George Lusztig
 On the representations of reductive groups with disconnected centre

Astérisque, tome 168 (1988), p. 157-166
http://www.numdam.org/item?id=AST_1988__168__157_0

© Société mathématique de France, 1988, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

On the renresentations of reductive groups with disconnected centre

G. Lusztig ${ }^{\star}$

1. We consider a connected reductive algebraic group defined over a finite field \mathbb{F}_{q} with Frobenius map $F: G \rightarrow G$.
Let \hat{G}^{F} denote the set of irreducible representations up to isomorphism of the finite group ${ }_{G}{ }^{F}$ over \bar{Q}_{ℓ} (ℓ is a prime not dividing q). In the case where the centre Z_{G} of G is connected, a parametrization for \hat{G}^{F} was given in [4] ; this is extended here to the general case (i.e. we allow Z_{G} to be disconnected). The proof will be by a reduction to the case where Z_{G} is connected using a method in [4, 14.1]. The results of this paper were obtained during the summer of 1983 and were announced in [5].
2. We denote by G^{\star} a connected reductive group defined over \mathbb{F}_{q}, dual to G, as in [2]. We again denote by F the corresponding Frobenius map. (The same notation will be used for the Frobenius map of any algebraic variety defined over \mathbb{F}_{q}). As in $[2]$ we have a natural bijection

$$
\left\{\left(T^{\prime}, \theta\right)\right\} \bmod G^{F} \text {-conjugacy } \leftrightarrow\{(T, s)\} \bmod G^{\star} F_{\text {-conjugacy }}
$$

where T^{\prime} (resp.T) runs over the F-stable maximal torus of G (resp. ${ }^{\star}$), $\theta: T^{\prime F} \rightarrow \bar{\Phi}_{\ell}^{\star}$ is a character and s is an element of T^{F}. If ($\left.T^{\prime}, \theta\right),(T, s)$ correspond in this way we consider the virtual representation R_{T}^{G}, θ) defined in [2|; we shall also write $R_{T}^{G}(s)$ instead of $R_{T} \mathrm{G}^{\prime}(\theta)$.

For a semisimple element $s \in G^{\star F}$, let $\left(\hat{G}^{F}\right)_{S}$ be the set of all $\rho \in \hat{G}^{F}$ appearing with non-zero multiplicity in $R_{T}^{G}(s)$ for some F-stable maximal torus $T \subset G$.

The subset $\left(\widehat{G}^{F}\right)_{s}$ of $\widehat{\mathrm{G}}^{\mathrm{F}}$ depends only on the $\mathrm{G}^{\star}{ }^{\text {- }}$-conjugacy class of s . We

* Supported in part by the National Science Foundation.

G. LUSZTIG

have a partition $\hat{\mathrm{G}}^{F}=\frac{1 \mid}{\mathrm{S}}\left(\hat{\mathrm{G}}^{F}\right)_{S}$ where s runs over the semisimple elements of $\mathrm{G}^{\star} \mathrm{F}^{\text {up to }} \mathrm{G}^{\star \mathrm{F}}$-conjugacy. (See [2], [3]).
3. Let $\pi: G \rightarrow G_{a d}$ be the adjoint quotient of G. We have a natural isomorphism

$$
\mathrm{G}_{\mathrm{ad}}^{\mathrm{F}} / \pi\left(\mathrm{G}^{\mathrm{F}}\right) \cong\left(\mathrm{Z}_{\mathrm{G}} / \mathrm{z}_{\mathrm{G}}^{\mathrm{O}}\right)_{\mathrm{F}}
$$

(the subscript F denotes F-coinvariants, i.e. largest quotient on which F acts trivially) ; it is defined by the correspondence $G_{a d}^{F} \supset g \rightarrow \dot{g}^{-1} F(\dot{g}) \in Z_{G}$, where $\dot{\mathrm{g}} \in \mathrm{G}$ satisfies $\pi(\dot{\mathrm{g}})=\mathrm{g}$.

