Astérisque

GEORGE LUSZTIG

On the representations of reductive groups with disconnected centre

Astérisque, tome 168 (1988), p. 157-166 http://www.numdam.org/item?id=AST 1988 168 157 0>

© Société mathématique de France, 1988, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Société Mathématique de France Astérisque 168 (1988), p.157-166.

On the representations of reductive groups with disconnected centre

G. Lusztig*

1. We consider a connected reductive algebraic group defined over a finite field $\mathbb{F}_{_{\rm C}}$ with Frobenius map $F\,:\,G\,\to\,G.$

Let \hat{G}^F denote the set of irreducible representations up to isomorphism of the finite group G^F over \overline{Q}_{ℓ} (ℓ is a prime not dividing q). In the case where the centre Z_G of G is connected, a parametrization for \hat{G}^F was given in [4]; this is extended here to the general case (i.e. we allow Z_G to be disconnected). The proof will be by a reduction to the case where Z_G is connected using a method in [4, 14.1]. The results of this paper were obtained during the summer of 1983 and were announced in [5].

2. We denote by G^{\star} a connected reductive group defined over \mathbb{F}_q , dual to G, as in [2]. We again denote by F the corresponding Frobenius map. (The same notation will be used for the Frobenius map of any algebraic variety defined over \mathbb{F}_q). As in [2] we have a natural bijection

$$\{ (T', \theta) \} \mod G^{F}$$
-conjugacy $\leftrightarrow \{ (T, s) \} \mod G^{*F}$ -conjugacy

where T' (resp.T) runs over the F-stable maximal torus of G (resp.G^{*}), $\theta : T'^F \to \overline{\Phi}^*_{\ell}$ is a character and s is an element of T^F . If (T', θ) , (T, s) correspond in this way we consider the virtual representation $R^G_{T'}(\theta)$ defined in [2]; we shall also write $R^G_{T}(s)$ instead of $R^{G'}_{T'}(\theta)$.

For a semisimple element $s \in G^{\star F}$, let $(\widehat{G}^F)_s$ be the set of all $\rho \in \widehat{G}^F$ appearing with non-zero multiplicity in $R_T^G(s)$ for some F-stable maximal torus $T \subset G$.

The subset $(\hat{G}^F)_{\ S}$ of \hat{G}^F depends only on the $\text{G}^{\bigstar F}\text{-conjugacy class of s. We}$

* Supported in part by the National Science Foundation.

have a partition $\hat{G}^{F} = \frac{||}{s} (\hat{G}^{F})_{s}$ where s runs over the semisimple elements of G^{*F} up to G^{*F} -conjugacy. (See [2], [3]).

3. Let $\pi: G \to G_{ad}^{}$ be the adjoint quotient of G. We have a natural isomorphism

$$G_{ad}^{F}/\pi (G^{F}) \cong (Z_{G}^{Z}/Z_{G}^{O})_{F}$$

(the subscript F denotes F-coinvariants, i.e. largest quotient on which F acts trivially) ; it is defined by the correspondence $G_{ad}^F \Rightarrow g \Rightarrow \dot{g}^{-1}F(\dot{g}) \in Z_G$, where $\dot{g} \in G$ satisfies $\pi(\dot{g}) = g$.

The group G_{ad}^{F} acts naturally on G^{F} by automorphisms $g : g_{1} \rightarrow gg_{1}g^{-1}$ (g,g as above). Hence G_{ad}^{F} acts naturally on \hat{G}^{F} . Clearly this action is trivial on the subgroup $\pi(G^{F})$ hence it induces an action of G_{ad}^{F}/π (G^{F}) on \hat{G}^{F} . It is easy to check that this action (extended by linearity to virtual representations) leaves fixed each $R_{T}^{G}(s)$; hence it leaves stable each subset (\hat{G}^{F}) of \hat{G}^{F} . We have thus defined an action of $(Z_{G}/Z_{G}^{O})_{F}$ on $(\hat{G}^{F})_{S}$.

