Astérisque

M. Gromov
 Width and related invariants of riemannian manifolds

Astérisque, tome 163-164 (1988), p. 93-109
http://www.numdam.org/item?id=AST_1988__163-164__93_0
© Société mathématique de France, 1988, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

WIDTH AND RELATED INVARIANTS OF RIEMANNIAN MANIFOLDS.

by

M. GROMOV

INERODUCTION. There are many (geo) metric invariants characterizing the size and shape of a subset x in \mathbb{R}^{n}. For example, solids in \mathbb{R}^{3} have three measurements : length, Width and hight. Various characteristics of convex subsets $\mathrm{x} \subset \mathbb{R}^{\mathrm{n}}$ are obtained by looking at linear projections and sections of X of dimension $\mathrm{k}<\mathrm{n}$.

In Riemannian geometry one is usually concerned only with two measurements of a manifold X. These are the total volume of X and the diameter of X. One may think of Vol X as a measure of "the n-spread" of x for $n=\operatorname{dim} x$, while Diam X measures "the 1-spread".

We discuss in these lectures intermediate diameters Diam $_{k} X$ for all $k=0,1, \ldots, n-1$ introduced in 1923 by P.S. Uryson which measure how x spreads in dimension $\mathrm{k}+1$.
(A) Euclidean recollection. Consider two subsets X and A in \mathbb{R}^{n} and say that X is ε-close to A if
dist $(\mathrm{x}, \mathrm{A}) \leq \varepsilon$ for all $\mathrm{x} \in \mathrm{X}$,
where

$$
\operatorname{dist}(x, A)=\inf _{a \in A}^{=}|x-a|
$$

for the Euclidean distance $|x-a|=|x-a|{ }^{n}$ between x and a.
The 1 -codimensional width Wid $_{n-1} X$ is defined as the smallest $\varepsilon \geq 0$, such that X is $\left(\frac{\varepsilon}{2}\right)$-close to some hyperplane A^{n-1} in \mathbb{R}^{n}. Similarly Wid $_{k} X$ is the smallest ε such that X is ε-close to some affine subspace $A^{k}=\mathbb{R}^{n}$. Observe that

$$
0=\operatorname{wid}_{n} x \leq \operatorname{wid}_{n-1} x \leq \cdots \leq \operatorname{Wid}_{1} x \leq \text { Wid }_{0} x,
$$

and that

$$
\frac{1}{2} \text { Diam } \mathrm{x} \leq \text { Wid }_{\circ} \mathrm{x} \leq \text { Diam } \mathrm{X},
$$

where

$$
\operatorname{Diam} x \sup _{\operatorname{def} x, y \in X}|x-y|
$$

(In fact $W_{0} \leq \sqrt{\frac{n}{2(n+1)}}$ Diam by Yung theorem, see $[B-Z]$).

Examples $\left(A_{1}\right)$ Let $X \subset \mathbb{R}^{n}$ be an ellipsoid with principal axes $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. Then

$$
\text { Wid }_{k} x=\lambda_{k+1} \text { for all } k=0,1, \ldots, n-1
$$

according to the minmax principle for λ_{K}.
$(A ;)$ Let X be the rectangular solid,

$$
x=\left[0, \ell_{1}\right] \times\left[0, \ell_{2}\right] \times \ldots \times\left[0, \ell_{n}\right] \subset \mathbb{R}^{n}
$$

where the intervals $\left[0, \ell_{i}\right] \subset \mathbb{R}$ satisfy $\ell_{1} \geq \ell_{2} \geq \ldots \geq \ell_{n}$. Then Wid $_{k} X=D_{k}$, where

$$
D_{k}=\operatorname{Diam}\left[0, \ell_{k+1}\right] \times \ldots \times\left[0, \ell_{n}\right]=\left(\ell_{k+1}^{2}+\ldots+\ell_{n}^{2}\right)^{\frac{1}{2}}
$$

Proot. The solid x is $\left(\frac{1}{2} L_{k}\right)$-close to the k-plane through the center of X parallel to $\left[0, \ell_{1}\right] \times \ldots x\left[0, \ell_{k}\right]$. Thus $W_{k} \leq D_{k}$. To prove that $W_{k} \geq D_{k}$ we take an arbitrary $k-p l a n e \quad A \subset \mathbb{R}^{n}$ and consider the normal $(n-k)-p l a n e A^{\perp} \subset \mathbb{R}^{n}$ through the center of X. This A^{\perp} necessarily meets some k-face of X, say at $x \in X$. Take the point x^{\prime} symmetric to x in the center of x and observe that $\left|x-x^{\prime}\right| \geq D_{k}$. Hence $\operatorname{Diam} A^{\perp} \cap x \geq D_{k}$ and the inequality $W i d_{k} \geq D_{k}$ follows.
$\left(A_{1}^{\prime \prime}\right)$ Corollary \cdot The width Wid $_{k} X$ is comparable to ℓ_{k+1}. Namely

$$
\ell_{k+1} \leq \text { Wid }_{k} x \leq \sqrt{n} \ell_{k+1} \text { for all } k
$$

$\left(A_{2}\right)$ Approximation of convex subsets in \mathbb{R}^{n} by simplices and ellipsoids. Let X be a compact convex subset in \mathbb{R}^{n} with non-empty interior and Δ be an n-simplex of maximal volume in X. Then the vertices $x_{o}, x_{1}, \ldots, x_{n}$ of Δ lie on the boundary of x Moreover the hyperplane H_{i} through x_{i} parallel to the opposite face of Δ does not meet the interior of X by the maximality of Δ. Thus the symplex Δ^{*} bounded by these hyperplanes contains X. If the baricenter of Δ equals the origin of \mathbb{R}^{n}, then $\Delta^{*}=\lambda \Delta$ for $\lambda=-n$, where

$$
\lambda \Delta \underset{\operatorname{def}}{=}\{\lambda y \mid y \in \Delta\}
$$

So we can write

$$
\Delta \subset X \subset-n \Delta
$$

for all convex subsets $X \subset \mathbb{R}^{n}$.
$\left(A_{2}^{\prime}\right)$ Proposition. Let X and Y be compact convex subsets in \mathbb{R}^{n} with non-empty interiors. Then there exists a parallel translate X^{\prime} of X and an affine transform Y^{\prime} of Y such that

$$
Y^{\prime} \subset X^{\prime} \subset \lambda Y^{\prime}
$$

for $\lambda=n^{2}$.