The group $G_{\text {ad }}^{F}$ acts naturally on G^{F} by autamornhisms $g: g_{1} \rightarrow \dot{\operatorname{gg}} g_{1} \dot{g}^{-1}$ ($\mathrm{g}, \dot{\mathrm{g}}$ as above). Hence $\mathrm{G}_{\mathrm{F}}^{\mathrm{F}}$ acts naturally on $\overline{\mathrm{G}}^{\mathrm{F}}$. Clearly this action is trivial on the subgroup $\pi\left(G^{F}\right)$ hence it induces an action of $G_{a d}^{F} / \pi\left(G^{F}\right)$ on \bar{G}^{F}. It is easy to check that this action (extended by linearity to virtual representations) leaves fixed each $R_{T}^{G}(s)$; hence it leaves stable each subset $\left(\hat{G}^{F}\right){ }_{s}$ of \hat{G}^{F}. We have thus defined an action of $\left(z_{G} / z_{G}^{O}\right)_{F}$ on $\left({ }_{(G}^{F}\right)_{S}$.
4. We fix a semisimple element $s \in G^{\star}$ and we denote $H=Z_{G^{\star}}(s)$. If $x \in H^{F}$, then conjugation by x is an automorphism of H° (over \mathbb{F}_{q}) ; hence it defines an automorphism of $\hat{H}^{\circ \mathrm{F}}$ which leaves stable the set ($\left.\hat{\mathrm{H}}^{\mathrm{OF}}\right)_{1}$ of unipotent representations. If $\mathrm{x} \in \mathrm{H}^{\mathrm{OF}}$, the corresponding automorphism of ($\left.\hat{H}^{\circ \mathrm{F}}\right)_{1}$ is trivial, so we have a natural action of $\mathrm{H}^{\mathrm{F}} / \mathrm{H}^{\circ \mathrm{F}}$ on ($\left.\hat{\mathrm{H}}^{\mathrm{OF}}\right)_{1}$.
5. With these notations, we can now state our main result.

Proposition 5.1. There exists a surjective map
$\psi:\left(\hat{\mathrm{G}}^{\mathrm{F}}\right)_{\mathrm{S}} \rightarrow\left(\hat{\mathrm{H}}^{\circ \mathrm{F}}\right)_{1}$ mod action of $\mathrm{H}^{\mathrm{F}} / \mathrm{H}^{\mathrm{OF}}$ with the following properties.
The fibres of ψ are precisely the orbits of the action of $\left(Z_{G} / Z_{G}^{O}\right)_{F}$ on $\left(\hat{G}^{F}\right)_{S}$, (see Sec.3). If θ is a $H^{F} / H^{\circ F}$-orbit on $\left(\hat{H}^{\circ}\right)_{1}$ and Γ is the stabilizer in $H^{\mathrm{F}} / \mathrm{H}^{\mathrm{OF}}$ of an element in θ, then the fibre $\psi^{-1}(\theta)$ has precisely $|\Gamma|$ elements. If $\rho \in \psi^{-1}(\Theta)$ and T is an F-stable maximal torus of G^{\star} containing s , then

$$
\left(\rho: R_{T}^{G}(s)\right){ }_{G} F=\varepsilon_{G} \varepsilon_{H}{\underset{\rho}{\rho} \in \Theta}^{\Sigma}\left(\bar{\rho}: R_{T}^{H^{\circ}}(1)\right){ }_{H}{ }_{\mathrm{OF}} .
$$

Here (:) denotes the standard inner product of virtual representations and $\varepsilon_{G}=(-1)^{\sigma(G)}, \sigma(G)=\mathbb{F}_{\mathrm{Q}}$-rank of G; in $\mathrm{R}_{\mathrm{T}}^{\mathrm{H}^{\mathrm{O}}}(1), 1$ stands for the trivial character of T^{F}.

Remarks. The sets $\left(\hat{H}^{\circ F}\right)_{1}$ are described explicitly in [4] ; they are insensitive to the centre of H°. The action of outer automorphisms on the set of unipotent representations of a connected reductive group is easy to describe ; for example when that group is simple modulo its centre, of type $\neq D_{2 n}$, this action is trivial. The multiplicities $\left(\bar{\rho}: R_{T}^{H}(1)\right){ }_{H}{ }^{\mathrm{F}}$ are also described explicitly in [4]. Hence the proposition gives an explicit parametrization of $\left(\hat{G}^{F}\right)_{s}$ and explicit formulas for the multiplicities $\left(\rho: R_{T}^{G}(s)\right){ }_{G}{ }^{F}$.
6. Now let G^{\prime} be a connected reductive group over \mathbb{F}_{q} with connected centre. Let $s^{\prime} \in C^{\prime \star} F$ be semisimple and let $H^{\prime}=Z_{G^{\prime \star}}\left(s^{\prime}\right)$. Then both groups $\left(Z_{\mathrm{G}}, / Z_{G^{\prime}}^{\circ}\right)_{F}$ and $H^{\prime} F_{H}$ 'OF are trivial and from 5.1 we obtain the following known result.

