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WIDTH AND RELATED INVARIANTS OF RIEMANNIAN MANIFOLDS. 

by 

M. GROMOV 
INTRODUCTION. There are many (geo)metric invariants characterizing 
the size and shape of a subset X in 3Rn . For example, solids 

3 
in 3R have three measurements : length. Width and hight. Various 
charac te r i s t i cs of convex subsets X c IRn are obtained by looking 
a t l inear projections and sections of X of dimension k < n . 

In Riemannian geometry one i s usually concerned only with two 
measurements of a manifold X . These are the to t a l volume of X 
and the diameter of X . One may think of Vol X as a measure of 
"the n-spread" of X for n = dim X , while Diam X measures "the 
1-spread". 

We discuss in these lectures intermediate diameters Diam^ X 
for a l l k = 0 , 1 , . . . , n - 1 introduced in 1923 by P.S. Uryson which 
measure how X spreads in dimension k + 1 . 

(A) Euclidean recol lec t ion. Consider two subsets X and A in 3Rn 
and say that X i s £-close to A if 

dist(x,A)££ for a l l x G X , 
where 

dist(x,A) = inf Ix-al 
def a € A 

for the Euclidean distance Ix-al = |x-a | between x and a . 
IRn 

The 1-codimensional width Wid .X is defined as the smallest  n-1 _1 
e >_ 0 , such that X i s i-^) -close to some hyperplane An in IR 
Similarly Wid^ X i s the smallest £ such that X i s £-close to 
some affine subspace Ak <= IRn . Observe that 

0 = Wid X < Wid . X <.. .< Wid . X < Wid X , n - n-1 - - 1 - o 
and that 

i Diam X < WidQ X < Diam X , 
where 

Diam X = sup |x-y I . 
def x,y £ X 

(In fact WidQ < J2 (n+T) Diam b¥ Yung theorem, see [B-Z]). 

93 



M. GROMOV 

Examples (A )̂ Let X c ]Rn be an ellipsoid with principal axes 
X1 > X 0 >...> X . Then i — z — — n 

Wid^ X = Xk+1 for a l l k = 0 ,1 , . . . , n -1 , 

according to the minmax principle for X̂  . 

(Â j) Let X be the rectangular solid, 

X = [0, £1 ] x [042] x . . . x [ 0 , i l n ] c t f , 

where the intervals [0,&.] clR satisfy > £0 > . . • > % . Then 
1 I — z — — n 

Wid̂  X = , where 
Dk = Diam [0, ] x . . . x [0, J&nJ = u£+1 + . . . + A* ) 

1 
2 

Proot. The solid X is 1/2 D^.)-close to the k-plane through the cen­
ter of X parallel to [O,^] x . . . x [ 0 , ^ ] . Thus Widk < Dk . To pro­
ve that Wiĉ  >. Dk we take an arbitrary k-plane A cz iRn and consi­
der the normal (n-k)-plane A1 c iRn through the center of X . This A"1" 
necessarily meets some k-face of X , say at x € X . Take the 
point x1 symmetric to x in the center of X and observe that 
lx-x'I > Dk . Hence Diam A1 D X > Dk and the inequality Widk > Dk 
follows. 

(Â j) Corollary. The width widk X is comparable to lk+1• Namely 

£k+1 < Widk X < /K £k+1 for a l l k . 

(A2) Approximation of convex subsets in IRn by simplices and e l l ip­
soids. Let X be a compact convex subset in 3Rn with non-empty 
interior and A be an n-simplex of maximal volume in X . Then the 
vertices xQ,x^,...,xn of A l ie on the boundary of X . Moreover 
the hyperplane Hi through xi parallel to the opposite face of A 
does not meet the interior of X by the maximality of A . Thus the * symplex A bounded by these hyperplanes contains X . If the n * 
baricenter of A equals the origin of 3R , then A = XA for X = -n , 
where 

X A = {Xy I y £ A} • 
def 
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So we can write 
A c X c -nA 

for a l l convex subsets X c 3Rn . 
(A£) Proposition. Let X and Y be compact convex subsets in IRn 
with non-empty interiors. Then there exists a parallel translate X* 
of X and an affine transform Y1 of Y such that 

Y»c X' c AY1 
for A = n 

Proof. Move X , such that the maximal symplex A(X') has baricenter 
in the origin and transform Y , such that A (Y') = A(X') . Then 

Y' c A*(Y') c X1 c A*(X') = n2 A(Y') c n2 Y' . 