Proof. Move X, such that the maximal symplex $\Delta\left(X^{\prime}\right)$ has baricenter in the origin and transform Y, such that $\Delta^{*}\left(Y^{\prime}\right)=\Delta\left(X^{\prime}\right)$. Then

$$
Y^{\prime} \subset \Delta^{*}\left(Y^{\prime}\right) \subset X^{\prime} \subset \Delta^{*}\left(X^{\prime}\right)=n^{2} \Delta\left(Y^{\prime}\right) \subset n^{2} Y^{\prime} .
$$

$\left(A_{2}^{\prime \prime}\right)$ Corollary. There exists an ellipsoid $E=E(X)$; such that some translate X^{\prime} of X satisfies

$$
E \subset X^{\prime} \subset n^{2} E
$$

$\left(A_{3}\right)$ A width criterion for $X \leq Y$. Say that $X \leq Y$ if Y contains a congruent copy of X. Clearly,

$$
X \leq Y \Rightarrow W i d_{k} X \leq W_{k} d_{k} Y \text { for all } k
$$

$\left(A_{3}^{\prime}\right)$ Proposition Let X be a compact convex body and Y be an ellipsoid. If $\mathrm{Wid}_{\mathrm{k}} \mathrm{X} \geq \mathrm{n}^{2} \mathrm{Wid}_{\mathrm{k}} \mathrm{Y}$ for $\mathrm{k}=0,1, \ldots, \mathrm{n}-1$, then $\mathrm{X} \geq \mathrm{Y}$. Similarly, $W_{k} Y \geq \mathrm{n}^{\overline{2}} \mathrm{Wid}_{\mathrm{k}} \mathrm{X}$ implies that $\mathrm{Y} \geq \mathrm{X}$.

Proof. The ellipsoid $E \subset X^{\prime}$ from ($A_{2}^{\prime \prime}$) has
$W_{i d} E \geq n^{-2} W i d_{k} X^{\prime}=n^{-2} W_{i d} X \geq W i d_{k} Y$. Since E and Y are ellipsoids, the inequalities $W_{i d} E \geq W_{k} Y$ imply that $E \geq Y$. As $E \leq X$, we obtain the inequality $Y \leq X$. The second inequality follows by a similar argument.Q.E.D.
($A_{3}^{\prime \prime}$) Corollary . If convex bodies X and X_{1} in \mathbb{R}^{n} satisfy $\mathrm{Wid}_{\mathrm{k}} \mathrm{X} \geq \mathrm{n}^{4} \mathrm{Wid}_{\mathrm{k}} \mathrm{X}_{1}$ for $\mathrm{k}=0,1, \ldots, \mathrm{n}-1$, then $\mathrm{X} \geq \mathrm{X}_{1}$.

Proof. Apply (A_{3}^{\prime}) to an intermediate ellipsoid Y, such that

$$
\mathrm{Wid}_{\mathrm{k}} \mathrm{X} \geq \mathrm{n}^{2} \mathrm{Wid}_{\mathrm{k}} \mathrm{Y} \geq \mathrm{n}^{4} \mathrm{Wid}_{\mathrm{k}} \mathrm{X}_{1}
$$

($A_{3}^{\prime \prime \prime}$) Remark. This corollary shows that the numbers $W_{k} d_{k} x$ characterize X up to a multiplicative constant. For example, the n-dimensional volume of X can be estimated by $W_{k} X$ as follows,

$$
\lambda_{\mathrm{n}}^{-1} \prod_{\mathrm{k}=0}^{\mathrm{n}-1} \mathrm{Wid}_{\mathrm{k}} \mathrm{x} \leq \operatorname{Vol} \mathrm{x} \leq \lambda_{\mathrm{n}} \prod_{\mathrm{k}=0}^{\mathrm{n}-1} \mathrm{Wid}_{\mathrm{k}} \mathrm{x}
$$

for some positive $\lambda_{n} \leq n^{4 n}$. In fact, the previous discussion allows a slightly better bound on λ_{n}. (See [B-Z] and [T] for various generalizations and refinements of these results).
(B) Intermediate diameters of metric spaces. For a metric space X we denote by $|x-y|$ or $|x-y|_{x}$ the distance between x and y in x. We say that X is ε-close to a topological space A if there exists a continuous map $p: X \rightarrow A$, such that the fibers $X_{a}=p^{-1}(a) \subset x$ satisfy $\operatorname{Diam} X_{a} \leq 2 \varepsilon$ for all $a \in A$.
$\left(B_{1}\right)$ Definition. The codimension k diameter of a compact metric space X is the infimum of those $\delta>0$, such that X is

Remarks $\left(B_{2}\right)$. If x is locally compact rather than compact, then one should modify the definition by replacing Diam X_{a} by inf Diam $P^{-1}(U)$ where $U \subset A$ are the neighborhoods of $a \in A$. U
(B_{2}^{\prime}) Since the image $p(X) \subset A$ is a compact space of dimension k, it admits an approximation by finite polyhedra of dimension k. Namely, for every metric in $p(X)$ and every $\varepsilon>0$, there exists a k-dimensional polyhedron A_{ε}, such that $p(X)$ is $\varepsilon-c l o s e$ to A_{ε}. In fact, the dimension dimp(X) can be defined as the minimal integer k, such that $p(X)$ admits an approximation by k-dimensional polyhedra (see [G-W]).