4. We fix a semisimple element $s \in G^{\star F}$ and we denote $H = Z_{G^{\star}}(s)$. If $x \in H^{F}$, then conjugation by x is an automorphism of H^{O} (over \mathbb{F}_{q}); hence it defines an automorphism of \hat{H}^{OF} which leaves stable the set $(\hat{H}^{OF})_{1}$ of unipotent representations. If $x \in H^{OF}$, the corresponding automorphism of $(\hat{H}^{OF})_{1}$ is trivial, so we have a natural action of H^{F}/H^{OF} on $(\hat{H}^{OF})_{1}$.

5. With these notations, we can now state our main result.

Proposition 5.1. There exists a surjective map

 $\psi : (\hat{G}^{F})_{s} \to (\hat{H}^{OF})_{1} \quad \underline{\text{mod action of}} \quad H^{F}/H^{OF} \quad \underline{\text{with the following properties}}.$

The fibres of ψ are precisely the orbits of the action of $(Z_G/Z_G^O)_F$ on $(\hat{G}^F)_s$, (see Sec.3). If Θ is a H^F/H^{OF} -orbit on $(\hat{H}^{OF})_1$ and Γ is the stabilizer in H^F/H^{OF} of an element in Θ , then the fibre $\psi^{-1}(\Theta)$ has precisely $|\Gamma|$ elements. If $\rho \in \psi^{-1}(\Theta)$ and T is an F-stable maximal torus of G^{\bullet} containing s, then

$$(\rho : R_{\rm T}^{\rm G}({\rm s}))_{\rm G}^{\rm F} = \varepsilon_{\rm G} \varepsilon_{\rm H} \sum_{\overline{\rho} \in \Theta} (\overline{\rho} : R_{\rm T}^{\rm H^{\rm O}}(1))_{\rm H^{\rm OF}} \ .$$

Here (:) denotes the standard inner product of virtual representations and $\varepsilon_{G} = (-1)^{\sigma(G)}$, $\sigma(G) = \mathbb{F}_{q}$ -rank of G; in $\mathbb{R}_{T}^{H^{O}}(1)$, 1 stands for the trivial character of T^{F} .

<u>Remarks</u>. The sets $(\hat{H}^{OF})_1$ are described explicitly in [4]; they are insensitive to the centre of H^O . The action of outer automorphisms on the set of unipotent representations of a connected reductive group is easy to describe; for example when that group is simple modulo its centre, of type $\neq D_{2n}$, this action is trivial. The multiplicities $(\bar{\rho} : R_T^H(1))_{H^F}$ are also described explicitly in [4]. Hence the proposition gives an explicit parametrization of $(\hat{G}^F)_s$ and explicit formulas for the multiplicities $(\rho : R_T^G(s))_{CF}$.

6. Now let G' be a connected reductive group over \mathbb{F}_q with connected centre. Let $s' \in G'^{\star F}$ be semisimple and let $H' = \mathbb{Z}_{G'}(s')$. Then both groups $(\mathbb{Z}_{G'}/\mathbb{Z}_{G}^{O})_F$ and H'^F/H'^{OF} are trivial and from 5.1 we obtain the following known result.

7. If G is as in Sec. 1, we say that $i : G \rightarrow G'$ is a regular imbedding if G' is a connected reductive group over \mathbb{F}_q with connected centre, i is an isomorphism of G with a closed subgroup of G' and i(G), G' have the same derived subgroup.

We shall need the following simple result. Lemma 7.1. [1, 2.3.2]. If G is semisimple and $i : G \to G'$, $\overline{i} : G \to \overline{G}$ are regular imbeddings, then there exists a connected reductive group G" over \mathbb{F}_q and regular imbeddings $j : G' \to G''$, $\overline{j} : \overline{G} \to G''$ such that $j \circ i = \overline{j} \circ \overline{i}$.