(A )̂ Corollary. There exists an ellipsoid E = E (X) ,- such that  
some translate X' of X satisfies 

E c X1 c n2 E . 

(A3) A width criterion for X < Y . Say that X < Y if Y contains a 
congruent copy of X . Clearly, 

X < Y => Widk X < Widk Y for al l k . 

(A )̂ Proposition . Let X be a compact convex body and Y be an  
ellipsoid. If Widk X > n2 Widk Y for k = 0,1, . . . ,n-1 ,then X > Y . 
Similarly, Widk Y > n2 Widk X implies that Y > X . 

Proof. The ellipsoid E c X' from (A£) has 
Widk E > n"2 Widk X1 = n""2 Widk X > Widk Y . Since E and Y are 
ellipsoids, the inequalities Widk E > Widk Y imply that E > Y . 
As E <̂  X , we obtain the inequality Y £ X . The second inequality 
follows by a similar argument.Q.E.D. 

(A )̂ Corollary . If convex bodies X and X̂  in IRn satisfy 
Widk X > n4 Widk X1 for k = 0 ,1 , . . . , n -1 , then X > X1 . 

Proof. Apply (A )̂ to an intermediate ellipsoid Y , such that 

Widk X > n2 Widk Y > n4 Widk X1 . 
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(Â 1) Remark. This corollary shows that the numbers Widk X characte­
rize X up to a multiplicative constant. For example, the n-dimen-
sional volume of X can be estimated by Wid̂  X as follows, 

1 n-1 n-1 
X n Wid, X < Vol X < X n Wid, X 
n k=o K ~ n k=o K 

4n 
for some positive Xn < n . I n fact, the previous discussion allows 
a slightly better bound on XR . (See [B-Z] and [T] for various gene­
ralizations and refinements of these results) . 
(B) Intermediate diameters of metric spaces. For a metric space X 
we denote by |x-y| or lx~ylx the distance between x and y in X. 
We say that X is s-close to a topological space A if there exists 
a continuous map p : X -* A , such that the fibers Xo = p (a) c X 

a satisfy Diam Xo < 2e for a l l a € A . a — 
(B )̂ Definition. The codimension k diameter of a compact metric 
space X is the infimum of those 6 > 0 , such that X is 
(6/2)-close to some metrizable space A of dimension k . 

Remarks (B2).If X is locally compact rather than compact, then 
one should modify the definition by replacing Diam X̂  by 

-1 
inf Diam p (U) where U c A are the neighborhoods of a E A . 
U 

(B )̂ Since the image p(X) c A is a compact space of dimension k , 
i t admits an approximation by finite polyhedra of dimension k . Na­
mely, for every metric in p(X) and every e > 0 , there exists a 
k-dimensional polyhedron A£ , such that p(X) is £-close to Â  . 
In fact, the dimension dimp(X) can be defined as the minimal inte­
ger k , such that p(X) admits an approximation by k-dimensional 
polyhedra (see [G-W]). 

By composing p : X -* p(X) c A with the implied maps p(X)-*A 
one obtains continuous maps p£: X -> Ag, such that 

-1 -1 sup p (a) -> sup p (a) for e -* 0 . 
a e. A 8 a € A e 

Hence, one can use k-dimensional polyhedra A instead of general 
metrizable spaces in the definition of Diam^ . 

(B«) The meaning of s-closeness is clarified by the following 
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Proposition. Let p : X-> A be a continuous map, where X is a com­
pact metric space and A is a metrizable space. Then the following  
two conditions are equivalent for every 6 > 0 . 

(i) sup Diam p~1(a) < 26 
a € A 

(ii) There exists a metric space C , an isometric embedding Xc C 
and a topological embedding A c C , such that 

|x-p(x)| < 6 for al l x € X . 
Proof. If x and x1 l ie in p (a) and max(|x-p(x)| , I x1 -p (x' )] ) < 6, 
then |x-x'I £ 26 by the triangle inequality. Thus (ii) => (i) .To 
prove the converse we take some metric I lA in A and observe that, 
by compactness of X , there exist A > 0 and 61 < 6 , such that 

|x-ylx -26' < A|p(x)-p(y) lA (*) 
for al l x and y in X . Now we take the disjoint union X U A 
for C and let I lc be the upper bound of the metrics |i on C 
satisfying the following three conditions 

(i) n(x,y) < |x-ylx for al l x and y in X ; 
(ii) \x (a,b) < X|a-blA for al l a and b in A ; 
(iii) n(x,p(x)) < 6' for al l x £ X . 