Corollary 6.1. [4]. If Z_{G} is connected, then there exists a bijection $\psi:\left(\hat{G}^{\prime F}\right)_{S^{\prime}} \longrightarrow\left(\hat{H}^{\prime O F}\right)_{1}$ such that $\left(\rho^{\prime}: R_{T^{\prime}}{ }^{\prime}\left(s^{\prime}\right)\right)_{G^{\prime}} F=\varepsilon_{G^{\prime}} \varepsilon_{H^{\prime}}\left(\bar{\rho}^{\prime}: R_{T^{\prime}}^{H^{\prime O}}(1)\right){ }_{H^{\prime}} O F$ for any $\rho^{\prime} \in\left(\hat{G}^{\prime F}\right)_{S^{\prime}}$ and any F-stable maximal torus T^{\prime} of G^{\prime} containing s^{\prime}; here $\bar{\rho}=\psi(\rho)$.
7. If G is as in Sec. 1, we say that i : $G \rightarrow G^{\prime}$ is a regular imbedding if G^{\prime} is a connected reductive group over \mathbb{F}_{q} with connected centre, i is an isomorphism of G with a closed subgroup of G^{\prime} and $i(G), G^{\prime}$ have the same derived subgroup.

We shall need the following simple result.
Lemma 7.1. [1, 2.3.2]. If G is semisimple and $i: G \rightarrow G^{\prime}, \bar{i}: G \rightarrow \bar{G}$ are regular imbeddings, then there exists a connected reductive group G " over \mathbb{F}_{q} and regular imbeddings $j: G^{\prime} \rightarrow G^{\prime \prime}, \bar{j}: \bar{G} \rightarrow G^{\prime \prime}$ such that $j \circ i=\bar{j} \circ \bar{i}$.
8. With G as in Sec. l, we fix a regular imbedding $G \rightarrow G^{\prime}$. To this corresponds by duality a surjective homomorphism $\delta: G^{\prime \star} \rightarrow G^{\star}$ (over \mathbb{F}_{q}) whose kernel K is a central torus in $G^{\prime *}$. We have a natural isomorphism $K^{F} \longrightarrow \operatorname{Hom}\left(G^{\prime}{ }^{F} / G^{F}, \bar{\Phi}_{\ell}^{\star}\right), k \rightarrow \theta_{k}$. We consider the action of K^{F} on $\hat{G}^{\prime}{ }^{F}$ given by $k: \rho^{\prime} \rightarrow \rho^{\prime} \otimes \theta_{k}$. The action of $k \in K^{F}$ on \hat{G}^{F} defines a bijection $\left(\hat{\mathrm{G}}, \mathrm{F}_{\mathrm{S}_{1}} \xrightarrow{\sim}\left(\hat{\mathrm{G}}^{\prime} \mathrm{F}^{(}\right)_{\mathrm{ks}_{1}}\right.$ for any semisimple $\mathrm{s}_{1} \in \mathrm{G}^{\star \star \mathrm{F}}$.

Now let $s^{\prime} \in G^{\prime \star^{F}}$ be semisimple, $H^{\prime}=Z_{G^{\prime}{ }^{\star}}\left(s^{\prime}\right)$. Let $K_{S^{\prime}}^{F}$, be the set of all $k \in K^{F}$ which map $\left(\hat{G}^{\prime}{ }^{F}\right)_{S}$, into itself or, equivalently,

$$
K_{s^{\prime}}^{F}=\left\{k \in K^{F} \mid k s^{\prime} \quad \text { is conjugate to } s^{\prime} \text { under } G^{\prime}{ }^{\star} F\right\}
$$

If $s=\delta\left(s^{\prime}\right) \in G^{\star} F$, and $H=Z_{G^{\star}}(s)$ we have a natural isomorphism $H^{F} / H^{\circ F}=K^{F} S^{\prime}$ defined by the correspondence $\quad{ }_{H}{ }^{F} \supset x \rightarrow S^{\prime-1} \dot{x}^{\prime} \dot{x}^{-1} \in K^{F}$ where $\dot{x} \in G^{\prime}{ }^{\star} F$ satisfies $\delta(\dot{x})=x$. (Note that $\delta: G^{\prime{ }^{\star} F} \rightarrow G^{\star F}$ is surjective). Using this isomorphisum the action of K_{S}^{F}, on $\left(\hat{G}^{\prime F}\right)_{S}$, becomes an action of $H^{F} / H^{\circ F}$ on ($\left.\hat{G}^{\prime}{ }^{F}\right)_{S}$, Now δ defines a surjective homomorphism $\mathrm{H}^{\circ}{ }^{\circ} \rightarrow \mathrm{H}^{\circ}$ with kernel K , hence a bijection $\left(\hat{\mathrm{H}}^{\mathrm{OF}}\right)_{1} \xrightarrow{\sim}\left(\hat{\mathrm{H}}^{\mathrm{OFF}}\right)_{1}$. Using this, the action of $\mathrm{H}^{\mathrm{F}} / \mathrm{H}^{\mathrm{OF}}$ on $\left(\hat{\mathrm{H}}^{\mathrm{OF}}\right)_{1}$ in $\sec 4$ becomes an action on ($\left.\overline{\mathrm{H}},{ }^{\circ F}\right)_{1}$. We shall need the following strengthening of 6.1. Proposition 8.1. The isomorphism ψ in 6.1 can be chosen to be compatible with the action of $\mathrm{H}^{\mathrm{F}} / \mathrm{H}^{\mathrm{OF}}$ on $(\hat{\mathrm{G}}, \mathrm{F})_{\mathrm{S}}$, and $\left(\hat{\mathrm{H}}^{,} \mathrm{OF}\right)_{1}$ defined above.

