Asterisque

CHARLES W. CURTIS
Representations of Hecke algebras

Astérisque, tome 168 (1988), p. 13-60
<http://www.numdam.org/item?id=AST_1988__168__ 13 0>

© Société mathématique de France, 1988, tous droits réservés.

L’acces aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique I’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AST_1988__168__13_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Société Mathématique de France
Astérisque 168 (1988), p.13-60.

REPRESENTATIONS OF HECKE ALGEBRAS

Charles W. Curtis

CONTENTS

Introduction

CHAPTER I. Generic Hecke algebras and their specializations

1. BApplications of the specialized algebras H(gi/2) Lo the
representation theory of reductive groups over finite fields.

2. Applications to the geometry of reductive groups over finite
fields.

3. Connections between representations of H and
representations of specialized algebras. Generic degrees.
CHAPTER II. (Cells

4. n-L i i {bx}xe w- The polynomials {Ry,y}
and {Px,y}.

5. Cells in W. Left cell modules for H and W.

6. Asymptotic methods. The a-function,_left cells,_and Duflo
involutions.

CHAPTER III. Representation theory of H in the field Q(t).
7. An _associativity formula.
8. Lusztig's isomorphism theorem.

13



C.W. CURTIS

Intr i

The Hecke algebra H(G,B) of a finite Chevalley group G with
respect to a Borel subgroup B was first investigated by Iwahori
[18], and applied by him and others to decompose the permutation
representation of G on the cosets of B. The algebra H(G,B) is a
specialization of the generic Hecke algebra H of the Weyl group W
of G, over the commutative ring Q[u], where u 1is an
indeterminate. The representations of H(G,B), and their connections
with the representations of H and W play a crucial role in the
solution of the decomposition problem. The representation theory of
H has also turned out to be useful for the study of the zeta
functions of the Deligne-Lusztig varieties of reductive algebraic
groups over finite fields and other geometric problems associated with
them.

In their paper [22], Kazhdan and Lusztig introduced a new basis of
H, whose construction involves the Kazhdan-Lusztig polynomials.

Using intersection homology theory and the theory of perverse sheaves,
some deep positivity properties of the coefficients of the Kazhdan-
Lusztig polynomials and the structure constants of H for the
Kazhdan-Lusztig basis, have been established (see Kazhdan-Lusztig [23]
and Springer [32]).

The main purpose of these notes is to examine the consequences of
these positivity properties for the structure and representation
theory of H, following Lusztig [28], [29], [30]. These include
properties of cells and certain distinguished involutions in W
called the Duflo involutions, left cell modules of H, Lusztig's
isomorphism theorem [24], and the fact that Q(ul/2) is a splitting
field for H. The leading terms of the irreducible character values
of H are essential for Lusztig's work [26] on the decomposition of
the virtual characters {Rr(0)}. Using asymptotic methods based on the
positivity results, Lusztig introduced an algebra J, which is a kind
of asymptotic form of H, and whose irreducible character values are
precisely the leading terms of the character values of H. These
results are all proved in Chapters II and III, following to a great
extent a reworking of Lusztig's results in some informal lecture notes

by T.A. Springer, who kindly communicated them to me to use in
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REPRESENTATIONS OF HECKE ALGEBRAS

preparing these lectures. An introductory Chapter I contains a
survey, not always with proofs, of some of the earlier work on Hecke
algebras and their representations, referring the reader to surveys
such as [4], [5], or [8] for a fuller discussion.

No attempt has been made to give an account of the historical
development of the ideas in Chapter II. There are important
connections between these ideas and the classification of primitive
ideals in enveloping algebras, especially through the work of Joseph,
Barbasch and Vogan, and the solution of the Kazhdan-Lusztig
conjectures by Beilinson-Bernstein and Brylinski-Kashiwara.
References and fuller discussion of these matters are given in [22]
and [26], and in Joseph's article in this volume.

These notes are based on a course given by the author, during the
Special Period on Unipotent Orbits, Representations of Finite,
Reductive, and p-adic Groups, and Representations of Hecke Algebras,
at Paris and Marseille, in June and July, 1987. The author's
contribution was supported in part, by Université Paris VII and the

NSF.
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CHAPTER I. Generic Hecke algebras and their specializations.

1. Bapplications of the specialized algebras H(qi/2) to the
. ] £ reducti 50 cields .

Throughout these notes, (W,S) denotes a finite Coxeter system.
We let R = Q[t,t"1l] denote the commutative ring of Laurent
polynomials with rational coefficients, with t an indeterminate.

The generic Hecke algebra H associated with (W,S) is the R-
algebra with a free R-basis {eylwew indexed by the elements of W,

and multiplication defined by

_Jesw 1f 1l(sw) > 1(w)
€s€w = Juegy + (u - l)ey if 1(sw) < L(w) *

(1.1)
for all s€S, we W, where u = t2 and 1(w) is the length
function on W with respect to the set of generators S. (For a
proof that these relations define an R-algebra, see [3, Ch. 4, Ex.
23]1.)

We first state some consequences of the definition.

(1.2) The structure constants of H with respect to the basis {eylwew

belong to Q[u]:
€yew'= LCww'w"Cw" for w, w', w"'e W,

where cy,w',w" = Cw,w',w"(u) 1is a polynomial in u with integer
coefficients. The polynomials cy,w',w" are known explicitly (see
[19], and [6] for a geometric interpretation.) (We have introduced R
instead of Q([u] as the ring of coefficients for H because the

structure constants for the Kazhdan-Lusztig basis (see §4) are in R
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REPRESENTATIONS OF HECKE ALGEBRAS

but not in @Q[u], and it will turn out, as a consequence of Lusztig's
isomorphism theorem (see §8) that Q(t), the guotient field of R, is a

splitting field for H.)

Let S = {si,...,sn}, and, for i # j, let nj4j be the order of

sisy in W. Then W has the presentation

2 ‘. ) )
W={s1,...,8p:8; = (sys§)?3 =1, for 1 <14, j < n).

The R-algebra H has an analogous presentation, as follows.

(1.3) H has a presentation as R-algebra with identity 1 = ey,
generators {es;}sjes, and defining relations

2

eg; = uer + (u - l)esi, for si€S,

and for 1 < i, j € n,

K4 .
{(eSiesj) = (esjesi) 13 if njiy=2kiy, and

Ky k4 .
(eSiesj) ileg; = (esjesi) lJesj if njy = 2kjy + 1.

Let f:R— F be a homomorphism from R into a field F. Then,

using the map f, we may view F as an (F,R)-bimodule, and obtain
an F-algebra F®gH, called a specialized algebra of H, and denoted
by H(a), where a = f(t). A basis of the specialized algebra is

given by {1®eylwew, and the structure constants by:

(1®ey) (1®ey1) = Tuvf (Cy,wr,wr) (1®eyn) ,w,w', w'e W.
It is the representation theory of the specialized algebras, and its
connection with the representation theory of H, which has been
important for applications of Hecke algebras. We shall illustrate

this point in the rest of the chapter with some examples. A first

observation is that
(1.4) H) = FW,
so we expect the representation theory of H to be somehow related to

the representation theory of the Coxeter group W.
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C.W. CURTIS

An important family of specializations, related to the situation
investigated by Iwahori (18], can be described as follows. Let G
denote a connected reductive algebraic group, defined and split over
the finite field Fqg, whose rational structure is defined by a
Frobenius endomorphism F:G— G such that the group of fixed points
GF = {geG:F(g) = g} is finite. We assume that the given Coxeter group
W occurs as the Weyl group of G, with respect to an F-stable
maximal torus T contained in an F-stable Borel subgroup B, so
that W= Ng(T)/T. The finite groups GF defined in this way will be
called finite groups of Lie type. Each finite group of Lie type GF
has a BN-pair (or Tits system) defined by the subgroups BF and NF,
with Weyl group W, where N = Ng(T).

Let H(GF,BF) denote the subalgebra of the complex group algebra
CGF  consisting of the functions f£:GF—C which are constant on the
double cosets BF\GF/BF. By the Bruhat decomposition in GF with
respect to the Borel subgroup BF, there is a bijection from
W— BF\GF/BF, given by w—BFwBF, where weNF is a coset
representative corresponding to weW. Then the algebra H(GF,BF) has
a standard basis consisting of the normalized characteristic functions

{aw}lwew, where

(1.5) ay = |BF|-1 Yy x, wew.
x€BFwBF

Letting (lBF)GF denote the CGF-module afforded by the induced

permutation representation of GF on the cosets of BF, we have:

(1.6) PROPOSITION. There exists an isomorphism of C-algebras

H(GF,BF) = Endggr ((15r) ¢F),

n m m
H(GF,BF) =H(1/2)
given by ay— 1®e,, y]_h_er_e___ﬂ(ql/Z) is the specialized algebra
associated with the homomorphism f:R—C such that f(t) = gl/2.

