Astérisque

M. GROMOV Width and related invariants of riemannian manifolds

Astérisque, tome 163-164 (1988), p. 93-109

<http://www.numdam.org/item?id=AST_1988__163-164__93_0>

© Société mathématique de France, 1988, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

WIDTH AND RELATED INVARIANTS OF RIEMANNIAN MANIFOLDS.

by

M. GROMOV

<u>INTRODUCTION</u>. There are many (geo)metric invariants characterizing the size and shape of a subset X in \mathbb{R}^n . For example, solids in \mathbb{R}^3 have three measurements : length, Width and hight. Various characteristics of convex subsets $X \subset \mathbb{R}^n$ are obtained by looking at linear projections and sections of X of dimension k < n.

In Riemannian geometry one is usually concerned only with two measurements of a manifold X. These are the total volume of X and the diameter of X. One may think of Vol X as a measure of "the n-spread" of X for $n = \dim X$, while Diam X measures "the 1-spread".

We discuss in these lectures intermediate diameters $\text{Diam}_k X$ for all $k = 0, 1, \dots, n-1$ introduced in 1923 by P.S. Uryson which measure how X spreads in dimension k + 1.

(A) Euclidean recollection. Consider two subsets X and A in ${\rm I\!R}^n$ and say that X is $\epsilon\text{-}\underline{close}$ to A if

dist(x,A) $\leq \varepsilon$ for all $x \in X$,

where

dist(x,A) = inf
$$|x-a|$$

def $a \in A$

for the Euclidean distance |x-a| = |x-a| between x and a.

The 1-codimensional width Wid_{n-1}X is defined as the smallest $\varepsilon \geq 0$, such that X is $(\frac{\varepsilon}{2})$ -close to some hyperplane A^{n-1} in \mathbb{R}^n . Similarly Wid_k X is the smallest ε such that X is ε -close to some affine subspace $A^k \subset \mathbb{R}^n$. Observe that

$$O = Wid_n X \leq Wid_{n-1} X \leq \dots \leq Wid_1 X \leq Wid_0 X$$
,

and that

$$\frac{1}{2}$$
 Diam X \leq Wid X \leq Diam X ,

where

Diam X = sup
$$|x-y|$$
.
def x, y \in X

(In fact Wid₀ $\leq \sqrt{\frac{n}{2(n+1)}}$ Diam by Yung theorem, see [B-Z]).

<u>Examples</u> (A_1) Let $X \subset \mathbb{R}^n$ be an ellipsoid with principal axes $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then

Wid_k X = λ_{k+1} for all k = 0,1,...,n-1,

according to the minmax principle for λ_{c} .

 (A_1^{*}) Let X be the rectangular solid,

$$X = [0, l_1] \times [0, l_2] \times \dots \times [0, l_n] \subset \mathbb{R}^n,$$

where the intervals $[0,\ell_1]\subset I\!R$ satisfy $\ell_1\geq\ell_2\geq\ldots\geq\ell_n$. Then ${\tt Wid}_k\ X={\tt D}_k$, where

$$D_k = Diam [0, \ell_{k+1}] \times \dots \times [0, \ell_n] = (\ell_{k+1}^2 + \dots + \ell_n^2)^{\frac{1}{2}}$$

<u>Proot</u>. The solid X is $(\frac{1}{2} D_k)$ -close to the k-plane through the center of X parallel to $[0, l_1] \times \ldots \times [0, l_k]$. Thus $\operatorname{Wid}_k \leq D_k$. To prove that $\operatorname{Wid}_k \geq D_k$ we take an arbitrary k-plane $A \subset \mathbb{R}^n$ and consider the normal (n-k)-plane $A^{\perp} \subset \mathbb{R}^n$ through the center of X. This A^{\perp} necessarily meets some k-face of X, say at $x \in X$. Take the point x' symmetric to x in the center of X and observe that $|x-x'| \geq D_k$. Hence Diam $A^{\perp} \cap X \geq D_k$ and the inequality $\operatorname{Wid}_k \geq D_k$ follows.

 $(A_1^{"})$ <u>Corollary</u>. The width Wid_k X is comparable to l_{k+1} . Namely

 $\ell_{k+1} \leq \operatorname{Wid}_k X \leq \sqrt{n} \ \ell_{k+1}$ for all k.