Proof. (a) Assume first that G is almost simple, simply connected. If G is a classical group, then ψ in 6.1 is uniquely determined ; in the remaining cases (with one exception) either H is connected (and there is nothing to prove) or ψ is uniquely determined. In these cases the result follows easily. The exception is : G of type $E_{7}, s \in G^{\star F}$ is such that $H=Z_{G^{\star}}$ (s) has two components and H° modulo its centre is of type E_{6}. There are two representations in ($\hat{G}^{\prime}{ }^{F}$) s^{\prime} which are not distinguished by their multiplicities in the $\mathrm{R}_{\mathrm{T}} \mathrm{G}^{\prime}\left(\mathrm{s}^{\prime}\right)$. We must show that they are in the same orbit of $H / H^{\mathrm{OF}} \cong \mathbb{Z} / 2$. If they are not, they would remain irreducible on restriction to G^{F}. But their restrictions to G^{F} are reducible by an argument in [4, p.353].
(b) Assume next that $G=G_{1} \times G_{2} \times \ldots \times G_{n}$ with almost simple,
simply connected factors G_{i} permuted by F and that $G^{\prime}=G_{1}^{\prime} \times G_{2}^{\prime} \times \ldots \times G_{n}^{\prime}$ where $G_{i} \rightarrow G_{i}^{\prime}$ are regular imbeddings over an extension of \mathbb{F}_{q} and the G_{i} are again permuted by F. In this case we group together the factors in the various orbits of F and we are reduced to the case where F permutes cyclically the indices. In that case we have $\mathcal{E}^{F}=G_{1} F^{n}, G^{\prime}{ }^{F}=G^{\prime} F^{n}$ and the result follows by applying (a) to G_{1} and G_{1}^{\prime} instead of G and G '.
(c) Assume that G is simply connected. We decompose G in a product $\mathrm{G}_{1} \times \mathrm{G}_{2} \times \ldots \times \mathrm{G}_{\mathrm{n}}$ as in (b) ; we imbed it in $\overline{\mathrm{G}}=\overline{\mathrm{G}}_{1} \times \ldots \times \overline{\mathrm{G}}_{\mathrm{n}}$ where $\mathrm{G} \rightarrow \overline{\mathrm{G}}$ is like $G \rightarrow G^{\prime}$ in (b). Let $G^{\prime} \rightarrow G^{\prime \prime}, \bar{G} \rightarrow G^{\prime \prime}$ be as in 7.1. We can find $s^{\prime \prime} \in G^{\prime \prime}{ }^{\star} F$ which maps to $s^{\prime} \in G^{\prime}{ }^{\star} F$ and to some element $\bar{s} \in \bar{G}^{\star} F$ under $G^{\prime \star} \leftarrow G^{\prime \prime} \rightarrow \bar{G}^{\star}$. Since $G^{\prime}, G^{\prime \prime}, \bar{G}$ have connected centre, we get by restriction bijections
 Since the case ($G \rightarrow \bar{G}, \bar{s}$) is handled by (b), the cases ($G \rightarrow G^{\prime \prime}, s^{\prime \prime}$) and ($G \rightarrow G^{\prime}, s^{\prime}$) follow.
(d) Assume that G is the derived group of G '. We can find a connected reductive group \widetilde{G}^{\prime} over \mathbb{F}_{q} with simply connected derived group \widetilde{G} and a surjective homomoprhism $\widetilde{G}^{\prime} \rightarrow G^{\prime} \quad\left(\right.$ over \mathbb{F}_{q}) whose kernel is a central torus in \widetilde{G}^{\prime}. Then \widetilde{G}^{\prime} has connected centre and $\widetilde{G}^{\prime} \rightarrow G^{\prime}$ restricts to a finite covering $\widetilde{G} \rightarrow G$. We have $G^{\prime \star} \subset \widetilde{G}^{\prime \star}$ hence s^{\prime} can be considered as an element of $\widetilde{G}^{\prime \star} F$. Let \tilde{s} be the image of $s \in G^{\star} F$ under the finite covering $G^{\star} \rightarrow \widetilde{G}^{\star}$. Let $\widetilde{H}=Z_{\mathcal{G}^{\star}}(\widetilde{s})$. We have a natural imbedding $\mathrm{H}^{\mathrm{F}} / \mathrm{H}^{\mathrm{OF}} \rightarrow \widetilde{\mathrm{H}} / \widetilde{\mathrm{H}}^{\mathrm{OF}}$, induced by $\mathrm{G}^{\star} \rightarrow \widetilde{\mathrm{G}}^{\star}$. Composition with $\widetilde{G}^{\prime}{ }^{F} \rightarrow G^{\prime}{ }^{F}$ defines a bijection $\left(\hat{G}^{\prime F}\right)_{S^{\prime}} \xrightarrow{\sim}\left(\tilde{\mathcal{G}}^{\prime}\right)_{S^{\prime}}$. Applying (c) to $\left(\widetilde{G} \rightarrow \tilde{G}^{\prime}, s^{\prime}\right)$ we deduce the desired result for $\left(G \rightarrow G^{\prime}, s^{\prime}\right)$.
(e) We now consider the general case. Let G " be the derived group of G. Let $s^{\prime \prime}$ be the image of $s \in G^{\star F}$ under $G^{\star} \rightarrow G^{\prime \prime \star}$ and let $H^{\prime \prime}=Z_{G^{\prime \prime}}\left(s^{\prime \prime}\right)$. We have a natural imbedding $H^{F} / \mathrm{H}^{\circ \mathrm{F}} \rightarrow \mathrm{H}^{\mathrm{FF}} / \mathrm{H}^{\mathrm{OF}}$. Applying (d) to ($\mathrm{G}^{\prime \prime} \rightarrow \mathrm{G}^{\prime}, \mathrm{s}^{\prime}$) we deduce the desired result for $\left(G \rightarrow G^{\prime}, s^{\prime}\right)$. This completes the proof.
9. Let $A \subset B$ be finite groups such that A is normal in B and B / A is abelian. Then the abelian group B / A acts naturally on \hat{A} (this is induced by the action of B on A by conjugation) and the abelian aroup $\overline{B / A}$ acts naturally