The first isomorphism holds for all finite groups with BN-pairs

(see [8, Chapter 81). The second isomorphism also follows from the
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REPRESENTATIONS OF HECKE ALGEBRAS

theory of finite groups with BN-pairs [8] and the fact that since GF
is of split type over Fg, we have 1ind as; = q for each sj€S.

(r4n) .

Specializations of generic Hecke algebras of Coxeter groups also
occur in more general cases of the problem of decomposing induced
modules of finite groups of Lie type. Let G, B, T, F:G—G, etc. be
as in the previous discussion, and assume that the center Z(G) of G
is connected. Let P Dbe an arbitrary F-stable parabolic subgroup of
G, with the Levi decomposition P = MU, with U = Ry(P) (the
unipotent radical of P), and M an F-stable Levi subgroup.

Let L denote a simple cuspidal CMF-module. Then the Harish-

F
Chandra induction functor assigns to L the CGF-module indgF ﬁ

where T is the CPF-module pulled back from L, with UF in its

F ~
kernel. The decomposition of the induced modules indgF L is a basic

problem in the representation theory of GF. We have:

(1.7) THEOREM. (Howlett-Lehrer [17], Lusztig [26]. Assume that G
has a connected center. There exists an isomorphism of C-algebras

. GF o~
EndCGF(lndPF L) =H(q1/2) ,

ul . ] (e Hecl Lgel E {0 fini .
group (which depends on the triple (PF, MF, L) and is related to
the stabilizer of L in the pnormalizer of M in N). The structure
of the R-algebra H is defined by

= m

es;w if  1(SiW) > 1(W), weW,
uCleg;g + (U - Lyey 1if 1(5;%) < 1(W)

where u = t2 and {%ij} 4is a set of distinguished generators of the
Coxeter group W. The {ci} are positive integers, also depending on
the triple (PF,MF,L).

Note that (1.6) is, in a sense, the extreme case of (1.7),

involving the full Weyl group, corresponding to the triple
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C.W. CURTIS

(BF, TF,1,r), since the trivial representation of TF 1is a cuspidal

irreducible representation.

By (1.6) and (1.7), the basic theory of Hecke algebras ([7],
§11D) shows that the decomposition of these induced modules and the
calculation of the degrees and other character values of their simple

components, can be obtained from a knowledge of the representation
theory of the specialized algebras H(q1/2) or ﬁ}ql/Z)/ respectively.

2. Applications to the geometry of reductive groups over finite
fields.

We shall sketch a second application of the representation theory
of the specialized algebras H(g1/2), this time to the zeta functions
of the Deligne-Lusztig varieties. Let G,B,T,W, F:G—G be as in
(1.6) . The quotient G/B 1is a smooth projective variety on which G
acts by translation, called the flag variety of G. Since B is its
own normalizer, the points of G/B can be identified with the set X
consisting of all Borel subgroups of G, wusing the bijection G/B—X
given by gBH9IB = gBg~l. We shall carry over the variety structure
from G/B to X, and identify X with the flag variety, on which G
acts by conjugation.

The diagonal action of G on the cartesian product G/BXG/B
defines the set of G-orbits G\(G/BXG/B), which are in bijective
correspondence with the double cosets B\G/B. Combining the Bruhat
decomposition in G relative to B with the identification G/B<X,

it follows that there exist bijections

We>B\G/B<G\ (G\BXG/B) ©G\ (XXX),

given by
w— BWB — G-orbit of (B,wB) in
G/BXG/B — G-orbit of (B,"B) in XxX.
(2.1) DEFINITION. (Deligne-Lusztig [9].) Let weW, and let O (w)

denote the G-orbit in XXX corresponding to weW. A pair (B',B")
of Borel subgroups are said to be in relative position w whenever

(B',B")e0 (w); in this case we write

B'— B".
w
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REPRESENTATIONS OF HECKE ALGEBRAS

We have B'—> B" if and only if
(B',B") = 9(B,"B),
for some geG.

The Frobenius endomorphism F:G—G acts on G/B, and on the
variety X. Letting XF denote the set of fixed points in X

relative to F, we have:

(2.2) PROPOSITION. (i) XF is a finite set, on which the finite
group GF acts transitively by conjugation. The resulting CGF-module
is isomorphic to the induced module (1BF)GF.

(ii) Let V denote the CGF-module with a C-basis identified
with the elements of XF, with the transitive GF-action as in part
(1) . The commuting algebra EndCGF(V) has_a basis consisting of the
endomorphisms {Ty}wew, where

Tw(B') = X B",
B "

for B',B"exF.

(iii) Letting ay denote the standard basis element of the Hecke
algebra H(GF,BF) corresponding to w (see (1.5)), the map Tyay
defines an isomorphism of C-algebras H(GF,BF) = End .rV.

Proof. (i) We apply Lang's Theorem, which asserts that if F:H—H
is an endomorphism of a connected algebraic group H such that the
fixed-point subgroup HF is finite, then the morphism h—h"1F (h)
from H-—H 1s surjective. Since all the Borel subgroups in G are
conjugates of B, it suffices to prove that if F(gBg~l) = gBg-l,
then gBg™l is conjugate to B by an element of GF. The condition
implies that g~ lF(g)eNg(B) = B. Applying Lang's Theorem to the
connected group B, there exists an element beB such that b~1lF(b)
= g71F(g). Then gb~'eGF, and gBg ! = (gb~!)B(gb~1)-1 as required.
(ii) It is easily checked that the endomorphisms {Tylwew are
linearly independent, and belong to the GF-endomorphism algebra of V.
Since VE&(lBF)GF, the dimension of the endomorphism algebra is

|IBENGF/BF| = |W|, and (ii) follows.
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(iii) Using the definition of the standard basis elements
{aw}wew, @a computation of their convolution product shows that the

structure constant cy,w',w"(q) 1is given by
| (BFwBFNW"BF (w') ~1BF |/ |BF|
This is equal to the number of Borel subgroups B'e€XF such that

v w'R v
BIRBWBY,

which is also the structure constant for the basis {Twlwew ©Of the
endomorphism algebra.
The varieties to which we shall apply the representation theory

of Hecke algebras are defined as follows.

(2.3) DEFINITION. Let weW. The Deligne-Lusztig variety Xy 1is the
subvariety of the flag variety X defined by

Xy = {B'€X:B'F(B')},

where F 1is the Frobenius endomorphism (see [9]).

For each w, the variety Xy 1s a smooth, locally closed
subvariety of X on which the finite group GF acts by conjugation.
It is easily checked that X, 1is isomorphic to the subvariety of G/B

given by
{gBEG/B:g~1F (g) €EBwB} .

* .1
The virtual representations of GF defined by Ho (Xw) = E(—l)le(Xw),

where Hz(Xw) denotes 1l-adic cohomology with compact supports provide

the starting point for the Deligne-Lusztig approach to the

representation theory of the groups GF. 1In case w = 1, the higher
*

cohomology groups on X3 vanish, and the GF-module H (X1) is

isomorphic to the GF-module (1BF)GF discussed previously.

The zeta function Z(Xy,2z) of the variety X, is the formal

series in the indeterminate 2z defined by

22



REPRESENTATIONS OF HECKE ALGEBRAS

oo
4 _ Fm -1
T log Z(Xy,z) = E IXw |z
m=1

2edd
where for each m=21, Xi is the fixed point subset under the action

of FM, and coincides with the set of qu—rational points on the
varieties Xy.

The starting point of the investigation of these zeta functions
is an identity proved below, which relates the number of fixed points

m
IXS | to the trace of an element of the commuting algebra of the
m
GF™-module afforded by Xg . For explicit computations and

applications to the decomposition of the virtual representations
*
H (Xw), see [2], [12], [13], [14], [15]1, [26].

We first require some facts about Shintani descent. The
F-conjugacy classes in the finite group GF®, for m>1, are the

equivalence classes for the equivalence relation
x ~py if x = gyF(g)~!, for x, yeGF™.

Shintani [31] proved in the case of GLp, and Kawanaka and Digne-
Michel proved in general ([20), (211, [12], [13], [15]) that there
exists a bijection from the set of F-conjugacy classes of GF™ +to the
set of GF-conjugacy classes in GF. This bijection is defined as
follows. The F-conjugacy class containing geGF™ corresponds to the
conjugacy class in GF containing ¢, where if g is represented by
Lang's Theorem as h7lF(h) for some heG, the element § is given by
hF®(h-1) .