The inequality (*) implies by a simple argument that the inclu­
sion X c c is isometric for this maximal metric I lc , 

|x-ylc= |x-ylx for al l x and y in X , 
and |x-p(x)lc < 6' < 6 by ( i i i ) . Q.E.D. 

(C) Monotonicity and positivity of Diam^ . First, we observe that 
Diam^ is decreasing in k = 0 , 1 , . . . , 

Diam X > Diam . X > . . . . o — 1 — 
Furthermore, if X is connected, then every continuous map of X 
into a zero-dimensional space is constant. Therefore, 

DiamQ X = Diam X , 
for connected spaces X . 

(Cl) Relation AY < X . This means that there exists a A-expanding 
continuous map f : Y -> X , 
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I f - f (y2)| > X|Yl - y2l , 
X Y 

for a l l Y1 and y2 in Y . Clearly, 

XY < X => Diamk X > X Dian^ Y 
for a l l k = 0,1, . . . . 

(C2) If k >_ dim X , then Diam^ X = 0 as X is zero-close to i t ­
self. A more interesting property is the inequality 

Diamk X > 0 for k < dim X , 
which follows from the discussion in (B )̂ . For example, Diam^ is > 0 
for n-dimensional manifolds Xn if n > k , as dim Xn = n by Le-
besgue's dimension theorem. 

(D) Estimation of Diamk of compact subsets in IRn . If X c lRn is 
e-close to an affine subspace A c IRn in the sense of (A), then the 
orthogonal projection p : X -» A has 

_ i 
Diam p (a) < 2e 

for a l l a € A . Therefore 
Dian^ X < Widk X 

for a l l k = 0 , 1 , . . . , and al l compact subsets in IRn . 

(D )̂ Diamk of the solid X = [O,^] x...x [ 0 , ^ ] c iRn . We agree 
as earlier that L1 >_ £2 1. • • • >. n̂ • Then we recall the following 

(DJj) Lebesaue's Lemma. Let p : X -+ A be a continuous map, where 
dim A < n . Then there exists a pair of opposite (n-1)-faces in X , 
say X1 and X" , and two points x' 6 X1 and x" € X" , such that 
p(x') = p(x") . (See [H-W]) . 

Lebesgue's lemma shows that Diamk X >̂  f̂c+i • This implies 
(see (A!])) that \/n Diamk X > Widk X . 

(D2) Diamk of convex subsets in IRn . Since every compact convex 
subset X in IRn can be approximated by solids (see (A2)), we ob­
tain n 

Diamk X < Widk X < n Diarn̂  X , 
for al l compact convex subsets in IRn . 
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(D2* Exercise. Show that the unit disk X c 1R has Diam^ X = \Z3~ . 
(Compare [K] and (D )̂ below). 

(D0). Diam . and Inradius. The inradius of an X c iRn is the radius J n-1 
of the maximal ball in X , 

Inrad X = sup dist (x,IRn \ X) . 
xEX 

(D )̂ Every compact X c jRn satisfies 
a Inrad X < Diam . X < 2 Inrad X , n — n- I — 

where a = n̂+̂  ^ is the diameter of the regular simplex inscribed  n n 2 c 
into the unit sphere S 

Proof. The lower bound on Diam^^ follows from the following sim-
plicial version of 

(D )̂ Lebesgue1s Lemma. Let p be a continuous map of the n-simplex A 
into an (n-l)-dimensional space. Then there exist points x1 and x" 
lying in two opposite faces of A, such that p(x') = p(x"). 
(See [H-W]). 