G. LUSZTIG

on \hat{B} by tensor product. The proofs of the results in this section are standard, and will be onmitted.
(a) Assume that any $\rho \in \hat{B}$ restricts to a multiplicity free representation of A. Then there is a unique bijection

$$
\hat{\mathrm{A}} \text { mod action of } \mathrm{B} / \mathrm{A} \leftrightarrow \hat{\mathrm{~B}} \text { mod action of } \mathrm{B} / \mathrm{A}
$$

with the following properties. Let θ be a B / A-orbit on \hat{A} and let θ^{\prime} be the corresponding $\hat{B / A}$-orbit on \hat{B}. Then if $\rho_{0} \in \theta^{\prime}$, we have $\rho_{0} \mid A=\sum_{\tau \in \Theta} \tau ;$ if $\tau_{0} \in \theta$, we have $\operatorname{ind}_{A}^{B} \tau_{0}=\sum_{\rho \in \theta}$, ρ. Moreover, the stabilizer of ρ_{0} in $^{\tau \epsilon \theta} \hat{B / A}$ and the stabilizer of τ_{0} in B / A are orthogonal to each other under the natural duality $B / A \times B / A \rightarrow \overline{\mathbb{Q}}_{\ell}^{\star}$.

We now want to find conditions which should imply that the assumptions of (a) holds.
(b) If B / A is cyclic then the assumption of (a) is automatically satisfied.
(c) Assume now that any $\rho \in \hat{B}$ has stabilizer I_{ρ} in $\hat{B / A}$ isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ or $\mathbf{Z} / 2 \mathbb{Z}$ or $\{e\}$. Let $\hat{B}^{\prime}=\{\rho \in \hat{B}|\rho| A$ is multiplicity free $\}$, $\hat{B}^{\prime \prime}=\hat{B}-\hat{B}^{\prime}, \hat{A}^{\prime}=\{\tau \in \hat{A} \mid \tau$ appears in $\rho \mid A$ some $\rho \in \hat{B}\}, \hat{A}^{\prime \prime}=\hat{A}-\hat{A}^{\prime}$. Then the conclusions of (a) hold if \hat{A}, \hat{B} are replaced by $\hat{A}^{\prime}, \hat{B}^{\prime}$. If $\rho \in \hat{B}^{\prime \prime}$ then $I_{\rho}=\mathbb{Z} / \mathbb{Z} \mathbb{Z} \times \mathbb{Z} / \mathbb{Z}$ and $\rho \mid A=2 \tau, \tau \in \hat{A}$ "; moreover $\operatorname{Ind}_{A}^{B} \tau=2 \rho$ and $\rho \mapsto \tau$ is a bijection $\hat{B} \xrightarrow{\sim} \hat{A}^{\prime \prime}$.