We now prove the following identity, due to Asai [2], Digne-
Michel [15], and Lusztig [26], independently.

(2.4) PROPOSITION. Let weW, and let m be a fixed positive
integer. Let geGF™, and let geGF correspond to g by the Shintani

map,

g = h™lF(h) G = hF®(h™1)
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C.W. CURTIS

m
1T = Trace (T:,Tl)gF, v (m) )

where V( is the CGF"-module afforded by the GF -action on
(

g
Xw ’

and {Twm))wew is the C-basis of the GF'-endomorphism algebra of

vim) defined in (2.3).

Proof. For geGFm, B'eXFm, we shall sometimes write gB' for 9B'.
Then
(m) 1 -_— "
Tw-lgF(B ) = z B
Brex™ |
gFB' —} B
It follows that
Trace (T:_nl)g}:", vimy = card(B'eXFm:gFB'—)lB‘)
w—
= card{B'exX:FM™B' = B' and gFB' B'}.
w
Put g = h"1F(h) for heG, and § = hF®(h-1l). Then, setting
h=lgw - B', the formula for the trace becomes
card{h'lB"eX:Fm(h_lB") = h_lBu and h'lF(h)Fh_an __)lh~1va}
w—
= card{h7lprex:Fm(h71lpr) = h7lg" ang F(B") —B")
w—
The condition Fm(h™lpr) = h7lpwe ;g equivalent to §FMB" = B", since
g=hFm(h-1) . Thus the trace is equal to
~ Jrm
card{B"eX:9FMB" = B" and B"—EF(B")} = 1X |,
-
as required.
3. Connections between representations of H and specialized
algebras. Generic degrees.
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REPRESENTATIONS OF HECKE ALGEBRAS

The representations of the specialized Hecke algebras Hya),
whose applications to the geometry and representation theory of
reductive groups over finite fields was sketched in §§1 and 2, are
closely related to the representations of the generic algebra H in a
suitable splitting field. These connections have all been discussed
thoroughly elsewhere ([5], [8]), and are reviewed here only to the
extent they are needed later.

We keep the notation from §1. Let K = Q(t) be the gquotient
field of R = Q[t,t‘l], let K* be an algebraic closure of K, and

R* the integral closure of R in K We let HK® denote the K*-

algebra K*®H obtained by extension of coefficients from R to K*,

*
and let {e_ }wew denote the K*-basis {1®ey}lwew Of HK™ |

*

(3.1) PROPOSITION. (i) HK" is a split semisimple K*-algebra.
(ii) He have j(e.)eR* for each irreducible K*-character M

of HK™,

(iii) Let f:R—F ke a homomorphism from R to a field F,
such that the specialized algebra H(a, for a = £(t), is
semisimple. Let F* denote an algebraic closure of F, and let
f*:R* —>F* n extension of the homomorphism f£. For each

*

irreducible character W of HK", define an F*-linear map
Riay: (H@)F —F* by

Rea) (1®ey) = £*(U(el)), wewW.

Then M(a) 4is an irreducible character of (H(a))F*, n he m

L—UWU(a) defines a bijection of irreducible characters (depending on
the choice of the extension f£* of f£f.)

For a proof, see [8], §68. As an application, we have:
(3.2) COROLLARY. Let GF be a finite group of Lie type, as in (1.6).
Then there exists an isomorphism of C-algebras

CW = H (GF, BF) .
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This result asserts that Hqj) =H(g1/2) and follows from part

n

(1ii) of (3.1) since both specialized algebras H(;) =CW and H(1/2)

H(GF,BF) are semisimple, and consequently have the same sets of
numerical invariants, by (3.1).

(3.3) COROLLARY. Keep the notation of (1.6). Then there exist
bijections

B Mg = Uy, 172 g, q1/2

from the set of irreducible representations (E} of CW, HK",
H(GF,BF) respectively, and the set of irreducible C-representations
8z, ql/2 ©f GF which occur with positive multiplicity in the

rm ion repr n n (1BF)GF.

The existence of the bijections E—*uE—+uE“ﬂ/2 follows from

part (iii) of (3.1). The bijection from the set of irreducible
representations {uE,ql/z} of H(GF,BF) and the irreducible

components 172 of (1 F)GF is a standard result about Hecke
P Erql/ B

algebras of permutation representations ([7], §11D).

In Chapter II, we shall require the fact that the degrees of the
representations {CE”ﬂJZ} can be expressed as polynomials in qg.

This can be explained as follows. Let E Dbe a simple CW-module, and

set
d E)P

(3.4) dg = (deg )*(u) - ,

E uTtWyg (e YHE(e )

weW
where u = t2, and P(u) = Xwewul(¥ is the Poincare polynomial of
the Coxeter group W.
(3.5) THEOREM. For each simple CW-module E, her xi
polynomial DgeQlu]l wi win

(1) Dg(u) = dg, where dg is given by (3.4).
(ii) Dg(1l) = degE.
(iii) De(q) = degly, 1/2-
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REPRESENTATIONS OF HECKE ALGEBRAS

For a proof, see [8], §68. The polynomials {Dg} in Q[u] are
called the generic degrees (or formal degrees) associated with the
Coxeter system (W,S). It can be proved that for each simple CW-
module E, Dg devides u'™0p(u) in Qlu], where wo is the
element of W of maximal length. The polynomials {Dg} have been
computed for each type of indecomposable Coxeter system (see [4] for
tables for the indecomposable Weyl groups, and [1l] for the sporadic
Coxeter groups H3 and Hg). We remark that in the case of H3 and
Hg4 , their significance remains a mystery, as these groups do not

occur as Weyl groups of reductive groups over finite fields.
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CHAPTER II. (Cells.

In this chapter, we examine some basic equivalence relations on a
finite Coxeter group W which are defined using the Kazhdan-Lusztig
polynomials. The equivalence classes, called left cells, define an
important family of modules for H and W, the left cell modules.
These concepts were introduced by Kazhdan and Lusztig [22], and are
important in Lusztig's work [26] on the decomposition of the virtual
characters {Rr(0)} associated with a reductive group over a finite
field. Here we present a new approach to these results (Lusztig (28],
[29], [30]1), which is based on some deep positivity results concerning
the coefficients of the Kazhdan-Lusztig polynomials and the structure
constants of the generic Hecke algebra H with respect to a suitable

basis.

4. TIhe Kazhdan-Tusztig basis {bxlxew. Ihe polynomials {Rx,y} and
{Px,y}.

As in §1, (W,S) denotes a finite Coxeter system, R = Q[t,t~1]
and H the generic R-algebra associated with (W,S), with the basis
{ex}xew. For x, yeW we let x <y denote the Bruhat order (see

[10]). In this section we "introduce an R-basis of H, called the
Kazhdan-Lusztig basis {bxlxew, whose transition matrix from the basis
{ex} involves the Kazhdan-Lusztig polynomials {Pyx,y(u)€Z[ul} for

x £y in W, where u = t2,
(4.1) LEMMA. (i) The involution i:R—R defined by 1i(ul/2) = u-1/2

extends to an R-semilinear ring automorphism i:H—H of order 2,
given by
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REPRESENTATIONS OF HECKE ALGEBRAS

2 :, -1
i(:Erxex) = i(rx)e -1, (where 1ry€R).

XEW <EW
(ii) Eor each pair x, ye€W, there exists a polynomial
Ry,y€Z[ul, with Rgx,y = 0 wunless x <y, Ry,y =1, and deg Ry,y
= 1(y) - 1(x), with th r r ha for each yeW, we have
-1 _ =-1(y) ZR (u) e
ey_1 =u X,y x -

x<y
(iii) The polynomials {Rx,y} are characterized by the
it
Rsx,y if sx < x, sy >y

URsx,y = (u - 1)Rg,y 1f sx > x, sy > vy
0 if xgsy

Rx,sy =

Proof. The map 1:H—H clearly has order 2 and preserves the

defining relations (1.3) of BH, from which (i) follows.

For the proof of (ii), use induction on 1l(y). Since
e;l =uleg - (1 - ul), if ses,
the result follows if 1(y) = 1. Assume 1l(y) > 1 and choose se&S

such that sy > y. Then vy ls > y™1 and we have, by the induction

hypothesis,
ot S T
(sy)~1 = “y-1ls ey-1€g €s ey—l
= (uleg - (1-ul))u 1 YRy, yex
x<y
= uw I -1 YRy yesey - (u-1) 3 Ry, yex]
x<y x<y
= ulW 1 YRy yesy + IRy, y(uesx + (u-1)ex) - (u-1) 3Ry, yex]
X< x< x<y
SXZX SX<X
= u-ly-1g E:Rsx,yex + E:(uRsx,y = (u = 1)Rg,y)ex]
x< x<
SX<X SXZX
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Statements (ii) and (iii) follow directly from this calculation.

