basic analytic object is the regular representation 

(R(y)((>)(x) = 4>(xy), <t>eL2(G(F)\G(AF)), x,yeG(AF) . 

It is a unitary representation of G(AF) on the Hubert space of square integrable functions on 
G(F)\G(AF) (relative to the right-invariant measure). A basic goal of the modern theory of auto­
morphic forms is to deduce information about the decomposition of R into irreducible represen­
tations. 

Let n(G) be the set of irreducible representations TCG n^^GCAp)) which occur in the 
decomposition of R. In general, there will be a part of R which decomposes discretely and a 
part which decomposes continuously, so the definition is somewhat informal. Nevertheless, the 
theory of Eisenstein series [28] reduces the study of the decomposition of R to that of the 
discrete spectrum. Set 

G(Ap)1 = {xeG(AF): lX(x)l = 1, %eX(G)F} , 

where I • I is the absolute value on AF, and X(G)F is the group of F-rational characters on 
G. For example, if G = GL(n), G(Ap)1 is the group of matrices in GL(n,AF) whose deter­
minant has absolute value 1. In general, G(Ap)1 is a subgroup of G(AF) which contains 
G(F) as a discrete subgroup of finite co-volume. If TC is any representation in nunit(G(AF)), 
let mo(7i) be the multiplicity with which the restriction of % to G(Ap)1 occurs as a direct 
summand in L^G^XGCAp)1). The nonnegative integers m^rc), and their analogues for 
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smaller groups, essentially determine the decomposition of R. More precisely, let n0(G) be the 
set of representations KG nunit(G(AF)) with m^rc) * 0. The theory of Eisenstein series gives a 
decomposition of 11(G) into induced representations 

/p(TCi) , ^erioCMp) , 

where P = MPNP ranges over parabolic subgroups of G. 

For each valuation v of F, let Fv be the completion of F at v. We can write G(AF) 
as a restricted direct product of the local groups G(FV), and a given representation in I1(G(AF)) 
has a unique decomposition [11] 

7t=<g)7tv , 7TvGn(G(Fv)) . 
v 

Moreover, almost all the representations TUv are unramifled. This means that for each valuation 
v outside a finite set S, 7CV is an irreducible quotient of the representation induced from an 
unramifled quasi-character on a Borel subgroup. Any such TCv is determined by a unique sem-
isimple conjugacy class a(7iv) = av(rc) in the L-group LG of G [8]. In other words, K 
defines a family 

G(7t) = {OV(TC):V^S} 

of semisimple conjugacy classes in the complex group LG. Let us write Z(G) for the set of 
families a = {ov: v4S] of semisimple conjugacy classes in LG such that a = c(n) for some 
representation K in n(G). (Strictly speaking, the elements in X(G) are equivalence classes, 
two families a and a' being equivalent if av = a'v for almost all v.) The representations 
7ten(G) are believed to contain arithmetic information of a fundamental nature. This will show 
up in the data needed to describe the different conjugacy classes in a family O(K). 

If G = GL(n) and K is cuspidal, the family G(TZ) uniquely determines n. This is the 
theorem of strong multiplicity one. In general, however, the map n —» G(TC) from I~I(G) onto 
E(G) is not injective. One could consider the problem of decomposing R in two stages, 
namely, to describe the set Z(G), and to determine the fibres of the map n —> o(7c). This is a 
Utopian view of what can actually be accomplished in practice, but it is a useful way to motivate 
some of the constructions in the subject. For example, the theory of endoscopy, due to Langlands 
and Shelstad, is aimed especially at the second aspect of the problem. One goal of the theory is 
to partition the representations in n(G(AF)) into certain classes, L-packets, according to the 
arithmetic properties of the local representations n(G(Fv)). The representations in the intersec­
tion of an L-packet with IT(G) should then all lie in the same fibre. 

The theory of endoscopy works best for tempered representations. Recall that the subset 
ntemp(G(Fv)) c ITunit(G(Fv)) of tempered representations consists of the irreducible constituents 
in the spectral decomposition of L2(G(FV)). (We refer the reader to [13, §25] and [14, §14] for 
the formal definition of a tempered representation.) Let ntemp(G(AF)) be the subset of represen­
tations in nunit(G(AF)) of the form 
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n = <g)rcv , 7tventemp(G(Fv)) . 

The theory of endoscopy suggests conjectural formulas for the multiplicities m0(7t), when K 
belongs to IItemp(G(AF)). (See the examples in [24] and [38].) This amounts to a conjectural 
description of the tempered representations in 11(G). However, the formulas break down for 
nontempered representations. The purpose of these notes is to describe a conjectural extension of 
the theory which would account for all the representations in 11(G). 

Much of this conference has been based on the dual nature of conjugacy classes and charac­
ters. In this spirit, we should think of the tempered representations in 11(G) as semisimple auto-
morphic representations. Our goal is to decide what constitutes a unipotent automorphic 
representation. More generally we would like to know how to build arbitrary representations in 
n(G) from semisimple and unipotent automorphic representations. 

Stated slightly differently, our aims could be described as follows: Given a representation n 
in the complement of ITtemp(G(AF)) in Ilunit(G(AF)), describe m^Tc) in terms of the multipli­
cities 

mofai) . ^ len^pCG^Ap)) , 

for groups Gi of dimension smaller than G. This is of course a global problem. Its local 
analogue is essentially that of the unitary dual: Classify the representations KW in the comple­
ment of ntemp(G(Fv)) in IIunit(G(Fv)). The parameters we shall define (§4, §6, §8) seem to 
owe their existence to the global problem. For example, they suggest an immediate definition for 
a unipotent automorphic representation, while on the other hand, the definition of a unipotent 
representation for a local group is more subtle. (See [7].) However, the existence of nontem­
pered automorphic forms does mean that the local and global problems are related. In particular, 
the global parameters should lead to many interesting nontempered representations of the local 
groups G(FV). 

§2. The case of GL(n). 

As motivation for what follows, we shall discuss the example of GL(n). Here the situation 
is rather simple. We shall state the conjectural description of the discrete spectrum for GL(n) in 
the form of two hypotheses. 

We should first recall the space of cusp forms. Let Lc2usp(G(F)\G(AF)1) be the space of 

functions (])GL2(G(F)\G(Af)1) such that 

J <Knx)dn = 0 
Np(F)\NP(AF) 

for almost all points xeG(AF) , and for every proper parabolic subgroup P = MPNP of G. It 
is known that this space is contained in the discrete spectrum. That is, the regular representation 
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of G(Ap)1 on L^pCGCF^GCAp)1) decomposes into a direct sum of irreducible representations, 
with finite multiplicities. If K is any representation in IIunit(G(AF)), let mcusp(7t) be the mul­
tiplicity in L^pCGCF^GCAp)1) of the restriction of n to G(Ap)1. Then 

mcusp№ ^ m0(7i) . 

If ncusp(G) denotes the set of iz with mcusp(7r) * 0, we have 

ncusp(G) c n0(G) e nunit(G(AF)) . 

These definitions of course hold for any G. If G = GL(n), the multiplicity one theorem asserts 

that mcusp(7c) equals 0 or 1. 

Hypothesis 2.1: Any unitary cuspidal automorphic representation of GL(n) is tempered. That 
is, ncusp(GL(n)) is contained in ntemp(GL(n,AF)). • 

This is the generalized Ramanujan conjecture, whose statement we have taken from [29, §2]. 
For GL(n), the global problem becomes that of describing m^rc) in terms of the cuspidal mul­
tiplicities m^pCT^). 

Suppose that v is a valuation of F. The unitary dual of GL(n,Fv) has been classified by 
Vogan [49] if v is Archimedean, and by Tadic [45] if v is discrete. However, one does not 
need the complete classification to describe the expected local constituents of representations in 
n0(GL(n)). Suppose that d is a divisor of n, and that Pd = MdNd is the block upper triangu­
lar parabolic subgroup of GL(n) attached to the partition 

(d,d, ...,d) , n = dm , 
m 

of n. Suppose that TCv is a representation in ntemp(GLd(Fv)). Then the representation 

m -i(m-2i+l) 
«<8)5d)(g) = <S> 7Cv(gi) I det gi I 2 

i=l 
defined for any element 

m m 
g = I ! & e Yl GL(d,Fv) = Md(Fv) , 

i=l i=l 

belongs to n(Md(Fv)). Let /pd(7Cy<g)8d) be the corresponding induced representation of 

GL(n,Fv). The Langlands quotient /pd(7Cy<g>5d) belongs to n(GL(n,Fv)), and is the unique 
irreducible quotient of Ipd(K'w<&8d). 

Theorem: (Speh [42], Tadic [45]). The representation JVd(n'v <g)8d) is unitary. • 

Thus, if 

* = T i . e n ^ G U d ^ ) ) , 
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is a representation in nunit(GL(d,AF)), we can form the unitary representation ® / P (Tz'w®5d) of 
V 

GL(n,AF). The following conjectural description of the discrete spectrum of GL(n) is widely 
believed, but has not yet been established, even modulo Hypothesis 2.1. (For more information, 
see [16].) 

Hypothesis 2.2: The set n0(GL(n)) is the disjoint union, over all divisors d of n and all 
representations 7tencusp(GL(d)), of the representations 

(2.1) ®/Pd«®5d) • • 
V 

The representations in ncusp(GL(n)) should be the semisimple elements in n0(GL(n)). 
Some of these are parametrized by certain irreducible complex representations 

Gal(F/F) -> GL(n,C) 

of the Galois group of F. In fact, any such representation of the Galois group is thought to be 
attached to an automorphic representation. This is part of Langlands' functoriality principle. 
From this point of view, it makes sense to parametrize more general representations in 
n0(GL(n)) by equivalence classes of irreducible complex representations 

(2.2) \|/: Gal(F/F) x SL(2,C) -> GL(n,C) . 

Indeed, any such \\f is a tensor product Vss®¥uniP» where 

Yss: Gal(F/F) -> GL(d,C) 

and 

¥unip: SL(2,C) -* GL(m,C) 

1 1 
are irreducible representations, with n = dm. In particular, \|/unjp Q ^ is the principal unipo-

tent element in GL(m,C), the one whose Jordan normal form has one block. If \j/ss 
parametrizes the cuspidal automorphic representation ne IIcusp(GL(d)), \j/ itself will parametrize 
the representation (2.1). The analogy with the Jordan decomposition for conjugacy classes is 
clear. In particular, a unipotent automorphic representation in IIo(GL(n)) will be one for which 
\j/ss is trivial. That is, \|Vjp corresponds to the principal unipotent conjugacy class in GL(n,C). 
The associated representation (2.1) is just the trivial one dimensional representation of GL(n,AF). 

A similar parametrization could be used for the larger set n(GL(n)). One would simply not 
insist that the n-dimensional representations (2.2) be irreducible. The unipotent automorphic 
representations in n(GL(n)) are then the representations of GL(n,AF) induced from trivial one 
dimensional representations of parabolic subgroups P(AF) of GL(n,AF). It will not be possible 
to parametrize all the representations in IT(GL(n)) (or no(GL(n))) in this way. To do so 
would require replacing Gal(F/F) by some larger group. However, the point is irrelevant to the 

18 



UNIPOTENT AUTOMORPHIC REPRESENTATIONS : CONJECTURES 

present purpose, which is to illustrate how one can describe nontempered automorphic representa­
tions in terms of tempered ones. 

A general implication of the functoriality principle is the existence of a map from n-
dimensional representations of the Weil group WF of F to automorphic representations of 
GL(n). (The reader is referred to [46] for generalities on the Weil group, and to [8] for the func­
toriality principle.) How does this relate to our parameter The absolute value on the idele 
class group of F provides a canonical map w -» I w I of WF to the positive real numbers. 
Moreover, any representation of Gal(F/F) lifts to a representation of WF. For \|/ as above, the 
map 

IwT72IwT72IwT72IwT72 
IwT72IwT7 

0 
0 

IwT72. 
weWF , 

becomes an n-dimensional representation of the Weil group. Moreover, (2.1) is precisely the 
automorphic representation attached to <t>v by the functoriality principle. Keep in mind that the 
general automorphic representation of GL(n) does not belong to n0(GL(n)), or even to 
n(GL(n)). The parameters (2.2) provide a convenient means to characterize those representations 
of WF which are tied to these sets. 

The group GL(n) is special, in that the decomposition of the discrete spectrum into cuspi­
dal and residual components matches its decomposition into tempered and nontempered represen­
tations. (Of course, we are relying here on both Hypotheses 2.1 and 2.2.) This will not be true 
in general. For general G, the noncuspidal representations in the discrete spectrum are quite 
sparse. I do not know a good way to characterize them. On the other hand, after the examples 
of Kurokawa [23] and Howe and Piatetskii-Shapiro [15] for Sp(4), it was clear that there would 
be many nontempered cusp forms. For general G, the decomposition of the discrete spectrum 
into tempered and nontempered representations seems to be quite nice. It is this second decom­
position, suitably interpreted, which runs parallel to that of GL(n). 

§3. Endoscopy. 
Before we can consider nontempered representations for general G, we must review some 

of the ideas connected with endoscopy. These ideas are part of a theory of Langlands and Shel-
stad, which was originally motivated by the trace formula and its conjectured relation to algebraic 
geometry [24], [31]. The theory is now developing a close connection with the harmonic analysis 
on local groups [40], [41], [33]. 

There are three notions to consider: stable distributions, endoscopic groups, and transfer of 
functions. We shall discuss them in turn. 

Suppose first that F is a local field. Recall that a distribution on G(F) is invariant if it 
remains unchanged under conjugation by G(F). Typical examples are the invariant orbital 

19 



/. ARTHUR 

integrals 

fG(Y) = J f(x"V)dx, feCc~(G(F)), 
GY(F)\G(F) 

in which y is a strongly regular element in G(F). It can be shown that any invariant distribu­
tion on G(F) lies in the closed linear span of the orbital integrals; that is, it annihilates functions 
f such that fG(y) vanishes for all y. (This property is most difficult to establish for 
Archimedean fields, and the proof has not been published. We have mentioned it only for 
motivation, however, and we will not need to use it in what follows.) For any y, let yG be the 
associated stable conjugacy class. It is the intersection of G(F) with the conjugacy class of y 
in G(F), and is a finite union of conjugacy classes {y{} in G(F). The stable orbital integral 
of f at yG is the sum 

AYG) = ZfG(Yi) • 
i 

A stable distribution on G(F) is any invariant distribution which lies in the closed linear span 
of the stable orbital integrals. That is, it annihilates any function f such that ^(YG) vanishes 
for every yG. The theory of endoscopy describes invariant distributions on G in terms of stable 
distributions on certain groups H of dimension less than or equal to G. It is enough to analyze 
invariant orbital integrals in terms of stable orbital integrals. 