8. With G as in Sec. 1, we fix a regular imbedding $G \to G'$. To this corresponds by duality a surjective homomorphism $\delta : G^{**} \to G^{*}$ (over \mathbb{F}_{q}) whose kernel K is a central torus in G^{**} . We have a natural isomorphism $K^{F} \xrightarrow{\sim} Hom(G^{*F}/C^{F}, \overline{\mathbb{Q}}_{\ell}^{*}), k \mapsto \theta_{k}$. We consider the action of K^{F} on \hat{G}^{*F} given by $k : \rho' \to \rho' \otimes \theta_{k}$. The action of $k \in K^{F}$ on \hat{G}^{*F} defines a bijection $(\hat{G}^{*F})_{s_{1}} \xrightarrow{\sim} (\hat{G}^{*F})_{ks_{1}}$ for any semisimple $s_{1} \in G^{**F}$.

Now let $s' \in G'^{\star F}$ be semisimple, $H' = Z_{G'^{\star}}(s')$. Let K_{s}^{F} , be the set of all $k \in K^{F}$ which map $(\hat{G'}^{F})_{s'}$ into itself or, equivalently,

 $\kappa^F_{\mathbf{S}^*} = \{ k \in \kappa^F | ks^* \text{ is conjugate to s' under } G^{\mathsf{I}^{\bigstar}F} \}.$

If $s = \delta(s') \in G^{*F}$, and $H = Z_{\bullet}(s)$ we have a natural isomorphism $H^{F}/H^{OF} \simeq K^{F}_{S'}$, defined by the correspondence $H^{F} > x \rightarrow s'^{-1}\dot{x}s'\dot{x}^{-1} \in K^{F}$ where $\dot{x} \in G'^{*F}$ satisfies $\delta(\dot{x}) = x$. (Note that $\delta : G'^{*F} \rightarrow G^{*F}$ is surjective). Using this isomorphism the action of K^{F}_{S} , on $(\hat{G}'^{F})_{S'}$, becomes an action of H^{F}/H^{OF} on $(\hat{G}'^{F})_{S'}$. Now δ defines a surjective homomorphism $H'^{O} \rightarrow H^{O}$ with kernel K, hence a bijection $(\hat{H}^{OF})_{1} \xrightarrow{\sim} (\hat{H}'^{OF})_{1}$. Using this, the action of H^{F}/H^{OF} on $(\hat{H}^{OF})_{1}$ in Sec 4 becomes an action on $(\hat{H}'^{OF})_{1}$. We shall need the following strengthening of 6.1. <u>Proposition 8.1. The isomorphism</u> ψ in 6.1 can be chosen to be compatible with the action of H^{F}/H^{OF} on $(\hat{G}'^{F})_{S'}$, and $(\hat{H}'^{OF})_{1}$ defined above.

<u>Proof</u>. (a) Assume first that G is almost simple, simply connected. If G is a classical group, then ψ in 6.1 is uniquely determined ; in the remaining cases (with one exception) either H is connected (and there is nothing to prove) or ψ is uniquely determined. In these cases the result follows easily. The exception is : G of type E_7 , $s \in G^{*F}$ is such that $H = Z_{\bullet}$ (s) has two components and H° modulo its centre is of type E_6 . There are two representations in $(\hat{G}^{*F})_s$, which are not distinguished by their multiplicities in the $R_{T^*}^{G'}(s^*)$. We must show that they are in the same orbit of $H^F/H^{\circ F} \cong \mathbb{Z}/2$. If they are not, they would remain irreducible on restriction to G^{*F} . But their restrictions to G^{*F} are reducible by an argument in [4, p.353].

(b) Assume next that $G = G_1 \times G_2 \times \ldots \times G_n$ with almost simple,

simply connected factors G_i permuted by F and that $G' = G'_1 \times G'_2 \times \ldots \times G'_n$ where $G_i \rightarrow G'_i$ are regular imbeddings over an extension of \mathbb{F}_q and the G_i are again permuted by F. In this case we group together the factors in the various orbits of F and we are reduced to the case where F permutes cyclically the indices. In that case we have $C^F = G_1^{F^n}$, $G'^F = G'^{F^n}$ and the result follows by applying (a) to G_1 and G'_1 instead of G and G'.