Since the involution 1 is R-semilinear, it is possible to have
a basis of H consisting of elements fixed by 1. Using this idea,

we have:

(4.2) THEOREM. Eor each element weW, there exists a unique nonzero
element  bye€H such that i(by) = by and

by = u~1(w)/2 ZPx,w(u)ex
xSw

where the polynomials Px,w€2[u)], and satisfy the conditions Py,w =1
and deg Py,w(u) € 3(1(w) - 1(x) - 1) forall x<w in W. Ihe

elements {bylwew Lform an R-basis of H.

Proof. We first prove uniqueness of the elements {by}. Let {b;} be
another set of elements fixed by the involution i and given by

b; = y-lw)/2 zQx,w(u)ex

XSw

1
with polynomials Qg,w€Z[u] and deg Qx,w < E(l(w) - 1(x) - 1). Then,

for each wewW,

1 . ' _ -1
b, = i(b,) = ulw/2 E Qy, w(u 1)ey_1
y<w

= ulW/2¥ 00 L(u ) ul) YRy () ey,
ys<w x<y

by Lemma 4.1 Comparing the coefficients of ex in b; and i(b;) we

obtain

-1
u-lw /20, L(u) = ul(w)/2—l(x)Qx’V(Ju . E:ul(")/Z'I(Y)Rx,y(U)Qy,w(u'l).
x<y<w

If we assume that the polynomials Qy,w with x < y < w are known,

then this relation determines Qyx,w uniquely. This follows since
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there is no power of u appearing with nonzero coefficient in both
u"l(w) /20, (u) and ulW/2-1(x)g, ,(u"l) because of the restriction
on deg Qx,w-

We next prove existence. We have bg = u™}/2(eg + 1). Assume by
is defined for every x with 1(x) < 1l(w). Let M(x,y) denote the
coefficient of ul/2(l{y)-1(x)-1) 4n py y(u) for x <y < w. Choose

seS such that 1l(sw) < 1l(w), and define

(4.3) by = bsbgw = X H(x,sw)by.

x<sw
sx<x

It is easily checked, using the induction hypothesis, that by has the
required properties.

Since the equations defining the basis elements ({by} can be
solved for the basis elements {exlxew as R-linear combinations of
the elements {by}, it follows that the elements {bylwew form an R-

basis of H, completing the proof.
We shall call the basis ({bx}xew the Kazhdan-Lusztig basis of

H. (In [22], two bases of H were defined, {cxlxew and {C;}xew;

L}
the basis {byx} corresponds to the second basis {c, 1)

Both sets of polynomials {Ry,y} and ({Pg,y} are useful in
various applications. The following result implies a simple
connection between the polynomials ({Ry,y} and the structure constants

for the standard basis {ex}.

(4.4) PROPOSITION. For all weW, we have

Cwewy = E(_l)l(x)+l(w)ul(X)Rx,wexwor
x<w
where wo 1s the element of W of maximal length.
The proof is an easy exercise, using induction on 1l(w) and

Lemma 4.1.

It follows from (4.4) that for all x £ w,

= (.1)l(x)+l(w)u~-1(x)cw wo

Rx,w = Xwq s
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and hence are given explicitly by Kawanaka's formulas for the cy,y,z

(see (1.2), [19], and [1l1l] for a geometric interpretation.)
5. Cells in W. Left cell modules for H and W.
We first calculate some structure constants in R = Q[t,t~1],

(where t2 = u) for the Kazhdan-Lusztig basis elements {bxlxew ©of
H.

(5.1) PROPOSITION. Let weW and seS. Then
bsw + XH(x,w)by 1if sw > w

bsby = S
(t + t l)yby if sw < w

where p(x,w) is the coefficient of tl(w)-1(x)-1 45 p, ., for

x < w.

The result follows from (4.3) using induction on 1l(w), and the
fact that

bl = (t + t 1)bg

since

bs = t~l(es + 1)

We next define three preorders <p, <g and <yr, on W. We

shall use the notations, for weW:
ﬁ(w) = {s€S:sw < w} and Q&w) = {seS:ws < w}.

It will also be convenient to define

IN
><

{H(X,y) L(y,x) 1if either x <y or vy

lrl(X, y)

0 otherwise
where W (x,y) is the coefficient of ul/2(1(y¥)-1(x)-1) in Py y(u).

Note, in particular, that if p(x,y) # 0, then 1l(y) - 1(x) - 1 1is
even.
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(5.2) Definition. The preorder <5, on W 1is defined by the

elementary relations

x <, w if (a) x <w or w<x and M(x,w) # 0;

(b)y (x) EZ(w.

In other words, x <y if and only if there exists a sequence
X0, .-.,Xk 1in W with x9 = x, xx =y, and for each 1i, an
elementary relation xj <p xij+1 holds. The preorder x <g w 1is
defined by:

x €g w provided that x~1 <p w1,

and x Spr w 1s defined by the combination of the preorders x <y y
and x Sg y (in the obvious way). The equivalence classes in W
defined by the preorders <j, <g and <yr are called left cells,
right cells, and two sided cells, respectively. The corresponding

equivalence relations are denoted by x —~i y, etc.

Some basic properties of the preorders <j and <g are summarized

in:

(5.3) LEMMA. (i) Let se€s, y <w, sw<w sy>y and Md(w,y)
# 0. Then y = sw and H(w,y) = 1.

(ii) An _elementary relation x <y w holds if and only if
x # w and by appears with a pnonzero coefficient in bsby, for some
SES.

(iii) If x <Ly, then R(y) €R(x). If x ~r,y then R(x) =
Ry .

Proof. (i) By comparing the coefficients of ey, sy >y in (5.1), we

obtain
Py,w = Psy,wr ¥ < W, sw < w, sy > vy.
If sy # w, it follows that (taking degrees in u)

1
deg Py,w = deg Psy,w < 5(1(w) - 1(y) - 2) < %(l(w) - 1(y) - 1)
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contrary to the assumption that W(y,w) # 0. If sy = w, then Py,y =
Psy,sy = 1, and we obtain W(w,y) = 1, completing the proof.

(ii) If an elementary relation x < w holds, then sx < x and
sw > w for some se€S, and W(x,w) # 0. If x < w then by appears
with nonzero coefficient in bgby by (5.1). If, on the other hand, x
> w, then x = sw Dby part (i), so by appears with nonzero
coefficient in Dbgby also in this case, by (5.1) The converse is
easily proved using (5.1).

(iii) We first observe that if seS,

ys >y = L(ys) DL (y)
and
sx > x = R(sx) DR (x).

Now let x <1, y be an elementary relation, with x < y. Then

£(x) ¢&(y), and p(x,y) # 0. We next obtain x~lygS by the first
implication above, and the assumption that iihd ¢‘£(y). Thus

Rx) DR (y), otherwise

x <y, xs > x, ys <y, MUix,y) # 0,

and by a version of part (i), we obtain y = xs, contrary to what has
been shown.

On the other hand, if x > vy, £(x) ¢ £(y), and W(x,y) # O,
then sx < x, sy > y for some element seS, and we have y = sx by
part (i). Then sy > y implies Q(sy)D(R(y), and [R.(X)DR(Y)
completing the proof.

From the preceding Lemma, we obtain at once:

(5.4) PROPOSITION. Let xeW. Then:
(i) HbyS Y Rby;

NESP

(ii) byHS Y Rby; and
YSRX

(1ii) HbHCS Y Rby
YSLRX

(5.5) COROLLARY. Let I be a left cell in W, and define
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Ir = YRby and Ip = Y Rby.

y<Lx y<px
xeLi“ y&l
x€l”

Then Ir and Ir+ are left ideals in H.

It follows from (5.5) that Ir/If is a left H-module, with a
Al
free R-basis consisting of the elements ({byx + Ir:xer}. We shall call

the left H-modules obtained in this way left cell modules for H,
and denote them by

Al
Mr = Ir/Ip,

for each left cell I' in W.

The matrices of left multiplication by the generators {esg}ses ©of
H have entries in R, and satisfy the defining relations (1.3) of
H. The matrices obtained by setting t =1, for se€S, clearly
satisfy the Coxeter relations, and hence define the structure of a
QW-module on Mr, which we shall denote by (Mr)j;. The resulting
QW-modules {(Mr)i1}, for the various left cells of W, are called the

left cell modules for W.

