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On the representations of reductive groups with disconnected centre 

• 

G. Lusztig 

1. We consider a connected reductive algebraic group defined over a 

finite field Fq with Frobenius map F : G -» G. 

Let Gf denote the set of irreducible representations up to isomorphism of the 

finite group GF over Ql (£ is a prime not dividing q). In the case where the 

centre ZG of G is connected, a parametrization for GFwas given in [ 4] ; 

this is extended here to the general case (i.e. we allow Z~ to be disconnected). 

The proof will be by a reduction to the case where Z„ is connected using a method 

in [ 4, 14.1]. The results of this paper were obtained during the summer of 1983 

and were announced in [ 5] . 

2. We denote by G* a connected reductive group defined over JF , dual 

to G, as in [ 2 ] . We again denote by F the corresponding Frobenius map. (The 

same notation will be used for the Frobenius map of any algebraic variety defined 

over 3F̂ ) . As in f 2] we have a natural bijection 

F *F 

{(T',6)} mod G -conjugacy {(T,s)}mod G -conjugacy 

where T' (resp.T) runs over the F-stable maximal torus of G (resp.G*), 

. 'F —* _F 
0 : T -> is a character and s is an element of Tr . If (T',9) , (T,s) cor-

Q 
respond in this way we consider the virtual representation , (6) defined in [ 21 ; 

G r11 1 
we shall also write R^(s) instead of R^, (0) . 

*F IF ~F 
For a semisimple element s e G , let (G~ ) be the set of all p e G 

appearing with non-zero multiplicity in R^(s) for some F-stable maximal torus 

T c G. 
•~F -~F *F 

The subset (G ) of G depends only on the G -conjugacy class of s. We 

* Supported in part by the National Science Foundation. 
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G. LUSZTIG 

have a partition G F = - ~ (GF) g where s runs over the semisimple elements of 

G*F up to G*F-conjugacy. (See [ 2] , [ 3] ) . 

3. Let -IT : G -> Gad be the adjoint quotient of G. We have a natural iso
morphism 

G 
F 
ad' /if {(f) = /if {(f) = 

/if {(f) = 

(the subscript F denotes F-coinvariants, i.e. largest quotient on which F 
acts trivially) ; it is defined by the correspondence G ^ ^ g -> g 1F(g) e Z G , 

where g e G satisfies ir(g) = g. 

The group G F ^ acts naturally on G F by automorphisms g : g1 -» gg-̂ g 1 

(g,g as above). Hence GFad acts naturally on GF. Clearly this action is trivial 

on the subgroup TT(GF) hence it induces an action of G ^ / T T (GF) on G F . It is 

easy to check that this action (extended by linearity to virtual representations) 
leaves fixed each R̂ ,(s) ; hence it leaves stable each subset (GF) of (f. We 

have thus defined an action of (Z^/Z^)F on (GF) 

*F 
4. We fix a semisimple element s ̂  G and we denote H = Z^*(s). If 

x 6 Hf , then conjugation by x is an automorphism of H° (over ]F ) ; hence it 

defines an automorphism of H°F which leaves stable the set (HoF) of unipotent 
oF ~oF representations.If x G H , the corresponding automorphism of (H ) is 

JF" oF ~oF 
trivial, so we have a natural action of H/H on (H ) . 

5. With these notations, we can now state our main result. 

Proposition 5,1. There exists a surjective map 
-p ~oF JF oF Y : (G ) -> (H ) ̂  mod action of it /H with the following properties. 

The fibres of i> are precisely the orbits of the action of 

(Z_/25)„ on (GF) , (see Sec.3). If 0 is a H^/H^-orbit on (H°F) . and T 
G G F — s — 1 

F OF —1 is the stabilizer in HT /H of an element in 0 , then the fibre \\J (0) has 

precisely |r| elements. If p e ij; 1(0) and T is an F-stable maximal torus 

of G * containing s, then 

158 



ON THE REPRESENTATIONS OF REDUCTIVE GROUPS WITH DISCONNECTED CENTRE 

(p : K £ ( S ) ) ^ = eGeH _Z (p : « £ < ! ) ) 
pe0 H 

Here ( : ) denotes the standard inner product of virtual representations 

and eG = (-l)a (G) , o (G) = 3Fa~rank of G ; in RH0T (1) , 1 stands for the trivial 

character of TF 

Remarks. The sets (H°F) ̂  are described explicitly in [4] ; * they are insensitive 
to the centre of H°. The action of outer automorphisms on the set of unipotent 
representations of a connected reductive group is easy to describe ; for example 
when that group is simple modulo its centre, of type ¥= D2n, this action is 

trivial. The multiplicities (p : R5(1)) „ are also described explicitly in [ 4] . 