The groups H are the endoscopic groups for which the theory is named. They are defined 
if F is either local or global. As in [33, §1], we shall denote the L-group by 

LG = G x WF , 

where G is the complex "dual group", and WF is the Weil group of F. The Weil group acts 
on G through the Galois group T - Gal(F/F). We shall also fix an inner twist 

rj: G -» G* , 

where G* is quasi-split over F. Then there is a canonical identification LG —> LG* between 
the L-groups of G and G*. (See [33, (1.2)].) 

An endoscopic group is part of an endoscopic datum (H,// ,s£) for G, the definition of 
which we take from [33, (1.2)]. Then H is a quasi split group over F, H is a split extension 

1 —> H —> / / —» Wp —» 1 , 

s is a semisimple element in G, and £, is an L-embedding of H into LG. It is required that 
^(H) be the connected centralizer of s in G, and that 

s^Ws"1 = a(w(h))^(h) , heH , 

where w(h) is the image of h in WF, and a(-) is a 1-cocycle of WF in Z(G) which is 
trivial if F is local, and is locally trivial if F is global. It is also required that the actions of 
WF on H defined by H and LH be the same modulo inner automorphism. Two endoscopic 

20 



UNIPOTENT AUTOMORPHIC REPRESENTATIONS : CONJECTURES 

data (H,//,s,£) and (H',//',s',^') are said to be equivalent if there exist dual isomorphisms 
a: H -> H' and P: H' -> / / , together with an element geG, such that 

g^(p(h'))g-1 = , h ' e / T , 

and 

gsg"1 = z£Y , 

where z belongs to Z(G) and lies in the centralizer of £'(//') in G. Finally, an endos­
copic datum is said to be elliptic if ^(H) is not contained in any proper parabolic subgroup of 
LG. 

There is a simple class of examples one can keep in mind. Suppose that G is a split group 
of adjoint type. Then G is semisimple and simply connected. A theorem of Steinberg asserts 
that the centralizer of a semisimple element s in G is connected. It follows that for any 
endoscopic datum attached to s, the group H is also split. It is completely determined by s. 
The elliptic endoscopic data can thus be obtained in the familiar way from the extended Dynkin 
diagram. They are attached to vertices whose coefficient in the highest root is greater than one. 
For example, if G = SO(2n+l), G = Sp(2n,C), and the diagram is 

1 2 2 2 2 1 
0 ^ = 0 — O - • • • - 0 — 0 - 4 = 0 ' 

Deleting vertices with coefficient 2, we obtain 

H = Sp(2r,C) x Sp(2n-2r, C) , 0 < r < n , 

so that the proper elliptic endoscopic groups are of the form 

H = S0(2r+1) x SO(2n-2r+l) . 

The group H need not be isomorphic to the L-group LH. The minor complications that 
this causes are easily dealt with however [33, (4.4)], so we shall assume that for a given endos­
copic datum, we have also been given an isomorphism of LH with H. We shall also assume 
for the rest of this section that F is local. Langlands and Shelstad have defined a function 
A(yH,Y), where YH is a stable conjugacy class in H(F) that is G-regular, and Y is a regular 
conjugacy class in G(F) [33]. This function vanishes unless Y belongs to a certain stable conju­
gacy class YG m G(F) (possibly empty), which is associated to YH- For anv Ĝ C<T°(G(F)), 
the finite sum 

fH(YH) = £A(YH,Y)fG(Y) 
7 

then gives a function fH on the set of classes (YH)-

For a given H, the transfer factor A(YH,Y) is canonically defined only up to a scalar multi­
ple. The same is therefore true of the function fH. However, if H equals G*, A(YH,Y) is JUST 
a constant, so it can be normalized. Following the convention of [41], we shall set A(YG*,Y) 
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equal to the sign 

e(G) = e(G,F) 

defined by Kottwitz in [20]. For example, if F = R, 

e(G,F) = (-l)q(GM(G*) , 

where q(G) equals one half the dimension of the symmetric space attached to G. 

The functions A(yH,y) are the transfer factors for orbital integrals. Langlands and Shelstad 
anticipate that there is a function ge C ~(H(F)) such that 

^(YH) = gH(YH) • 

If f is archimedean, the map f*1 is the same as the one defined by Shelstad in [41]. In this 
case the function g is known to exist. For p-adic F, Langlands and Shelstad have shown how 
to reduce the existence of g to a local question in an invariant neighbourhood of 1 in H(F). 
In any case, g will not be uniquely determined. However, if S is a stable distribution on 
H(F), S(g) will depend only on fH. 

The regular orbital integrals are a natural family of invariant distributions on G(F). A 
second family is provided by the tempered characters. For each tempered representation 
7ieIItemp(G(F)), 

fG(7c) = tr 7i(f), feCc~(G(F)), 

is obviously an invariant distribution. The tempered representations are also expected to provide 
a second natural family of stable distributions. This is known if F is archimedean. In fact, 
Shelstad [41] has shown that there is a theory of transfer of tempered characters which is parallel 
to that of orbital integrals. Let us recall her results. 

Assume that F = R. Recall [8] that 

O(G) = 0(G,R) 

denotes the set of admissible maps 

<|>: WR -> k } , 

determined up to G conjugacy in LG, while <3>temp(G) denotes the subset of maps (|)e<]>(G) 
whose image projects onto a bounded subset of G. Associated to any <|)e O(G) there is a finite 
packet of irreducible representations. These representations are tempered if and only if <|> 
belongs to 3>temp(G)- If <t> does belong to Ot (G), it turns out that the distribution 

IwT72IwT72 

IwT72IwT 
fG00 > feCc~(G(R)), 

is stable. 

Suppose that H is as above, and that (|)H is an element in Otemp(H). If f belongs to 
CC°°(G(R)), f*1 is the image of a function in CC°°(H(R)) whose value on any stable distribution 
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on H(1R) is uniquely determined. Therefore, f^C^n) is well defined. Shelstad studies f^ityn) 
as a function of f. She obtains a formula 

^ ( • H ) = LA(<to,7c)fG(70 , 
71 

for a certain complex valued function A(<|)H, •) on ntemp(G(R)). If <))e ®xemp(G) *s defined by 
the composition 

WJR —> H —> G , 

then A((f)H, ) is supported on the finite subset 11^ of ntemp(G(R)). The functions A((|)H,TC) 
are dual analogues of the transfer factors for orbital integrals. They are closely related to the 
representation theory of a certain finite group. 

Suppose that <|> is an element in t̂empCG). Let S<j, denote the centralizer in G of the 
image <|>(WR). Set 

S§ ~ S^/S^ = Tt̂ Sjj,) , 

the finite group of connected components of S^. Now, suppose that s is a semisimple element 
in S^. Take H to be the connected centralizer of s in G, and set 

H = H4>(WR) . 

Then H is a split extension of WJR by H. The action of WR on H can be modified by 
inner automorphisms to yield an L-action. We can therefore identify H with the dual of a well 
defined quasi-split group H = Hs over R. Since H comes with an embedding into LG, the 
element s determines an endoscopic datum. We shall assume for simplicity that H is iso­
morphic to LH. Then for any such isomorphism there is a unique parameter (|)He Otemp(H) such 
that the diagram 

IwT72 
WTO 

MO 

LH = IwT72 

is commutative. The distribution 

fH«t>H) feCT(G(R)) 

is independent of the isomorphism. We therefore have a function 

8(s,Jt) = A(<|)H,7C) 

on x n$, with the property that 

fH(<t>H) = X 8(s,n)fG(Jc), 
716 I!* 

feCc~(G(R))f 

for H = HS. 
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The transfer factors are uniquely determined up to a constant multiple. It follows that for 
any fixed Ttje n^, the function 

<s",7i:l7c1> = 8(s,7c)8(s,7i1)~1 , ( s^JeS^xn^ , 

is canonically defined. One of the results of [41] asserts that, as the notation suggests, the func­
tion depends only on the image s" of s in Moreover, 

<"s,7C l7C!> , "seS^ , 

is an irreducible character on S^. In fact, Shelstad shows that for any fixed 7Cb the map 
7C —» <-,7CITC1> is an an injection from 11^ into the set 11(5^) of (irreducible) characters on 
S (j,. This gives an elegant way to index the representations in the packet n^. 

We should recall that the group S§ is abelian. The quotient 

S</S0° Z(G)r = V7C0(Z(G)r) 

is in fact a product of several copies of Z/2Z. (Here, Z(G)r denotes the group of 
T = Gal(C/R)-invariant elements in the center Z(G).) Shelstad actually takes to be this quo­
tient, since the characters < • , TC I TCj > are all trivial on the center. However, in more general 
situations one encounters nonabelian finite groups. A corresponding irreducible representation 
could have a central character which is essential, in the sense that it remains nontrivial under 
twisting by any one dimensional character. That one must allow for this possibility was pointed 
out to me by Vogan, and more recently, Kottwitz. 

§4. Conjectures for real groups. 
Endoscopy works beautifully for characters of real groups which are tempered. However, 

the theory breaks down for nontempered characters. For example, there seems to be no stable 
distribution naturally associated with a general irreducible character. What goes wrong? 

We continue to take F = R. Suppose that (J) is an arbitrary parameter in O(G). Then the 
representations in 11^ are Langlands quotients. More precisely, there is a parabolic subgroup 
P = MN of G, a tempered parameter <J)MeOtemp(M), and a character 

%M: M(1R) -> R* , 

which is positive on the chamber defined by P, such that 

n0 = UP(TCM®XM): rcMen0M} . 

Here /P(TCM®XM) *s me unique irreducible quotient of the induced representation /p(7tM<g)XM). 
(Such induced representations are often called standard representations.) Now <]) is just a twist 
of <|)M by the parameter of the character %M. It follows easily from the positivity of %M that 
the centralizer S^ lies in M, and in fact equals S^ , the centralizer of ^MCWR) in M. We 
set 
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8(S,TU) = 5(s,7iM) SG S0 = Ŝ M , 

for any representation 

71 = /P(TCM(S)XM) > ^ e l l ^ , 

in n^. Thus, the functions 8(s,7i) can be defined for a nontempered parameter. We can also 
define the character 

<S",7Cl7l1> = 8(s,7T)8(s,7t1)~1 , SGSjj, , 

on for any pair of representations 7i and TZX in the nontempered packet n^. 

However, the distribution 

Z fc№> feCc~(G(R)), 
TIG 

is generally not stable. Moreover, even if we could find a point se such that the correspond­
ing distribution on HS(R) = H(R) was stable, the distribution fH(<t>n) would not in general 
equal 

£ 5(S,7C)fG(7C) . 
KG 

The problem is that contains Langlands quotients, the character theory of which requires the 
generalized Kazhdan-Lusztig algorithm, and is very complicated. On the other hand, the charac­
ter theory of the standard representations 

% = {/p(71m®XM)- K M ^ n ^ } 

is similar to that of the representations in n ^ . In particular, the two assertions above would 
hold if we replaced the packet by fl^. 

To deal with nontempered representations, it is necessary to introduce new parameters. We 
define 

*F(G) = ^(G,R) 

to be the set of G-conjugacy classes of maps 

\|/: WRxSL(2,C) -> LG 

such that the restriction 

WR LG A LG* 

lies in ^)temp(^*)- Notice that we do not impose the usual condition that \\f be relevant. (See 
[8, 8.2(ii)].) As a consequence, \j/ will sometime parametrize an empty set of representations. 
We have adopted this level of generality with the global role of the parameters in mind, rather 
than their possible application to the classification of local representations. For each xj/e^G), 
we define a parameter §WG 0(G*) by setting 
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equal to the image of 

<t>¥(w) , weWR , 

IwT72 
lwl% 

0 

0 

lw|-1/2 

in LG*. As we remarked in [2, p. 10], the Dynkin classification of unipotent elements in G 

implies that <|> —» §y is an injection from ^(G) into 0(G*). In particular, in the case 

G = G*, we have embeddings 

<*>temp(G*) <= ^(G*) C 0(G*) . 

Suppose that \\f is an arbitrary parameter in ^(G). Set S¥ equal to the centralizer in G 

of the image \|/(WR x SL(2,C)), and write s —> s~ for the projection from S¥ onto the finite 

group 

~ S^/S^ — 7ÜQ(Sy) , 

of components. We have identified LG with LG*, so we also have the subgroup S ^ of G. 

It obviously contains S^. The reader can check that the corresponding map 

~ S^/S^ — 7ÜQ(Sy) , 

of component groups is actually surjective. Consequendy, there is a dual map 

~ S^/S^ — 7ÜQ(Sy) ,~ S^/S^ — 

of irreducible representations which is injective. Notice that there is a canonical central element 

~ S^/S^ — 7ÜQ(Sy) , 
- 1 0 
0 -1 

in S¥. Since it can be deformed to the identity through the connected subgroup 

{¥(1 
z 0 

0 z"1 
): zeC*} 

of S,), , the image of s¥ in is the identity. 

For each element s in S^ we can define the endoscopic group H = Hs as in the tem­

pered case. Again we shall assume for simplicity that there is an isomorphism of LH with H, 

and therefore by composition, a parameter \|/HexF(H). The local conjecture boils down to the 

assertion that the theory for tempered parameters can be generalized to the parameters in ^(G). 

We shall discuss this informally for real groups, leaving a formal statement of the conjecture for 

§6, where we shall consider a more general setting. 

First and foremost, we postulate for every quasi-split group Gi and every parameter 

x j^e^Gj) , the existence of a stable distribution 
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h -» ^ ( ¥ 1 ) , fieCc°°(G(R)), 

which is a finite linear combination of irreducible characters on G^R). Now suppose that 

\|fe¥(G). If 

H = Hs , S6 Sy , 

we can form the distribution 

f -> fH(yH)> feCc~(G(R)), 

as in the tempered case from the stable distribution on H(R) attached to \j/H. It will be a finite 
linear combination of irreducible characters on G(R), which we can write in the form 

(4.1) ^(YH) = S8(SVS,7C)fG(7C) , 

for uniquely determined complex numbers 8(SyS,7c). Let denote the set of 7teII(G(R)) 
such that 8(s,7c) * 0 for some se Sv. Then Yl^ will be a finite "packet" of representations in 
n(G(R)). Remember that f*1 is well defined if H = G*, and is otherwise determined up to a 
scalar multiple. Therefore, the numbers 

{5(s,7i): Tien,,,} 

are uniquely determined if s = s^, and are given up to scalar multiples for general s. 