Lusztig has made a deep study of the left cell modules in his
book [26], in connection with the problems of classifying the
unipotent representations, and decomposing the virtual representations
{R7(0)}, for reductive groups over finite fields.

The rest of this section contains some remarks, without proofs,
concerning the interpretation of left cell modules in terms of W-
graphs, and some other connections with the representation theory of
W.

We first introduce a second basis {cxlxew ©of H which is
related to the basis {bxlxew by the relation cx = (-1)1() 9 (by),

where Jj:H—H 1is the involution defined by

j(zawew) = Zi(aw) ('l)l(w)t_Zl(w)ew,
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using the involution i of R defined previously. A simple
calculation, using Lemma 5.3 and the fact that 1(w) - 1l(y) - 1 is

even if M(y, w) # 0, shows that we have

—Cy if sed(w)
escy = Jticw + t Eau(y,w)cy if  sed (w)

y—w
se L (y)

where y—w means that y <w or w <y and u(y,w) # 0.

A W-graph (see [22]) is a combinatorial object which defines a
representation of H. It consists of a graph with a set of vertices
X, and a subset of XXX . consisting of edges. To each edge, with
vertices ({x,y}, there is assigned an integer Jn(x,y) # 0, and to
each vertex x, there is associated a subset IS S. Let E(X)
denote the free R-module with a basis identified with the elements of
X. For each se€S, let 15 be the R-endomorphism of E(X) defined by

-x if sely

(5.6) Tex = JE2x +t 3 p(x,y)y if selx |
yeX

where x—y means that ({x,y} is an edge in the graph. The preceding
data defines a W-graph provided that the map s—1s extends to an
R-representation of H on E(X).

Now let I' be a left cell in W, and let Mr denote the left
cell module for H associated with I'. Then it is easily checked
that Mr is the H-module associated with the W-graph consistinc of

the set of vertices I, the set of edges {(x,y)el'xI':p(x,y) # 0},
the integers U(x,y) defined as above for each edge, and the subsets
of S defined by Iy = £(x), for xel'. The basis of E(I}

satisfying the condition (5.6) is given by {cx:x€l}.

Gyoja has proved [16] that every simple HK*-module is isomorphic
to E(X)K* = K*®RE(h) for some W-graph X. In case W 1is of type
An, the left cell modules themselves (or the W-graphs associated with
them) provide a full set of simple HK'-modules ([22]).

*
In general, the left cell modules (MF } are not simple modules.

The CW-composition factors of the associated left cell modules
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*
{(M? )1}, however, have been determined by Lusztig [(27]. This

information is derived from the following inductive description of the
CW-modules {(MF)l). In what follows, W denotes a Weyl group

(associated with the root system of a semisimple Lie algebra over C.)
For each simple CW-module E, 1let DgeQ[u] Dbe the generic

degree associated with it (see (3.5)), and let
(5.7) Dg = aguaE +oeeet BEUAE,

. . A
with ag, Pg nonzero rational numbers, and Ogu°® and agu’E the

terms of lowest, and highest, degree, respectively.
(5.8) Definition. Let Wy, for I €S, be a parabolic subgroup of
W
W. The operation of trun in ion ij assigns to each simple
W
CWri-module E' the CW-module ij(E'), which is the direct sum of
simple modules for W defined by

E (E,indxls')z

EEIrrW
aE=aE v

where (B,lndWIE') is the multiplicity of the simple W-module E in
the induced module indzIE', and ag, ag' are the exponents of u 1in

the terms of lowest degree in the generic degrees Dg and Dgr,

. . W . .
respectively. The operation Jwy is extended to arbitrary

CWri—-modules by taking direct sums.

Using these operations, the constructible representations of W
are defined recursively as follows. If W = {1}, only the trivial
representation is constructible. If W # {1}, the set of

constructible representations of W consists of all representations

W W
ij(E') and sgn® ij(E'),
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where sgn is the sign representation of W, and E' 1is a
constructible representation of Wy, for some proper parabolic

subgroup Wy of W.

We now state:

(5.9) THEOREM. (Lusztig) Let M be a CW-module, for a Weyl group
W. Then M affords a constructible representation of W 4if and only
if M= (Mr)i1, for some left cell module Mr of H.

The proof, which involves a case by case analysis, is giveh in
[271.

6. Asymptotic methods. The a-function, left cells, and Duflo

Throughout this section, W denotes a Weyl group (associated

with the root system of a semisimple Lie algebra over C). We first
recall some elementary facts. Let 1T:H—R Dbe the R-linear map
defined by

{1 if x =1
T(ex) =
x 0 if x=#1 '

where {ex}lxew 1s the R-basis satisfying (1.1) The resulting R-
bilinear form (called the 7T-form),

(a,b) = T(ab), a, beH,
is associative, symmetric, and nondegenerate. The bases
{extxew and {u™l®e _j}yen
are dual with respect to the 7T-form, and can be used to obtain the
primitive central idempotents and orthogonality relations for the

irreducible characters of the split semisimple algebra HK* (see [8,
§681]) .
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(6.1) LEMMA. Let x, y€W and let by, by be the Kazhdan-Lusztig

T(bxby) = 8, -1 + Yait-i, with ajeQ,

i1

where & __1 is the Kronecker d.

The proof is readily obtained, using induction on 1l(x) and
(5.1) .

We now introduce the structure constants ({hg,y,z} for the
Kazhdan-Lusztig basis {bx}xew, which will be a main focus of

attention in what follows. We set:

(6.2) byby = 3 hy,y,zPz, for x, yew.
ZEW

Then the structure constants hx,y,zez[t,t‘llng, and are symmetric in

t:
hy,y,z(£) = hy,y,z(E7h),

by (5.1).
In order to proceed, we require the following nonelementary

positivity properties of the polynomials Pyg,y and hyg,y,z, all viewed

from now on as Laurent polynomials in t.

(6.3) THEOREM. (1) The coefficients of Px,y re nonn iv
integers, for all x,y in W, with x < y.
(ii) The coefficients of hy,y,: r nn ive in rs for

all x,y,ze€W.

Part (i) is due to Kazhdan and Lusztig [23]; both parts are
proved in Springer's Bourbaki Seminar article [32], using intersection

cohomology theory and the theory of perverse sheaves.

(6.4) DEFINITIONS. Let zeW, and define

a(z) = max deg h
x, yeW 9 Dx,y,z
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where the degree is taken with respect to t. For x,y,z€W, put
Yx,y,z = coefficient of t2(2) in hyy, 2.

(6.5) LEMMA. (i) a(z) is the least nonnegative integer with the
property that

ta(2hy v, ,€Q[t] for all x,yeW.

(ii) hy-llx—llz-l = hy,y,z for all x,y,z€eW.

(iii) a(z) = a(z™1).
Part (i) is clear from the definition, and the fact that  hy,y,:

is symmetric in t and t~l. For the proof of part (ii), we make use
of the R-algebra antiautomorphism of H which takes ex e, -1, for

x€EW. It is easily checked that bx—*bx_l under this map, and (ii)

follows by applying it to the structure equations (6.2). Part (iii)

follows from part (ii).
(6.6) COROLLARY. Yy,y,z = Y,-1,,-1,,-1 £for all x,y,zeW.
Another basic property of the a-function is that
(6.7) a(z) =0 1if and only if =z = 1.
This fact can be proved without making use of the positivity
results (6.2) (see [28], Prop. 2.3). It also follows directly from the

results to follow (see (6.8)).

(6.8) THEOREM. (i) Let d8(z) be the degree of Pi,; in u. Then

a(z) € 1(z) - 28(z) for all zeW.

(ii) Let 92 = {zeW:a(z) = 1l(z) - 28(z). Let de?, and assume
that Yx,y,dq # 0 for some x,yeW. Then

x =yl Yx,x_l,d =1 and d2 = 1.
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Moreover, we have

P1,q = ud(d + terms of lower degree.

(iii) For each x€W, there is a unique element de9,

Yx,x_l,d =1.

Proof. Let zeW. Throughout the proof, the abbreviation

such that

deg means

the degree taken with respect to t. By (5.1) and the definition of

T, we have
T(by) = t~12)py ,.
Then, by (6.2),

T(bxby) = Zth,y, zt—l (z) P1,z.

Since deg T(bxby) < 0 by (6.1) and all the coefficients of

and P11, are nonnegative by (6.3), it follows that
deg hyg,y,zt1(#P1,, £ 0, for all x,yew.
Consequently,
deg hy,y,z £ 1(z) - 28(z)
and (i) follows.
Now let de?d, so a(d) = 1(d) - 28(d), and assume

Consider the equation

T(bxby) = 22 hx,y,zt_l(z)Pl,z-

hx, Yr2

Yx,y,d * 0.