By composing $p: X \rightarrow p(X) \subset A$ with the implied maps $p(X) \rightarrow A_{\varepsilon}$ one obtains continuous maps $p_{\varepsilon}: X \rightarrow A_{\varepsilon}$, such that

$$
\sup _{a \in A_{\varepsilon}} p_{\varepsilon}^{-1}(a) \rightarrow \sup _{a \in A} p^{-1}(a) \text { for } \varepsilon \rightarrow 0
$$

Hence, one can use k-dimensional polyhedra A instead of general metrizable spaces in the definition of Diam $_{k}$.
$\left(\mathrm{B}_{2}^{\prime \prime}\right)$ The meaning of $\varepsilon-c$ oseness is clarified by the following

Proposition. Let $p: X \rightarrow A$ be a continuous map, where X is a compact metric space and A is a metrizable space. Then the following two conditions are equivalent for every $\delta>0$.
(i) $\sup _{a \in A} \operatorname{Diam} \mathrm{p}^{-1}(\mathrm{a})<2 \delta$
$a \in A$
(ii) There exists a metric space C, an isometric embedding $X \subset C$ and a topological embedding $A \subset C$, such that

$$
|x-p(x)|_{C}<\delta \text { for all } x \in x .
$$

Proof. If x and x^{\prime} lie in $p^{-1}(a)$ and $\max \left(|x-p(x)|,\left|x^{\prime}-p\left(x^{\prime}\right)\right|\right)<\delta$, then $\left|x-x^{\prime}\right| \leq 2 \delta$ by the triangle inequality. Thus (ii) \Rightarrow (i) . To prove the converse we take some metric $\left|\left.\right|_{A}\right.$ in A and observe that, by compactness of X , there exist $\lambda>0$ and $\delta^{\prime}<\delta$, such that

$$
\begin{equation*}
|x-y|_{X}-2 \delta^{\prime} \leq \lambda|p(x)-p(y)|_{A} \tag{*}
\end{equation*}
$$

for all x and y in X. Now we take the disjoint union $X \cup A$ for C and let $I I_{C}$ be the upper bound of the metrics μ on C satisfying the following three conditions
(i) $\mu(x, y) \leq|x-y|_{X}$ for all x and y in x;
(ii) $\mu(a, b) \leq \lambda|a-b|_{A}$ for $a l l a$ and b in A;
(iii) $\mu(x, p(x)) \leq \delta^{\prime}$ for all $x \in X$.

The inequality (*) implies by a simple argument that the inclusion $X \subset C$ is isometric for this maximal metric $\|\left.\right|_{C}$,

$$
|x-y|_{C}=|x-y|_{X} \text { for all } x \text { and } y \text { in } x \text {, }
$$

and $|x-p(x)|_{C} \leq \delta^{\prime}<\delta$ by (iii). Q.E.D.
(C) Monotonicity and positivity of Diam $_{k}$. First, we observe that Diam $_{k}$ is decreasing in $k=0,1, \ldots$,

$$
\text { Diam }_{0} \mathrm{X} \geq \operatorname{Diam}_{1} \mathrm{X} \geq \ldots
$$

Furthermore, if X is connected, then every continuous map of X into a zero-dimensional space is constant. Therefore,

$$
\operatorname{Diam}_{0} \mathrm{X}=\operatorname{Diam} \mathrm{X}
$$

for connected spaces X .
$\left(C_{1}\right)$ Relation $\lambda Y \leq X$. This means that there exists a λ-expanding continuous map $\mathrm{f}: \mathrm{Y} \rightarrow \mathrm{X}$,

$$
\left|f\left(y_{1}\right)-f\left(y_{2}\right)\right|_{X} \geq \lambda\left|y_{1}-y_{2}\right|_{Y},
$$

for all Y_{1} and Y_{2} in Y. Clearly,

$$
\lambda Y \leq X \Rightarrow \operatorname{Diam}_{k} X \geq \lambda \operatorname{Diam}_{k} Y
$$

for all $k=0,1, \ldots$.
$\left(C_{2}\right)$ If $k \geq \operatorname{dim} X$, then $\operatorname{Diam}_{k} X=0$ as X is zero-close to itself. A more interesting property is the inequality

$$
\operatorname{Diam}_{k} \mathrm{X}>0 \text { for } \mathrm{k}<\operatorname{dim} \mathrm{x} \text {, }
$$

which follows from the discussion in (B_{2}^{\prime}) . For example, Diam ${ }_{k}$ is >0 for n-dimensional manifolds x^{n} if $n>k$, as $\operatorname{dim} X^{n}=n$ by Lebesgue's dimension theorem.
(D) Estimation of Diam $_{k}$ of compact subsets in \mathbb{R}^{n}. If $X \subset \mathbb{R}^{n}$ is ε-close to an affine subspace $A \subset \mathbb{R}^{n}$ in the sense of (A), then the orthogonal projection $p: X \rightarrow A$ has

$$
\text { Diam } p^{-1}(a) \leq 2 \varepsilon
$$

for all a \in A . Therefore

$$
\operatorname{Diam}_{k} x \leq \operatorname{Wid}_{k} x
$$

for all $k=0,1, \ldots$, and all compact subsets in \mathbb{R}^{n}.
$\left(D_{1}\right) \operatorname{Diam}_{k}$ of the solid $x=\left[0, \ell_{1}\right] \times \ldots \times\left[0, l_{n}\right] \subset \mathbb{R}^{n}$. We agree as earlier that $\ell_{1} \geq \ell_{2} \geq \cdots \geq \ell_{n}$. Then we recall the following
$\left(D_{1}^{\prime}\right)$ Lebesque's Lemma. Let $p: X \rightarrow A$ be a continuous map, where $\operatorname{dim} A<n$. Then there exists a pair of opposite $(n-1)$-faces in X, say X^{\prime} and $X^{\prime \prime}$, and two points $x^{\prime} \in X^{\prime}$ and $x^{\prime \prime} \in X^{\prime \prime}$, such that $p\left(x^{\prime}\right)=p\left(x^{\prime \prime}\right)$. (See [H-W]).