Our second postulate is that 8(v) is closely related to the character theory of Sy. More 
precisely, we conjecture the existence of a nonvanishing complex valued function p on 
with p(Sy) = ±1, and with the following further property. For each neTI^, the function 

(4.2) <"s,7C I p> = 5(s,K)p(s)_1 , SG Sv , 

depends only on the image s" of s in 5^, and is the character of a nonzero finite dimensional 
representation of 5^ . We do not ask that the character be irreducible. However, we shall 
assume that its constituents have the same central character under s^. That is, 

< SylT, n I p> = eyOty.TC I p)< s",rc I p> , 

where ey(-,7clp) is a sign character on {l.s^}. Thus, 

5(SV,TC) = ev(7c)dv(7c) , 

where 

evW = e ^ ^ T i I p)p(sv) = ±1 , 

while the number 

dv(7c) = I8(SV,TU)I 

equals the degree of the character <-,rclp>. Suppose that there is a representation ^ e l l y with 
dVJ/(7i1) = 1. Then the function 
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(4.3) <S,7tl7C1> = ÔXs^ÔXs,^) 1 

can be written as 

< S,7L I p>< S,Ki I p> 1 , 

and is obviously a finite dimensional character on Sy. Therefore, the function ÔXs,̂ ) satisfies 
the conditions of p., 

We shall add a third postulate to the special case that G = G*. In this situation, we are pro­
vided with a second packet of representations in I1(G(R)). We conjecture that is a 
subset of Ily consisting of representations TCj with OXŝ ,;̂ ) = 1. In particular, we can form 
the character (4.3) for any such Tij. We conjecture further that (4.3) is actually an irreducible 
character on Sy and that the corresponding diagram 

~ S^/S 7ÜQ(Sy) , 

MOK >n(V 
is commutative. 

Taken together, the three postulates provide a mild generalization of the conjecture stated on 
page 11 of [2]. In the earlier version, we were too optimistic to think that the characters 
<%7C I p> would be distinct. This has been shown to fail in the examples of Adams and Johnson 
(see §5). There also seems to be no reason to suppose that the characters <-,7C I p> are irreduci­
ble, but we have retained this assertion in the case that G is quasi-split. 

Our conjecture is far from being the whole story. For example, it ought to include a 
prescription for characterizing the Langlands parameters (|)eO(G) attached to the individual 
representations in H^. As it is stated here, the conjecture does not even determine the objects 
f^^vj/j), and 8(v) uniquely. For we cannot use the inversion argument of [2], which was 
based on the incorrect assumption that the map K —> <-,7t I p> would always be injective. The 
formula (4.1) at least determines fl^ and 5(v) from the stable distributions. In particular, 
everything can be defined for general G in terms of data for quasi-split groups. However, 
something more is clearly needed. We could try to make the conjecture rigid by adding some 
plausible hypotheses, but it is perhaps better at this point to leave the matter open. 

The most difficult case of the conjecture will be when the parameter \y is unipotent; that is, 
when the projection of ^(WJR) onto G equals {1}. For a start, the definition of a unipotent 
representation (as opposed to a unipotent parameter) is not at all obvious. Unipotent representa­
tions have been studied extensively by Barbasch and Vogan. When G is a complex group, they 
define [7] packets for many unipotent parameters, and they establish character formulas which 
obey (4.2). Their results imply that the conjecture is valid for complex groups, at least for the 
parameters they study explicitly. We refer the reader to [50] and [51] for progress in the study of 
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unipotent representations for real groups, and how these fit into the general theory of the unitary 
dual. 

The representations in 11^ will all have the same infinitesimal character. The character for­
mulas required to prove the conjecture are easiest to handle when the infinitesimal character is 
regular. This is the case in the example of representations with cohomology, which has been stu­
died by Adams and Johnson. We shall discuss their results in §5. 

The motivation for the conjecture comes from automorphic forms. The representations in 
the packets 11^ should be the Archimedean constituents of unitary automorphic forms. It is 
therefore reasonable to conjecture that the representations in are all unitary. 

§5. An example: representations with cohomology. 
As an example, we shall look at the results [1] of Adams and Johnson. They have studied a 

family of parameters {\|/} in ^(G). The corresponding representations {11^} are the unitary 
representations of G(R) with cohomology, classified first by Vogan and Zuckerman [52], and 
later shown to be unitary by Vogan [48]. 

As in §4, G is a connected reductive group defined over F = R. We shall write g for 
the (complex) Lie algebra of G(C). For simplicity we shall also assume that G(R) has a maxi­
mal torus T(R) which is compact modulo AG(R)°, the split component of the center of G(R). 
We can then fix a Cartan involution of the form 

0: g -> togto1 , geG(R) , 

where to is a point in T whose square is central in G. The group 

K'R = (geG(R): 6(g) = g} 

of fixed points contains T(R), and KR/AG(R)° is a maximal compact subgroup of 
G(R)/AG(R)°. Let z be a fixed irreducible finite dimensional representation of G(R). We are 
interested in unitary representations 7ten(G(R)) whose Lie algebra cohomology 

H*(^,K/r;tc®x) = eHk(g,Kfe7C®T) 
k 

does not vanish. 

What are the parameters vj/e^G) associated to representations with cohomology? To 
answer this question, we begin with the representation z. Fix a Borel subgroup B of G which 
contains T, and let 

At: T(R) -» C* 

be the highest weight of the contragredient z of x, relative to B. As a one-dimensional char­
acter of T(R), Ax corresponds to a map 

4>T: WR -> LT . 

29 



/. ARTHUR 

We shall also fix a Borel subgroup B of G and a maximal torus in B, which we shall denote 
by T since the choice of B and B determines an identification of T with the dual torus of 
T. As in [40], we shall write a for the nontrivial element in T = Gal(C/R), GT for the action 
of a on T and T, and (lxo~) for a fixed element in WJR which projects onto a and has 
square equal to (-1). The values of <|)T on the subgroup C* of W R may be described by a 
formula 

(5.1) XV(Wz)) = z ^ V 0 7 ^ , z e C * , £ e X . ( T ) , 

where Â- is an element in X*(T) <g) C such that Xx - cTXx lies in X*(T). We can always 
conjugate the image of <|>T by an element in T. Since GT maps positive roots to negative 
roots, we see easily that (|)t(1XG) may be assumed to lie in the subgroup Z(G) x WR of LT. 

Suppose for a moment that the entire image of WR under ^ lies in Z(G) x W]R. This 
means that x is a one-dimensional representation of G(R). The L-action aG of a on G 
has the same restriction to Z(G) as GT, so Z(G) x WR has a canonical embedding as a sub­
group of both LG and LT. In particular, can be regarded as a map of WR into LG. The 
centralizer of Z(G) x WR in G contains a principal unipotent element. Therefore, there is a 
map 

¥G- W r x SL(2,C) - > G 

whose restriction to WR equals <|>T, and which maps 
1 1 
0 1 to a principal unipotent element 

in G. For the packet ITVg, one takes a single representation, namely the one-dimensional char­
acter T. It is the simplest of the representations with cohomology. We note, incidentally, that 
\|/G can be chosen so that the image of the diagonal elements in SL(2,C) are given by the for­
mula 

(5.2) A (¥G 
z 0 
0 z"1 

_ Z<28G,X> _ 

a 

z<aX > ^ Z G C * J G X * ( T ) , 

where 8G equals one half the sum of the roots a of (B,T). 

More generally, suppose that L 3 T is the Levi component of a parabolic subgroup Q of 
G which is standard with respect to B. Then L is defined over R. We can identify the dual 
group L with the corresponding Levi component in G which contains T and is standard with 
respect to B. The L-action aL of o on L can be determined directly by its restriction to T. 
This is just the composition o~T °adnL, where nL is a fixed element in the derived group of L 
which maps the positive roots of (L,T) to negative roots. Now, suppose that <|>T maps WR 
into Z(L) x WJR. The groups L with this property are in bijective correspondence with the 
subsets of 

{aeAv: ?tT(a ) = 0} . 
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These are just the subsets of the simple co-roots A which lie in the kernel of the highest weight 
A^. We can clearly define the one-dimensional parameter 

VL- W r x SL(2,C) - > LL 

as above. In a moment we shall see how to extend the injection L c G to a canonical embed­
ding £G L: LL -> LG of L-groups. The composition 

(5 .3 ) \|f = ^G,L W r x SL(2,C) -> LG 

is then a parameter for unitary representations with cohomology. Conversely, any such parameter 
will be of this form. 

To describe the embedding ^GL, we first recall how f c L can be extended to an embed­
ding of L-groups. There is a homomorphism 

VL/TWJR - > L L , 

which maps C* into T in such a way that 

feL,T(z)) = Z<̂V<6̂V>? zGC*,^eX*(T), 

and such that 

5UT(lxo) = nL x (lxa) . 

This follows from [40, Proposition 1.3.5], which is in turn based on [27, Lemma 3.2] . (See the 
remark in [40] following the proof of the proposition.) As in § 1 of [40], the map 

£L,T: t x w t^LX(w) , tef , WGWJR , 

then gives an embedding of *T into LL. Observe that we had no use for ^LT in the construc­
tion above. We simply extended the co-domain of (j)x to LL through the natural injections of 
Z(L) x WR into *T and LL. However, an identical argument to that of [40, Proposition 1.3.5] 
and [27 , Lemma 3.2] gives the embedding £G L. One simply replaces 8L by SQ = 8G - 8L, 
and nL by nQ = nGnL!. Once we have defined ^GL, we see immediately from (5 .1 ) and the 
definition (5 .3 ) that 

(5.4) X*(V(z)) = z<Wr>-<-5Q+«A/> ^ ^ X . ( T ) , 

for any ze C* c WR. 

For another perspective on what we have discussed so far, let L* be any group over R 
whose L-group is the given group LL. One can of course parametrize the one-dimensional 
representations of L*(R) by certain elements (|)*eO(L*), according to the Langlands 
classification. For any such <))*, the packet contains a single one-dimensional representa­
tion. However, one can also parametrize the one-dimensional representations of L*(R) by 
different maps <|): WR —> LL. Indeed, the tensor product with a fixed one-dimensional represen­
tation defines a bijection on n(L.(R)). The corresponding bijection on 0(L*) is given by the 
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product of a parameter in 0(L*) with a fixed map <J): W R —> LL whose image lies in 
Z(L) x W]R. For the given L*, we thus have a bijection § —> (j>* between the two different 
kinds of one-dimensional parameters. In the case at hand, we already have a parameter (j)T 
whose image lies in Z(L) x WR. For any L* there will be an associated parameter 
<|)Tt*e<X>(L*). For example, if L* is anisotropic modulo the center, then §z* equals the composi­
tion of <|>T , regarded now as an element in O(T), with the embedding ^LT. If L* is a 
quasi-split group, <|>T * equals (J)^, the parameter in 0(L*) obtained from \j/L. 

We shall now discuss the objects attached to the parameter (5.3). Consider first the central-
v * 

izer Sy. If X belongs to X*(T) and ze C , we have 

£«V(z)) = (̂\|/(z))A.V(\|f 
(zz)1/2 0 

0 (zz)-1/2. 

_ <8Q+XT;,̂  >_<-8Q+otXT,X >, _̂ <5L,X, > 
— Z Z (ZZ) 

by (5.4) and (5.2). Suppose that X lies in the span of the co-roots of (G,T) and that z is 
purely imaginary. Then 

£«V(z)) = ^(\|/(z))A.V(\|f£«V(z)) = ^(\|/(z)) 

_ Z2<8Q+XT,>» > 

Since Xx is dominant with respect to B c Q , we can choose z so that the centralizer of 
(J)w(z) in G equals L. If z is a positive real number, 

£«V(z)) = ^(\|/(z))A.V(\|fYHJJ 

and the centralizer of ^ ( z ) in L equals T. It follows that 

£«V(z)) = ^(\|/(z))A.V(\|fMOM 

Now, any point in T which commutes with the principal unipotent element \J/\Q ^) of L 

must lie in the center Z(L). Moreover, XJ^WR) acts by conjugation on Z(L) through the 

action of the Galois group Y = Gal(C/R) on L. It follows that S¥ is contained in Z(L)r. On 

the other hand, the elements in Z(L)r obviously commute with those in the image of \\f. It fol­

lows that 

S„, = Z(L)r. 

The Galois action on L is such that the connected component of 1 in Z(L)r is identical to 
that in Z(G)r. Therefore, the parameter \\f is elliptic, in the sense that its image does not lie in 
any proper parabolic subgroup of LG. We see also that 

Sy = 7i0(Z(L)) = Z(L)r/(Z(G)r)° . 
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The packet Yly constructed by Adams and Johnson takes the following form. Let W(G,T) 
and W(L,T) be the Weyl groups of G and L. Let W R ( G , T ) be the real Weyl group of G, 
or equivalently, the Weyl group of KR. The representations in are parametrized by the 
double cosets 

Z = W(L,T) \W(G,T) /WR(G,T) . 

For any we Z, the group 

Lw - w_1Lw 

is also defined over R, and is a Levi subgroup of the 6-stable parabolic Qw = w_1Qw. The 
map ad(w) from Lw to L is an inner twist [1, Lemma 2.5], and can be used to identify LL 
with the L-group of Lw. The representations in n v are the derived functor modules 

nw = AQw(w_1M = R§™Hw-%), W G E , 

where 

i(w) = y(Ki ,nLw\K'K) . 

(See [47, p. 344].) They have also been characterized in terms of the Langlands parameters [49, 
Theorem 6.16]. One can in fact show that TCw is a certain representation in the ordinary L-
packet Il(j)w, where <|)weO(G) is the composition o(|)T w. Here, <j>TjWe<&(LW) is the one-
dimensional parameter corresponding to <|>T in the manner described above. 

Before describing the pairing on SyXlly, we need to recall that there is a bijective map 
from W ( G , T ) / W R ( G , T ) onto the set of elements in H1(R,T) whose image in H!(R,G) is 
trivial. Composed with the Tate-Nakayama map, this yields an injection w —> t(w) from 
W ( G , T ) / W R ( G , T ) into the quotient 

X*(TSC)/X*(TSC) n {X -GTX :X eX*(T)} . 

Here X*(TSC) is the submodule of X*(T) generated by the co-roots of (G,T) . The map t is 
the starting point for the theory of endoscopy ([30, p. 702], [39, §2]). It is uniquely determined 
by the cocycle condition 

(5 .5) t(WIW2) = tCw^w^Kwj)) , W1,W2GW(G,T)/WIR(G,T) , 

and the formula 

(5.6) t(wp) = 

v 
P , P is noncompact, 
0 , p is compact, 

for its value on the reflection about a simple root P of (G,T) ([39, Propositions 2.1 and 3.1]). 