From our assumption, it follows that the degree of the right side is

0. By (6.1), the left side has degree 0 only if xy =1,

that case the coefficient of the term in degree zero is

and in
It

follows that there is a unique 2z contributing to the degree zero

term on the right side (since the coefficients of hy,y,.
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integers), and this element =z must equal the given de®d, so

y = x~1, and

'Yx,x'l,d =1

It then follows that the leading coefficient in u in P;,r; 1is also

equal to 1. This proves all the statements in (ii) except the fact

that d2 = 1, whose proof we postpone until after (iii) is
established.
For each x€W, we have deg T(byb -1) = 0, and it follows that
-1 =
deg (Ezhx,x'l,zt (Z)Pl,z) 0.

Therefore, by the positivity results again,

_l .
deg hx,x_l,zt (z)py, , 0

for a unique element =z; then z€2 and Yo x-1 5 = 1s proving (iii).
’ ’

Finally, let de®?, and choose x such that Yo x=1 q % 0. By

Corollary (6.6), we have
Yx,x_l,d = ‘Yx, x'l,d‘l’

so the uniqueness statement in (iii) implies that d = d-l. Thus 42 =
1 for each de?2, and the theorem is proved.

The elements of 92 will be called the Duflo involutions in Wy
it will turn out that there is a unique one in each left cell, (see
[291).

(6.9) LEMMA. (i) Let =z, weW, s€S, and assume that sw < w, sz >
z, W(w,z) # 0. Let x,yeW be such that Yx,y,z # 0. Ihen there
exists veW such that deg hy,y,w 2 a(z). In particular a(z) < a(w).

(ii) If x <yry then a(y) € a(x). If x ~pry &then a(x) =
a(y).

Proof. Since Yx,y,z # 0, we have hx,y,z # 0, so z <gx by (5.4),

and hence & (x) S &L(z) by (5.3)(iii). It follows that sx > x. Upon

writing out the associativity formula
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(bsbx) by = bs(bxby),
we obtain for the coefficient of by, on the left side (using (5.1)):

hsx,y,w + X u(le)hv,y,w
<

v
sSv<v
while the right side is

Z (t + t_l)hx,y,z' + Y hx,y,z'(bszt+. 2 H(u,z")by) .
sz'<z' sz'>z" u<z '
su<u

If Yx,y,z # 0 and H(w,z) # O as in the hypothesis, then the
coefficient of w on the right side has degree 2 a(z), since
w=3sz 1if w > z Dby (5.3i). It follows that deg hV,Y,w 2 a(z) for
some v, which proves the first statement. Since the hypothesis of
part (i) holds whenever an elementary relation w <p z occurs, part

(ii) follows easily, using (6.5 iii).
(6.10) THEOREM. (i) Eor all x,y,z, we have
Y=, v,z = Yy,z_l,x_l = 'Yz-l x,y-1-

(ii) If Yx,y,z # 0, then x ~p y !, y ~rLz, x R 2 and a(x)
a(y) = a(z).

(iii) If x <,y and a(x) = a(y) then x ~p V.

(iv) If x <spy and x ~rry then x ~pvy.

Proof. Suppose x,y,z€W, and Yg,y,z # 0. Then, for some deD,
Yz,z‘l,cl =1, by (6.8 iii). Then hz 2=l gq % 0, so d<gRz, by (5.49),
and hence a(z) < a(d), by Lemma 6.9.
Assume first that a(z) = a(d) = a, and Yx,y,z # 0. The
associativity formula for the basis {byx} implies that
Zuhx,y,uh l,d = th 1’vhx,v,d~

u,z”

yrz~

If h 14 % 0 then d <ru, so a(u) £ a. Similarly hyg,y,q # O

u,z”

implies d < v so a(v) £ a. Then both sides are summed over

43



C.W. CURTIS

elements u,v such that a(u) < a and a(v) < a. We now calculate
the leading terms on both sides. On the left, hu 21 4 has leading
coefficient 1 1if u =2, and O if u # z. Since we are assuming

a(z) = a, the left side has the leading term
Yx,v,2Y;, -1, dtza = Tx,y, 2t22.
The coefficient of t22 on the right side occurs when v = x~1 and is
Yy, 2-1, x~1Yx, -1, a2

since a(v) £ a for all v. Upon comparing these terms, we obtain

Yx,x'l,d # 0, so y;,x'l,d =1, and

Yy, 271, x"1 = Tx,y,zr

proving the first statement in part (i).
Now assume that a(z) < a(d), and define a sequence of elements
of 9, di =4d, dz, d3,... with Ydi,di,diqq * 0 for each i, using

(6.81ii) . Then we have
a(dy) < a(dz) < ....
If a(di) = a(dz), then

Yz,z'l,d = ’Yz'l,d,z':L #0
by what has been proved, hence a(d) € a(z™l) = a(z) and we are in the
first case. If a(dj) = a(dij+1), a similar argument shows that a(dj)
= a(dj-1), so we must have a(z) = a(d), and part (i) is proved, in
case Yx,y,z # 0. If any one of the elements in part (i) is # 0, then
we have equality, by what has been proved, and this establishes part
(1) .

If Yx,y,z # 0, then =z <g x and z < y. From Y&,z‘l,x‘l # 0
we obtain x71 < z°! and hence x ~gr z. Similar arguments prove the
rest of part (ii).

For the proof of part (iii), first assume x <5, y 1s an

elementary relation. Then there exists se€S such that sx < x,
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sy >y, and HM(x,y) # 0. Choose wu,v such that 7V, v,y # 0. Then,

by Lemma 6.9, there exists weW such that
deg hy,v,x 2 al(y) .
Since deg hy,v,x £ a(x) and a(x) = a(y), we obtain
deg hy,v,x = a(x)
and hence
Yw,v,x * 0.

By part (ii), Yu,v,y # 0 and Yw,v,x # 0 imply v~ x and v-r vy,
so that x~p; y. By applying this argument to a sequence of elementary
relations, we obtain part (iii).

Now let x <5, y, and x—~pr Y. Then a(x) = a(y) by part (ii)
of Lemma 6.9. Then x-~p y by part (iii). This completes the proof

of the Theorem.

Part (iv) of the Theorem is a powerful result, as we shall see in
Chapter III. It was proved first by Lusztig [24], using the theory of
enveloping algebras, and the fact that the Kazhdan-Lusztig conjectures
hold.

(6.11) THEOREM. Each left cell I contains a unique Duflo
ilnglutiQxl.

Proof. Let x,yell. Choose d,d'€e? such that
YX‘l,x,d - yy'l,y,d'

By the previous Theorem, we have x-~p d and y~p d', so d, d'el.

Moreover,

Yx,d,x = Yy,d',y = 1.

Now assume x <y, y 1is an elementary relation. Then we can apply Lemma
6.9 to obtain veW such that Yy,4',x # 0. Then Y-l v g * 0 by the
’ ’

Theorem, and it follows that v = x and d = d', completing the

proof.
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CHAPTER III. Representation theory of H 1in the field Q(t).

Throughout this chapter, H denotes the generic Hecke algebra
over the commutative ring R = Q[t,t"l] of a finite Weyl group (W,S)
(a finite Coxeter group satisfying the crystallographic condition as
in Chapter II). The main topic will be the irreducible
representations and characters of the algebra H2(t), where Q(t) is
the quotient field of R. A particularly interesting feature is
Lusztig's construction of a 2Z-algebra J, which is a kind of
asymptotic form of H, and whose irreducible character values give
the leading terms of the irreducible character values of HQ(t)

§7. An associativity formula.

We first recall some properties of the R-basis {bx} of H

from &§§4 and 5. We have, for x,yeWw,

byby = %th,y,zbz, with hy,y,.€2[t,t71],
z

where the polynomials hyg,y,z are symmetric in t, and have

coefficients 2 0. The a-function is defined by

a(z) = max deg h
nyew g Nx,y,zr

where the degree is taken with respect to t.

For each x,y,z€W, we put
Yx,y,z = coefficient of t2(2) in hy,y, .

We recall from §6 that
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z <ir z' = a(z') < a(z),

so the a-function is constant on two sided cells. We also require

the results from Theorem 6.10 that:

(7.1) x <, vy and a(x) = a(y) = x—~, y, and
(7.2) x <y and X “l[R Y = X ~L Y.