Hence the proposition gives an explicit parametrization of and explicit 
Q 

formulas for the multiplicities (p : R^s)) . 

or 

6. Now let G be a connected reductive group over IF ̂  with connected 

centre. Let s e G be semisimple and let H = Z (s ) . Then both groups 
G * 

o »F IOF 

( Z 0 , ) „ and H /H are trivial and from 5.1 we obtain the following known 

result. Corollary 6.1. [ 4] . If z ^ , is connected, then there exists a bijection  — ^ 
4> : (5'F)S, > (H'OF)1 such that (p* : R^.(s')) ,p ~ eG'eH' : *T' (1) } ,oF 

G H 
- »F » ' 

for any p1 G (G ) s, and any F-stable maximal torus T of G containing s' ; 
here p = (p) . 

7. If G is as in Sec. 1, we say that i : G -* G * is a regular imbedding if 
G ' is a connected reductive group overlF^ with connected centre, i is an isomor
phism of G with a closed subgroup of G * and i ( G ) , GF have the same derived 
subgroup. 

We shall need the following simple result. 

Lemma 7.1. [ 1, 2.3.2]. If G is semisimple and i : G -» G1 , i : G -> G are 

regular imbeddings, then there exists a connected reductive group G " over 3F and 

regular imbeddings j : G ' -* G " , J : G -> G " such that j°i = j~0i. 
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8. With G as in Sec. 1, we fix a regular imbedding G -* G' .To this 

corresponds by duality a surjective homomorphism 6 : G1* -* G* (over 1F^) whose 

kernel K is a central torus in G'*. We have a natural isomorphism 

Kf 
Horn(G1F/GF 

Horn(G1F/GF 
Horn(G1F/GF 6k 

. We consider the action of on G'F given 

by k : p1 -* p' ® 6, . The action of k £ Kf on G'F defines a bijection 

orn(G1F/ 
orn(G1F/ ( 5 ' F ) k S l 

• F 
for any semisimple s^ £ G' 

Now let s' G G'*F be semisimple, H' = Z . (s'). Let P^. be the set of all 
G1 S 

k €= K̂ " which map (G'F)s, into itself or, equivalently, 

J, 
s 

= {k G r l k s 1 is conjugate to s' under G1 }. 

*F F oF 
If s = 6 (s') G G , and H = Z ̂  (s) we have a natural isomorphism IF/H 

G „ _ S' 

defined by the correspondence H* x -> s' ^xs'x 1 e where x G G'*F 

satisfies 6(x)=x. (Note that ô : G1 -* G is surjective). Using this isomorphisim 

F " • F _F oF ~ i F 
the action of IC , on (G )g, becomes an action of H /H on (G )g, . Now 6 

defines a surjective homomorphism H'° -> H° with kernel K, hence a bijection 

~oF ~~ ~ i OF F oF ~oF 
(H )x — > (H )1. Using this, the action of tT/H on (H ) ̂  in Sec 4 

~ o^ 
becomes an action on (H1 . We shall need the following strengthening of 6.1. 

Proposition 8.1. The isomorphism ij; in 6.1 can be chosen to be compatible with 

F oF - p - oF 
the action of h /H on (G* )s, and (H* )1 defined above. 

Proof. (a) Assume first that G is almost simple, simply connected. If G 

is a classical group, then \[> in 6.1 is uniquely determined ; in the remaining 

cases (with one exception) either H is connected (and there is nothing to 

prove) or is uniquely determined. In these cases the result follows easily. 
*F 

The exception is : G of type E_, s e G is such that H = Z ̂ (s) has two 
G 

components and H° modulo its centre is of type E^. There are two representations 
F G ' 

in (G' ) f which are not distinguished by their multiplicities in the î^,,(s'). 

We must show that they are in the same orbit of lf/lioF = %>/2. If they are not, 
P 

they would remain irreducible on restriction to G' . But their restrictions to 
,F 

G are reducible by an argument in [ 4, p.353] . 
(b) Assume next that G = G1 x G2 x x Gn with almost simple, 
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simply connected factors Gi permuted by F and that G1 = G^ x G£ x ••• x G^ 

where G^ G^ are regular imbeddings over an extension of ;F and the G^ are again 

permuted by F . In this case we group together the factors in the various orbits 
of F and we are reduced to the case where F permutes cyclically the indices. 
~i- j— i_ J ? _Fn _,F „.F11 and the result follows by applying In that case we have GT = G^ , G' = G' i ft 2 ^ 

(a) to G1 and Gj instead of G and G'. 