Lebesgue's lemma shows that Diam $_{k} x \geq \ell_{k+1}$. This implies (see $\left.\left(A_{1}^{\prime \prime}\right)\right)$ that $\sqrt{n} \operatorname{Diam}_{k} X \geq \operatorname{Wid}_{k} X$.
$\left(D_{2}\right)$ Diam $_{k}$ of convex subsets in \mathbb{R}^{n}. Since every compact convex subset X in \mathbb{R}^{n} can be approximated by solids (see (A_{2}^{\prime})), we obtain

$$
\operatorname{Diam}_{k} \mathrm{X} \leq \text { Wid }_{k} \mathrm{X} \leq \mathrm{n}^{\frac{5}{2}} \operatorname{Diam}_{k} \mathrm{X},
$$

for all compact convex subsets in \mathbb{R}^{n}.
(D_{2}^{\prime}) Exercise. Show that the unit disk $x \subset \mathbb{R}^{2}$ has Diam $_{1} x=\sqrt{3}$. (Compare $[K]$ and (D_{3}) below).
$\left(D_{3}\right)$ Diam ${ }_{n-1}$ and Inradius. The inradius of an $x \subset \mathbb{R}^{n}$ is the radius of the maximal ball in x ,

$$
\text { Inrad } x=\sup _{x \in X} \operatorname{dist}\left(x, \mathbb{R}^{n} \backslash x\right)
$$

(D_{3}^{\prime}) Every compact $X \subset \mathbb{R}^{n}$ satisfies

$$
\alpha_{\mathrm{n}} \text { Inrad } \mathrm{x} \leq \operatorname{Diam}_{\mathrm{n}-1} \mathrm{x} \leq 2 \operatorname{Inrad} \mathrm{x},
$$

where $\alpha_{n}=\sqrt{\frac{2(n+1)}{n}}$ is the diameter of the regular simplex inscribed
into the unit sphere s^{n-1}.
Proof. The lower bound on Diam $_{n-1}$ follows froll the following simplicial version of
($D_{3}^{\prime \prime}$) Lebesque's Lemma. Let p be a continuous map of the n-simplex Δ into an ($n-1$)-dimensional space. Then there exist points x^{\prime} and $x "$ lying in two opposite faces of Δ, such that $p\left(x^{\prime}\right)=p\left(x^{\prime \prime}\right)$.
(See [H-W]).
This lemma applies to maps of round balls $B \subset \mathbb{R}^{n}$ to A, where B is identified with Δ via a homeomorphism $\Delta \leftrightarrow B$ which radially projects the boundary of Δ on that of B. Then one sees that

$$
\operatorname{Diam}_{n-1} B \geq \alpha_{n} \text { rad } B,
$$

which implies

$$
\operatorname{Diam}_{\mathrm{n}-1} \mathrm{x} \geq \alpha_{\mathrm{n}} \text { Inrad } \mathrm{x}
$$

for all $\mathrm{X} \subset \mathbb{R}^{\mathrm{n}}$.
To get the upper bound on Diam $_{n-1}$ we approximate X by a compact domain $\mathrm{X}^{+} \supset \mathrm{X}$ with a smooth boundary and project X^{+}onto the cut-locus $A \subset X^{+}$with respect to the boundary. Recall the definition of this projection $p: X^{+} \rightarrow A \subset X^{+}$. Take a point $x \in X^{+}$. let $B(x)$ be the maximal ball in X^{+}with center x and take a maximal ball $B^{\prime} \subset X^{+}$which contains $B(x)$. It is not hard to see that this B^{\prime} is unique, the map $p: x \mapsto y=$ center ($\left.B^{\prime}\right)$ is continuous and $\operatorname{dim} p\left(X^{+}\right) \leq n-1$. With such a p (where $A=p\left(X^{+}\right)$, one sees
that

$$
\operatorname{Diam}_{n-1} \mathrm{X}^{+} \leq 2 \text { Inrad } \mathrm{X}^{+}
$$

which implies the same inequality for X .
Exercises. Show that the unit ball B in \mathbb{R}^{n} has $\operatorname{Diam}_{n-1}=\alpha_{r_{1}}$.
Let X be a compact Rıemannian manifold with a boundary. Show that

$$
\operatorname{Diam}_{n-1} x \leq 2 \sup _{x \in x} \operatorname{dist}(x, \partial x)
$$

for $n=\operatorname{dim} X$.
$\left(D_{4}\right)$ Diam $_{k}$ of convex hypersurfaces. Let Y be a compact convex hypersurface in \mathbb{R}^{n} and X be the convex body bounded by Y. There are two natural metrics in Y. The first is just the restriction of the Euclidean metric \mid I. The second, denoted. $\left.I_{Y}\right|_{Y}$, is the induced Riemannian metric where the distance between Y_{1} and Y_{2} is the length of a shortest path in Y between Y_{1} and Y_{2}. Clearly, | $1 \leq\left.\right|_{Y}$. In particular,

$$
\operatorname{Diam}_{k}(Y,| |) \leq \operatorname{Diam}_{k}\left(Y,\left.1\right|_{Y}\right) \quad \text { for all } k .
$$

On the other hand, if $\operatorname{dim} Y \geq 1$, then

$$
\operatorname{Diam}\left(Y, \mid I_{Y}\right) \leq \pi / 2 \operatorname{Diam}(Y, \mid I)
$$

In fact, if $\operatorname{dim} Y=1$, then $\operatorname{Diam}\left(Y, \mid I_{Y}\right)=\frac{1}{2}$ length Y and the length of Y equals the average of the lengths of the normal projections of Y to the lines in $\mathbb{R}^{2} \supset Y$. This proves (*) for $\operatorname{dim} Y=1$ and the case $\operatorname{dim} Y>1$ follows by looking at plane sections of X.