(c) Assume that G is simply connected. We decompose G in a product $G_1 \times G_2 \times \ldots \times G_n$ as in (b) ; we imbed it in $\overline{G} = \overline{G}_1 \times \ldots \times \overline{G}_n$ where $G \to \overline{G}$ is like $G \to G'$ in (b). Let $G' \to G''$, $\overline{G} \to G''$ be as in 7.1. We can find $s'' \in G''^{*F}$ which maps to $s' \in G'^{*F}$ and to some element $\overline{s} \in \overline{G}^{*F}$ under $G'^{*} \leftarrow G''^{*} \to \overline{G}^{*}$. Since G', G'', \overline{G} have connected centre, we get by restriction bijections $(\widehat{G}^{*F})_{s'} \xleftarrow{\approx} (\widehat{G}^{*F})_{s''} \xrightarrow{\approx} (\widehat{\overline{G}}^{F})_{\overline{s}}$. There are compatible with the actions of H^F/H^{OF} . Since the case $(G \to \overline{G}, \overline{s})$ is handled by (b), the cases $(G \to G'', s'')$ and $(G \to G', s')$ follow.

(d) Assume that G is the derived group of G'. We can find a connected reductive group \tilde{G}' over \mathbb{F}_q with simply connected derived group \tilde{G} and a surjective homomoprhism $\tilde{G}' \to G'$ (over \mathbb{F}_q) whose kernel is a central torus in \tilde{G}' . Then \tilde{G}' has connected centre and $\tilde{G}' \to G'$ restricts to a finite covering $\tilde{G} \to G$. We have $G'^{\star} \subset \tilde{G}'^{\star}$ hence s' can be considered as an element of $\tilde{G}'^{\star F}$. Let \tilde{s} be the image of $s \in G^{\star F}$ under the finite covering $\tilde{G}^{\star} \to \tilde{G}^{\star}$. Let $\tilde{H} = \mathbb{Z}_{\tilde{G}}(\tilde{s})$. We have a natural imbedding $H^{F}/H^{OF} \to \tilde{H}^{F}/\tilde{H}^{OF}$, induced by $\tilde{G}^{\star} \to \tilde{G}^{\star}$. Composition with $\tilde{G}'^{F} \to G'^{F}$ defines a bijection $(\tilde{G}'^{F})_{s'} \xrightarrow{\sim} (\tilde{G}'^{F})_{s'}$. Applying (c) to $(\tilde{G} \to \tilde{G}', s')$ we deduce the desired result for $(G \to G', s')$.

(e) We now consider the general case. Let G" be the derived group of G. Let s" be the image of $s \in G^{\star F}$ under $G^{\star} \to G^{**}$ and let $H^{*} = Z_{G^{*}}(s^{*})$. We have a natural imbedding $H^{F}/H^{OF} \to H^{**}/H^{**OF}$. Applying (d) to $(G^{*} \to G^{*}, s^{*})$ we deduce the desired result for $(G \to G^{*}, s^{*})$. This completes the proof.

9. Let $\Lambda \subseteq B$ be finite groups such that A is normal in B and B/A is abelian. Then the abelian group B/A acts naturally on \hat{A} (this is induced by the action of B on A by conjugation) and the abelian group B/A acts naturally

on \hat{B} by tensor product. The proofs of the results in this section are standard, and will be ommitted.

(a) Assume that any $\rho \in \hat{B}$ restricts to a multiplicity free representation of A. Then there is a unique bijection

 \hat{A} mod action of B/A \leftrightarrow \hat{B} mod action of $\hat{B/A}$

with the following properties. Let Θ be a B/A-orbit on \hat{A} and let θ' be the corresponding \hat{B}/A -orbit on \hat{B} . Then if $\rho_0 \in \Theta'$, we have $\rho_0 | A = \Sigma \tau$; if $\tau_0 \in \Theta$, we have $\inf_A^B \tau_0 = \sum_{\rho \in \Theta'} \rho$. Moreover, the stabilizer of ρ_0 in \hat{B}/A and the stabilizer of τ_0 in B/A are orthogonal to each other under the natural duality $B/A \times \hat{B}/A \to \overline{\Phi}_0^*$.