Now, the natural map from H!(]R,T) to F^QRJL) is surjective ([22, Lemma 10.2]). If two 
elements in W(G,T)/W]R(G,T) differ by left translation by an element in W(L,T), they have 
the same image in H](R,L). Moreover, Kottwitz has established a generalization of the Tate-
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Nakayama isomorphism which provides a canonical map from H^R.L) to 7C0(Z(L)r)*, the uni­
tary dual of the finite group of connected components of Z(L)r [22, Theorem 2.1]. The classes 
which are trivial in H^R.G) map to characters on 7C0(Z(L)r) which are actually trivial on the 
subgroup 7C0(Z(G)r)- Since Sy = 7C0(Z(L)r), we shall interpret w—>t(w) as a map from Z into 
the group of characters of the finite abelian group Sy which are trivial on the subgroup 
7to(Z(G)r). We can take the representation 7^ = AqQ^) as our base point. Then if k - %w is 
any representation in n^ , define 

(5.7) <x,k\k{> = <x,t(w)> , x e 5 ¥ , 

the character on Sy determined by the element weE. This is the coefficient which occurs in 
the character formula of Adams and Johnson. 

We can now see why several representations 7ce 11^, might give the same character on 
According to [22, Theorem 1.2], the set of classes in H^R.L) which map to the identity charac­
ter on 7U0(Z(L)r) is just the image of H^R,!^) in H!(R,L). Here, Lsc is the simply con­
nected cover of the derived group of L. The representations izeTl^ for which the character 
<-,7cItc1> is trivial are precisely the ones whose corresponding element w e £ maps to the 
image of H^R .L^) in H^R.L). There is a similar description of the other fibres of the map 

n —> n I n{> , 7ce n v . 

Adams and Johnson state their character identities in terms of a certain sign 

(-iy*w), w e l , 

where 

Y(w) = ~dim(Lw/LwnK'R) = q(Lw) . 

They first show that the distribution 

(5.8) f -> ^(v) = £ ( -D^' foOtw) . feCc~(G(R)), 
we X 

is stable, even when G is not quasi-split [1, Theorem 2.13]. They then establish the character 
formula 

(5.9) fH(yH) = es 2 (-l)^w)<s,t(w)>fG(7cw) , 

for H = Hs, seS¥, as in (4.1) [1, Theorem 2.21]. Here, es is a certain constant which came 
out of Shelstad's earlier definition of the transfer factors for real groups [41]. Since fH is 
defined only up to a scalar when H * G*, es is significant for us only when s = 1, in which 
case it equals 1. To deal with the signs (-l)7(w), we need a lemma. 

Lemma 5.1. (-l)*w> = (-l)^(L)<Tv,t(w)> , w e E . 
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Proof. The lemma is easily reduced to a special case of a construction [20] of Kottwitz. For the 
convenience of the reader, we shall give a direct proof. 

Recall that is the centralizer in G(R) of an element t0e T whose square is central in 
G. It follows that if p is any root of (G,T), 

P(t0) = 
- 1 , if P is noncompact, 
1 , if P is compact. 

Since y(w) equals the number of positive noncompact roots of (LW,T), we see that 

(-l)*w> = n(w_1a)(t0), 
a 

the product being extended over the roots a of (LnB,T). On the other hand, we recall that 

mok 
- 1 0 
0 - 1 It follows from (5.2) that 

(5.10) ^(Svj/) = 
LKIUL 

I(-l)<0a> , £eX*(T) , 

with the product taken over the same set of roots. 

Each side of the required formula makes sense for any element weW(G,T), but each side 
depends only on the image of w in I . We shall prove the lemma by induction on / (w), the 
length of w. If w is the identity, <sy, t(w)> = 1 and 7(w) = q(L), so there is nothing to 
prove. Suppose then that w = wpw2, where wp is the reflection about a simple root P of 
(G,T), and is less than /(w). If a is a root of (LnB,T), 

(w^ccXto) = (wfWccXto) 

= [wfkcc - <oc,p >P)](t0) 
£«V(z)) = ^(\|/(z))A.V(\|f£«V(z)) = ^(\|/ 

where Px = wj *p. Therefore, 

(-l)T(w) = (_i)^Wl)e(wi>P) 

where 

e(wl5P) = 

TT(_l)<a.P>J if PJ is noncompact, 

1 if Pi is compact. 

On the other hand, 

<s¥,t(w)> = <s¥,t(w1w[3l)> 

= <Vt(w1)Xsv,w1(t(wPl))> 

by (5.5), while 
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<sv,w1(t(wPl))> 
P (SY) , IF Pj IS NONCOMPACT, 

1 , IF Pi IS compact, 

by (5.6). Applying (5.10), we obtain 

<sv,t(w)> = <s¥,t(w1)>e(w1,p) . 

The lemma then follows by induction. • 

If we apply the lemma to (5.9), we obtain 

^ ( V H ) = es(-l)q(L) X < yr,t(w)>fG(7tw) 

= es(-l)q(L) E <s^s,iclic1>fG(7c) . 

Therefore, the required formula (4.1) holds with 

ô(s¥s,7r) = e ^ - l ^ ^ s ^ T c l T c ^ . 

§6. Some generalizations. 

The theory of endoscopy was motivated by the trace formula. One would like an extended 

theory to provide for applications of the twisted trace formula as well. Anticipating future work 

of Kottwitz and Shelstad, let us describe the likely form of some of the twisted analogues of the 

objects in §3 and §4. 

One can get away with minimal changes in the notation if one takes G to be a connected 

component of a (nonconnected) reductive group over F. We shall assume this from now on. 

We shall write G+ for the reductive group generated by G, and G° for the identity com­

ponent of G+. We shall also assume that we have an inner twist 

T|: G -> G* , 

where G* is a component such that (G*)° is quasi-split, and such that G*(F) contains an ele­

ment which preserves some F-splitting of (G*)° under conjugation. Then T| extends to an iso­

morphism of G+ onto (G*)+ such that for any G<= Gal(F/F), the map 

TVcOr1): G* -> G* 

is an inner automorphism by an element in (G*)°. One can attach an L-group 

LG+ = G+ x WF 

[5, §1], which is a finite extension of the usual L-group 

LG° = G° x WF 

of the connected component G°. Corresponding to G, we then have the "L-coset" 
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LG = G x WF , 

a coset of LG° in LG. Observe that G is a coset of the complex connected group G° in G+. 

Endoscopic data (H,//,s,£) can be defined as before. The semisimple element s lies in 
G, which is now just a coset. Again H is a connected quasi-split group, and ^(H) is the con­
nected centralizer of s in G°. Equivalence of endoscopic data can also be defined as before, 
the element g lying in the connected component G°. Finally, the endoscopic datum will be 
called elliptic if the set 

S(tf)s 

is not contained in any proper parabolic subset of LG. (A parabolic subset of LG is any 
nonempty set which is the normalizer in LG of a parabolic subgroup of LG°.) As before, we 
shall make the simplifying assumption that there is an isomorphism of LH with H. 

Suppose that F is local. We shall assume that the transfer factors A(yH,y) and the func­
tions 

fH(YH) = XA(yH,y)fG(y) 
Y 

have been defined as in the connected case. Here y stands for a strongly regular G°(F)-orbit in 
G(F), yH is a stable conjugacy class in H(F) obtained from y by a norm mapping, and 

fG(Y) = j f(x"V)dx . 
GY(F)\G0(F) 

Again, we shall assume that f9 is actually the stable orbital integral of a function on H(F). 

One would like to be able to define parameter sets ^mpCG), <X>(G) and *F(G). However, 
if F is nonarchimedean, we must replace the local Weil group WF by something larger. We 
shall use the Langlands group 

LF 
WF x SU(2,R) , F nonarchimedean, 

WF , F archimedean, 

which is the variant of the Weil-Deligne group suggested on p. 647 of [21]. (See also [29, p. 
209].) The group SU(2,R) here is to account for the discrete series which are not supercuspidal, 
and should not be confused with the group used to define the ^-parameters. For the W param­
eters, it is necessary to add another factor, namely SL(2,C), to LF. We are also dealing now 
with the possibility that G * G+, and we would like the representations of G°(F) in the packets 
to have a chance of extending to G+(F). This is accomplished by asking that the image of a 
parameter centralize some element in the set G. 

We shall thus define 

T(G) = ¥(G,F) 

to be the set of G -orbits of maps 
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LFxSL(2,C) -> LG° 

such that the projection of the image of LF onto G° is bounded, and such that the set 

S¥ = SV(G) = Cent(\|f(LFxSL(2,C)),G) 

is nonempty. We also ask that the restriction of \|/ to LF have the usual reasonable behaviour; 
it should satisfy conditions similar to (l)-(4) on p. 57 of [32], although not the relevance condi­
tion (5). Observe that is a coset of the subgroup 

SyCG0) = Cent(\|/(LFxSL(2,C)),G°) 

in 

= Sy(G+) = Cent(\|/(LFxSL(2,C)),G+) . 

We shall write S$ for the connected component of 1 in S^CG0). Then 

S¥ = SV(G) = Sy(G)/S° 

is a coset of the finite group 

5V(G°) = SV(G°)/S° = 7r0(S¥(G0)) 

in 

S* = SY(G+) = SV(G+)/S<> = TC0(S;) . 

One defines the sets O(G) and <£temp(G) of maps (j>: LF —> LG° in a similar fashion, but 
with a condition of relevance when G is not quasi-split. The image of <)) is not allowed to lie 
in a parabolic subgroup of LG° unless the corresponding parabolic subgroup of G° is defined 
over F. Suppose that \|/e*F(G). Then the restriction of \\f to LF belongs to 3>temp(G*). 
Similarly, as in §4, we can define the objects 0(G*) and s^e S^CG0). There is a surjective 
map 

£«V(z)) = ^(\|/(z))A.V(\|f 

and a dual injective map 
£«V(z)) = ^(\|/(z))A.V(\|f£«V(z)) = ^( 

in which n(S^) denotes the subset of representation in n ( S ^ ) whose restriction to S^(G°) 
remains irreducible. 

For the component G, one is interested in the irreducible representations of G°(F) which 
extend to G+(F). Let n(G(F)) denote the set of (equivalence classes of) irreducible representa­
tions of G+(F) whose restrictions to G°(F) are irreducible. The dual 

7i0(G+)* = Hom(G+/G°,C*) 

of the component group acts freely on n(G(F)) by 
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(&0(x) = C(X)TC(X), XEG+(F) , ^7T0(G+)*, 

where x denotes the image of x in n0(G+). It is clear that there is a bijection between the set 
(n(G(F))} of orbits of 7t0(G+)* in I1(G(F)) and the representations in I~I(G°(F)) which are 
fixed under conjugation by G(F). More generally, suppose that G' is an arbitrary connected 
component in G+. Then 7i0((G')+) is a subgroup of 7i0(G+). If K is a representation in 
n(G(F)), the restriction n' of n to (G')+(F) belongs to n(G'(F)). The map n - > TC' is a 

* 
bijection from the orbits of (7C0(G+)/7t0((G')+)) in II(G(F)) to the set of representations in 
n(G'(F)) which are fixed under conjugation by G(F). 

As in §4, we are going to postulate the existence of a finite subset of n(G(F)) for 
every xj/eYCG). This includes the question of defining the tempered packets 

{IV 4>eOtemp(G)} , 

which is itself far from being known. (See the hypothesis in [32, §IV.2].) It is conceivable that 
such a packet could be empty; perhaps none of the representations in the corresponding packet for 
G° extend to G+(F). We would at least like this problem not to occur in the quasi-split case. In 
particular, for each \ J / G ^ ( G ) , we would always like to be able to choose a representation 
T^ell^ to serve as a base point. The theory of Whitaker models suggests that this is always 
possible. 

Suppose that (B*,T*, {xa}) is an F-splitting for (G*)°. Here, xa denotes the additive one 
parameter subgroup of G* attached to a simple root a of (B*,T*). Any element in the unipo­
tent radical NB*(F) of B*(F) is therefore of the form 

u = ( El XccCta))11' > tAG F , 
a 

where u' lies in the derived subgroup of NB*(F). If \j/F is a nontrivial additive character on 
F, 

%(U) = riYFOa) 
a 

is a nondegenerate character on NB*(F). For any representation 7i1en((G*)°(F)), the space 
V%(TI1) of x-Whitaker functional 

{A: A(TT1(U)V) = x(u)A(v), ueNB.(F)} , 

is known to have dimension at most 1. Moreover, each tempered packet 

(n^:$Entemp((G*)0)) 

is expected to contain precisely one representation %l such that VX(TC1) * {0}. Assume that this 
is so. We claim that if § actually belongs to Otemp(G*), that is, if S^G*) * 0 , then nx 
should extend to (G*)+(F). Indeed, our assumption on G* implies that there is an element 
nGe G*(F) which preserves the splitting. Consequently, 
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%{nG\mGl) = %(u) , U G N B . ( F ) . 

The condition S^OG*) * 0 should translate to the dual property that nG acts as a permutation 
on II^. In particular, nG must transform nx to some representation in the packet II^, so by 
uniqueness, 7^ is fixed by nG. This establishes the claim. 

Now, suppose that \\f belongs to ¥(G). Regarding ^ for a moment as an element in 
0((G*)0) (rather than <£((G*)), we take T^GII^G*)0^) ) to be the representation in the packet 

whose associated standard representation Ttj has a %-Whitaker model. Then nl will 
extend to a representation of (G*)+(F). From this, it is not hard to see that TCj also extends to a 
representation n% of (G*)+(F). Thus, the packet 

n*¥ = n0y(G*) e n(G*(F)) 

should be nonempty. For each nondegenerate character % there should be a representation 
TĈ G n ^ , whose restriction rc^ to (G*)°(F) is uniquely determined. 

We shall now state the general local conjecture. It is just an extrapolation of the limited 
information now available, and should be treated as such. Our purpose is simply to suggest that 
the general theory for tempered parameters, whatever its ultimate form, will have a natural exten­
sion to the nontempered parameters in ^(G). As in the special case described in §4 , the conjec­
ture postulates the existence of three objects. The first is attached to any parameter xj/^e^Gj) 
in which G\ is a connected quasi-split group over F, while the second and third are attached to 
parameters \|/e*F(G) where G is an arbitrary component. 

Conjecture 6.1. For each \tfx there is a stable distribution ix -» f f 1 ^ ) on CJ^G^F)), 
while for each \\f there is a finite subset = n ^ G ) of n(G(F)) and a function 5 on 
S^xITy, such that the following properties hold. 

(i) 5(S,CTC) = ^(G)_15(s,7c) , SGSV, Ce7c0(G+)*. 

(ii) fH(¥H) = X 5(svs,7c)fG(7t), feCc-(G(F)), 

where H == Hs, for a given semisimple element SG S^. 