Let $x_{i}=\#\left\{\rho \in \hat{B}| | I_{\rho} \mid=i\right\},(i=1,2,4)$ and $y=\# \hat{B}$. Then $|\hat{B}|=x_{1}+x_{2}+x_{4}$, $|\hat{A}|=\frac{x_{1}}{p}+4 \frac{x_{2}+Y}{p}+16 \frac{x_{4}-Y}{p},(p=|B / A|)$. Hence if we assume also that $|\hat{A}|=\frac{x_{1}}{p}+4 \frac{x_{2}}{p}+16 \frac{x_{4}}{p}$, then $y=0$, so that the assumption of (a) is again satisfied.
10. Proposition. Let $G \subset G$ be a regular imbedding (Sec. 7). For any $\rho^{\prime} \in \hat{\mathrm{G}}^{\prime}{ }^{\mathrm{F}}$, the restriction $\rho^{\prime} \mid G^{F}$ is multiplicity free.

Proof. a) Assume first that G is almost simple, simply connected and that $\operatorname{dim} Z_{G^{\prime}} \leqslant 1$ except that $\operatorname{dim} Z_{G^{\prime}}=2$ when $G=\operatorname{Spin}_{4 n}$ and char $\mathbb{F}_{\mathrm{q}^{\prime}} \neq 2$. If $\operatorname{dim} Z_{G^{\prime}} \leqslant 1$, or if $G=\operatorname{Spin}_{4 n}$ is non-split over \mathbb{F}_{q} (of odd characteristic) then $\mathrm{G}^{\mathrm{F}} / \mathrm{G}^{\mathrm{F}}$ is cyclic
and we may use $9(b)$. If $G=\operatorname{Spin} 4 n$ is split over F_{q} of odd characteristic we use 9 (c) as follows. First note that in this case the set $\hat{\mathrm{G}}{ }^{\mathrm{F}}$ and the action of $\left(G^{\prime}{ }^{F} / G^{F}\right)^{-}$on it are determined explicity by Proposition 8.1. From this we can compute explicitly the numbers $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{4}$ in $9(\mathrm{c})$ for $\mathrm{A}=\mathrm{G}^{\mathrm{F}}, \mathrm{B}=\mathrm{G}^{\mathrm{F}}$. On the other hand we can count directly the number of conjugacy classes in the split $\operatorname{Spin}_{4 n}\left(F_{q}\right)$. This is the same as $|\hat{A}|$. We then compare $|\hat{A}|$ and $\frac{x_{1}}{p}+4 \frac{x_{2}}{p}+16 \frac{x_{4}}{p}$ ($p=|B / A|$) and find that they are equal. We can apply 9 (c) and we see that the proposition holds.
(b) Assume next that G is almost simple, simply connected but there is now no restriction on $\operatorname{dim} Z_{G}$, . We can find a regular imbedding $G \rightarrow \bar{G}$ which is like $G \rightarrow G^{\prime}$ in (a). Let $G^{\prime} \rightarrow G^{\prime \prime}, \bar{G} \rightarrow G^{\prime \prime}$ be as in 7.1. We have natural surjective maps $\hat{G}^{\prime}{ }^{F} \leftarrow \hat{G}^{\prime \prime F} \rightarrow \hat{\bar{G}}$ defined by restriction. Let $\rho^{\prime} \in \hat{G}^{\prime F}$ and let $\rho " \in \hat{G}^{\prime \prime} F$ be such that $\rho^{\prime \prime} \mid G^{\prime F}=\rho^{\prime}$. Let $\bar{\rho}=\rho^{\prime \prime} \mid \bar{G}^{F}$. By (a), $\bar{\rho} \mid G^{F}$ is multiplicity free ; the restrictions $\rho^{\prime}\left|G^{F}, \bar{\rho}\right| G^{F}$ coincide, hence $\rho^{\prime} \mid G^{F}$ is multiplicity free.
(c) Assume that G is simply connected. Let $G \rightarrow \bar{G} \rightarrow G^{\prime \prime}, G^{\prime} \rightarrow G^{\prime \prime}$ be as in 8 (c). Arguing as in (b) we see that we can replace G ' by \bar{G} in which case we can use the case (b).
(d) Assume that G is semisimple. Let $\widetilde{G} \rightarrow \widetilde{G}$ ' be as in 8 (d). Then $\stackrel{\downarrow}{\mathrm{G}} \rightarrow \stackrel{\downarrow}{\mathrm{G}}{ }^{\prime}$
$\tilde{\rho}^{\prime}=\rho^{\prime} \mid \widetilde{G}^{\prime}{ }^{F}$ is irreducible since $\tilde{\mathrm{G}}^{\prime}{ }^{\mathrm{F}} \rightarrow \mathrm{G}^{\prime}{ }^{\mathrm{F}}$ is surjective. By (c), $\tilde{\rho}{ }^{\prime} \mid \widetilde{G}^{F}$ is multiplicity free. But $\left(\rho^{\prime} \mid G^{F}\right)\left|\widetilde{G}^{F}=\tilde{\rho}^{\prime}\right| \widetilde{G}^{F}$. Hence $\rho^{\prime} \mid G^{F}$ is multiplicity free.
(e) We now consider the general case. Let G " be the derived group of G. By (d), $\rho^{\prime} \mid G^{\prime \prime}$ is multiplicity free. But $\left(\rho^{\prime} \mid G^{F}\right)\left|G^{\prime \prime}=\rho^{\prime}\right| G^{\prime \prime}$ hence $\rho^{\prime} \mid G^{F}$ is multiplicity free. This completes the proof.
11. Proof of Proposition 5.1. Let $G \rightarrow G$ be a regular imbedding (Sec.7), and let $s^{\prime} \in G^{\prime *}$ be an element which maps to $s \in G^{\star F}$ under the corresponding homomorphism $G^{\prime \star} \rightarrow G^{\star}$. Let $H^{\prime}=Z_{G^{\prime}}^{\mathrm{A}}\left(\mathrm{s}^{\prime}\right)$.