(A₂) <u>Approximation of convex subsets in</u> \mathbb{IR}^n <u>by simplices and ellipsoids</u>. Let X be a compact convex subset in \mathbb{IR}^n with non-empty interior and Δ be an n-simplex of maximal volume in X. Then the vertices x_0, x_1, \ldots, x_n of Δ lie on the boundary of X. Moreover the hyperplane H_i through x_i parallel to the opposite face of Δ does not meet the interior of X by the maximality of Δ . Thus the symplex Δ^* bounded by these hyperplanes contains X. If the baricenter of Δ equals the origin of \mathbb{IR}^n , then $\Delta^* = \lambda \Delta$ for $\lambda = -n$, where

 $\lambda \Delta = \{\lambda y \mid y \in \Delta\}$. def So we can write

$$\Delta \subset X \subset -n\Delta$$

for all convex subsets $X \subset \mathbb{R}^n$.

(A₂) <u>Proposition. Let X and Y be compact convex subsets in</u> \mathbb{R}^n with non-empty interiors. Then there exists a parallel translate X' of X and an affine transform Y' of Y such that

$$Y' \subset X' \subset \lambda Y'$$

<u>for</u> $\lambda = n^2$.

<u>Proof</u>. Move X , such that the maximal symplex $\Delta(X')$ has baricenter in the origin and transform Y , such that $\Delta^*(Y') = \Delta(X')$. Then

$$Y' \subset \Delta^*(Y') \subset X' \subset \Delta^*(X') = n^2 \Delta(Y') \subset n^2 Y'$$

$$E \subset X' \subset n^2 E$$
.

 (A_3) <u>A width criterion for</u> $X \leq Y$. Say that $X \leq Y$ if Y contains a congruent copy of X. Clearly,

 $X \leq Y \Rightarrow Wid_k X \leq Wid_k Y$ for all k.

<u>Proof</u>. The ellipsoid $E \subset X'$ from (A₂") has Wid_k $E \ge n^{-2}$ Wid_k $X' = n^{-2}$ Wid_k $X \ge Wid_k$ Y. Since E and Y are ellipsoids, the inequalities Wid_k $E \ge Wid_k$ Y imply that $E \ge Y$. As $E \le X$, we obtain the inequality $Y \le X$. The second inequality follows by a similar argument.Q.E.D.

<u>Proof</u>. Apply (A'_3) to an intermediate ellipsoid Y , such that

 $\operatorname{Wid}_k X \ge n^2 \operatorname{Wid}_k Y \ge n^4 \operatorname{Wid}_k X_1$.

 (A_3'') <u>Remark</u>. This corollary shows that the numbers Wid_k X characterize X up to a multiplicative constant. For example, the n-dimensional volume of X can be estimated by Wid_k X as follows,

$$\lambda_n^{-1} \underset{k=0}{\overset{n-1}{\Pi}}^{n-1} \text{Wid}_k x \leq \text{Vol } x \leq \lambda_n \underset{k=0}{\overset{n-1}{\Pi}}^{n-1} \text{Wid}_k x$$

for some positive $\lambda_n \leq n^{4n}$. In fact, the previous discussion allows a slightly better bound on λ_n . (See [B-Z] and [T] for various generalizations and refinements of these results).

(B) Intermediate diameters of metric spaces. For a metric space X we denote by |x-y| or $|x-y|_X$ the distance between x and y in X. We say that X is ε -close to a topological space A if there exists a continuous map $p: X \to A$, such that the fibers $X_a = p^{-1}(a) \subset X$ satisfy Diam $X_a \leq 2\varepsilon$ for all $a \in A$.

(B₁) <u>Definition</u>. The <u>codimension</u> k <u>diameter</u> of a <u>compact</u> metric space X is the infimum of those $\delta > 0$, such that X is $(\delta/2)$ -close to some metrizable space A of dimension k.

<u>Remarks</u> (B₂). If X is locally compact rather than compact, then one should modify the definition by replacing Diam X_a by inf Diam $p^{-1}(U)$ where $U \subset A$ are the neighborhoods of $a \in A$.

 (B_2^{\prime}) Since the image $p(X) \subset A$ is a compact space of dimension k, it admits an approximation by finite polyhedra of dimension k. Namely, for every metric in p(X) and every $\varepsilon > 0$, there exists a k-dimensional polyhedron A_{ε} , such that p(X) is ε -close to A_{ε} . In fact, the dimension dim p(X) can be <u>defined</u> as the minimal integer k, such that p(X) admits an approximation by k-dimensional polyhedra (see [G-W]).

By composing $p : X \to p(X) \subset A$ with the implied maps $p(X) \to A_{\varepsilon}$ one obtains continuous maps $p_{\varepsilon} : X \to A_{\varepsilon}$, such that

$$\sup_{a \in A_{\varepsilon}} p_{\varepsilon}^{-1}(a) \to \sup_{a \in A} p^{-1}(a) \text{ for } \varepsilon \to 0 .$$

Hence, one can use k-dimensional polyhedra A instead of general metrizable spaces in the definition of Diam_k .