We now want to find conditions which should imply that the assumptions of (a) holds.

(b) If B/A is cyclic then the assumption of (a) is automatically satisfied.

(c) Assume now that any $\rho \in \hat{B}$ has stabilizer I_{ρ} in \hat{B}/A isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z}$ or $\{e\}$. Let $\hat{B}' = \{\rho \in \hat{B} | \rho | A$ is multiplicity free}, $\hat{B}'' = \hat{B} - \hat{B}'$, $\hat{A}' = \{\tau \in \hat{A} | \tau$ appears in $\rho | A$ some $\rho \in \hat{B} \}$, $\hat{A}'' = \hat{A} - \hat{A}'$. Then the conclusions of (a) hold if \hat{A}, \hat{B} are replaced by \hat{A}', \hat{B}' . If $\rho \in \hat{B}''$ then $I_{\rho} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and $\rho | A = 2\tau$, $\tau \in \hat{A}''$; moreover $\operatorname{Ind}_{A}^{B} \tau = 2\rho$ and $\rho \mapsto \tau$ is a bijection $\hat{B}'' \xrightarrow{\sim} \hat{A}''$.

Let $x_i = \# \{ \rho \in \hat{B} | |I_\rho| = i \}$, (i = 1, 2, 4) and $y = \# \hat{B}^{"}$. Then $|\hat{B}| = x_1 + x_2 + x_4$, $|\hat{A}| = \frac{x_1}{p} + 4 \frac{x_2 + y}{p} + 16 \frac{x_4 - y}{p}$, (p = |B/A|). Hence if we assume also that $|\hat{A}| = \frac{x_1}{p} + 4 \frac{x_2}{p} + 16 \frac{x_4}{p}$, then y = 0, so that the assumption of (a) is again satisfied.

10. Proposition. Let $G \subseteq G'$ be a regular imbedding (Sec. 7). For any $\rho' \in \hat{G'}^F$, the restriction $\rho'|G^F$ is multiplicity free.

<u>Proof.</u> a) Assume first that G is almost simple, simply connected and that dim $Z_{G'} \leq 1$ except that dim $Z_{G'} = 2$ when $G = \operatorname{Spin}_{4n}$ and char $\mathbb{F}_q \neq 2$. If dim $Z_{G'} \leq 1$, or if $G = \operatorname{Spin}_{4n}$ is non-split over \mathbb{F}_q (of odd characteristic) then G'^F/G^F is cyclic and we may use 9(b). If G = Spin $_{4n}$ is split over F_q of odd characteristic we use 9(c) as follows. First note that in this case the set \hat{G}^{F} and the action of $(G^{F}/G^{F})^{\hat{}}$ on it are determined explicitly by Proposition 8.1. From this we can compute explicitly the numbers x_1, x_2, x_4 in 9(c) for $A = G^{F}$, $B = G^{F}$. On the other hand we can count directly the number of conjugacy classes in the split $Spin_{4n}(F_q)$. This is the same as $|\hat{A}|$. We then compare $|\hat{A}|$ and $\frac{x_1}{p} + 4 \frac{x_2}{p} + 16 \frac{x_4}{p}$ (p = |B/A|) and find that they are equal. We can apply 9(c) and we see that the proposition holds.