(iii) There is a nonvanishing normalizing function p on S^, with p(sv) = ± 1 , such that 
for any 7CG n^ , the function 

<s",7clp> = 8(s,7c)p(s)_1 , S G S + , 

is a positive definite class function on S + . Furthermore, 

< ŝ s", 7C I p> = e^CSy, n I p) <~s~, n I p> , 

where ^ ( - , 7 1 1 p) is a sign character on {l,"s"y}. 
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(iv) In the special case that G = G*, there is a commutative diagram 

n ¥ - >n(Sy) 

%PMM • » n ( s ^ 

in which the vertical arrows stand for the maps 

K -» <;K\KX> = <',KX;nx>~1 LKOIJ, 

and K%e c YI^ is the representation described above. In particular, n% is such that 

dy(n%) = I8(sv,7c%)l = 1 . 

(v) If G' is any connected component of G+, write \|/ for the parameter regarded as 
an element in *F(G'). Then the restriction map n —> K' sends onto the set of 
representations in Tly> which are fixed under conjugation by G(F), and is the 
restriction of 5(-,7t) to S^. • 

Remarks. 1. By the first condition, 

5(svs, ^ ) f c ( ^ ) = 8(svs,7u)fG(7c) , 

for any £e7C0(G+)* and neYl^,. Therefore, the sum in (ii) really can be taken over the 
orbits {Ily} of 7i0(G+)* in 11^. 

2. As in §4, the conjecture is not rigid. However, the conditions do determine everything 

uniquely once the stable distributions f^^Vi) nave been defined. One would like to 

strengthen condition (iv) in a way that would characterize the distributions f^C^/i) 

uniquely, at least modulo their analogues for tempered parameters. 

3 . The third condition asserts that there are nonnegative real numbers 

<KK I p>, A. e 11(5 +), 7U e nv, 

such that 

<s", 7ilp> = £ <^,7i I p>tr(?i(s)), I G S ^ . 
ten(S{) 

The usual case should be that of (iv), in which 

Jl, X = Xnlp 

< ^ ' P > = JO, XKHJJHY 

for some Xn | p G 11(5^). However, the weaker assertion is already required by the exam­
ples in [24] for p-adic quaternion algebras. 

41 



/. ARTHUR 

4. Suppose that H = Hs and Hj = Htst-i, for a semisimple element se S^G) and 

te S¥(G°). The transfer of functions will be such that fH(\J/H) equals fHl(\j/Hi). It follows 

from condition (ii) that 

S(tSt_1,7C) = 8(s,7t) , KGlIy . 

In other words, ô(%tc) is a class function. 

5. Condition (ii) should also imply that 

SCsts"1,^0) = 8(t,7C°) , tGS¥(G°), 7i°en¥(G°) , 

where se SV(G) and ^e G(F), and where 

(^°)(g) = A r ^ ) , g^G°(F) . 

This is compatible with condition (v). 

Conjecture 6.2. For every parameter \|/e*F(G), the representations in FL, are unitary. • 

§7. Intertwining operators and R-groups. 

Intertwining operators play an important role in the discussion. They occur naturally in the 

trace formula and provide part of the global motivation for the conjectures. We shall discuss this 

in the next paper [5]. Closely tied to the global considerations are a number of local questions. 

These questions are interesting even for tempered parameters, where they have been studied by 

Shahidi [36], [37] and Keys and Shahidi [18]. For the nontempered parameters vj/e^G), the 

implication of the conjectures is that much of the tempered theory carries over. It is therefore 

reasonable to propose a nontempered analogue of the R-group. 

Recall that G is now a connected component of a reductive group over F. In this para­

graph, F will be a local field (of characteristic 0). We shall say that a parameter \ |/e¥(G) is 

elliptic if the image of \\f in LG° is contained in no proper parabolic subgroup. This is 

equivalent to saying that S^ is finite modulo the center, or more precisely, that S^ is contained 
~ o r 

in Z(G ) . We would like to deduce information about arbitrary parameters from information on 

elliptic parameters. In particular, we would like a method of constructing the packet and 

the function 5(x,7t), for arbitrary \|/, from the corresponding objects for elliptic parameters. 

Fix a parameter xj/e^G). There are several finite groups associated with the centralizer 

Sy. For simplicity, we shall describe them first in the case that G = G°. Then S¥ is a complex 

reductive group. Fix a maximal torus T^ in S^, and let be the normalizer of T^ in S^. 

The quotient 

Wv = N / T y = TC0(Nv) 

is a finite group. Notice that there is a surjective map from Nw to the group - S^/S^ of 
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components. The kernel is just the Weyl group of (S^T^). Every element of may 
be regarded as an automorphism of Tv, so we also have a surjective map of onto the 
Weyl group Wy of (S^Ty). The kernel of this second map consists of the elements in 
which centralize T^. Since every such element belongs to a unique coset in S^, the kernel is 
canonically isomorphic to the subgroup of cosets in which act on S^ by inner auto­
morphisms. Notice that is also a normal subgroup of 5^ . The quotient 

£«V(z)) = ^(\|/(z))A.V(\|f 

is the R-group of \\f. It can be regarded as a finite group of outer automorphisms of Ŝ J, and 
can also be identified with the quotient of by W^. We can summarize these remarks in a 
commutative diagram of finite groups 

(7.1) 

JH1 1 

GH FDGD 

1 HH VB W 1 

1 s1 HJH NB 1 

GHGl lHG 

The dotted arrows stand for splittings of short exact sequences determined by a fixed Borel sub­
group of S^ containing Ty. 

Now suppose that G is an arbitrary component. The commutative diagram and the 
definitions above still make sense if interpreted in the obvious way. For example, is now 
only a set of cosets in G. However, Sy will consist of components in Sy n G ° , and will 
remain a group. The groups W^ and Sy operate freely on Ny, and and W^ become 
the sets of orbits. The R-set is the set of orbits of in Sy and, at the same time, the 
set of orbits of W^ in W^. If it is necessary to indicate the dependence on the component G, 
we can always write Ny(G) = Ny, RV(G) = R^, etc., as we did earlier for Sy. Thus, N^(G) 
is a coset of N^(G°) in a finite group N^(G+). 

Consider the centralizer of T^ in LG°. Since it meets every coset of G° in LG°, it is of 
the form 

LM = M x Wp . 

This group is a Levi component of a parabolic subgroup LP of LG°. It is also the L-group of a 
Levi component M of a parabolic subgroup P of G° which is defined over F. There may be 
no element in G which normalizes P, so P may not be attached to a parabolic subset [3, §1] 
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of G. At any rate, the image of \j/ lies in LM. Therefore, \j/ can be regarded as an element 
in ^(M), which is determined up to conjugation by the normalizer of M in G. Obviously Ty 
equals the identity component of 

S^M) = Cent(\|/(LFxSL(2,C)),M) , 

and the group 

5V(M) = SV(M)/T¥ = TC0(S¥(M)) 

is just equal to Sy. In particular, as an element in *F(M), \j/ is elliptic. 

According to Conjecture 6.1, x\f determines a finite packet n ^ M ) <z II(M(F)). It is not 
hard to guess how we might obtain the packet n V ( G ) e n(G(F)) from Ily(M). For each 
aei l¥(M), we shall let /p(a) denote the representation G+(F) obtained from a by induction 
from P(F). It acts on a Hilbert space / / p ( a ) . Observe that P is connected while G+ is gen­
erally not connected; this simply enhances the reducibility of /P(a). Let T10(G) denote the set 
of representations in n(G(F)) which occur as irreducible constituents of 7P(a). Then IIV(G) 
should be the union over all ae n^(M) of the sets nA(G) . 

It is more delicate to construct the function 

5(x,7i), XGS¥(G) , 7iGn¥(G) . 

The first ingredients will be the interwining operators. For any representation oeIT(M(F)), we 
can define the unnormalized intertwining operators 

W < ^ ) : # p ( ° ) -> Hp{a), P ' e /> (M) , ? t ea^ t , 

as, for example, in [4, §1]. Langlands has proposed normalizing these operators by a certain quo­
tient of L-functions [28, Appendix 2]. This can be established for real groups [4, Theorem 2.1], 
and in certain cases for p-adic groups [35], [18]. In the present context, Langlands' normalizing 
factors are the functions 

(7.2) rFIP(\|/ji) = UO .pp ipo^XetO,^£«V(z) ) = ̂ (\|/(z))A.V(\|f£«V(z)) = ̂ (\| 

where 

4V,A. : LF - > LM 

is the twist of <|>v by the element X in 

Am,c = X*(M)F®C = X.(TV)®C, 

and pP' | P is the contragredient of the adjoint representation of LM on 

Lnv/LnP> n L/iP , 

a quotient of the Lie algebra of the unipotent radical of LP'. (We refer the reader to [46] for the 
definition of the L and e-factors. At the risk of some confusion, we have used \|/F to denote a 
fixed nontrivial additive character of F.) We shall assume in what follows that the operators 
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Rp'ip(^¥x) = Jp'ip(^RP'ip(¥?i) 1 > G e r y M ) , 

have the properties one expects of normalized intertwining operators. (See for example the con­

ditions in [4, Theorem 2.1]. Langlands' original suggestion applies here only to the case that a 

belongs to (M). However, Proposition 5.2 of [4] and the part of Lemma II.2.1 of [6] that 

deals with inner twisting suggest how one could deal with arbitrary representations a in 
r y M ) . ) 

The choice of groups LPeP(LM) and Pe/>(M) allows us to identify with a subset 
of 

W(G,AM) = {geG: gAMg_1 = AM}/M . 

(As usual, AM denotes the split component of the center of M.) Regarding a given weW^ as 
an element in W(G,AM), we can form the component 

Mw = Mw 

of a nonconnected reductive group. Let M* be the image of Mw under our inner twist r|. 
We may assume that the group 

M* - T](M) - (IVO0 

is quasi-split, and that the restriction of r\ to Mw is an inner twist. 

We would like to know that M^(F) contains an element which preserves a splitting of M*. 
Suppose that (B*,T*, {xa}) is an F-splitting of (G*)°. It is convenient to assume that T* is 
contained in M*, and that the opposite Borel subgroup B is contained in P* = r](P). The 
element ri(w) lies in the Weyl set W(G*, AM*). It has a unique representative wx in the Weyl 
set of (G*,T*) which maps the simple roots of (B*nM*,T*) to simple roots. By the 
hypothesis on G, there is an element nGeG*(F) such that ad(nG) preserves our splitting. 
Then the element 

w0 = SLd(nGTlwl 

belongs to the Weyl group of ((G*)°, T*), and maps the simple roots of (B*nM*, T*) to simple 
roots. Now the choice of a splitting also determines a canonical function 

w* —> n(w*) 

from the Weyl group of ((G*)°,T*) into (G*)°(F) ([43], [33, p. 228]). Define 

(7.3) nw = nGn(w0) . 

It is a consequence of [43, Proposition 11.2.11] that 

i V ^ l ) ^ 1 = xwa(!) » 

for any simple root a of (B*nM*,T*). In other words, nw preserves the splitting of M*. We 
have shown that the component Mw satisfies the same conditions as G, so we shall assume 
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that it also satisfies Conjecture 6.1. 

The Weyl set W(G,AM) operates in the usual way, 

(wo)(m) = a(w ^ w ) , weW(G,AM), aen(M(F)), me M(F) , 

on n(M(F)). The image of will be identified with the subset of elements in W(G,AM) 

which map IIV(M) to itself. For any Ge n ^ M ) , set 

WViG = {we Wy c W(G,AM): wa = a} . 

We then obtain an embedding 

1 * vvy,a W HTH 1G 

1 W° W HGHG lHG 

of short exact sequences. If G = G° and \|/ is tempered, R¥Q will be the usual R-group [19, 

§2-3], [41, §5], [17, §2]. In general, it should be closely tied to the reducibility of the induced 

representation /p(G). 

Fix a representation Ge n ^ M ) and an element we W¥ a. Then Mw is a component of a 

reductive group such that = M. Since wa is equivalent to a, there is a representation 

Gwe n(Mw(F)) whose restriction to M°(F) equals G. The extension aw is of course not 

unique, for it can be replaced by £gw, for any element £e 7i0(M+)*. Nevertheless, we can 

define an isomorphism 

A(gw):/ /^Pw(g) -> f/P+(G) 

by setting 

(A(aw)(J>')(x) = Gw(m)(|)r(m-1x) , ^e//w-lpw(G), XGG(F) 

for any element meMw(F). This map is an intertwining operator from 7w-iPw(g) to 7p(g) 

which is independent of the representative m. In particular, 

(7.4) Rp(aw,\|0 = lim(A(Gw)Rw-ipwlP(G^)) 
A.->0 

is an operator on Hp(o) which intertwines 7p(g). Conjecture 6.1 implies that G is unitary. 

Combined with [4, Theorem 2.1 (R4) and Proposition 5.2], this would imply the unitarity of 

RP(GW,\|/) and the existence of the limit in (7.4). One would like a nice formula for 

(7.5) tr(Rp(Gw,\j/)/p(G,f)) , feCc~(G(F)). 

However, it is clear that 

Rp(Çaw,\|f) = Ç(Mw)RP(aw,\|0 , ÇG7C0(m:) \ 

so the trace will depend on the extension gw. 
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Since w belongs to W¥, there is a point in the coset 

(MWT = Mw 

which centralizes the image of \\f. In other words, \\f may also be regarded as a parameter in 

^ ( M J . By Conjecture 6.1(5), the representation aw belongs to the packet IIV(MW). Notice, 

however, that 

SV(MW) = V M ) w = Sv™-

The conjecture thus associates to the component Mw and the representations GW, a character 

<u,awlp> = 5(s,aw)p(s)-1 , u e S ^ w , 

where u is the image of a point se SV(/(MW). Since 

<u,£awlp> = (;(Mwr1<u,awlp> , ^e%0(M+)* , 

the product of <u, aw I p> with (7.5) will be independent of the extension aw of the represen­

tation a. It is for this product that we should seek a formula. We shall describe a candidate. 

The splitting (B*,T*,{xa}) described above provides elements nweM*(F) and nGeG*(F). 

Combined with the additive character \|/F, the splitting also determines a nondegenerate charac­

ter % cn NB*(F), as in §6. The elements nw and nG preserve %, regarded as a nondegen­

erate character on NB*(F)nM*(F) and NB*(F) respectively. Let o~% be a representation in 

n(j>v(M*) whose associated standard representation 6"x has a %-Whitaker model. Then there is 

a nonzero complex number c(o~x, nw) such that 

(7.6) A(a%(nw)v) = c(ax,nw)A(v) , 

for any A in the one dimensional space Vx(6"x) of %-Whitaker functionals, and any v in the 

underlying space of c%. Similarly, let nx be a representation in n ^ G * ) such that 7t̂  has a 

%-Whitaker model. Then there is a nonzero complex number C(KV nG) such that 

(7.7) A(7t%(nG)v) = c(7Cx,nG)A(v) , 

for any A in VX(TCx) and any v in the underlying space of 7tx. 