This lemma applies to maps of round balls B c IRn to A , 
where B is identified with A via a homeomorphism A B which 
radially projects the boundary of A on that of B . Then one sees 
that 

Diam . B > a rad B n-1 — n 
which implies 

Diam X > a Inrad X n-1 — n 
for a l l X clRn 

To get the upper bound on Diam^^ we approximate X by a 
compact domain X+ =) X with a smooth boundary and project X+ onto 
the cut-locus A c x+ with respect to the boundary. Recall the defi­
nition of this projection p : X+ -> A c X+ . Take a point x £ X+ , 
let B(x) be the maximal ball in X+ with center x and take a 
maximal ball B1 c x+ which contains B(x). I t is not hard to see 
that this B' is unique, the map p:x *-> y = center (B1) is continuous 
and dimp(X+) _< n-1 . With such a p (where A = p(X+) , one sees 
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that 
Diamn_1 X+ < 2 Inrad X+ , 

which implies the same inequality for X . 
Exercises. Show that the unit ball B in IRn has Diam - = a  n -1 It 

Let X be a compact Riemannian manifold with a boundary. Show that 

Diam *X < 2 sup dist(x,9X) 
n_l x€ X 

for n = dim X . 

(D )̂ Diam^ of convex hypersurfaces. Let Y be a compact convex hy-
persurface in IRn and X be the convex body bounded by Y . There 
are two natural metrics in Y . The f i r s t is just the restriction of 
the Euclidean metric I I. The second, denoted.I |y , is the induced 
Riemannian metric where the distance between ŷ  and y2 is the 
length of a shortest path in Y between ŷ  and y2 . Clearly, 
I I £ I I Y . In particular, 

DiamK(Y, I I) < Diam k (Y, I I ) for a l l k . 

On the other hand, if dim Y .> 1 , then 

Diam(Y, I |Y) < TT/2 Diam(Y,| | ) . (*) 

In fact, if dim Y = 1, then Diam(Y,I ly) = ^ length Y and the 
length of Y equals the average of the lengths of the normal projec-
tions of Y to the lines in m DY . This proves (*) 
for dim Y = 1 and the case dim Y > 1 follows by looking at plane 
sections of X . 

Exercise. Show that 

Diarn^Y,! |Y) < TT/2 Widk X for al l k . 

Now, let p be a normal projection of Y to a hyperplane 
H <= IRn . One can invert this projection on the image p(Y) = p (X 
and thus obtain an expanding embedding p(X) -> Y . Hence, 

Diamk(Y,| |) > sup Diamk p(X). 
P 

Finally, we approximate X by an ellipsoid (see (A!)) , and 
conclude 
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Diamk (Y, I |y) - Diamk (Y, I I) ~ 

~ Diamk X ~ Wî k x f or k = 0' 1 ' 'n~2 ' 
where the equivalence a ~ 3 signifies the existence of a positive 
constant C = Cn , such that 

C 3 < Ca . 
(D )̂ Corollary. (Compare (Â 1) and (E^)). The (n-1)-dimensional volume  
of Y is of the same order of magnitude as the product of Diamk , 

n-2 
Vol Y ~ n Diamk (Y, I |y) . 

k=o 
\D^) Federer-Fleming inequality. Let X <=IRn be a compact subset of 
finite k-dimensional Hausdorff measure denoted Volk x • Then 

Diamk-1 X < Cn(Volk X)K (*) 

for CR < V n̂(n! (ni/(n-k) !)n . 

Idea of the proof. Partition IRn into cubical cells of diameter 

~(Volk X) . Then Volk x nas tne order of magnitude of the average 
number of intersection points of parallel translates of X with the 
(n-k)-skeleton of this partition. Hence, for a partition into slight­
ly larger cubes, there exists a translate X" of X which misses 
the (n-k)-skeleton. Then we project X* to the (k-1)-skeleton of 
the dual partition (see Proposition 3.1.A. in [G]^). 

Question. Does (*) hold true with a constant Ck depending only 
on k ? 

(E) Diamk of Riemannian manifolds. Start with the simplest class of 
flat manifolds. 