(c) Assume that G is simply connected. We decompose G in a product 
G, x GO x x G as in (b) ; we imbed it in G = G, x x G where G -> G is 
1 2 n 1 n 

like G -* G' in (b) . Let G* -> G", G G" be as in 7.1. We can find s" e G"*F 
*p * -p + * 

which maps to s' e G' and to some element s ̂  G under G' G" -> G . 
Since G', G", G have connected centre, we get by restriction bijections 
(G,F)s, (G,,F)s„ (GF)_ . There are compatible with the actions of tF/HOF. 

s 
Since the case (G -» G,s) is handled by (b) , the cases (G -> G",s") and (G -* G',s') 
follow. 

(d) Assume that G is the derived group of G1 . We can find a connected 
reductive group G ' over ]F with simply connected derived group G and a sur-

jective homomoprhism G ' -> G ' (over ! F ) whose kernel is a central torus in G 1 . 

Then G ' has connected centre and G 1 -> G ' restricts to a finite covering G -> G . 

We have G ' * с G'* hence s' can be considered as an element of G * * F . Let s 

be the image of s e G*F under the finite covering G* -* G* . Let H = Z_^ (s) . We 
G 

тр oF ~jr" ~-QF ^ —Д-have a natural imbedding н /Н -» н /Н , induced by G -> G . Composition with 

G , F -* G'F defines a bijection (G*F)s, (5'F)S, . Applying (c) to ( G -> G ' , s * ) 

we deduce the desired result for ( G -> G ' , s') . 

(e) We now consider the general case. Let G " be the derived group of G. 
*F * • 

Let s be the image of s e G under G -* G " and let H" = Z (s") . We have a 
G" 

jp Q P p QP 

natural imbedding н/Н -» H" /Н" . Applying (d) to ( G " -* G',s') we deduce the 

desired result for (G -> G',s'). This completes the proof. 
9. Let А с в be finite groups such that A is normal in В and B/A is 

abelian. Then the abelian group B/A acts naturally on A (this is induced by the 
action of В on A by conjugation) and the abelian group B/A acts naturally 
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on B by tensor product. The proofs of the results in this section are standard, 

and will be ommitted. 

(a) Assume that any p e B restricts to a multiplicity free representation 

of A. Then there is a unique bijection 

A mod action of B/A B mod action of B/A 

with the following properties. Let 0 be a B/A-orbit on A and let 9' be the 

corresponding B/A -orbit on B. Then if pQ G 0' , we have pQ|A = E T ; if Tq e 0, 
B Te0 ~ 

we have ind T = I p. Moreover, the stabilizer of p in B/A and the 
A 0 ~ . 0 

pe0 
stabilizer of x in B/A are orthogonal to each other under the natural duality 
B/A x B/A <£ • 

We now want to find conditions which should imply that the assumptions of 

(a) holds. 

(b) If B/A is cyclic then the assumption of (a) is automatically satis

fied. 

(c) Assume now that any p e B has stabilizer I in B/A isomorphic 

to Z/2Z x 2Z/2Z or Z/2Z or {e}. Let i' = {p e £|p|A is multiplicity free}, 

B" = B - B1 , Â' = { T e A|T appears in p|A some p e B} , A" = A - Â* . Then the 

conclusions of (a) hold if A,B are replaced by A^B'. If p G B" then 

In = 7L/2K x and p|A = 2T , x G A" ; moreover IndA x = 2p and p t-> x is 

a bijection B" A" 

Let x. = # {p e B|IIp| = i} , (i = 1,2,4) and y = # B". Then |i| = X-j+x^x^ 

x x +y x -y 
|A| = ~- + 4 — — + 16 — — , (p = | B/A I) . Hence if we assume also that 

XL X2 X4 

|A| = ̂ + 4 ^ " + 16 ~^ ' then Y = °/ so the assumption of (a) is again 

satisfied. 

10. Proposition. Let G c G' be a regular imbedding (Sec. 7 ) . For any  

p' e G,F , the restriction p 1 ^ is multiplicity free. 

Proof, a) Assume first that G is almost simple, simply connected and that 

dim ZGI < 1 except that dim ZG» =2 when G=Spin4n and charnFg^2. If dim Z G , < 1 , or 

if G = Spin4n is non-split over (of odd characteristic) then G'F/GF is cyclic 
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and we may use 9(b). If G = Spin ^ is split over Fq of odd characteristic we use 
~ F 

9(c) as follows. First note that in this case the set G 1 and the action of 
(G|J"VGF) on it are determined explicity by Proposition 8.1. From this we can 

F F 
compute explicitly the numbers x1,x2,x4 in 9(c) for A = G , B = G 1 . On the 

other hand we can count directly the number of conjugacy classes in the split 

- x^ X2 X4 
Spin. (F ) . This is the same as |A| . We then compare |A| and — + 4 — +16 — 4n q 11 P P P 
(p = |B/A|) and find that they are equal. We can apply 9(c) and we see that the 
proposition holds. 