Now let H' be a copy of H over the ring R' = Q[t',t'"1l],
where t' 1is a second indeterminate over Q, and let {b;}xew denote

the Kazhdan-Lusztig basis of H', with structure constants
hx,y,z(t‘)eZ{t',(t')‘ll. We now introduce a free module Bt,t' over
the ring Q[t,t 1,t',(t")"1] with a basis {Px}xew, Such that H
acts on Bg,t* from the left and H' from the right. These actions
are defined in such a way that
byBy corresponds to byby in H

and

Byb; corresponds to b;b; in H'.
These actions do not necessarily commute.
(7.3) ASSOCIATIVITY LEMMA. For all xew, and s,s'e€s, the element

(bsBx)bs|' - bs(Bxbs")
is a linear combination of basis elements By for which al(y) > a(x).
Proof. Case 1. sx < x, xs' < x. Then
(bsPx) bst = bs(Pxbst) = (£ + t71) (£ + t' )Py,

by (5.1).

Case 2. sx < x, xs' > x. In this case,
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(bsBx)bst = (t + t71) (Bxst + T W(y,x)By.

y<x
ys'<y
while
bs (Bxbs') = bs(Bxst + T Wy, x)By) .
y<x
ys'<y
The two expressions are equal, since the elements xs' and y with

H(y,x) # 0 and ys' <y are all <g x, and hence sed (x) € L(xs"),
£ (y) for these elements, by Lemma 5.3iii.

Case 3. sx > x, Xs' < x. Set t =1t', H' = H. The resulting R-
module B¢,y affords the two sided regular representation of H. The
further specialization t-—1 yields a Q-module B;,; with the
structure of a QW, QW-bimodule. It follows that the specialized form
of (bgPx)bsr - bs(Bxbs') is zero, and that we have for the original

expression

(bsPx)bsr - bs(Bxbsr) = (t + t1 - 2) ¥ p(y,x)PBy

%?:§¥
YSLX
- (" + (e - 2) Ty, x)By.
ys:§¥
S
ysz

Consider a nonzero term in the first sum. Since vy <; x, we have
a(y) 2 a(x). If a(y) = a(x), then y —~p x by (7.1), and hence
R(x) = R(y) by 5.3iii), which is impossible. Therefore al(y) > a(x)
for all terms in the first expression. A similar argument applies to
the second expression, starting from the condition y <g x. This

completes the proof.

Let B be the R-module with the basis {PBxlxew, as in §7.
Then B admits a left action by H and a right action by RW. The
right action by W 1is defined for a generator s by setting t' =1
in the matrix of the right multiplication by the standard basis
element es of H' with respect to the basis {Bxlxew. Since B is
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a right H'-module, it follows that the right action by the generators
se€eS satisfy the defining relations of W, so that B becomes a
right W-module, and hence a right RW-module. The left action by H
and the right action by W do not commute, but we shall obtain
commuting actions by H and RW on a suitable graded version of B.

For each two sided cell ¢, put

Be = 3 RBy and Bg = Y RPy.

YSIRZ YS1RZ
ZEC ZEC
yéc

The submodules {Bg} define a kind of filtration of B using the
preorder relation y<irz. The associated graded module grB is
defined by

gr B = ®cBe/Be,

where the sum is taken over the two sided cells. Clearly grB
inherits a left H-action and a right RW-action. The left action by
H also defines a left action by RW on B, by specialization, and it

is clear that B, and hence grB, become (RW,RW)-bimodules.
(8.1) LEMMA. The graded R-module grB is an (H,RW)-bimodule.

The proof is immediate from the associativity Lemma 7.3, since

the a-function is constant on two sided cells by Lemma 6.9.
We can now state the main result of this section.

(8.2) THEOREM. (Lusztig [24]). (i) There exists a unique
homomorphism T. H—RW such that, for each weW and heH, we have

hBy - N(M)Pu = Y, rzPs

zFLRW
for some coefficients r,eR.

(ii) The extended map 1®M:Q(t)®rH—Q(t)W is an isomorphism of
Q(t)-algebras.
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Proof. Let Endy(grB)y denote the algebra of R-endomorphisms of
grB which commute with the right action by W. By Lemma 8.1, there
exists a homomorphism of R-algebras o:H—Endy(grB)y.

On the other hand, the commuting two sided action of RW on
gr B defines a homomorphism of R-algebras B:RW—Endy(grB)y. We
assert that B is an isomorphism. For this, it is sufficient to prove
that gr B 1is isomorphic to RW as a two sided RW-module. This
results from the fact that gr B, viewed as a QW-bimodule, affords
the two sided regular representation of QW, because QW is a
semisimple Q-algebra

The first statement of Lusztig's theorem follows by taking
n = B_lo a

The second statement is proved by showing that if h Dbelongs to
the kernel of 1®Tm, for heH2(t), then the left multiplication by h
is zero on gr B, and hence h acts as a nilpotent endomorphism of
B. It follows that 1®mM is injective, since HR() is a semisimple
algebra over Q(t), by the discussion in §3. The algebras HQ(t)
and Q(t)W have the same dimension over Q(t), and it follows that
1®nN is an isomorphism, completing the proof.

We remark that Lusztig's proof that grB is an (H,RW)-bimodule
uses the theory of primitive ideals in enveloping algebras ([24],
Lemma 4.1). The proof given here (using the Associativity Lemma) is
based instead on the positivity theorem (6.3).

(8.3) Corollary. The algebra HQ(t) is split semisimple, in other
words, Q(t) is a splitting field for H.

This follows from part (ii) of the preceding theorem, and the

fact that Q 1is a splitting field for each finite Weyl group W.

Following Lusztig [25], we shall describe an explicit connection

between simple modules for HR(t) and Q(t)W, and their characters.
Let E be a simple Q(t)W-module. There exists a unique two
sided cell ¢ such that E occurs as a composition factor of the

direct summand

(8.4) M = Q(t)®gr(Be/Be)
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of Q(t)®r grB, since Q(t)®r grB affords the two sided regular
representation of Q(t)W, Dby the proof of Theorem 8.2.

Since Me 1is a two sided W-module, the inner tensor product

Mc®E is a W-module, and the set of W-fixed points
(8.5) E(t) = invy(Mc®E)

is a left HQ(t)-module, by the proof of Theorem 8.2.
The following result follows readily from the preceding
discussion. For a proof, and other facts connected with it, we refer

the reader to [25].

(8.6) PROPOSITION. Let E be a simple Q(t)W-module, and let E(t)
be the left HR(t)-module defined by (8.5). The following statements
hold.
(i) E(t) 4is an absolutely simple H2(®)-module, and E—E(t)
. Ca . . . £ ]
algebras Q(t)W and H2(t), respectively.
(ii) Eor each =xeW, Tr(ex,E(t))€Z[t], and we have

Tr(ex,E(t))t=1 = Tr(x,E)

9. Ihe algebra J.

We shall define a 2Z-algebra J, with a basis whose structure
constants are the leading terms Yx,y,z ©Of the structure constants
{bx,y,z} ©of H with respect to the Kazhdan-Lusztig basis. It will
turn out that Q(t)®gzJ = H2(t), so that J can be viewed as an
asymptotic form of H. These results, all due to Lusztig, first
appeared in [28]-[30].

For the definition of J, 1let {Jxlxew be a basis for a free

Z-module, and define a bilinear multiplication on J by setting

Jxly = z YxyzJz, for x, yew,
ZEW

where Yy,y,z 1is the coefficient of t2(2) in h(x,y,z) (see (6.4)).
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(9.1) THEOREM. The Z-algebra J is associative, with identity

element 3, ja, where 9P is th f Duflo inv ions in W (see
de?

(6.8)) .

Proof. To check associativity, we have to prove that, for all x,vy,z,

VEW,

Z Y=, y,uYu,z,v = > Yx,u,va,z,u

uew uew
For the nonzero terms in this expression we have a(x) = a(y) = a(z) =
a(u) = a(v) = a by Theorem 6.10. From the associativity of H, we
have

zu hx,y,uhu,z,v = Zu hx,u,vhy,z,u~
For each nonzero term we obtain from (5.4),
v SR u SR X,

and hence a(x) < a(u) € a(v) by Lemma 6.9. Therefore the sums above
are taken over elements u€W for which a(u) = a. The desired
associativity result follows by comparing the coefficients of t22 on
both sides of the equation.

In order to check that Xged» jqg 1is the identity element, we have
to show, for example, that

Jx(23a) = Jx  for xewW.
de?d

This amounts to showing that

{l if vy
0 if y

KX

EYx, d,y ~—
de?

H

By Theorem 6.10, we have
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Yx,d, y = Yy_l,x,d’

and this is 0 or 1 according as y # x or y = X by Theorem 6.8.