(b) Assume next that G is almost simple, simply connected but there is now no restriction on dim $Z_{G'}$. We can find a regular imbedding $G \to \overline{G}$ which is like $G \to G'$ in (a). Let $G' \to G''$, $\overline{G} \to G''$ be as in 7.1. We have natural surjective maps $\hat{G}'^F \leftarrow \hat{G}''^F \to \hat{\overline{G}}^F$ defined by restriction. Let $\rho' \in \hat{G}'^F$ and let $\rho'' \in \hat{G}''^F$ be such that $\rho''|G'^F = \rho'$. Let $\overline{\rho} = \rho''|\overline{G}^F$. By (a), $\overline{\rho}|G^F$ is multiplicity free; the restrictions $\rho'|G^F$, $\overline{\rho}|G^F$ coincide, hence $\rho'|G^F$ is multiplicity free.

(c) Assume that G is simply connected. Let $G \to \overline{G} \to G''$, $G' \to G''$ be as in 8(c). Arguing as in (b) we see that we can replace G' by \overline{G} in which case we can use the case (b).

(d) Assume that G is semisimple. Let $\widetilde{G}\to \widetilde{G}'$ be as in 8(d). Then $\begin{array}{c}\downarrow\\ \varphi\\ G\to G'\end{array}$

 $\widetilde{\rho}' = \rho' | \widetilde{G'}^F \text{ is irreducible since } \widetilde{G'}^F \to {G'}^F \text{ is surjective. By (c), } \widetilde{\rho}' | \widetilde{G}^F \text{ is multiplicity free. But } (\rho' | G^F) | \widetilde{G}^F = \widetilde{\rho}' | \widetilde{G}^F. \text{ Hence } \rho' | G^F \text{ is multiplicity free.}$

(e) We now consider the general case. Let G" be the derived group of G. By (d), $\rho'|G"^F$ is multiplicity free. But $(\rho'|G^F)|G"^F = \rho'|G"^F$ hence $\rho'|G^F$ is multiplicity free. This completes the proof.

11. <u>Proof of Proposition 5.1</u>. Let $G \to G'$ be a regular imbedding (Sec.7), and let $s' \in {G'}^*F$ be an element which maps to $s \in {G}^{*F}$ under the corresponding homomorphism ${G'}^* \to {G}^*$. Let $H' = Z_{G'}^{\circ}(s')$.

The action of G^{1F}/G^{F} on \hat{G}^{F} (see Sec.9) factors through the action of

 $G_{ad}^{F}/\pi(G^{F})$ in Sec.3. (We have a natural surjective homomorphism $G'^{F}/G^{F} \rightarrow G_{ad}^{F}/\pi(G^{F})$). Hence in the statement of 5.1. we can replace "orbits of $(Z_{G}/Z_{G}^{\circ})_{F}$ "by "orbits of G'^{F}/G^{F} ". The map ψ in the proposition is defined as the composition

$$\begin{split} & (\widehat{G}^{F})_{s} \\ & \downarrow \\ & (\widehat{G}^{F})_{s} \text{ mod action of } G'^{F}/G^{F} \\ & \downarrow \qquad , \text{ see Sec. 10 and 9(a)} \\ & \cup_{K \in K} (\widehat{G}^{,F})_{s'k} \text{ mod action of } K^{F} \cong (G'^{F}/G^{F})^{-} \\ & \downarrow \qquad , \text{ see Sec. 8} \\ & (\widehat{G}^{,F})_{s}, \text{ mod action of } K^{F}_{s}, = H^{F}/H^{OF} \\ & \downarrow \qquad , \text{ see Sec. 8.1} \\ & (\widehat{H}^{,OF})_{1} \text{ mod action of } H^{F}/H^{OF} \\ & \downarrow \qquad , \text{ see Sec. 8} \\ & (\widehat{H}^{OF})_{1} \text{ mod action of } H^{F}/H^{OF}. \end{split}$$