(B₂) The meaning of ϵ -closeness is clarified by the following

<u>Proposition</u>. Let $p: X \rightarrow A$ be a continuous map, where X is a compact metric space and A is a metrizable space. Then the following two conditions are equivalent for every $\delta > 0$.

(i) sup Diam $p^{-1}(a) < 2\delta$ $a \in A$

(ii) There exists a metric space C , an isometric embedding $X \subset C$ and a topological embedding $A \subset C$, such that

$$|x-p(x)|_{C} < \delta$$
 for all $x \in X$.

<u>Proof</u>. If x and x' lie in $p^{-1}(a)$ and $max(|x-p(x)|, |x'-p(x')|) < \delta$, then $|x-x'| \le 2\delta$ by the triangle inequality. Thus (ii) \Rightarrow (i). To prove the converse we take some metric |A| in A and observe that, by compactness of X, there exist $\lambda > 0$ and $\delta' < \delta$, such that

$$|\mathbf{x}-\mathbf{y}|_{\mathbf{y}} - 2\delta' \leq \lambda |\mathbf{p}(\mathbf{x}) - \mathbf{p}(\mathbf{y})|_{\mathbf{y}}$$
(*)

for all x and y in X. Now we take the disjoint union X U A for C and let $| |_C$ be the upper bound of the metrics μ on C satisfying the following three conditions

(i) $\mu(x,y) \leq |x-y|_X$ for all x and y in X; (ii) $\mu(a,b) \leq \lambda |a-b|_A$ for all a and b in A; (iii) $\mu(x,p(x)) < \delta'$ for all $x \in X$.

The inequality (*) implies by a simple argument that the inclusion $X \subset C$ is <u>isometric</u> for this maximal metric $| \cdot |_C$,

$$|x-y|_{c} = |x-y|_{v}$$
 for all x and y in X,

and $|x-p(x)|_C \leq \delta' < \delta$ by (iii). Q.E.D.

(C) <u>Monotonicity and positivity of</u> $Diam_k$. First, we observe that $Diam_k$ is decreasing in $k = 0, 1, \ldots,$

Diam $X \ge Diam_1 X \ge \cdots$.

Furthermore, if X is connected, then every continuous map of X into a zero-dimensional space is constant. Therefore,

for connected spaces X .

(C1) Relation $\lambda Y \leq X$. This means that there exists a λ -expanding continuous map f: Y \rightarrow X,

 $|f(y_1) - f(y_2)|_{y_1} \ge \lambda |y_1 - y_2|_{y_1}$ for all y_1 and y_2 in Y. Clearly, $\lambda Y \leq X \Rightarrow \text{Diam}_k X \geq \lambda \text{Diam}_k Y$ for all k = 0, 1, ...(C₂) If $k \ge \dim X$, then $\operatorname{Diam}_k X = 0$ as X is zero-close to itself. A more interesting property is the inequality $Diam_{L} X > 0$ for k < dim X, which follows from the discussion in (B¹₂) . For example, Diam_k is > 0 for n-dimensional manifolds X^n if n > k, as dim $X^n = n$ by Lebesque's dimension theorem. (D) Estimation of Diam_k of compact subsets in \mathbb{R}^n . If $X \subset \mathbb{R}^n$ is ε -close to an affine subspace $A \subset \mathbb{R}^n$ in the sense of (A), then the orthogonal projection $p : X \rightarrow A$ has Diam $p^{-1}(a) < 2\varepsilon$ for all $a \in A$. Therefore Diam_k X ≤ Wid_k X for all $k = 0, 1, \dots$, and all compact subsets in \mathbb{IR}^n . (D_1) Diam_k of the solid $X = [0, l_1] \times \ldots \times [0, l_n] \subset \mathbb{R}^n$. We agree as earlier that $l_1 \geq l_2 \geq \ldots \geq l_n$. Then we recall the following (D_1) <u>Lebesgue's Lemma</u>. Let $p : X \rightarrow A$ be a continuous map, where dimA < n . Then there exists a pair of opposite (n-1)-faces in X , say X' and X", and two points x' E X' and x" E X", such that p(x') = p(x''). (See [H-W]). Lebesgue's lemma shows that $\operatorname{Diam}_k X \geq \ell_{k+1}$. This implies (see (A₁)) that $\sqrt{n} \operatorname{Diam}_{k} X \geq \operatorname{Wid}_{k} X$. (D₂) Diam_k of convex subsets in \mathbb{IR}^n . Since every compact convex subset X in \mathbb{IR}^n can be approximated by solids (see (A_2^{\prime})), we obtain $\operatorname{Diam}_{k} X \leq \operatorname{Wid}_{k} X \leq n^{\frac{3}{2}} \operatorname{Diam}_{k} X$,

for all compact convex subsets in $\ensuremath{\mathbb{I\!R}}^n$.