(E )̂ Split tor i . Let X be the product of circles S1fS2,...,Sn of 
lengths > &2 > . . . £n . The projection of X to Ŝ  xs2 x. . . sk 
provides the inequality 

n 1 n 2 
Diam X < Diam n S. = •!( X I .) 

k " i=k+1 1 2 i=k+1 1 
On the other hand each Ŝ  contains an isometric copy of [0 ,^ /2] . 
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Hence, X > j X' for the solid [ 0 , ^ ] x...x [0,i&n] , and so (see (AJj)) 

Diamk X > j Dian^ X1 > -1 &k+1 • 

Thus Diair^ X ~ lk+1• 

(E2) Non-split flat to r i . Let X be a f lat torus. That is X = IRn/L 
for some lat t ice L c 3Rn . By a classical reduction theory for L 
(see [C]) there exists a spl i t torus Xg equivalent to X . That 
is there exists a linear homeomorphism f : X -* Xg , such that 

C"1|x1-x2l < If (x^ I- f (x2) I < Clx^Xjl 
for a l l x̂  and x2 in X , where C = Cn > 0 is a universal cons­
tant. I t follows that, (somewhat sacrifying C) one can take X = ITS. , 
where length Si = Diami_1 X for a l l i = 1,...,n . 

(E2) Corollary. The volume of every flat torus X is equivalent to  
the product of Diami , 

n-1 
Vol X ~ n Diam. X . 

i=0 
(E )̂ Almost flat manifolds. The reduction theory generalizes 
(see [G]2 and [B-Kl) to e-flat manifolds X satisfying 

IK|(Diam X)2 < e2 , 
where K denotes the sectional curvature of X and e = e > 0 is 
a universal (small but yet positive) constant (one can take 
e = exp - nn). Using this one can generalize (E') to e-flat mani-

n 
fold X for e _< exp - n , 

C Vol X < n diam. X < C Vol X , n " 1=0 i - n 

where C > 0 is a universal constant, n 
Exercise. Prove the equivalence Vol X ~ n DiaitK X for flat Rieman-
nian manifolds. 

(E )̂ I t seems that the collapsing techniques (see [C-G]) should yield 
a similar result for a l l (possibly large) e > 0 . 

C Vol X < n Diam. X < C Vol X , (*) 
" 1 1 " 
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for some constant C > 0 depending on n and e . 
Here is a more difficult 

n-1 
Question. Does the equivalence Vol X ~ TT Diam. X hold true (with 

i=1 1 
the implied constant C = Cn) for manifolds X with non-negative 
sectional curvature ? 

A more illuminating but unprecise question is : 
Does every X with K > 0 look roughly as the solid 

[ 0 , ^ ] x [0,£2] x . . . x [0,£n] for li+1 = Diam± X ? 
Both questions remain open for manifolds with a lower bound on 

the sectional curvature, K(Diam X) >̂  - e 

(F) Lower bounds on Diam^ . Lebesgue's Lemmas (see (DJj) and (D )̂ ) 
provide a lower bound on Diam^ X if X contains a k-dimensional 
cube (or simplex) with a controlled geometry. A slightly more general 
estimate Diam^ >_ e > 0 can be obtained by the following 

(F )̂ Proposition (Compare (D )̂ and [K]) . If Diam^ X < AK for 
otĵ  = V2 (n+1)^ ' tnen every distance decreasing map f of X into the 

k k+1 
unit sphere S c ]R is contractible. 
Idea of the proof. Let p be a surjective map of X onto a (k-1)-
dimensional polyhedron A , such that each fiber X = p (a) for a £ A 
has Diam < . Then f(X^) c s also has Diam < and hence is 
contained in a hemisphere by Young theorem (see [B-Z]). I t follows 
that each set f (X ) c: sk contracts to a single point in S , such 
that this contraction is continuous in a € A . This gives a homo-
topy of f to a map f1 : X -» Sk which is a composition of p: X -> A 
with a continuous map A->S obtained by the above shrinking of the 
subsets f (X ) c S to points. As dim A < k , the map A -* S is 
contractible and so f is contractible.Q.E.D. 

(F') A generalization. Let the above map f send a compact subset 
XQ C X to a point sQ € S . Then the above argument shows that the 
map of pairs. 

f : (X,X ) - (Sk,s ) , 
is contractible. 
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(F!j) Example. Let X be an orientable n-dimensional manifold with 
boundary 3X = XQ . If n= k , then non-contractible maps 
(X,XQ) - (Sk,sQ) are those which have non-zero degree. If n > k , 
then one defines a generalizated degree of a smooth map f as the 
framed cobordism class of the manifold f (s) c X for a generic 
s € S . Non-vanishing of this degree insures non-contractibility 
of f . 