The work of Shahidi suggests one final ingredient for our conjectural formula. If E is any 

finite extension of F, let X(E/F,\\fF) be the complex number defined in [26] to describe the 

behaviour of the e-factors under induction. Now, let AB* c T* be the split component of B*, 

regarded as a parabolic subgroup of (G*)° over F. Let Er(B*; M*) be the set of reduced roots 

of (B*, AB*) whose restriction to AM* is nonzero. Any root P in this set gives rise to a Levi 

subgroup Gp of (G*)° of semisimple rank one. Let Gpsc be the simply connected covering 

of the derived group of Gp. Then there are two possibilities. Either Gpsc = Resp^SL^), or 

Gpsc = ResF^p(SU(2,l)), for a finite extension Fp of F. In the first case, set 

Xp(vF) = ?L(Fß/F,vF) . 
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In the second case, set 

X^YF) = ^ E p / F ^ F ^ F p / F , ^ ) - 1 , 

where Ep is the smallest extension of Fp over which Gpsc splits. For any element w in 
W(G,AM), set 

(7 .8) ?iW(Vf) = 11 h^v) > 
{p:Wlp<o} 

where p ranges over the roots in 27(B*; M*), and is the representative of w described 
earlier. 

The formula we seek is supposed to depend on an element u in 5l)/(Mw) = S^w. Recall 
that the coset S^w is a subset of and that in turn maps onto S^. Let u denote the 
image of u in S^. We want an expansion for the product of (7 .5) and <u, Gwlp> in terms of 
the characters <u,7clp>, 7tGlT0(G). The expansion should be accompanied by a prescription 
for determining the normalizing function p for G from the normalizing function p for Mw. 

We shall first assume that G = G* is quasi-split. Here we have the theory of Whitaker 
models, and we can take 

p(s) = 5(s,c%) . 

The normalizing function for G should then be 

p(s) = 5(s,7tx) . 

Conjecture 7.1 (Special case). Suppose that G = G* is quasi-split. Then the expression 

C(G%, nw)_1<u, GW I GX> tr(RP(GW, \|/)/P(a,f)) 

equals 

Xw(\\r¥)c(nv nG)_1 £ < u, K 17tx>fG(7t) , 
7ienO(G) 

for any u e S ^ w and any fe CC°°(G(F)). • 

The conjectural formula agrees with the results of [36] , [37] and [18] . Moreover, the two 
sides are balanced in their dependence on the various objects, GW, GX, KV nG , \|/F, the splitting, 
etc. which are not uniquely defined. Beyond these aesthetic considerations, however, there is a 
shortage of evidence even in the quasi-split case, and the formula should perhaps be regarded as 
simply a working hypothesis. 

We return to the case that G is arbitrary. Here it is necessary to normalize the ratio of the 
transfer factors for G and Mw in a way that is compatible with the corresponding ratio for G*. 
We shall sketch a variant of an argument of Kottwitz and Shelstad, which was in turn motivated 
by an idea of Vogan. The argument relies heavily on the techniques of [33] , or rather their 
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anticipated extension to nonconnected groups. 

Let G*c be the simply connected cover of the derived group of (G*)°, and let M*c be the 
preimage of r|(M) in Gs*. We can assume that 

rio-(ri)-1 = ad(u(o)), ceGal(F/F) , 

where u(a) is an element in M^. Suppose that s is a semisimple element in Mw. Let 
(HyH,sfy and (Hw,//W,s£w) be compatible (twisted) endoscopic data for G and Mw. These 
can also serve as endoscopic data for G* and M*. Suppose that yH is a strongly G-regular 
stable conjugacy class in H(F) which is the image of elements yeG(F) and y*eG*(F) [33, 
§(1.3)]. Let h be a point in GS*(F) such that hrj(y)h_1 = y*. Then the elements 

V(G) = hu(o)oai)-1 , aeGal(F/F), 

belong to 

T* = {teGs*c:rYt = y*} , 

a group which is connected [44, Theorem 8.1], and hence a torus. Similarly, if yHw is a strongly 
Mw-regular stable conjugacy class in HW(F) which is the image of elements yweMw(F) and 
y*e M *(F), we can define points 

vw(a) = hwu(a)a(hw)"1 , aeGal(F/F) , 

in 

Tw = (teMs*c: r ^ t - y ^ } . 

The pair 

(v~\vJ:o -> (y(or\yw(a)) , aeGal(F/F) , 

defines an element in H^FjU), where U is the torus 

T*xT;/{(z"1,z): zgZ(GS*C)} . 

On the other hand, attached to s there is a character sve 7C0(Ur)* on the component group of 
the dual torus. (See [33, p. 246] in the untwisted case.) The Tate-Nakayama pairing then gives a 
function 

MY.Y*;Yw>Yw) = <su,(v"1,vw)> . 

Suppose that the transfer factors A(yH,y*), A(yHw,y*) and A(yHw,Yw) for (G*,H), (M*,HW) 

and (MW,HW) have all be defined. Set 

(7-9) A(yH,y) - ^H(YY*;Yw,Y;)A(yHw,Yw)A(YHw,YwrlA(YH>Y*). 

The local hypothesis [33, Lemma 4.2A], or rather its extension to nonconnected groups, presum­
ably implies that A(yH,y) is the transfer factor for (G,H). Remember that the transfer factors 
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are uniquely determined up to a scalar multiple. The point here is that (7.9) normalizes this 
scalar in terms of the other three transfer factors. 

Now, suppose that xye^G) is as above. According to the Conjecture 6.1, there is a nor­
malizing function p(s) on Sy(Mw) such that 

<u,awlp> = 8(s,aw)p(s)_1 , u e S ^ w , 

is a character in S^w. We can expect that 

(7.10) px(s) = p(s)5(s,axr15(s,7Cx) , seS¥(Mw) , 

is the restriction to SV)/(MW) of a normalizing function on S^(G) for G. In particular, each 
function 

<u,7clpx> = 8(s,7c)p5c(s)~1 

should be the restriction of a character on Sy. 

Conjecture 7.1 (General case). Suppose that the transfer factors and normalizing functions for 
G are given in terms of the corresponding objects for Mw by (7.9) and (7.10). Then the 
expression 

c(ax,nw)_1<u, aw I p>tr(RP(aw,\i/)/p(a,f)) 

equals 

X.w(YF)c(7tx, no)"1 X < u, 711 px>fG W 
7cen0(G) 

for any u e S ^ w and any feC(T(G(F)). • 

Remarks. 1. We have assumed that the parameter \\f is elliptic for M. This is clearly not 
necessary. One could make the same conjecture if M is any Levi subgroup of G° such that \\r 
factors through LM. 

2. If \|/ is tempered, which is to say \|/ is trivial on SL(2,C), the sets IIa(G), 
o~eII¥(M), are disjoint. We have assumed implicitly in the conjecture that this holds for any \|/. 
However, there is no particular reason for this to be so. If it fails, it will mean that the character 
<u,7ilpx> is a sum of several characters, corresponding to the representations a such that % 
is contained in no(G). The conjectured formula would become an identity between the sum 
over a of the first expression, and the second expression, but with ITa(G) replaced by the full 
set i y G ) . 
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§8. Conjectures for automorphic forms. 
The local conjectures we have stated were motivated by global considerations. The basic 

global question of course concerns the multiplicities of representations in spaces of automorphic 
forms. The global version of the conjectures will give a formula for the multiplicity of an irredu­
cible representation of an adele group in the discrete spectrum. For tempered representations, the 
global conjecture is implicit in the paper [24] of Labesse and Langlands. The formula we shall 
state could be regarded as a procedure for determining the multiplicity of an arbitrary representa­
tion in terms of the corresponding multiplicities for tempered representations. 

From now on, F will be a number field. We continue to allow G to be an arbitrary con­
nected component of a reductive group over F. Notice that the group G(AF)+ generated by 
G(AF) is usually a proper subgroup of G+(AF). We shall write II(G(AF)) (resp. 
nunit(G(AF))) for the set of equivalence classes of representations (resp. unitary representations) 
of G(AF)+ whose restriction to G°(AF) is irreducible. There is a canonical extension of the 
regular representation of G°(AF) to G(AF)+ which is given by 

(R(yX>)(x) = ( K ^ x y ) , ^L2(G°(F) \G°(AF)) , 

for XGG°(Af) , ye G(AF)+, and for any point G+(F) such that £_1y belongs to G°(AF). 
We are interested in how often a given representation ne IIunit(G(AF)) occurs in R. 

In the paper [25], Langlands conjectured that there would be automorphic representations 
attached to maps WF —» LG° of the global Weil group into the L-group. Tempered auto­
morphic representations would correspond to maps with bounded image in G°. However, it was 
clear that unlike the local situation, the set of representations obtained in this way would be rather 
small. In the later article [29], Langlands pointed out that if the tempered automorphic represen­
tations of GL(n) had certain properties, they could be parametrized by the n-dimensional 
representations of a group which is larger than WF. This could either take the form of a com­
plex, reductive pro-algebraic group, as was suggested in [29], or a locally compact group LF 
proposed in [21, §12]. We shall adopt the latter point of view. 

We thus assume the existence of the hypothetical group LF. It is to be an extension of WF 
by a compact group. For each valuation v of F, there should be a homomorphism 

Lp —̂  Lp , 

where 

LFV 
WFv , v archimedean, 

WFxSU(2,R) , v nonarchimedean, 

as in §6. According to Hypothesis 1.1, the cuspidal automorphic representations of GL(n,AF) 
should all be tempered. These should be in natural bijection with the irreducible n-dimensional 
representations of LF. More generally, the cuspidal tempered automorphic representations of 
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G°(AF) should occur in packets parametrized by elliptic maps of LF to LG°. (See [21, §12].) 
Our goal is to try to enlarge this point of view so that it will account for the entire discrete spec­
trum. 

As in the local situation, we must replace LF by its product with SL(2,C). We shall be 
interested in admissible maps 

y : LFxSL(2,C) -> LG° 

such that the image of LF in G° is bounded. In this context, admissible shall mean that each 
of the elements 

\j/(w) , weLp , 

in LG° is semisimple, and also that \\f is globally relevant. Its image is not allowed to lie in a 
parabolic subgroup of LG° unless the corresponding parabolic subgroup of G° is defined over 
the global field F. Motivated by [21, §10], we define 

= DV(G) 

to be the set of s in G such that the point 

s\|/(x)s~1\|/(x)~1 

belongs to Z(G°), for every xe LF x SL(2,C). This set could of course be empty if G * G°. 
However, if s is an element in D^, the cocycle 

zw = s\|/(w)s~1\|/(w)~1 > W€ LF , 

defines an element in H1(LF,Z(G0)). Let 8^ = 8^,(0) be the subset of elements seD^ for 
which the corresponding class zw is locally trivial, that is to say, zw belongs to the kernel of 
the map 

HKLp.ZCG0)) -> nHl(LF>,Z(G0)). 
V 

We can define the group S^ = SXj/(G+) in a similar fashion, and Sv becomes a coset of SV(G°) 
in Sy. We can also define the coset 

5V = SW(G) = SV/S°-Z(G°) 

of ^^(G0) in the finite group 

S; = V G + ) = Sv(G+)/S«Z(G°) . 

(Notice that, unlike in the local case, we have divided out by the center Z(G ).) We shall say that 
two maps 

y{: LFxSL(2,C) -> LG° , i = 1,2, 

are equivalent if there is an element ge G° such that 
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g Vl(w»u>g = ¥2(w^u)zw (w,u)eLFxSL(2,C) , 

where zw is a 1-cocycle of LF in Z(G°) whose class in Hl(L¥,Z(G )) is locally trivial. 

Define 

¥(G) = ¥(G,F) 

to be the set of equivalence classes of admissible maps 

LFxSL(2,C) -» LG° 

such that the image of LF in G° is bounded, and such that the set is nonempty. Since 
WF is a quotient of LF, we can copy other definitions from the local case. In particular, we 
can define the global parameter sets O(G) and Otemp(G), and the map \j/ —> (j)̂  of ^(G) 
into <D(G*). For each \|/e*F(G), we can also define the element s^eS^(G°) and the surjective 
map 

£«V(z)) = ^(\|/(z))A.V(\|f 

Suppose that y is a parameter in *F(G). Then for every valuation v we have the res­

tricted map \j/v in *F(G,FV). It follows from the definitions that there is an injection s —> sv 

from S + to S^vZ(G°). Now we are assuming that Conjecture 6.1 holds. In particular, we have 

the finite local packets IT^. We define the global packet n v = nv(G) to be the set of 

representations in n(G(AF)) obtained by restricting the representations 

{TI = ®TCV : 7CveEL, } 
V 

to G(AF)+. For almost all v, the packets will contain unramified representations, and it is 
understood that these must be the local constituents of K for almost all v. Thus, is a set 
(usually infinite) of representations in II(G(AF)), which according to Conjecture 6.2 are all uni­
tary. 

Our global conjecture will assert that any irreducible representation in n(G(AF)) which 
occurs in L2(G°(F)\G°(AF)) must belong to one of the packets IT^. It also provides a multipli­
city formula, which requires some further description. 

The local transfer factors, defined in [33] when G = G°, are determined only up to a scalar 
multiple. However, the global transfer factors, which are products of the local ones, are canoni-
cally defined [33, §6]. More precisely, suppose that \|/e*F(G), and that H = Hs is the endos­
copic datum for G/F corresponding to a given point se S^. Then the map 

f -» f« = nfvHv. f=nfveCr(G(AF)), 
V V 

is canonically defined. We shall assume this to be the case for any component G. Suppose that 

n = ®rcv is any representation in IL,. The functions 5( •, TCv) on Ŝ J will be invariant under 
V 
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Z(G°)R\ and since 

S+ / Z(G°)RV = S+ Z(G0)/ Z(G°) , 

5( •, 7CV) can be identified with a Z(G°)-invariant function on S+vZ(G°). We may therefore define 

<s", t o = n S(sv ^v)» s € S^. 
v 

Almost all the terms in the product will be 1, and the product itself will be canonically defined. 
We shall also anticipate that the normalizing functions pv on S^y, postulated in Conjecture 6.1 
(iii), can be extended to S+vZ(G°) in such a way that 

npv(Sv) = 1. s e S+, 
V 

with almost all the terms in the product being equal to 1, and so that the function 

< V 7CVI pv> = 5(sV,7Cv)pv(svr1 , sv e S+ Z(G°)/Syv, 

remains positive definite. We obtain 

(8.1) <s, t o = n<sv, TCy I pv>, s g S^. 
v 

The two formulas, together with Conjecture 6.1 (iii), imply that <s", t o does depend only on the 
image s~ of s in Sy, and is a positive definite function on Sy. It should in fact turn out to be the 
character of a nonzero finite dimensional representation of Sy. On the other hand, if 

fH(vH) = nfvHy(Vv.Hv). f = rFv. 
V v 

for H = Hs, with se S^, then 

(8.2) f«(VH) = £ <V,7C>fG(Tc), 
ne {nv} 

by Conjecture 6.1(ii). As before, {n^} denotes the set of orbits of tc0(G+)* in 11^. 