(D₂') <u>Exercise</u>. Show that the unit disk $X \subset \mathbb{R}^2$ has Diam₁ $X = \sqrt{3}$. (Compare [K] and (D₂) below).

 (D_3) Diam_{n-1} and Inradius. The inradius of an $X \subset \mathbb{R}^n$ is the radius of the maximal ball in X,

Inrad X = $\sup_{x \in X} \operatorname{dist}(x, \mathbb{R}^n \setminus X)$.

(D') Every compact $X \subset \mathbb{R}^n$ satisfies

 $\alpha_n \text{Inrad } X \leq \text{Diam}_{n-1} X \leq 2 \text{ Inrad } X$,

where $\alpha_n = \sqrt{\frac{2(n+1)}{n}}$ is the diameter of the regular simplex inscribed since s^{n-1} .

<u>Proof</u>. The lower bound on $\operatorname{Diam}_{n-1}$ follows from the following simplicial version of

(D₃) <u>Lebesque's Lemma</u>. Let p be a continuous map of the n-simplex Δ into an (n-1)-dimensional space. Then there exist points x' and x" lying in two opposite faces of Δ , such that p(x') = p(x''). (See [H-W]).

This lemma applies to maps of round balls $B \subset \mathbb{R}^n$ to A, where B is identified with Δ via a homeomorphism $\Delta \leftrightarrow B$ which radially projects the boundary of Δ on that of B. Then one sees that

 $Diam_{n-1} B \ge \alpha_n rad B$,

which implies

```
Diam_{n-1} X \ge \alpha_n Inrad X
```

for all $X \subset \mathbb{R}^n$.

To get the upper bound on $\operatorname{Diam}_{n-1}$ we approximate X by a compact domain $X^+ \supset X$ with a smooth boundary and project X^+ onto the cut-locus $A \subset X^+$ with respect to the boundary. Recall the definition of this projection $p: X^+ \rightarrow A \subset X^+$. Take a point $x \in X^+$, let B(x) be the maximal ball in X^+ with center x and take a maximal ball $B' \subset X^+$ which contains B(x). It is not hard to see that this B' is unique, the map $p:x \mapsto y = \operatorname{center}(B')$ is continuous and $\dim p(X^+) \leq n-1$. With such a p (where $A = p(X^+)$, one sees

that

$$Diam_{n-1} X^{+} \leq 2 Inrad X^{+}$$
,

which implies the same inequality for X .

Exercises. Show that the unit ball B in \mathbb{R}^n has $\text{Diam}_{n-1} = \alpha_n$.

Let X be a compact Riemannian manifold with a boundary. Show that

$$\frac{\text{Diam}_{n-1} X \leq 2 \text{ sup dist}(x, \partial X)}{x \in X}$$

for $n = \dim X$.

 (D_4) Diam_k of convex hypersurfaces. Let Y be a compact convex hypersurface in \mathbb{R}^n and X be the convex body bounded by Y. There are two natural metrics in Y. The first is just the restriction of the Euclidean metric ||. The second, denoted ||_Y, is the induced <u>Riemannian</u> metric where the distance between y_1 and y_2 is the length of a shortest path in Y between y_1 and y_2 . Clearly, $|| \leq ||_{Y}$. In particular,

$$Diam(Y, | |_{y}) < \pi/2 Diam(Y, | |).$$
 (*)

In fact, if dim Y = 1, then $Diam(Y, | |_Y) = \frac{1}{2}$ length Y and the length of Y equals the average of the lengths of the normal projections of Y to the lines in $IR^2 \supset Y$. This proves (*) for dim Y = 1 and the case dim Y > 1 follows by looking at plane sections of X.

Exercise. Show that

 $\text{Diam}_k(Y, | |_{Y}) \leq \pi/2 \text{ Wid}_k X$ for all k.