Exercise. Show that

$$
\operatorname{Diam}_{k}\left(Y,| |_{Y}\right) \leq \pi / 2 \text { Wid }_{k} X \text { for all } k
$$

Now, let p be a normal projection of Y to a hyperplane $H \subset \mathbb{R}^{n}$. One can invert this projection on the image $p(Y)=p(X) \subset H$ and thus obtain an expanding embedding $p(X) \rightarrow Y$. Hence,

$$
\operatorname{Diam}_{k}(Y, l \mid) \geq \sup _{p} \operatorname{Diam}_{k} p(X)
$$

Finally, we approximate X by an ellipsoid (see ($A_{2}^{\prime \prime}$) , and conclude

$$
\begin{aligned}
\operatorname{Diam}_{k}\left(Y, I \quad I_{Y}\right) \sim \operatorname{Diam}_{k}(Y,|\quad|) \sim \\
\sim \operatorname{Diam}_{k} X \sim \operatorname{Wid}_{k} X \quad \text { for } k=0,1, \ldots, n-2
\end{aligned}
$$

where the equivalence $\alpha \sim \beta$ signifies the existence of a positive constant $C=C_{n}$, such that

$$
C^{-1} \alpha \leq \beta \leq C \alpha
$$

(D_{4}^{\prime}) Corollary. (Compare $\left(A_{3}^{\prime \prime}\right)$ and $\left.\left(E_{3}^{\prime}\right)\right)$. The $(n-1)$-dimensional volume of Y is of the same order of magnitude as the product of Diam $_{k}$,

$$
\text { Vol } Y \sim \prod_{k=0} \text { Diam }_{k}\left(Y, 1 I_{Y}\right)
$$

$\left(D_{5}\right)$ Federer-Fleming inequality. Let $X \subset \mathbb{R}^{n}$ be a compact subset of finite k-dimensional Hausdorff measure denoted $\operatorname{Vol}_{k} X$. Then

$$
\begin{equation*}
\operatorname{Diam}_{k-1} x \leq C_{n}\left(\operatorname{Vol}_{k} x\right)^{\frac{1}{k}} \tag{*}
\end{equation*}
$$

for $C_{n} \leq \sqrt{n}\left(n!(n!/(n-k)!)^{\frac{1}{n}}\right.$.
Idea of the proof. Partition \mathbb{R}^{n} into cubical cells of diameter $\sim\left(\operatorname{Vol}_{k} X\right)^{\frac{1}{k}}$. Then $\operatorname{Vol}_{k} X$ has the order of magnitude of the average number of intersection points of parallel translates of X with the ($n-k$)-skeleton of this partition. Hence, for a partition into slightly larger cubes, there exists a translate $X "$ of X which misses the $(n-k)$-skeleton. Then we project X^{\prime} to the ($k-1$)-skeleton of the dual partition (see Proposition 3.1.A. in [G] ${ }_{4}$).

Question. Does (*) hold true with a constant C_{k} depending only on k ?
(E) Diam k of Riemannian manifolds. Start with the simplest class of flat manifolds.
$\left(E_{1}\right)$ Split tori. Let X be the product of circles $S_{1}, S_{2}, \ldots, S_{n}$ of lengths $\ell_{1} \geq \ell_{2} \geq \ldots \ell_{n}$. The projection of x to $S_{1} \times S_{2} \times \ldots S_{k}$ provides the inequality

$$
\operatorname{Diam}_{k} x \leq \operatorname{Diam} \prod_{i=k+1}^{n} S_{i}=\frac{1}{2}\left(\sum_{i=k+1}^{n} \ell_{i}^{2}\right)^{\frac{1}{2}}
$$

On the other hand each S_{i} contains an isometric copy of $\left[0, \ell_{i} / 2\right]$.

Hence, $x \geq \frac{1}{2} x^{\prime}$ for the solid $\left[0, l_{1}\right] \times \ldots \times\left[0, l_{n}\right]$, and so (see ($\left.A_{1}^{\prime}\right)$)

$$
\operatorname{Diam}_{k} x \geq \frac{1}{2} \operatorname{Diam}_{k} X^{\prime} \geq \frac{1}{2} \ell_{k+1}
$$

Thus Diam $_{k} \mathrm{X} \sim \ell_{k+1}$.
$\left(E_{2}\right)$ Non-split flat tori. Let X be a flat torus. That is $X=\mathbb{R}^{n} / L$ for some lattice $L \subset \mathbb{R}^{n}$. By a classical reduction theory for L (see [C]) there exists a split torus X_{s} equivalent to X. That is there exists a linear homeomorphism $f: X \rightarrow X_{S}$, such that

$$
c^{-1}\left|x_{1}-x_{2}\right|<\left|f\left(x_{1}\right)\right|-f\left(x_{2}\right)|\leq c| x_{1}-x_{2} \mid
$$

for all x_{1} and x_{2} in X, where $C=C_{n}>0$ is a universal constant. It follows that, (somewhat sacrifying C) one can take $X_{s}=\prod_{i} S_{i}$, where length $S_{i}=\operatorname{Diam}_{i-1} X$ for all $i=1, \ldots, n$.
$\left(E_{2}^{\prime}\right)$ Corollary. The volume of every flat torus X is equivalent to the product of Diam_{i},

$$
\text { Vol } x \sim \prod_{i=0}^{n-1} \operatorname{Diam}_{i} x .
$$

$\left(E_{3}\right)$ Almost flat manifolds. The reduction theory generalizes (see $[G]_{2}$ and $[B-K 1)$ to ε-flat manifolds X satisfying

$$
|K|(\text { Diam } X)^{2} \leq \varepsilon^{2},
$$

where K denotes the sectional curvature of X and $\varepsilon=\varepsilon_{n}>0$ is a universal (small but yet positive) constant (one can take $\varepsilon_{n}=\exp -n^{n}$). Using this one can generalize (E_{2}^{\prime}) to ε-flat manifold x for $\varepsilon \leq \exp -n^{n}$,

$$
c_{n}^{-1} \operatorname{vol} x \leq \prod_{i=0}^{n-1} \operatorname{diam}_{i} x \leq c_{n} \text { vol } x
$$

where $C_{n}>0$ is a universal constant.
Exercise. Prove the equivalence Vol X $\sim \underset{i}{\sim}$ Diam $_{i} X$ for flat Riemannian manifolds.
(E_{3}^{\prime}) It seems that the collapsing techniques (see [C-G]) should yield a similar result for all (possibly large) $\varepsilon>0$.