An intriguing aspect of the conjectured multiplicity formula is a connection with global root 
numbers. Let g denote the Lie algebra of G ° . Then for any y e ^ G ) , we can define a finite 
dimensional representation 

SY(G+) x LF x SL(2,C) -> GL(g) 

by 

x¥(s,w,u) = Ad(s\j/(w,u)) , (s,w,u)eS¥(G+)xLFxSL(2,C) . 

Decomposing into irreducible constituents, we write 

(8.3) xv = ©xk = © f o G f e ® ^ • 
k k 
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where \k, |ik and vk are irreducible representations of S^G*), LF and SL(2,C) respec­
tively. Observe that xy preserves the Killing form on g, so that x¥ is equivalent to its own 
contragredient. It follows that the contragredient xk —» \ gives a permutation on the consti­
tuents of ty. The global L-function L(s,|ik) will be defined as a product of local L-functions. 
We can expect the functional equation 

L(s,|ik) = e(s,nk)L(l-s,|lk) , 

where e(s, |ik) is a finite product of local root numbers. Suppose that xk equals its con­
tragredient tk. Then jik = p.k, and the functional equation implies that 

е(У2,дк) = ± 1 . 

Under this condition, the image of |lk must be contained in either the orthogonal group or the 
symplectic group. If \ik is orthogonal, it is known [12] that eO/2, |ik) = 1, provided that |ik 
comes from a representation of the Galois group of F. This should hold for any orthogonal 
representation of LF. On the other hand, if (ik is symplectic, the sign of e(V2, |ik) is known to 
be quite subtle. 

Given \|/, we shall say that a constituent xk of (8.3) is special if xk = tk, and if 
e(V2,|ik) = - 1 . We define 

(8.4) e¥(s) = ; 
Tk special 

det^k(s) , seSv(G+) 

It is clear that is a one dimensional sign character of the group Sy, which factors to a 
character of the quotient Sy. Now, suppose that n is a representation in nunit(G(AF)). If K 
belongs to the packet FL,, set 

(8.5) mV(7C) = IS+I"1 £ ev(x)<x,7C>. 

Since <-,TC> is supposed to be the character of a finite dimensional representation of Sy, this 
number is a nonnegative integer. It is just the multiplicity of the sign character in <*,7T>. If 
7C does not belong to n^ , we shall simply set mVj/(7c) = 0. 

In considering whether n occurs discretely in R, we are faced with the minor irritation of 
the split component of the center of G+. However, the definitions of §1 are easily extended to 
the case that G * G°. For example, we can write 

G(Ap)1 = (XEG(AF ) : lx(x)l = 1 , %eX(G+)F} . 

Let (G(AF)1)+ be the group generated by G(Ap)1, and set 

G^Ap)1 = G°(AF) n (G(Ap)1)+ . 

Then for any 7ce nunit(G(AF)), we shall write m0(7r) for the multiplicity with which the restric­
tion of K to (G(AF)1)+ occurs as a direct summand of L2(G0(F)\G°(AF)1). We can also 
define 
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n0(G) = {7tenunit(G(AF)): ir^Tc) * 0} . 

In addition, we shall write RQ for the subrepresentation of R whose restriction to (GCAp)1)* 
decomposes discretely. Finally, let ^ ( G ) be the subset of parameters xj/e^G) such that 
is contained in Z(G°). 

Conjecture 8.1. The formula 

mo(7t) = 2 mv(7t) 
VJ/G^G) 

holds for any KG r^^GCAp)). • 

Remarks. 1. The conjecture implies that any irreducible constituent of R0 belongs to a packet 
nv , xj/e^oCG). Actually these packets should usually be disjoint, with the multiplicity formula 
reducing simply to 

mo(7t) = m¥(7t) , tug riy . 

2. Even though R has a continuous spectrum it should be possible to define the multiplicity 
m(7c) of any n in R. One would first need to define the Schwartz space on G0(F)\G°(AF). 
The group G(AF)+ will act on this space, and also on the corresponding space of tempered dis­
tributions. One could then define m(7t) as the multiplicity of K in the space of tempered distri­
butions on G°(F)\G°(AF). This incidentally would lead to a formal definition 

n(G) = {7tenunit(G(Ap)):m(7t)^0} 

for the set mentioned in §1. Conjecture 8.1 could then be generalized to a multiplicity formula 

(8.6) m(7c) = X mv„№, 7tenunit(G(Ap)). 

Conjecture 8.1 agrees with the conjectural multiplicity formula for tempered parameters 
stated in [21, §12]. This was based on the original multiplicity formulas in [24] for SL(2) and 
related groups. However, at the moment there is not a great deal of direct evidence to support 
the conjecture. In [2] we discussed some examples for the group PSp(4), due to Piatetski -
Shapiro and Waldspurger, that were compatible with the conjecture. The largest group for which 
there are complete results is now U(3). Rogawski's multiplicity formulas [34] for the discrete 
spectrum of this group are also compatible with the conjecture. 

Suppose that G is the split group of type G2. By examining the residues of Eisenstein 
series, Langlands discovered an interesting automorphic representation which occurs in the 
discrete spectrum [28, Appendix 3]. Our description of this example in [2] was incorrect. It is 
true that there are three equivalence classes of elliptic endoscopic groups 

Hj c G , i = 1,2,3, 
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with 

Hi = Gx , 

H2 = SL(2,C) x SL(2,C)/{±1) , 

and 

H3 = SL(3,C). 

In each case, the principal unipotent element in ¥L{ gives rise to a parameter 

Yi : SL(2,C) -» Hi -> G 

in ^(G) which is trivial on LF. However, the principal unipotent element in H2 lies in a 
proper Levi subgroup of G. The parameter \|/2 factors through this subgroup, and consequently 
does not belong to ^ ( G ) . It has nothing to do with the discrete spectrum of G. The parame­
ters Xj/j and \|/3 do lie in ^ ( G ) . The first one is attached to the principal unipotent, and gives 
the trivial one dimensional representation of G(AF). The other one is attached to the unipotent 
class with diagram 

1 2 
O- < O • 

The Langlands' representation should belong to the packet n ^ . It is in fact the unique element 

in n v 

The notions of semisimple and unipotent in the context of automorphic forms will by now 
be clear. Let K be a representation in nunit(G(AF)). We shall say that TT is a semisimple 
automorphic representation if mV|/(7t) * 0 for some parameter Xj/eM^G) which is trivial on 
SL(2,C). We shall say that K is a unipotent automorphic representation if G = G°, and if 
there is a parameter vj/e^G), with m¥(7r) * 0, such that the projection of \|/(LF) onto 
G = G° equals {1}. Let us also say that an automorphic representation is elliptic if it belongs 
to the set n0(G) defined above. The trivial representation of G(AF) is an elliptic unipotent 
automorphic representation. It seems that the only other elliptic unipotent representation which is 
known to exist is the Langlands' representation for G2. 

Recall that a representation 7ten(G(AF)) gives a family o(n) = (av(7i): veS} of sem­
isimple conjugacy classes in LG°. The families associated to two representations in the same 
packet are equal at almost all v. We therefore obtain surjective maps 

n(G) -» *F(G) -» Z(G) . 

For many G, the second map will actually be a bijection. This is nice, because it would give an 
elementary interpretation of the parameters ^(G). They would describe the generalization from 
GL(n) to G of strong multiplicity one. 
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§9. L2-cohomoiogy of Shimura varieties. 
We shall conclude with some remarks on the relation of the parameters \|/ to the cohomol-

ogy of Shimura varieties. Suppose that G = G° and F = Q. We shall write A = A^ . Let R 
be the real reductive group obtained from GL(1) by restricting scalars from C to R. Then 
R (R) = C* and R (C) = C*xC*. A Shimura variety is associated to a G(R)-orbit X of maps 
h:R —> G which are defined over R and which satisfy some further conditions [29]. For 
example, any heX provides a decomposition 

£«V(z)) = ^(\|/(z))A.V(\|f 

of the complex Lie algebra of G(C), in which p£ and kh and ph are the subspaces of g 
which transform under 

Ad(h(z1,z2)) , z^ZjeC* , 

according to the characters zf ^ 1 and z ^ 1 . Notice that kh is the complex Lie algebra of 
the stabilizer Kh of h in G(R), and that X can be identified with G(R)/Kh. 

The space X has a natural complex structure. The complex points on the Shimura variety 
are of the form 

SK(C) = G(Q)\X GCAgJ/K , 

where K is any open compact subgroup of the group GCA^) of finite adelic points. We take 
K to be sufficiently small that SK is nonsingular. Suppose that (x,VT) is an irreducible finite 
dimensional representation of G which is defined over Q. Then 

FT(C) = Vt(C) x (XG(Afin)/K) 
G(Q) 

is a locally constant sheaf on SK(C). One is interested in the L2-cohomology 

H(*2)(SK(C),FT(Q) = ©H(k2)(SK(C),FT(C)) 

with coefficients in FT(C). 

For any heX, the L2-cohomology has a decomposition in terms of the (#,Kh)-
cohomology of the spectral decomposition of L2(G(Q)\G(A)). Assume Conjecture 8.1. Then 
the number 

£ mv(7i), Tcen^CGCA)), 

which is given by (8.5), equals the multiplicity with which 7C occurs discretely in the space of 
functions on G(Q)\G(A) with the appropriate central character. The spectral decomposition is 

(9.1) H(*2)(SK(C),FT(C)) 

= © © m (7i)H*(^,Kh;7rR(g)X)(8)7C^N, 
V|/ey0(G)7lGny V 
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where TIJR and 7tfin stand for the components of it at R and the finite adeles, and is 
the finite dimensional space of K-invariant vectors for K^. When G(Q)\G(A) is compact 
modulo the center, this decomposition is given in [10, Chapter VII]. For general G, it is con­
tained in the results of [9]. Observe that the Hecke algebra 

HK = QCKXGCAfiJ/K) 

operates on the L2-cohomology through the space TC|̂ . 

It will be convenient to fix an element h^eX. First of all, fix (T,B) and (T,B) as in §5. 
Then choose the element hjeX so that its image lies in T and so that the parabolic subalgebra 
£hi + p^ of g is standard relative to B. We shall write k± = fchi, pi = p^ and K]_ = Khi. 
We shall also adopt the notation of §5, with KR the normalizer of in G(R). The restric­
tion of hx to the first factor in R(C) = C*xC* defines a co-weight in X*(T). Let p^eX^T) 
be the corresponding dual weight. It is a fundamental, minuscule weight for G which is anti-
dominant relative to B. One checks that 

(9.2) UWzirt) = z , % < ^ 1 > , XEX*(T). 

Having fixed h1? one defines a finite dimensional vector space 

V¥ = © H*(g,Ki;7CR®T) 
7iRenVR 

for each \j/e^0(G). This space, which depends only on the image xj/jr of \\f in ^(G,1R), is 

convenient for working with the decomposition (9.1). If the space is nonzero, \|/R is one of the 

parameters discussed in §5, and the group S¥r is abelian. We shall define a representation py 

of SVr on V¥. Let Q = LNQ 3 B be the standard parabolic subgroup associated as in §5 to 

vj/jr, so that 7Cj = Aq(^t) is the representation in TL^R which served as a base point in §5. 

Then for any representation n^e n¥R, we have a one dimensional character 

PtiR(S) = <S',7C]Rl7C1>p1(s) , SeS¥R' 

on S¥r. The representation p¥ of SVr on V¥ is given by 

P¥(s) = © PkR(S) , SeSV|/R-
7lRG UVR 

Recall that if n = 7iR(8)7Ufin is any representation in the packet n^ , it is assumed that 
<x,7i> is a canonical finite dimensional character on Sy. That is, 

<X,TC> = t r foto) , xeSw , 

where rn is a representation of on a finite dimensional complex vector space U^. In this 

case, SyR is abelian, so that UK really depends only on 7Cfin. In fact, we also have the finite 

dimensional representation 
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ricJs) = PTUR(S]R) ^ H © , 
£«V(z)) = ^(\|/(z 

of on UK. Here, sR and s stand for the images of s in SVj/RZ(G°) and 5^ . Set 

U£ = © (TC&aU*), 

where 71^ ranges over the finite components of representations in n^ . This is a finite dimen­
sional space, equipped with actions of both HK and S^. There is a tensor product action of the 
group S¥ on the finite dimensional space V¥ ® which obviously factors to a representation 
of the quotient group Sy. Recall the formula (8 .5) for the conjectured multiplicity. It allows us 
to rewrite the spectral decomposition of cohomology as 

(9.3) H(*2)(SK(C),FT(Q) = © (VV®U£) 

where ( )£ denotes the subspace of vectors which transform under Sy by the character e^. 

The space has some further structure. The Shimura variety is defined over a certain 
number field E = Ei(G,X) which comes with an embedding into C. Let Ey be the completion 
of E with respect to the associated Archimedean valuation. Then Ev equals R or C, and 
we can form the Weil group Wp^ = Wc/Ey. It turns out that p¥ extends to a representation of 

S¥R X W ^ X SL(2,C) 

on Vv. 