Now, let p be a normal projection of Y to a hyperplane H $\subset \mathbb{R}^n$. One can invert this projection on the image $p(Y) = p(X) \subset H$ and thus obtain an expanding embedding $p(X) \rightarrow Y$. Hence,

$$\operatorname{Diam}_{k}(Y,||) \geq \sup_{x} \operatorname{Diam}_{k} p(X).$$

Finally, we approximate $\,X\,$ by an ellipsoid (see $({\tt A}_2^{\prime\prime})$, and conclude

100

$$\operatorname{Diam}_{k}(Y, | |_{Y}) \sim \operatorname{Diam}_{k}(Y, | |) \sim$$

~ $\text{Diam}_k X \sim \text{Wid}_k X$ for $k = 0, 1, \dots, n-2$,

where the equivalence $\alpha \sim \beta$ signifies the existence of a positive constant C = C_n , such that

 (D_4^{\prime}) <u>Corollary</u>. (Compare (A₃") and (E₃')). <u>The</u> (n-1)-<u>dimensional volume</u> of Y is of the same order of magnitude as the product of Diam_k,

Vol Y ~
$$\prod_{k=0}^{n-2} \text{Diam}_k (\textbf{Y}, | \mid_{\textbf{Y}})$$
 .

(D₅) <u>Federer-Fleming inequality</u>. Let $X \subset \mathbb{R}^n$ be a compact subset of <u>finite</u> k-dimensional Hausdorff measure denoted $\operatorname{Vol}_k X$. <u>Then</u>

$$\operatorname{Diam}_{k-1} X \leq C_n (\operatorname{Vol}_k X)^{\frac{1}{k}}$$
(*)

for $C_n \leq \sqrt{n} (n! (n!/(n-k)!)^{\frac{1}{n}}$.

Idea of the proof. Partition \mathbb{R}^n into cubical cells of diameter $\sim (\operatorname{Vol}_k X)^{\frac{1}{k}}$. Then $\operatorname{Vol}_k X$ has the order of magnitude of the average number of intersection points of parallel translates of X with the (n-k)-skeleton of this partition. Hence, for a partition into slightly larger cubes, there exists a translate X" of X which misses the (n-k)-skeleton. Then we project X' to the (k-1)-skeleton of the dual partition (see Proposition 3.1.A. in [G]₄).

 $\underline{\text{Question}}.$ Does (*) hold true with a constant $C_{\mbox{$k$}}$ depending only on $\mbox{$k$}$?

(E) Diam_k of Riemannian manifolds. Start with the simplest class of flat manifolds.

(E₁) <u>Split tori</u>. Let X be the product of circles S_1, S_2, \ldots, S_n of lengths $\ell_1 \geq \ell_2 \geq \ldots \ell_n$. The projection of X to $S_1 \times S_2 \times \ldots S_k$ provides the inequality

 $\operatorname{Diam}_{k} X \leq \operatorname{Diam}_{i=k+1}^{n} S_{i} = \frac{1}{2} \left(\sum_{i=k+1}^{n} \ell_{i}^{2} \right)^{\frac{1}{2}}.$

On the other hand each S_i contains an isometric copy of $[0, l_i/2]$.

Hence, $X \ge \frac{1}{2} X'$ for the solid $[0, l_1] \times \ldots \times [0, l_n]$, and so (see (A'_1))

$$\operatorname{Diam}_{k} X \geq \frac{1}{2} \operatorname{Diam}_{k} X' \geq \frac{1}{2} \ell_{k+1}.$$

Thus $\operatorname{Diam}_{k} X \sim \ell_{k+1}$.

(E₂) <u>Non-split flat tori</u>. Let X be a flat torus. That is $X = \mathbb{R}^n/L$ for some lattice $L \subset \mathbb{R}^n$. By a classical reduction theory for L (see [C]) there exists a split torus X_s equivalent to X. That is there exists a linear homeomorphism $f : X \to X_s$, such that

$$C^{-1}|x_1 - x_2| < |f(x_1)| - f(x_2)| \le C|x_1 - x_2$$

for all x_1 and x_2 in X, where $C = C_n > 0$ is a universal constant. It follows that, (somewhat sacrifying C) one can take $X_s = \prod_i S_i$, where length $S_i = \text{Diam}_{i-1} \times \text{for all } i = 1, \dots, n$.

 (E_2') <u>Corollary</u>. The volume of every flat torus X is equivalent to the product of Diam, ,

$$Vol X \sim \prod_{i=0}^{n-1} Diam_i X.$$

(E₃) <u>Almost flat manifolds</u>. The reduction theory generalizes (see [G]₂ and [B-K]) to ε -<u>flat</u> manifolds X satisfying

$$|K| (Diam X)^2 \leq \epsilon^2$$
,

where K denotes the sectional curvature of X and $\varepsilon = \varepsilon_n > 0$ is a universal (small but yet positive) constant (one can take $\varepsilon_n = \exp - n^n$). Using this one can generalize (E'_2) to ε -flat manifold X for $\varepsilon \leq \exp - n^n$,

$$C_n^{-1}$$
 Vol X $\leq \prod_{i=0}^{n-1}$ diam_i X $\leq C_n$ Vol X ,

where $C_n > 0$ is a universal constant.