$$
\begin{equation*}
C^{-1} \text { Vol } x \leq \prod_{1}^{n-1} \operatorname{Diam}_{i} x \leq C \text { Vol } x, \tag{*}
\end{equation*}
$$

for some constant $C>0$ depending on n and ε.
Here is a more difficult
Question. Does the equivalence Vol $x \sim \prod_{i=1}^{n-1}$ Diam $_{i} x$ hold true (with the implied constant $C=C_{n}$) for manifolds X with non-negative sectional curvature ?

A more illuminating but unprecise question is :
Does every x with $K \geq 0$ look roughly as the solid $\left[0, \ell_{1}\right] \times\left[0, \ell_{2}\right] \times \ldots \times\left[0, \ell_{n}\right]$ for $\ell_{i+1}=\operatorname{Diam}_{i} X$?

Both questions remain open for manifolds with a lower bound on the sectional curvature, $K(\operatorname{Diam} X)^{2} \geq-\varepsilon^{2}$.
(F) Lower bounds on Diam $_{k}$. Lebesgue's Lemmas (see (D_{1}^{\prime}) and ($D_{3}^{\prime \prime}$)) provide a lower bound on $D_{i a m} X$ if X contains a k-dimensional cube (or simplex) with a controlled geometry. A slightly more general estimate Diam $_{k} \geq \varepsilon>0$ can be obtained by the following
$\left(F_{1}\right)$ Proposition (Compare (D_{3}^{\prime}) and [K]). If Diam $_{k} X<\alpha_{k}$ for $\alpha_{k}=\sqrt{\frac{2(n+1)}{n}}$, then every distance decreasing map f of x into the unit sphere $S^{k} \subset \mathbb{R}^{k+1}$ is contractible.

Idea of the proof. Let p be a surjective map of X onto $a(k-1)-$ dimensional polyhedron A, such that each fiber $X_{a}=p^{-1}(a)$ for $a \in A$ has Diam $<\alpha_{k}$. Then $f\left(X_{a}\right) \subset S^{k}$ also has Diam $<\alpha_{k}$ and hence is contained in a hemisphere by Young theorem (see [B-Z]). It follows that each set $f\left(X_{a}\right) \subset S^{k}$ contracts to a single point in S^{k}, such that this contraction is continuous in $a \in A$. This gives a homotopy of f to a map $f_{1}: X \rightarrow S^{k}$ which is a composition of $p: X \rightarrow A$ with a continuous map $A \rightarrow S^{k}$ obtained by the above shrinking of the subsets $f\left(X_{a}\right) \subset S^{k}$ to points. As $\operatorname{dim} A<k$, the map $A \rightarrow S^{k}$ is contractible and so f is contractible.Q.E.D.
(F_{1}^{\prime}) A generalization. Let the above map f send a compact subset $X_{o} \subset X$ to a point $s_{o} \in S^{k}$. Then the above argument shows that the map of pairs,

$$
f:\left(x, x_{0}\right) \rightarrow\left(S^{k}, s_{o}\right)
$$

is contractible.
($F_{1}^{\prime \prime}$) Example. Let x be an orientable n-dimensional manifold with boundary $\partial X=X_{o}$. If $n=k$, then non-contractible maps $\left(X, X_{o}\right) \rightarrow\left(S^{k}, s_{o}\right)$ are those which have non-zero degree. If $n \geq k$, then one defines a generalizated degree of a smooth map f as the framed cobordism class of the manifold $f^{-1}(s) \subset X$ for a generic $s \in S^{k}$. Non-vanishing of this degree insures non-contractibility of f.
$\left(F_{2}\right)$ Manifolds with large injectivity radius. The essential property of the sphere S^{k} in the above discussion is a "canonical contractibility" of "small" subsets in S^{k}. A similar property is shared by all Riemannian manifolds with large injectivity radius and by more general (locally geometrically contractible, see §4.5. in [G] ${ }_{4}$) manifolds where the balls of a "not very large radius" are contractible within concentric balls of slightly larger radius. Here are two simple examples (see $\S 4.5$. in $[G]_{4},[G]_{5}$ and $\S 4.2$. in $[G]_{6}$ for the proofs and a further discussion) .
(F_{2}^{\prime}) Let V be a complete n-dimensional Riemannian manifold, such that the injectivity radius of V at every point $V \in V$ is $\geq R_{o}$ and let $X \subset V$ be a ball of radius $2 R_{o}$. Then

$$
\operatorname{Diam}_{n-1} x \geq R_{0}^{\prime} / 2(n+2)
$$

($F_{2}^{\prime \prime}$) Let V be a compact n-dimensional manifold without boundary and $\tilde{V} \rightarrow V$ be the universal covering of V with the induced Riemannian metric. Let W be a complete Riemannian manifold which admits a Riemannian submersion $W \rightarrow \tilde{V}$. If \tilde{V} is contractible, then the balls $X(R) \subset W$ of radius R satisfy

$$
\operatorname{Diam}_{n-1} X(R) \rightarrow \infty \quad \text { as } R \rightarrow \infty
$$