The representation of SL(2,C) comes from Lefschetz theory, and in particular, the cup pro­
duct with the Kahler form. Recall [10] that H*(g ,1^ ; 7tR®x) vanishes unless the Casimir operator 
acts by zero on TZj^^c. In the latter case 

H*(^,K1;TCR®X) = HomKi(A*(£/*1), TCR®T) 

= HomKl(A*(g/*1)®t, TCR) 

= HomKi(A*p i ®A*p f ®x, 7iR) 

= © HomKi(App f ®Aqp f ®x, 7CR) , 
p.q 

where A* denotes the exterior algebra, and x is the contragredient of x. The last formula 
gives a decomposition of the (g ,K{) cohomology, from which one gets the Hodge decomposi­
tion of the L2-cohomology of SK(C). The Killing form 

(Xf.Xf) -> tr(adXj+ • adXf) , X f e p f , 

is a nondegenerate, Krinvariant pairing on x/?f. It can be regarded as an element in 
HomKi(pi ®pf ,C) . The wedge product with this element defines an endomorphism X of 
H*(g ,Kj; 7rR<g)X) which maps the (p,q) component into the (p+l,q+l) component. It is impli­
cit in the results of [52] that for any i < n = dimc(SK), the map 
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£«V(z)) = ^(\|/(z))A.V(\|f£«V(z)) = ^(\|/(z))A.V(\|f£«V(z)) = ^(\| 

is an isomorphism. The representation theory of SL(2) then allows us to define an endomor-

phism Y of H ^ . K ^ T C R ® ! ) , which maps the (p,q) component into the (p—1, q—1) com­

ponent, such that H = XY-YX acts on Hk(g ,Kj; TC^®!) by multiplication by y (k-n). The 

endomorphisms X,Y and H span the Lie algebra of SL(2), which therefore acts on 

V ¥ = ©H*(^>K1;TCR€)T) . 
7lR 

Exponentiating to the group, we obtain a representation of SL(2,C) on V^. 

The representation of Wp^ is the one defined by Langlands [29, p. 239] from Hodge theory, 

but modified to have (essentially) bounded image. If zeC*, let r\'(z) be the operator on 

A V * i ) = ®(APp!+ ®A«pf) 
p.q 

which multiplies a vector in hPp f ®Aq/? f by 

(z/zT^z/z)4^2 . 
We have noted that any element in H*(g Jc^, 7%®!) can be represented by a Krequivariant 
linear map 

<D: A V * i ) ® V T - > VWR, 

Vx and VK being the spaces on which t and KJR act. Define 

(pv(z)<|))(U®v) = ^Xz^x^z))-1^) , 

for UeA*(g/k{) and veVT. Since the image of hx lies in the center of Kh the linear map 
py(z)(|> is also Krequivariant. Therefore, gives a representation of C* on H*(g Jcx\ 7%®!) 
which commutes with the action of SL(2,C). This takes care of the full Weil group WEV if E 
is not contained in R . If E is contained in R , choose an element (lxa) in WEv as in §5, 
and set 

(pv(lxa)(|>)(U®v) = ^(n^cKAdfaf^Uatfaf1)*) 

as in [29]. Here <|>, U and v are as above, and n2 is an element in G ( R ) such that 

njh^z^nf1 = hjCẑ z) , zeC* . 

We thus obtain a representation of Wp^ on which commutes with action of SL(2,C). Both 

of these actions obviously commute with that of S ^ , so p¥ does indeed extend to a represen­

tation of S¥RXWEVXSL(2,C) on Vv. 

There is another canonical representation of this group. Let (r°,Vro) be the irreducible 
representation of G with extremal weight equal to the element p^eX^T) defined above. The 
Shimura field E is the fixed field of the group of elements in Gal(Q/Q), acting on G, which 
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fixes fij. There is a unique extension of the representation r° to the group LGE = GxWE 
such that WE acts trivially on the weight space of Now, LGE is a subgroup of finite index 
in LG, and the restriction \j/v of \}% to Wp^ a WR takes values in LGE. The groups 
\|/R(SL(2,C)) and SyR are contained in G, so we obtain a representation 

Gyi (s,w,u) -> (̂sxi/jrCw.u)) , (s,w,u)e S^xWp^xSL^C) , 

of SVj/RxWEyxSL(2,C) on Vro. 

The lemma on p. 240 of [29] suggests that the representations pv and are equivalent. 
This could be regarded as a reciprocity law for Shimura varieties at the Archimedean place. It is 
of course much easier than the expected reciprocity laws at the finite places, which involve etale 
cohomology. We shall verify it with Wp^ replaced by the subgroup C* (of index at most 2). 

Proposition 9.1. The representations p¥ and av of S¥ x C* x SL(2,C) are equivalent. 

Proof. This will be a straightforward comparison of the definitions in §5 with the results of [52]. 
Vogan and Zuckerman work with connected groups, but it is easy to adapt their results to G(R). 

We fixed the point r^eX so that the parabolic subalgebra khi + p^ = ki + is stan­
dard relative to B. We also chose the parabolic subgroup Q = LNQ to be standard. Recall that 
there is a bijection w —> 7tw between the double cosets 

I = W(L,T)\W(G,T)/WR(G,T) 

and the packet n ^ . Now, the group Kj = Khj need not meet every connected component of 
G(R), and its Weyl group W(Kj,T) is only a subgroup of WR(G,T). There is a bijection 
w —» 7t4 between the double cosets 

r = W(L,T)\W(G,T)AV(K1,T) 

and the set of irreducible representations of G(R)' = G(R)°K1 which are constituents of restric­
tions to G(R)' of the elements in n^R. Then 

Vv = © H*(£,Ki;7tw<S>T) 
we I 

= 0 Hom^(A*(g/ki)&t,Kw) 

= © HomKl(AV*i)«ft.*'w). 
WGI' 1 

We shall represent the double cosets If by elements weW(G,T) of smallest length. For any 
such w, set Kjw = w_1K! w, and represent the cosets W(L,T)AV(LnK1w,T) by elements in 
W(L,T) of minimal length. Then any element in W(G,T) can be written uniquely as rwt, with 
w e r , teW(Kj,T) and re W(L,T)AV(LnK!W,T). Observe that 

rw , re W(L,T)/W(LnKjw,T), wg If , 
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is a set of representatives of WCG/ryWXK^T). 

It follows from [52, Proposition 6.19] that for each we£ ' , the space 

(9.4) HomKi(AV*i)Sft,<v) = © HomKi(App j1" ®Aq/? f gft, TĈ ,) 
p.q 

has a basis 

{̂ rw: reW(L,T)/W(LnK1w,T)} 

parametrized by the cosets in W(G,T)AV(K1,T) which lie in the double coset of w. Moreover, 
if nw is the complex Lie algebra of W_1NQW, an element (J)^ lies in the summand on the 
right of (9.4) for which 

p = /(r) + dimc(,iwnp1+) 

and 

q = /(r) + dimc(/iwnpf) . 

Finally, the Krtype in z associated to any element in (9.4) is generated by an extremal vector 
in VT with weight w_1^x. Combining these facts with the formula (9.2), we see that 

Pv(z)<IVw = (z^)-p/2(z^)<^2(w-1XT)(h1(z,z)>|)rw 

= (z/z)"2 ^ ^ - ^ i V ^ - 1 ^ ^ , Z E C . 
Consider the number 

- ^ (P~q) = \ (-dimc(/iwnp1+) + dimc(/iwnp1 )) . 

Observe that if a is any root of (G,T), <a,jLt1> equals -1 , 0, or 1, according to whether the 
root vector of a lies in P \ , k{ or pf. Therefore, 

- — (p-q) = <w ^ n , ! ! ^ = <5n,wUi>, 

since 25Q is just the sum of those roots whose root vectors lie in «Q. Notice also that 

<cjxw x̂,m> = <w LGTXi:,]ii> = <ax^x,w|i1> . 
It follows that 

(9.5) pv(z)(>rw = z^wni V ^ ^ 1 ^ . 

On the other hand, r° is an irreducible representation whose extremal weight [i{ is minus­
cule. It is well known that the weights of any such representation form one Weyl orbit. Since 
W(K1?T) is the stabilizer of {ij in W(G,T), we can choose a basis of VT consisting of weight 
vectors 

v 
vrw ' 

weX', rGW(L,T)/W(LnK!W,T) , 
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such that 

r°(t)Vrw = (rwm)(t), t e f . 

Suppose that zeC*. Then 

<Vz>vrw = r0(\|/(z))Vrw 

= (rwm)(\|/(z))vrw 
_ <SQ+XT,rwn.1>— ŜQ+Ox̂ rwjî  
— z z vrw , 

by (5.4). The properties of G t , 8Q and Xx allow us to remove r from the exponent. We 
obtain 

(9.6) oy(z)vm = ^ V W . V - V ^ w ^ 

We tentatively define an isomorphism of with Vro by extending the bijection <j)rw <—>vm 
between basis vectors. Formulas (9.5) and (9.6) show that the isomorphism commutes with the 
action of C*. 

The next step is to show that the isomorphism commutes with the action of SVk. The 

representation nx mentioned above corresponds to w = 1. It follows from (5.7) that 

Pv(s)*rw = <s",7Cwl7t1>^1(s)(t)rw = <"s",t(w)>|i1(s)(|)rw , 

for any basis vector (|)rw and any se S ^ . On the other hand, 

G\|/(s)vrw = As)vrw = (rw )̂(s)vrw = (w|l1)(s)vrw , 
since SVr is contained in the torus T. It is therefore sufficient to show that 

w|^! - |ii = t(w) . 

This follows easily by induction on the length of w, together with the properties (5.6) and (5.7) 
of t. 

We must finally show that the isomorphism commutes with the action of SL(2,C). First of 
all, note that there are decompositions 

£«V(z)) = ^(\|/(z))A.V(\|f 

and 
£«V(z)) = ^(\|/(z))A.V(\|f 

where 

vy,w = {Eci4W: creC) = HomKl(A*(g/*1)®,t, 7c'w) , 
r 

and 

V ,̂w = {ZCrVrw* Cr€C) . 
r 
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The group SvxC* acts on each of the spaces VVfW and Vrow by the same scalars, while the 
spaces remain invariant under SL(2,C). Since we are free to modify our isomorphism by any 
element in 

n GL(Vrow) , 
we I ' 

it is enought to show that for a fixed we 5/, the representations of SL(2,C) on V¥>w and 

Vro w are equivalent. For this it is sufficient to show that Vv>w and have the same set of 

weights under the action of the diagonal element H in the Lie algebra of SL(2,C). 

Recall first that 

P v / H ) ^ = ^ (P+<l-n)<l>rw 

= (dimc(,iwnpJ-) + dimc(/iwnpf) + 21 (r)-n)<t>rw . 

We can write 

n = dimc(SK) = dimc(pi) 

= dimc(/iw n p i ) + dimc(/Tw np f) + dimc(/w n p j*~) , 

where /w and /Tw are the complex Lie algebras of w-1Lw and W_1NQW, the unipotent radi­
cal opposite to W_1NQW. Obviously 

dimc(nwnpi) = dimc(/iwnpf) . 

Since jLLj is a minuscule weight, and w-1 maps positive roots of (L,T) to positive roots, we 
have 

dimc(/wn/?1+) = -2<w~18L,p.1> = -2<5L,w|U1> . 

Thus 

p ^ H ) ^ = (/(r) + <5L,wiLi1>)(t)rw . 

On the other hand, the map of SL(2,R) into L which corresponds to the principal unipotent 
element sends H to the vector 8L. Therefore 

<VH)vrw = r°(¥(H))vrw = <5L,rw|i1>vrw 

- <r16L,wja1>vrw . 

Our task then is to show that <r-15L-5L, w\i{> equals /(r). It is well known that 5L - r_15L 
equals the sum of those positive roots of (L,T) which are mapped to negative roots by r. The 
number of these rocts equals /(r). Now r is a representative of shortest length in W(L,T) of a 
coset in W(L,T)/W(LnKjw,T), so it maps positive roots of (Kjw,T) to positive roots. There­
fore, the positive roots in the sum above have their root spaces in Ad(w)(/? J"). The number of 
these roots equals 

- < 5 L - r 1 5 L , w ^ i 1 > . 
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In other words, 

/(r) = ^ L - a ^ w ^ , 

as required. 

We have just established that Vvw and Vrow have the same set of weights under H. 

This was the last step, so the isomorphism from to Vro can be defined so that it intertwines 

the actions of S¥, C*, and SL(2,C). • 

Most of this section has dealt only with the local conjecture of §4 and the examples of §5. 
We shall conclude by posing a question motivated by the global conjecture. In each of the 
groups 

Hgf(SK(C),FT(C)) , 0 < d < n , 

one can take the primitive cohomology. For example, there is the subspace H(SK,x) of the mid­
dle dimensional cohomology corresponding to parameters \|/ which are trivial on SL(2,C). This 
is a subspace of the primitive cohomology in H(2)(SK(C),FX(C)). In general, one would like to 
attach motives to the primitive cohomology in various dimensions. Is it possible to identify 
pieces of primitive cohomology with spaces H(Sk', x'), attached to Shimura varieties of smaller 
dimensions? 

I have not looked at the question closely, but it should have a reasonable algebraic answer. 
For any parameter xj/e^G), let G^ denote the centralizer of \}/(SL(2,C)) in Hj. Then Gv 
is an extension of W Q by G ¥ = G ¥ n G , and \|/ provides a map of the Langlands group LQ 
into Gy. Leaving aside the question of whether or not Gy is an L-group, let us just look at 
Gv and G¥. 

Assume that \\r contributes to the cohomology of SK. Then we have the Levi subgroups 
L c G and L <z G. The image \y(SL(2,C)) is just the principal three dimensional subgroup of 
L, associated with the principal unipotent class. In particular, the groups Gv and Gy depend 
only on L. The restriction of \|/ to LQ could be very complicated, but we do know that the 
image \|/(LQ) is a subgroup of Gv whose centralizer in G^ is finite modulo Z(G). We can 
try to obtain information about \|/, and its contribution to cohomology, by simply studying the 
group Gy. In fact, Proposition 9.1 tells us that we can determine its contribution to the primitive 
cohomology from the finite dimensional representations 

Gv(g,u) = r°(g\|/(u)) , geG¥, ueSL(2,C) , 

of Gy x SL(2,C) on Vro. The question above is essentially that of describing the decomposition 

o> = 0(Yk ® Sk) , Yk̂ nCG )̂, 5ken(SL(2,C)) , 

of o~v into irreducible constituents. In particular, are the irreducible finite dimensional 
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representations yk of minuscule? 

The maximal torus of G^ is just A^, the split component of the Levi subgroup L of G. 

Moreover, the Weyl group of G¥ with respect to A^ equals 

W(AL) = Norm6(At)/L. 

Finally, the weights of the restriction of o~v to G^ are the restricted characters 

Hi(w,L): a -> (w^!)(a) , aeA£ , 

parametrized by the elements we W(G,T)/W(K1,T). Our constituents yk will all be minuscule if 
for every pair p.^w.L) and ji^w^L) of nonzero weights, ^(w'.L) lies outside the convex 
hull of 

{r^i(w,L): weW(AL)} . 

To obtain a necessary and sufficient condition, we would have to replace W(A^) by the less 
accessible subgroup of elements induced by the identity component G^ of G^. At any rate, it 
would be interesting to test the question on some examples. 
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