<u>Exercise</u>. Prove the equivalence Vol X ~ \prod_{i} Diam_i X for <u>flat</u> Riemannian manifolds.

(E'_3) It seems that the collapsing techniques (see [C-G]) should yield a similar result for all (possibly large) $\epsilon>0$.

$$c^{-1} \operatorname{Vol} X \leq \prod_{i=1}^{n-1} \operatorname{Diam}_{i} X \leq C \operatorname{Vol} X,$$
 (*)

for some constant C > 0 depending on n and ϵ .

Here is a more difficult

<u>Question</u>. Does the equivalence Vol X ~ $\prod_{i=1}^{n-1}$ Diam_i X hold true (with i=1 the implied constant C = C_n) for manifolds X with non-negative sectional curvature ?

A more illuminating but unprecise question is :

Does every X with $K \ge 0$ look roughly as the solid $[0, \ell_1] \times [0, \ell_2] \times \ldots \times [0, \ell_n]$ for $\ell_{i+1} = \text{Diam}_i X$?

Both questions remain open for manifolds with a lower bound on the sectional curvature, K(Diam X) $^2 \geq - \, \epsilon^2$.

(F) Lower bounds on Diam_k . Lebesgue's Lemmas (see (D'_1) and (D''_3)) provide a lower bound on $\operatorname{Diam}_k X$ if X contains a k-dimensional cube (or simplex) with a controlled geometry. A slightly more general estimate $\operatorname{Diam}_k \geq \varepsilon > 0$ can be obtained by the following

(F₁) <u>Proposition</u> (Compare (D'₃) and [K]). If $\text{Diam}_k X < \alpha_k$ for $\alpha_k = \sqrt{\frac{2(n+1)}{n}}$, then every distance decreasing map f of X into the unit sphere $S^k \subset \mathbb{R}^{k+1}$ is contractible.

<u>Idea of the proof</u>. Let p be a surjective map of X onto a (k-1)-dimensional polyhedron A, such that each fiber $X_a = p^{-1}(a)$ for $a \in A$ has Diam $\langle \alpha_k \rangle$. Then $f(X_a) \subset S^k$ also has Diam $\langle \alpha_k \rangle$ and hence is contained in a hemisphere by Young theorem (see [B-Z]). It follows that each set $f(X_a) \subset S^k$ contracts to a single point in S^k , such that this contraction is continuous in $a \in A$. This gives a homotopy of f to a map $f_1 : X \to S^k$ which is a composition of $p: X \to A$ with a continuous map $A \to S^k$ obtained by the above shrinking of the subsets $f(X_a) \subset S^k$ to points. As dim A < k, the map $A \to S^k$ is contractible and so f is contractible.Q.E.D.

(F₁) <u>A generalization</u>. Let the above map f send a compact subset $X_{o} \subset X$ to a point $s_{o} \in S^{k}$. Then the above argument shows that the map of pairs,

$$f:(X,X_{o}) \rightarrow (S^{k},s_{o}) ,$$

is contractible.

 (F_2) <u>Manifolds with large injectivity radius</u>. The essential property of the sphere S^k in the above discussion is a "canonical contractibility" of "small" subsets in S^k . A similar property is shared by all Riemannian manifolds with large injectivity radius and by more general (locally geometrically contractible, see §4.5. in [G]₄) manifolds where the balls of a "not very large radius" are contractible within concentric balls of slightly larger radius. Here are two simple examples (see §4.5. in [G]₄,[G]₅ and §4.2. in [G]₆ for the proofs and a further discussion).

 $\text{Diam}_{n-1}X(R) \to \infty \text{ as } R \to \infty$.

(G) <u>Upper bounds on</u> $\operatorname{Diam}_{k-1}$. The inequality of Federer-Fleming (see (D_5)) provides a bound on $\operatorname{Diam}_{k-1} X$ of k-dimensional subsets $X \subset \mathbb{R}^n$ in terms of the Hausdorff measure $\operatorname{Vol}_k X$. A similar bound applies to all manifolds $Y \supset X$ of non-negative Ricci curvature as follows

(G1) Let Y be a complete n-dimensional manifold with Ricci Y ≥ 0 . Then all compact subsets X \subset Y satisfy

$$\operatorname{Diam}_{k-1} X \leq C_n (\operatorname{Vol}_k X)^{\frac{1}{k}}$$

for some universal constant $C_n > 0$.