(b) Assume next that G is almost simple, simply connected but there is 
now no restriction on dim Z^, .We can find a regular imbedding G -» G which is 
like G -» G ' in (a) . Let G ' -» G " , G -> G " be as in 7.1. We have natural surjec-

"* F »'F _ T ? , ' O 

tive maps G ' G CT defined by restriction. Let p* e G and let p "e G " 

be such that p" | G ' F = p' . Let p = p" 1 ^ . By (a), ~p\cF is multiplicity free ; 

the restrictions p1 | G F , p | G F coincide, hence p 1 | G F is multiplicity free. 
(c) Assume that G is simply connected. Let G -* G -* GM , G ' -> G " be as 

in 8(c) . Arguing as in (b) we see that wa can replace G ' by G in which case we 
can use the case (b). 

(d) Assume that G is semisimple. Let G -> G ' be as in 8 (d) . Then 

G ^ G ' 

p' = p * | G ' F is irreducible since G ' F -> G ' F is surjective. By (c) , p' | i s mul

tiplicity free. But ( p , | G F ) | G F = p , | G F . Hence p ' ^ is multiplicity free. 

(e) We now consider the general case. Let G " be the derived group of G . 

By (d) , p ' | G " F is multiplicity free. But (p' \ ( ^ ) | G , , F = p ' | G , , F hence p ' ^ is 

multiplicity free. This completes the proof. 

11. Proof of Proposition 5.1. Let G -» G ' be a regular imbedding (Sec.7), 
and let s' £ G1 F be an element which maps to s e G * F under the corresponding 
homomorphism G ' * -* G * . Let H' = Z° (s1). 

G ' 
F J1 ~F 

The action of G ' /G on G (see Sec.9) factors through the action of 
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G'^/GF ". in Sec.3. (We have a natural surjective homcmorphism G,F/GF Gad^(GF))-

Hence in the statement of 5.1. we can replace "orbits of ^ ç / ^ p "by "orbits 

of G ' ^ / G F ". The map \p in the proposition is defined as the composition 

<aF)s 
G'^/G mod action of (G,F/GF)^ 

, see Sec. IO and 9(a) 

keif 
( G ) s'k mod action of if = ( G , F / G F ) ^ 

, see Sec. 8 

( G ' F ) S mod action of if, = lf/HoF 

, see Sec. 8.1 

( 5 ' ° ^ mod action of lf/HoF 

, see Sec. 8 
(G,F/GF)^ mod action of (G,F/GF)^ 

The properties of ij; follow easily from 9 (a) ; for the multiplicity formula 
we use that : 

dd T (s) = R 
G ' 
T ' (G,F/GF)^ (T1 = inverse image of T C G'* ^G*) 

ind ) 
) 
sd 
F (n) = 

P'€0' 
F F p' + representation of G' outside (G* )gl 

- p p oF where 0' c (G1 ) ? is the tr/H -orbit determined by p. 0' corresponds to a 

lf/UoF orbit 0^ on (H,oF)1 and to a / / H ^ orbit 0 on H°F)r We have 

(P : H G T (s)) ̂F 
j 

= (p : R G' d 
(G,F/GF)^ 

GF 

= (inc G 
G 

.F 
F (p) : R t 

t 
(s')) 

G,F 

= ( 

0 ' € 0' 
p* : R; r' (s1)) G,F 
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(G,F/GF)^ 

(G,F/G 

(G,F/GF)^ rl' O 
(1))H.oF 

by 6.1, 8.1, 

= £ £ 

G H 
E0 

(P : F R 

O 

(1V 
This completes the proof. 

12. In the setup of Sec.4, we say that an irreducible representation of HT 
oF 

is unipotent if its restriction to H is a sum of unipotent representations of 

HoF. Let ( Í F ) , be the set of unipotent representations of H .It is easy to see 

that 9 (a) (for H°F c if) provides a surjective map 
<K : (HF)L (HoF) mod action of lF/HoF 

with the following property : the fibres of \p' and over the same point have the 

same cardinal. Hence there exists a bijection 

r : (?)s ÍHF)1 

such that \¡) = \p'o\p" . 

13. The parametrizations of GF considered here and in [ 4] are to some 

extent non-canonical. It is likely that these will be canonical when they will 

be related to character sheaves. Note also that the crucial part of our proof 

(the multiplicity 1 statement in Sec. 10 for Spin^lF^)) involves some very long 

and unpleasant computations of the number of conjugacy classes and unpleasant 

computations of the number of conjugacy classes and irreducible representations 

of Spin4n(lF^). Although these computations give the desired results, they don't 

show why the result holds. One can give a somewhat more satisfactory proof, using 

character sheaves on Spin^. 

14. The parametrization of (? given in [ 5] is in terms of a dual group 

over <n rather than over 1F̂  ; however that parametrization is equivalent to 

the one given here. 
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