The action of $G^{\mathrm{F}} / \mathrm{G}^{\mathrm{F}}$ on $\hat{\mathrm{G}}^{\mathrm{F}}$ (see Sec.9) factors through the action of
${ }_{G_{a d}}^{F} / \pi\left(G^{F}\right)$ in Sec.3. (We have a natural surjective nomomorphism $G^{\prime}{ }^{F} / G^{F} \rightarrow G_{a d}^{F} / \pi\left(G^{F}\right)$). Hence in the statement of 5.1 . we can replace "orbits of $\left(Z_{G} / Z_{G}^{O}\right)_{F}$ "by "orbits of $G^{\prime}{ }^{F} / G^{F}$ ". The map ψ in the proposition is defined as the composition

$$
\begin{aligned}
& \left(\hat{G}^{\mathrm{F}}\right)_{\mathrm{S}} \\
& \downarrow \\
& \left(\mathcal{G}^{F}\right)_{S} \bmod \text { action of } G^{F} / G^{F} \\
& \downarrow \text {, see Sec. } 10 \text { and } 9 \text { (a) } \\
& \left.\cup_{k \in K} F^{(\hat{G}}{ }^{\prime}\right)_{S^{\prime} k} \bmod \text { action of } K \cong\left(G^{F}{ }^{F} / G^{F}\right)^{-} \\
& \downarrow \text {, see Sec. } 8 \\
& \left(\hat{G}^{\prime}{ }^{F}\right)_{S^{\prime}}, \bmod \text { action of } K_{S^{\prime}}{ }^{\mathrm{F}}=H^{\mathrm{F}} / \mathrm{H}^{\mathrm{oF}} \\
& \downarrow \quad \text {, see Sec. } 8.1 \\
& (\hat{\mathrm{H}}, \mathrm{OF})_{1} \mathrm{mod} \text { action of } \mathrm{H}^{\mathrm{F}} / \mathrm{H}^{\mathrm{OF}} \\
& \downarrow \quad \text {, see Sec. } 8 \\
& \left(\hat{\mathrm{H}}^{\mathrm{OF}}\right)_{1} \bmod \text { action of } \mathrm{H}^{\mathrm{F}} / \mathrm{H}^{\mathrm{OF}} \text {. }
\end{aligned}
$$