<u>Idea of the proof</u> (Compare p.130 in [G]₄ and §3.4. in [G]₃). Since Ricci ≥ 0 , there exists a covering of Y by balls of radius R, where $R \sim (Vol_k X)^{\frac{1}{k}}$, such that the multiplicity of the covering by the concentric balls of radius 2R is bounded by some constant $M = M_n$. Then the partition of unity on Y associated to this covering maps X into the polyhedron of dimension $\leq M_n - 1$ which is the nerve of the covering. Then the image of X can be pushed to the (k-1)-skeleton of this polyhedron.

 (G_2) If X is homeomorphic to S^2 , then the bound on Diam₁ X does not need any ambient space Y,

Diam₁ $X \le 2(Vol_2 X)^{\frac{1}{2}}$ for all metric spaces X homeomorphic to s^2

<u>Proof</u>. Assume for simplicity's sake that X is Riemannian, fix a point $x_0 \in X$ and partition X into the connected components of the spheres $S_0(r) = \{x \in X \mid |x-x_0| = r\}$ for all $r \in \mathbb{R}_+$. The resulting quotient space is one-dimensional and the components of $S_0(r)$ have Diam ≤ 2 (Area S_0)² as a simple argument shows (see p.129 in [G]₄).

 (G_3) It is unknown (and seems unlikely) that the ratio $\lim_{k \to 1} (Vol_k)^{\frac{1}{k}}$ is bounded by a universal constant C_k for all spaces X. However, such a bound is known for another invariant, called the <u>contractibility radius</u> of X (see App. 2 in [G]₄).

Namely, let X be an n-dimensional polyhedron with a piecewise Riemannian metric. Then there exists a continuous map $p:X \rightarrow A$ where A is an (n-1)-dimensional polyhedron, and a metric on the cylinder C = C_p of the map p, such that (compare (B₂"))

(i) the canonical embedding $X \rightarrow C$ is isometric,

(ii) the distance from each $a \in C$ to $X \subset C$ satisfies

dist(a,X)
$$\leq \text{const}_n(\text{Vol}_n X)^{\frac{1}{n}}$$
 (*)

105

for some universal const > 0 .

Recall that C_p is the quotient space of the disjoint union $(X \times [0,1]) \cup A$ for the relation $(x \times 1) \sim p(x)$ for all $x \in X$.

This is proven in App. 2 of $[G]_4$. Probably, a small modification of the argument in $[G]_4$ will yield a similar result for all metric spaces X .

A simple application of (*) (see §1.2.B. in [G] $_4$) yields the following generalization of Minkovski theorem.

Let V be an n-dimensional contractible manifold with a Finsler (e.g. Riemannian) metric and let Γ be a discrete isometry group of V for which the quotient space X is compact. Then there exists a point $v \in V$ and a non-identity element $\gamma \in \Gamma$, such that

$$|v-\gamma(v)| \leq 6 \operatorname{const}_n (\operatorname{Vol}_n X)^{\frac{1}{n}}$$
.

This reduces to the original Minkowski theorem, if $V = IR^n$ with a translation invariant (Minkowski) metric and Γ consists of parallel translations of IR^n .

(G₄) Diam_{n-2} and scalar curvature. Let X be a compact Riemannian manifold without boundary of positive scalar curvature $\geq \sigma^2 > 0$.

<u>Question</u>. Does $Diam_{n-2} X$ is universally bounded by

 $Diam_{n-2} X \leq const_n / \sigma$?

This is known to be true if X is homeomorphic to S^3 . (see p.129 in [G]₄ and [G-L]₂). This is also known for the metrics obtained by surgery (see [G-L]₁ and [S-Y]).

One also may ask what kind of curvature is responsible for an upper bound on Diam_k for k < n-2. For example, let each tangent space $T \subset T(X)$ contain an (n-k+1)-dimensional subspace $T' \subset T$, such that the sectional curvatures of the two planes in T' dominate the rest of curvatures,

$$K(\tau') + \alpha K(\tau) > \sigma^2 > 0$$
,

for all 2-planes $\tau' \subset T'$ and $\tau \subset T$, and all α in the interval $[0, \alpha_n]$ for some large constant α_n . Then one asks if the following inequality holds true,

 $Diam_{\nu} X \leq const / \sigma$.

(H) <u>Definition of Diam_k with coverings</u>. Fix a number $\delta > 0$ and let us prove the equivalence of the following three properties of a compact metric space X.

(1) $Diam_k X < \delta$.

(2) X admits a covering of multiplicity \leq k+ 1 (i.e. no k+2 covering subsets intersect) by compact subsets of diameter < δ .

(3) X can be covered by compact subsets $X_{\rm i}$, i = 0,...,k , such that Diam_ $X_{\rm i}$ < δ .