(F~) Manifolds with large injectivity radius. The essential property 
of the sphere S in the above discussion is a "canonical contracti­le 
bi l i ty" of "small" subsets in S . A similar property is shared by 
al l Riemannian manifolds with large injectivity radius and by more 
general (locally geometrically contractible, see §4.5. in [G]4) mani­
folds where the balls of a "not very large radius" are contractible 
within concentric balls of slightly larger radius. Here are two sim­
ple examples (see §4.5. in [G]4,[G]5 and §4.2. in [G]6 for the 
proofs and a further discussion) . 
(F )̂ Let V be a complete n-dimensional Riemannian manifold, such 
that the injectivity radius of V at every point v £ V is >̂  R 
and let X c V be a ball of radius 2 R . Then 

i 
Diamn__1 X > RQ/2(n+2) . 

(F£) Let V be a compact n-dimensional manifold without boundary  
and V -» V be the universal covering of V with the induced Rieman­
nian metric. Let W be a complete Riemannian manifold which admits  
a Riemannian submersion W -» V . If V is contractible, then the  
balls X(R) c W of radius R satisfy 

Diam -X(R) -» oo as R -> «> . n- I 
(G) Upper bounds on Diam^̂ -j . The inequality of Federer-Fleming 
(see (D^)) provides a bound on Diam _̂̂  X of k-dimensional subsets 
X c iRn in terms of the Hausdorff measure Vol^ x • A similar bound 
applies to al l manifolds Y 3 X of non-negative Ricci curvature as 
follows 

(G )̂ Let Y be a complete n-dimensional manifold with Ricci Y > 0 . 
Then a l l compact subsets X c Y satisfy 
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Diani k-1 
x < cn(voik X) 

2 
k 

for some universal constant C > 0 n 
Idea of the proof (Compare p.130 in [G]4 and §3.4. in [G]^). Since 
Ricci :> 0 , there exists a covering of Y by balls of radius R , 

where R ~(V0-^ x) > such that the multiplicity of the covering by 
the concentric balls of radius 2R is bounded by some constant M=M . 
Then the partition of unity on Y associated to this covering maps X 
into the polyhedron of dimension £ M - 1 which is the nerve of the 
covering. Then the image of X can be pushed to the (k-1)-skeleton 
of this polyhedron. 

(G^) If X is homeomorphic to S , then the bound on Diam^ X does 
not need any ambient space Y , 

Diam1 X < 2(Vol2 X)2 

for al l metric spaces X homeomorphic to S 

Proof. Assume for simplicity's sake that X is Riemannian, fix a 
point xQ E X and partition X into the connected components of the 
spheres SQ(r) = {x € X| Ix-xq| = r} for al l r E IR+ .The resulting 
quotient space is one-dimensional and the components of S (r) have 1 o 

Diam £ 2(Area SQ) as a simple argument shows (see p.129 in [G]^). 

(GO I t is unknown (and seems unlikely) that the ratio 

Diamk_^/(Volk) is bounded by a universal constant Ĉ  for al l spa­
ces X . However, such a bound is known for another invariant, called 
the contractibility radius of X (see App. 2 in [G]^). 

Namely, let X be an n-dimensional polyhedron with a piecewi-
se Riemannian metric. Then there exists a continuous map p:X -> A 
where A is an (n-1)-dimensional polyhedron, and a metric on the cylin­
der C = C of the map p , such that (compare (B") ) 

(i) the canonical embedding X -> C is isometric, 
(ii) the distance from each a € C to X c C satisfies 

dist(a,X) < constn(Voln X)n (*) 
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for some universal const > 0 . 
Recall that Cp is the quotient space of the disjoint union 

(X x [0,1]) U A for the relation (x x 1) - p(x) for a l l x £ X . 
This is proven in App. 2 of [G]^ • Probably, a small modifica­

tion of the argument in [G]^ will yield a similar result for a l l 
metric spaces X . 

A simple application of (*) (see §1.2.B. in [G]4 ) yields the 
following generalization of Minkovski theorem. 

Let V be an n-dimensional contractible manifold with a Finsler (e.g. Rie-
manniaT) metric and le t r be a discrete isometry group of V for which  
the quotient space X is compact. Then there exists a point v £ V 
and a non-identity element y £ T , such that 

|v-y(v)| < 6 const (Vol xf . 