The properties of ψ follow easily from 9(a) ; for the multiplicity formula we use that :

$$
\begin{aligned}
& R_{T}^{G}(s)=R_{T}^{G^{\prime}}\left(s^{\prime}\right) \mid G^{F} \quad\left(T^{\prime}=\text { inverse image of } T \subset G^{\prime \star} \rightarrow G^{\star}\right) \\
& i{ }^{\prime}{ }_{G_{G}}^{G}{ }^{\prime}{ }^{F}(\rho)=\sum_{\rho^{\prime} \in \theta^{\prime}} \quad \rho^{\prime} \quad+\text { representation of } G^{\prime}{ }^{\prime} \text { outside }\left(\hat{G}^{\prime}{ }^{F}\right)_{s^{\prime}},
\end{aligned}
$$

where $\left.\theta^{\prime} \subset\left(\hat{G}^{\prime}\right)^{F}\right)_{S}$, is the $H^{F} / H^{O F}$-orbit determined by ρ. θ^{\prime} corresponds to a

$$
\begin{aligned}
(\rho & \left.: R_{T}^{G}(s)\right){ }_{G^{F}}=\left(\rho: R_{T}^{G^{\prime}}\left(s^{\prime}\right) \mid G^{F}\right){ }_{G}^{F} \\
& =\left(i n d{ }_{G^{F}}{ }^{\prime}{ }^{F}(\rho): R_{T} G^{\prime}\left(s^{\prime}\right)\right){ }_{G^{\prime}}{ }^{F} \\
& =\left({ }_{\rho^{\prime} \in \theta^{\prime}} \rho^{\prime}: R_{T} G^{\prime}\left(s^{\prime}\right)\right){ }_{G^{\prime}}, F
\end{aligned}
$$

$$
\begin{aligned}
& =\varepsilon_{G}, \varepsilon_{H^{\prime}} \quad \sum_{\rho_{1}^{\prime} \in \Theta_{1}^{\prime}} \quad\left(\rho_{1}^{\prime}: R_{T^{\prime}}^{H^{\prime} \circ}(1)\right)_{H^{\prime}}, \circ F \\
& \text { by 6.1, 8.1, } \\
& =\varepsilon_{G} \varepsilon_{H} \sum_{\bar{\rho} \in \Theta}\left(\bar{\rho}: R_{T}^{H_{T}^{O}}(1)\right)_{H^{\circ}} .
\end{aligned}
$$

This completes the proof.
12. In the setup of $\operatorname{Sec} .4$, we say that an irreducible representation of H^{F} is unipotent if its restriction to H^{OF} is a sum of unipotent representations of H^{OF}. Let $\left(\hat{\mathrm{H}}^{\mathrm{F}}\right)_{1}$ be the set of unipotent representations of H^{F}. It is easy to see that 9 (a) (for $H^{\circ F} \subset H^{F}$) provides a surjective map

$$
\psi^{\prime}:\left(\hat{H}^{\mathrm{F}}\right)_{1} \rightarrow\left(\hat{\mathrm{H}}^{\mathrm{OF}}\right)_{1} \bmod \text { action of } \mathrm{H}^{\mathrm{F}} / \mathrm{H}^{\mathrm{OF}}
$$

with the following property : the fibres of ψ^{\prime} and ψ over the same point have the same cardinal. Hence there exists a bijection

$$
\psi^{\prime \prime}:\left(\hat{\mathrm{G}}^{\mathrm{F}}\right)_{\mathrm{s}} \xrightarrow{\sim}\left(\hat{\mathrm{H}}^{\mathrm{F}}\right)_{1}
$$

such that $\psi=\psi^{\prime} \circ \psi^{\prime \prime}$.
13. The parametrizations of \hat{G} Fonsidered here and in $[4 \mid$ are to some extent non-canonical. It is likely that these will be canonical when they will be related to character sheaves. Note also that the crucial part of our proof (the multiplicity 1 statement in Sec. 10 for $\operatorname{Spin}_{4 n}\left(\mathbb{F}_{q}{ }^{\prime}\right)$) involves some very long and unpleasant computations of the number of conjugacy classes and unpleasant computations of the number of conjugacy classes and irreducible representations of $\operatorname{Spin}_{4 n}\left(\mathbb{F}_{q}\right)$. Although these computations give the desired results, they don't show why the result holds. One can give a somewhat more satisfactory proof, using character sheaves on $\operatorname{Spin}_{4 n}$.
14. The parametrization of $\hat{\mathrm{G}}^{\mathrm{F}}$ given in [5] is in terms of a dual group over \mathbb{C} rather than over $\overline{\mathbb{F}}_{q}$; however that parametrization is equivalent to the one given here.

References

[1] T. Asai, Endomorphism algebras of the reductive group over \mathbb{F}_{q} of classical
type, (unpublished manuscript).
[2] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103-161.
[3] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), 125-175.
[4] G. Lusztig, Characters of reductive groups over a finite field, Ann. of Math. Studies 107, Princeton University Press, 1984.
[5] G. Lusztig, Characters of reductive groups over finite fields, Proc. Int. Cong. Math. Warszawa 1983.

George LUSZTIG
Department of Mathematics
M . I . T .
Cambridge, MA 02139
U . S . A.