<u>Proof</u>. Start with the implication (1) \Rightarrow (3). By definition of Diam_k there exists a continuous map $p: X \to A$, where dim $A \leq k$, such that Diam $p^{-1}(a) < \delta$ for all $a \in A$. By definition of dim A, there exists a covering of A by subsets A_i , $i = 0, \ldots, k$, such that each A_i is the union of disjoint compact subsets of arbitrarily small diameter. Then the sets $X_i = p^{-1}(A_i)$ provide the required cover of X.

The implication (3) \Rightarrow (2) is trivial as every X_i , by definition of Diamon , is the union of disjoint subsets of diameter < δ .

Finally we prove (2) \Rightarrow (1) by taking the nerve of the covering for A and by mapping $X \rightarrow A$ with an associated partition of unity.

<u>Corollaries</u> (H₁) Let $X = X_1 \cup X_2$, such that Diam_i $X_1 \leq \delta$ and Diam_i $X_2 \leq \delta$. Then Diam_k $\leq \delta$ for k = i + j + 1.

(H₁) Let X admit a continuous map $p : X \rightarrow A$, such that Diam₁ $p^{-1}(a) \leq \delta$ for all $a \in A$. Then $\text{Diam}_k X \leq \delta$ for $k = (i+1) (\dim A + 1) - 1$.

<u>Proof</u>. Take a sufficiently fine triangulation of X, let X_0 be the k-skeleton of this triangulation and X_1 be the k-skeleton of the dual triangulation. Then there is a smooth map $p: X \rightarrow [0,1]$, such that $p^{-1}(0) = X_0$, $p^{-1}(1) = X_1$ and $p^{-1}(a)$ for 0 < a < 1 is the boundary of a small regular ε_a -neighborhood of X_0 . This $p^{-1}(a)$ is

107

 ϵ -close to X for all a < 1.

This example shows that the bound on k in (H_1^{*}) is sharp. This also shows that $\operatorname{Diam}_{n-k-1}$ cannot fully serve as a measure of "the (n-k)-dimensional spread" of X. An alternative measure of this spread comes from the (n-k)-volume of the fibers of maps $X \to A$ for dim A = k (see App. 2 in [G]₄).

<u>Concluding remarks</u>. The fundamental fact which insures non-vanishing of Diam_k of n-dimensional manifold for n > k (this makes the definition of Diam_k non-vacuous), is the topological invariance of dimension. One may think that other topological invariants can also be studied quatitatively in the framework of the Riemannian geometry. A geometric quantitative approach to the homology and homotopy theory is indicated in [G]₂, [G]₄, [G-L-P] and [S], where the reader may find further references.

REFERENCES.

- [B-K] P. Buser, H. Karcher, Gromov's almost flat manifolds, Astérisque 81 (1981), Soc. Math. France.
- [B-Z] Y. Burago, V. Zalgaller, Geometric Inequalities, Springer-Verlag. To appear.
- [C] J. Cassels, An introduction to the geometry of numbers, Springer 1959.
- [C-G] J. Cheeger, M. Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded.I., J. Diff. Geom. 23 (1986) pp.309-346, (part II to appear).
- [G]1 M. Gromov, Almost flat manifolds, J. Diff. Geom. 13 (1978), pp.231-241.
- [G]2 Homotopical effects of dilitation, J. Diff. Geom.13 (1978), pp.223-230.

- [G]₅ Large Riemannian manifolds, Lect. Notes in Math. 1201,pp.108-122, Springer-Verlag.
- [G]₆, Rigid transformation groups, to appear.

- [G-L] M. Gromov, B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math.III (1980), pp.423-434.
- [G-L-P] M. Gromov, J. Lafontaine & P. Pansu, Structures métriques pour les variétés riemanniennes, Cedic/Fernand Nathan, Paris 1981.
- [H-W] W. Hurewicz, H. Wallman, Dimension theory, Princeton Univ. Press 1948.
- [K] M. Katz, The filling radius of two points homogeneous spaces, J. Diff. Geom. 18 (1983), pp.148-153.
- [S] J. Siegel, Extremes associated with homotopy classes of maps, Lect. Notes in Math. 1167, pp.260-267, Springer-Verlag.
- [S-Y] R. Schoen, S.T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), pp. 159-183.
- [T] B. Teissier, Bonnesen-type inequalities in algebraic goemetry I, Introduction to the problem, Ann. Math. Stud. 102,pp. 85-107, Princeton 1982.

M.GROMOV I.H.E.S. 35 route de Chartres 91440 Bures-sur-Yvette France