This reduces to the original Minkowski theorem, if V = IRn 
with a translation invariant (Minkowski) metric and V consists of 
parallel translations of IRn . 

(G )̂ Diamn_2 and scalar curvature. Let X be a compact Riemannian 
manifold without boundary of positive scalar curvature >̂  o2 > 0 . 

Question. Does Diamn_2 x is universally bounded by 

Diam 0 X < const / a ? 
This is known to be true if X is homeomorphic to S3 .(see p.129 
in [G]4 and [G-L]2). This is also known for the metrics obtained by 
surgery (see [G-L]^ and [S-Y]). 

One also may ask what kind of curvature is responsible for an 
upper bound on Diam^ for k < n-2 . For example, le t each tangent 
space T c T(X) contain an (n-k+1)-dimensional subspace T1 c T , 
such that the sectional curvatures of the two planes in T1 domina­
te the rest of curvatures, 

K (x 1) + aK (t) > a2 > 0 , 
for a l l 2-planes x' c T' and x c T , and al l a in the interval 
[0,an] for some large constant an . Then one asks if the following 
inequality holds true. 
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Diam^ X <_ const / a . 

(H) Definition of Diarn̂  with coverings. Fix a number 6 > 0 and let 
us prove the equivalence of the following three properties of a com­
pact metric space X . 

(1) Diamk X < 6. 

(2) X admits a covering of multiplicity £ k+ 1 ( i .e . no k + 2 
covering subsets intersect) by compact subsets of diameter < ô . 

(3) X can be covered by compact subsets X.̂  , i = 0 , . . . ,k , 
such that Diam X. < 6 . 

Proof. Start with the implication (1) => (3) . By definition of Diam^ 
there exists a continuous map p : X -> A , where dim A < k , such 

that Diam p (a) < 6 for al l a 6 A . By definition of dim A , 
there exists a covering of A by subsets A.̂  , i = 0 , . . . ,k , such 
that each A. is the union of disjoint compact subsets of arbi t rar i -
ly small diameter. Then the sets X.̂  = p (Ai) provide the required 
cover of X . 

The implication (3) => (2) is t r ivial as every X̂  , by defi­
nition of DiamQ , is the union of disjoint subsets of diameter < <5 . 

Finally we prove (2) (1) by taking the nerve of the covering 
for A and by mapping X -* A with an associated partition of unity. 

Corollaries (H )̂ Let X = X1 U X2 , such that Diami < 6 and 
Diam.. X2 <_ 6 . Then Diam^ < 6 for k = i + j + 1 . 

(HJj ) Let X admit a continuous map p : X -> A , such that 

DiaiïK p"1 (a) < 6 for al l a G A . Then Diam .̂ X < 6 for 
k = (i+1) (dim A+ 1) - 1 . 

Ĥ-p Example. Let X be a (2k+1)-dimensional Riemannian manifold  
Then for every e > 0 there exists a smooth map p : X -> IR , such  
that Diamk+1 p (a) < e for a l l a £ IR . 

Proof. Take a sufficiently fine triangulation of X , let XQ be the 
k-skeleton of this triangulation and X̂  be the k-skeleton of the 
dual triangulation. Then there is a smooth map p : X -> [0,1] , such 
that p~1(0) = X , p~1(1) = X1 and p~1(a) for 0 < a < 1 is the 

° -1 boundary of a small regular ^-neighborhood of XQ . This p (a) is 
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e-close to X for a l l a < 1 . o 
This example shows that the bound on k in (Ĥ j) is sharp. 

This also shows that Diamn-k-i cannot fully serve as a measure of 
"the (n-k)-dimensional spread" of X . An alternative measure of this 
spread comes from the (n-k)-volume of the fibers of maps X -* A for 
dim A = k (see App. 2 in [G]4). 

Concluding remarks. The fundamental fact which insures non-vanishing 
of Diam^ of n-dimensional manifold for n > k (this makes the de­
finition of Diam^ non-vacuous), is the topological invariance of 
dimension. One may think that other topological invariants can also 
be studied quatitatively in the framework of the Riemannian geometry. 
A geometric quantitative approach to the homology and homotopy theory 
is indicated in [G]2 , [G]^ [G-L-P] and [S] , where the reader may 
find further references. 
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