The properties of $\ \psi$ follow easily from 9(a) ; for the multiplicity formula we use that :

$$\begin{split} R^{G}_{T}(s) &= R^{G'}_{T'}(s') \left| \mathcal{G}^{F} \right| \quad (T' = \text{ inverse image of } T \subset \mathcal{G}^{, \bigstar} \to \mathcal{G}^{\bigstar}) \\ \text{ind}_{G}^{G',F}(\rho) &= \sum_{\rho' \in \Theta'} \rho' + \text{ representation of } \mathcal{G}^{,F} \text{ outside } (\widehat{\mathcal{G}}^{,F})_{S'}, \end{split}$$

where $\Theta' \subset (\hat{G}'^{F})_{S}$, is the H^{F}/H^{OF} -orbit determined by ρ . Θ' corresponds to a H^{F}/H^{OF} orbit Θ'_{1} on $(\hat{H}'^{OF})_{1}$ and to a H^{F}/H^{OF} orbit Θ on $\hat{H}^{OF})_{1}$. We have $(\rho : R_{T}^{G}(s))_{G}^{F} = (\rho : R_{T}^{G'}(s')|_{G}^{F})_{G}^{F}$ $= (ind_{G}^{G'F}(\rho) : R_{T}^{G'}(s'))_{G'F}$ $= (\sum_{\rho' \in \Theta'} \rho' : R_{T}^{G'}(s'))_{G'F}$

$$= \varepsilon_{G} \varepsilon_{H} \sum_{\rho_{1}' \in \Theta_{1}'} (\rho_{1}' : R_{T}^{H'^{O}}(1))_{H'^{OF}}$$

by 6.1, 8.1,
$$= \varepsilon_{G} \varepsilon_{H} \sum_{\overline{\rho} \in \Theta} (\overline{\rho} : R_{T}^{H^{O}}(1))_{H^{OF}}.$$

This completes the proof.

12. In the setup of Sec.4, we say that an irreducible representation of H^{F} is unipotent if its restriction to H^{OF} is a sum of unipotent representations of H^{OF} . Let $(\widehat{\operatorname{H}}^{F})_{1}$ be the set of unipotent representations of H^{F} . It is easy to see that 9(a) (for $\operatorname{H}^{OF} \subset \operatorname{H}^{F}$) provides a surjective map

$$\psi'$$
: $(\hat{H}^{F})_{1} \rightarrow (\hat{H}^{OF})_{1} \mod \text{action of } H^{F}/H^{OF}$

with the following property : the fibres of ψ' and ψ over the same point have the same cardinal. Hence there exists a bijection

$$\psi" : (\widehat{\mathsf{G}}^{\mathrm{F}})_{\mathrm{S}} \xrightarrow{\sim} (\widehat{\mathsf{H}}^{\mathrm{F}})_{\mathrm{I}}$$

such that $\psi = \psi' \circ \psi''$.

13. The parametrizations of \hat{G}^F considered here and in [4] are to some extent non-canonical. It is likely that these will be canonical when they will be related to character sheaves. Note also that the crucial part of our proof (the multiplicity 1 statement in Sec. 10 for $\operatorname{Spin}_{4n}(\mathbb{F}_q)$) involves some very long and unpleasant computations of the number of conjugacy classes and unpleasant computations of the number of conjugacy classes and irreducible representations of $\operatorname{Spin}_{4n}(\mathbb{F}_q)$. Although these computations give the desired results, they don't show why the result holds. One can give a somewhat more satisfactory proof, using character sheaves on Spin_{4n} .

14. The parametrization of \hat{G}^F given in [5] is in terms of a dual group over \mathbb{C} rather than over $\overline{\mathbb{F}}_q$; however that parametrization is equivalent to the one given here.

References

- [1] T. Asai, Endomorphism algebras of the reductive group over \mathbf{F}_q of classical type, (unpublished manuscript).
- [2] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103-161.
- [3] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977),125-175.
- [4] G. Lusztig, Characters of reductive groups over a finite field, Ann. of Math. Studies 107, Princeton University Press, 1984.
- [5] G. Lusztig, Characters of reductive groups over finite fields, Proc. Int. Cong. Math. Warszawa 1983.

George LUSZTIG Department of Mathematics M . I . T . Cambridge, MA 02139 U . S . A.