(G) Upper bounds on Diam $_{k-1}$. The inequality of Federer-Fleming (see $\left(D_{5}\right)$) provides a bound on $\operatorname{Diam}_{k-1} X$ of k-dimensional subsets $X \subset \mathbb{R}^{n}$ in terms of the Hausdorff measure $V o l_{k} X$. A similar bound applies to all manifolds $Y \supset X$ of non-negative Ricci curvature as follows
$\left(G_{1}\right)$ Let Y be a complete n-dimensional manifold with Ricci $Y \geq 0$. Then all compact subsets $X \subset Y$ satisfy

$$
\operatorname{Diam}_{k-1} x \leq C_{n}\left(\operatorname{Vol}_{k} x\right)^{\frac{1}{k}}
$$

for some universal constant $C_{n}>0$.
Idea of the proof (Compare p. 130 in [G] 4 and §3.4. in [G] ${ }_{3}$). Since Ricci ≥ 0, there exists a covering of Y by balls of radius R, where $R \sim\left(\operatorname{Vol}_{k} X\right)^{\frac{1}{k}}$, such that the multiplicity of the covering by the concentric balls of radius $2 R$ is bounded by some constant $M=M_{n}$. Then the partition of unity on Y associated to this covering maps X into the polyhedron of dimension $\leq M_{n}-1$ which is the nerve of the covering. Then the image of X can be pushed to the $(k-1)-s k e l e t o n$ of this polyhedron.
$\left(G_{2}\right)$ If X is homeomorphic to S^{2}, then the bound on Diam X does not need any ambient space Y,

$$
\operatorname{Diam}_{1} x \leq 2\left(\operatorname{Vol}_{2} x\right)^{\frac{1}{2}}
$$

for all metric spaces X homeomorphic to S^{2}.
Proof. Assume for simplicity's sake that X is Riemannian, fix a point $x_{0} \in X$ and partition X into the connected components of the spheres $S_{O}(r)=\left\{x \in X| | x-x_{0} \mid=r\right\}$ for all $r \in \mathbb{R}_{+}$. The resulting quotient space is one-dimensional and the components of $S_{o}(r)$ have Diam $\leq 2\left(\text { Area } S_{0}\right)^{\frac{1}{2}}$ as a simple argument shows (see p. 129 in [G]). $\left(G_{3}\right)$ It is unknown (and seems unlikely) that the ratio Diam $_{k-1} /\left(\mathrm{Vol}_{\mathrm{k}}\right)^{\frac{1}{k}}$ is bounded by a universal constant C_{k} for all spaces X . However, such a bound is known for another invariant, called the contractibility radius of X (see App. 2 in [G] ${ }_{4}$).

Namely, let X be an n-dimensional polyhedron with a piecewise Riemannian metric. Then there exists a continuous map $p: X \rightarrow A$ where A is an ($n-1$) -dimensional polyhedron, and a metric on the cylinder $C=C_{p}$ of the map p, such that (compare ($B_{2}^{\prime \prime}$))
(i) the canonical embedding $X \rightarrow C$ is isometric,
(ii) the distance from each $a \in C$ to $X \subset C$ satisfies

$$
\begin{equation*}
\operatorname{dist}(a, x) \leq \operatorname{const}_{n}\left(\operatorname{Vol}_{n} x\right)^{\frac{1}{n}} \tag{*}
\end{equation*}
$$

for some universal const ${ }_{n}>0$.
Recall that C_{p} is the quotient space of the disjoint union $(X \times[0,1]) \cup A$ for the relation $(x \times 1) \sim p(x)$ for all $x \in X$.

This is proven in App. 2 of [G] 4 . Probably, a small modification of the argument in [G] 4 will yield a similar result for all metric spaces X.

A simple application of (*) (see §1.2.B. in [G] ${ }_{4}$) yields the following generalization of Minkovski theorem.

Let V be an n-dimensional contractible manifold with a Finsler (e.g. Riemannial metric and let Γ be a discrete isometry group of V for which the quotient space X is compact. Then there exists a point $V \in V$ and a non-identity element $\gamma \in \Gamma$, such that

$$
|v-\gamma(v)| \leq 6 \operatorname{const}_{n}\left(\operatorname{Vol}_{n} x\right)^{\frac{1}{n}}
$$

This reduces to the original Minkowski theorem, if $V=\mathbb{R}^{n}$ with a translation invariant (Minkowski) metric and Γ consists of parallel translations of \mathbb{R}^{n}.
$\left(G_{4}\right) \quad D_{n-2}$ and scalar curvature. Let X be a compact Riemannian manifold without boundary of positive scalar curvature $\geq \sigma^{2}>0$.

Question. Does Diam $_{n-2} X$ is universally bounded by

$$
\text { Diam }_{n-2} x \leq \text { const }_{n} / \sigma ?
$$

This is known to be true if X is homeomorphic to S^{3}. (see p. 129 in $[G] 4$ and $[G-L]_{2}$). This is also known for the metrics obtained by surgery (see $[G-L]_{1}$ and $\left.[S-Y]\right)$.

One also may ask what kind of curvature is responsible for an upper bound on Diam $_{k}$ for $k<n-2$. For example, let each tangent space $T \subset T(X)$ contain an ($n-k+1$)-dimensional subspace $T^{\prime} \subset T$, such that the sectional curvatures of the two planes in T^{\prime} dominate the rest of curvatures,

$$
K\left(\tau^{\prime}\right)+\alpha K(\tau) \geq \sigma^{2}>0,
$$

for all 2-planes $\tau^{\prime} \subset T^{\prime}$ and $\tau \subset T$, and all α in the interval $\left[0, \alpha_{n}\right]$ for some large constant α_{n}. Then one asks if the following inequality holds true,

$$
\operatorname{Diam}_{k} \mathrm{X} \leq \text { const } / \sigma
$$

(H) Definition of Diam $_{k}$ with coverings. Fix a number $\delta>0$ and let us prove the equivalence of the following three properties of a compact metric space X.
(1) $\quad \operatorname{Diam}_{k} X<\delta$.
(2) X admits a covering of multiplicity $\leq k+1$ (i.e. no $k+2$ covering subsets intersect) by compact subsets of diameter < δ.
(3) X can be covered by compact subsets $\mathrm{X}_{\mathrm{i}}, i=0, \ldots, k$, such that Diam $_{0} X_{i}<\delta$.