A similar argument shows that (X3jq)Jx = Jx, completing the proof.

The connection between J and H 1is described in the following

result.

(9.2) THEOREM. The R-linear map W:H—’R®2J, defined by
Y(bx) = > hx,d,zJzr XEW

zZEW
a(d)=a(z)
de?

is a homomorphism of R-algebras, and becomes an isomorphism when
tensored with Q(t).

Proof. We first prove that WY(bxby) = Y(byx)W¥(by), for x,yeW. This

comes down to proving that

(9.3) > hx,y,uhu,d,z = > hx,d,uhy,e, vYu, v, z.
uew d,ee?d
a(d)=a(z) a(d)=a(u)
ded a(e)=a(v)
u, vew

In order to prove this identity, we begin with the fact that the
R-module grB defined in §8 is an (H,H') -bimodule, so that we have

Y hi,du (B)hu,v,z(t') = Y hyu,z(E)ha,v,ult'),

uewW uew
a(u)=a(d) a(u)=a(d)

for a fixed de?, and x,v,z€EW. The degree in t' of the polynomial
on the right side is <a(d), and since the structure constants have
positive coefficients, the same is true for the left side.

Multiplying both sides by (t')~2(d) and setting t' = 0, we obtain
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2 hx,d,u'Yu,v,z = 2 hx,u,z‘Yd,V,u
uew uew
a(u)=a(d) a(u)=a(d)
Since Y4,v,u = YQ\id,d by (6.10), and is zero except when u = v

when it is 1, by (6.8), the whole expression becomes hg,v,z, and
(9.3) follows from the associativity formula in H.
We prove next that W(bj) is the identity element in JRE)., We

have

Y(by) = p hl,d,z]zr
ZEW
a(d)=a(z)
ded

and the desired result follows from the fact that

h {1 if z =d
bdz T o if oz % d
Finally, we check that the extended map \:HR(t) — J@(t) is an
isomorphism. The algebra J2(t) has the basis {t72(x) (1®jy), x€W}.

We have
V(1®by) = 3 &, t72(2) (1®7,),
ZEW
where the matrix (QQZ) has entries in Q[t]. Using the properties

of the elements Yx,q,z from §6, it follows that &y , - 84, z€tQ[t]
for all x,z€W, and hence the matrix (&x,z) is invertible over the
ring of formal power series in t. Therefore (&, ,) is invertible
over Q(t), and we conclude that the map @ is an isomorphism

completing the proof of the Theorem.
(9.4) COROLLARY. There exists an isomorphism of Q-algebras J2=QW.

This is proved using the preceding theorem by setting t = 1. We
have H(1) = QW. In order to prove that the specialized homomorphism
1®vy :H(l)—*JQ is an isomcrphism, it is sufficient to prove that the
kernel of 1®y is annihilated by all the irreducible characters of
H(q1). This follows from the correspondence between the irreducible
characters of HR2(t) and J2(t) given by the isomorphism V, and the

relation between these irreducible characters and those of the
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specialized algebras H(1) and Je, respectively (see (8.6), and a
version of (3.1) for J2(t), proved in §68 of [8]).

The partition of W into left cells 1is related to the
multiplication of the basis elements {Jxlxew by the next result.

(9.5) PROPOSITION. (i) Let T Dbe a left cell containing the
element de? (see (6.11)). Then we have

o {jx if  xel
I =l o if xel
(ii) Jxdy # 0@ x -~y 1

(iii)  JxJzjy # 0 for some z<&>X~LRY.

The proof follows easily from the connections between the cell
relations and the elements Yx,y,z established in §6, and is left as

an exercise for the reader.

(9.6) COROLLARY. (i) The elements {Jdlde» axre orthogonal
.1 . JI 3 ) is::m;:sj:j:n :f J as a di]:e:t sum Cf
left ideals

J = DI
I'sleft cell

where Jr 4is the left ideal geperated by the idempotent Jgq, for
dePNI’, and has the Z-basis {Jx:xel'}.

(ii1) Let TI,I'" be left cells in W. Then there is an isomorphism
of Z-modules.

Homg (JrJr) = jaJjd,, where dedNI, d'edNI', and 3jqJjq* has a
Z-basis consisting of the elements {jx:xe["1NTI'}.

We also obtain a decomposition of J as a direct sum of two
sided ideals with bases indexed by the elements in the two sided
cells. The submodules {jgJjq'} behave like matrix units within these

ideals.

Finally, we note that the Z-linear map T:J—2Z defined by:
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~ {l if ze€?
0 if z¢d

defines a nondegenerate symmetric associative bilinear map from
IXJI—2Z. The elements

{Jx}xew and {jx—l}xew

form a pair of dual bases with respect to the form. These remarks
provide a basis for the usual connections between irreducible
characters, orthogonality relations, and primitive central idempotents

in the split semisimple Q(t)-algebra JR(), as in ([7], §9).
10. Leading terms of irreducible character values.

Let E be a simple Q(t)W-module. Then E 1is associated to a
unique two sided cell ¢ of W, by the discussion in §8 (see (8.4)).
By (8.5), E corresponds to an absolutely simple HR(t)-module E(t),
and to an absolutely simple J2(t)-module E, by (9.4).

(10.1) THEOREM. Let a(c) denote the common value of the a-

. 1 elements of the two sided cell ¢ corresponding to
E. Let ex be the standard basis element of H corresponding to
xeW. Then the leading term of the character value on E(t) of ex Jis
given by

(1) Tr(ex,E(t)) = cx,gtl(®*2a(e) + terms involving lower powers
of t, where cx,g 4is apn integer, for each xeW.

(ii) We have cx,g # 0 for some x€c. Moreover, for all xe€W,
cx,g is itself a character value on the algebra J2(t), npamely

Cx,E = Tr(leE)/
where Jx 4s the basis element of J corresponding to x.
Proof. By (8.6ii), we have Tr(ex,E(t))€Z[t]. The characters of the

simple modules E(t) and E are related by the isomorphism
Y:iHR(E) — JQ(t)  (see (9.2)). We obtain
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(10.2) Tr(by,E(t)) = Tr(Y(by),E) = S hy,q,2Tr (32, B),
EW
a(zy=a(d)
ded

after identifying by with 1®by,, and j, with 1®j,. Using the
results in §9, it follows that Tr(jz,E) = 0 1f z¢c. Furthermore
Tr(jz,ﬁ)ez for all z, by (9.4). The term of highest degree in t
on the right side of (10.2) has degree a(c), and the coefficient of

tate  is

. o . ~
> Yx,d,zTr(Jz,E) = Tr(jx,E)€Z,

(dfec( )
a =a(c
de?

since 7Yx,d4,z = yz_%x,d, and is 1 or 0 according as z = x oOr
z # X, by §6.

By the definition of the Kazhdan-Lusztig basis and the properties
of the polynomials Pg,y, it follows that the transition matrix from
the Kazhdan-Lusztig basis to the standard basis is triangular (using
an ordering based on the Bruhat order), with diagonal elements t~1(x),
for x€W. Therefore, Tr(ex,E(t)) = cg,gtl{¥)*a(c) + terms involving
lower powers of t, for some integer cy,g. Combining these

observations, we obtain a proof of the Theorem.
As an application, we show that the value of the a-function on

the two sided cell <¢ can be calculated from the generic degree Dg

of the simple Q(t)W-module E associated to c.
(10.3) COROLLARY. Keep the preceding notation. Then

a(e) = N - deg Dg,
where N and deg Dg n h r in u = t2 of the Poincaré
polynomial P(u) of W, and the generic degree Dg of E,
respectively (see §3).

Proof. The orthogonality relations for the characters of the modules
E(t) are
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0 if E#E'

D21 Tr (ey, E(t)) Tr(e,-1,E' (t)) = {dimE-P(u)
XEW . D (u)

iy
t

if E

By the preceding Theorem, the left side is

t2a(e) Ycx,EC,-1 p + lower terms,
XEW

and the coefficient of t2a(¢) is different from zero by the
orthogonality relations for the irreducible characters of JR(t), by
§9, using the fact that cx,g = Tr(jx,ﬁ).

Remark. In ([28], (6.4)), Lusztig proved, using an a-function
defined in terms of another basis of H, that the value of the a-
function on the elements of the two sided cell ¢ attached to E is
ag, the exponent of u in the lowest term of the generic degree. By
the palindromic property of the generic degrees (see [8], (71.17)),

the formula in Corollary 10.3 becomes
a(c) = N - deg Dg = asgn®E:

thus reconciling (10.3) with Lusztig's formula, since sgn®E is
associated with the two sided cell wge, where wg 1s the element of

W of maximal length.
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