Proof. Start with the implication (1) $\Rightarrow(3)$. By definition of Diam k there exists a continuous map $p: X \rightarrow A$, where $\operatorname{dim} A \leq k$, such that $\operatorname{Diam} p^{-1}(a)<\delta$ for all $a \in A$. By definition of $\operatorname{dim} A$, there exists a covering of A by subsets $A_{i}, i=0, \ldots, k$, such that each A_{i} is the union of disjoint compact subsets of arbitrarily small diameter. Then the sets $X_{i}=p^{-1}\left(A_{i}\right)$ provide the required cover of X.

The implication $(3) \Rightarrow(2)$ is trivial as every X_{i}, by definition of Diam $_{0}$, is the union of disjoint subsets of diameter $<\delta$.

Finally we prove (2) $\Rightarrow(1)$ by taking the nerve of the covering for A and by mapping $X \rightarrow A$ with an associated partition of unity.

Corollaries $\left(H_{1}\right)$ Let $X=X_{1} \cup X_{2}$, such that $\operatorname{Diam}_{i} X_{1} \leq \delta$ and $\operatorname{Diam}_{j} X_{2} \leq \delta \cdot$ Then $\operatorname{Diam}_{k} \leq \delta$ for $k=i+j+1$.
(H^{\prime}) Let X admit a continuous map $\mathrm{p}: \mathrm{X} \rightarrow \mathrm{A}$, such that
$\operatorname{Diam}_{i} \mathrm{p}^{-1}(\mathrm{a}) \leq \delta$ for $\mathrm{all} a \in \mathrm{~A}$. Then $\operatorname{Diam}_{k} \mathrm{X} \leq \delta$ for $k=(i+1)(\operatorname{dim} A+1)-1$.
($H_{1}^{\prime \prime}$) Example. Let X be a (2k+1)-dimensional Riemannian manifold Then for every $\varepsilon>0$ there exists a smooth map $p: X \rightarrow \mathbb{R}$, such that $\operatorname{Diam}_{k+1} p^{-1}(a) \leq \varepsilon$ for all $a \in \mathbb{R}$.

Proof. Take a sufficiently fine triangulation of x, let x_{o} be the k-skeleton of this triangulation and X_{1} be the k-skeleton of the dual triangulation. Then there is a smooth map $p: x \rightarrow[0,1]$, such that $p^{-1}(0)=x_{0}, p^{-1}(1)=x_{1}$ and $p^{-1}(a)$ for $0<a<1$ is the boundary of a small regular ε_{a}-neighborhood of X_{o}. This $p^{-1}(a)$ is
$\varepsilon-c l o s e$ to X_{o} for all $a<1$.
This example shows that the bound on k in $\left(H_{1}^{\prime}\right)$ is sharp. This also shows that Diam $_{n-k-1}$ cannot fully serve as a measure of "the ($n-k$)-dimensional spread" of X. An alternative measure of this spread comes from the ($n-k$) -volume of the fibers of maps $X \rightarrow A$ for $\operatorname{dim} A=k$ (see App. 2 in $[G] 4$).

Concluding remarks. The fundamental fact which insures non-vanishing of Diam $_{k}$ of n-dimensional manifold for $n>k$ (this makes the definition of Diam $_{k}$ non-vacuous), is the topological invariance of dimension. One may think that other topological invariants can also be studied quatitatively in the framework of the Riemannian geometry. A geometric quantitative approach to the homology and homotopy theory is indicated in $[G]_{2},[G]_{4},[G-L-P]$ and $[S]$, where the reader may find further references.

REFERENCES.

[B-K] P. Buser, H. Karcher, Gromov's almost flat manifolds, Astérisque 81 (1981), Soc. Math. France.
[B-Z] Y. Burago, V. Zalgaller, Geometric Inequalities, SpringerVerlag. To appear.
[C] J. Cassels, An introduction to the geometry of numbers, Springer 1959.
[C-G] J. Cheeger, M. Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded.I., J. Diff. Geom. 23 (1986) pp.309-346, (part II to appear).
[G] M. Gromov, Almost flat manifolds, J. Diff. Geom. 13 (1978), pp.231-241.
[G] $]_{2}$......... Homotopical effects of dilitation, J. Diff. Geom. 13 (1978), pp.223-230.
[G] $]_{3} \ldots$, Volume and bounded cohomology, Publ. Math. 56 (1983) pp.213-307.
$\left.{ }^{[G]}\right]_{4} \ldots . . .$. Eilling Riemannian manifolds, J. Diff. Geom. 18 (1983), pp.1-147
[G] \quad.......... Large Riemannian manifolds, Lect. Notes in Math. 1201,pp.108-122, Springer-Verlag.
[G] $]_{6}$........., Rigid transformation groups, to appear.
[G-L], M. Gromov, B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. III (1980), pp.423-434.
[G-L] 2 Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Pub. Math. 58 (1983) pp. 295-408.
[G-L-P] M. Gromov, J. Lafontaine \& P. Pansu, Structures métriques pour les variétés riemanniennes, Cedic/Fernand Nathan, Paris 1981.
[H-W] W. Hurewicz, H. Wallman, Dimension theory, Princeton Univ. Press 1948.
[K] M. Katz, The filling radius of two points homogeneous spaces, J. Diff. Geom. 18 (1983), pp.148-153.
[S] J. Siegel, Extremes associated with homotopy classes of maps, Lect. Notes in Math. 1167, pp.260-267, Springer-Verlag.
[S-Y] R. Schoen, S.T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), pp. 159-183.
[T] B. Teissier, Bonnesen-type inequalities in algebraic goemetry I, Introduction to the problem, Ann. Math. Stud. 102, pp. 85-107, Princeton 1982.
I.H.E.S.

35 route de Chartres 91440 Bures-sur-Yvette France

