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ALMOST SYMMETRIC SPACES 

by Maung Min-Oo 

§1. INTRODUCTION. 

In Differential Geometry we study spaces with geometric structure. The oldest 
geometric structure is that of Euclidean space. However, there exist other geometries, 
like the spherical and hyperbolic spaces. According to F.Klein, a geometry is defined 
by a transitive transformation group and hence the model spaces for a geometer are 
homogeneous spaces. Global homogeneity, however, is in general too rigid and static. A 
more dynamic notion of space, as was used by A.Einstein in his general theory of 
relativity, was first introduced by B.Riemann, who defined the concept of a manifold 
carrying a metric which is Euclidean only at an infinitesimal scale. If we take instead 
of Euclidean geometry a more general type of geometry defined by a model 
homogeneous space to hold at the infinitesimal level we arrive at the notion of what I 
call an almost homogeneous structure. After the introduction of an infinitesimal 
geometric structure the next basic step is to study the integrability problem and 
hence to study the local geometry of a space. The global shape is then determined 
essentially by the monodromy, i.e., the fundamental group. The fundamental local 
invariant for integrability is curvature (or rather the torsion in certain situations), 
since it measures the deviation of the local geometry of a given space from that of a 
model space. The relevant concept for almost homogeneous spaces is the notion of a 
Cartan connection and its curvature. In this paper we will investigate compact almost 
symmetric spaces with small Cartan curvature, i.e., we study the problem of deforming 
an "almost*' integrable structure to an integrable one. 

221 



M. MIN-OO 

Since not every "almost" solution to a problem is necessarily near an exact 
solution, we show first that the infinitesimal obstruction to a deformation lies in a 
certain cohomology group which is then shown to vanish for most symmetric spaces of 
non-compact type. These vanishing results for cohomology groups associated to co-
compact discrete subgroups of semi-simple Lie groups play an essential role in our 
proof and are explained in §3. The final part of the proof, described in §4, is analytical 
and consists of proving that the infinitesimal deformations can be integrated. This 
paper basically reproduces the main result of [15] with an attempt to put it into a 
more general framework. The new technical ingredient introduced here, is to apply the 
heat equation method in the style of R.S.Hamilton [11] which gives a different 
approach to the analytical aspects of [15]. 

§2. ALMOST HOMOGENEOUS STRUCTURES AND CARTAN CONNECTIONS. 

A differentiable manifold is defined by its atlas of coordinate charts and their 
smooth transition functions. By restricting the admissible family of the class of 
allowable transition functions one obtains geometric structures, which could then be 
used to classify manifolds. The classical example is the uniformization theorem for 
Riemann surfaces. The first derivatives of the transition functions define an 
infinitesimal linear structure, namely the tangent bundle, and as a first order 
approximation of a geometric structure we could define a restriction for the 
structural group of the tangent bundle and obtain what is aptly called a G-structure. 

222 



ALMOST SYMMETRIC SPACES 

Definitions: 
Let pr:Gl(M)—»M denote the principal Gl(n)-bundle of all linear frames of a 

smooth n-dimensional manifold, and let GCGl(n) be a closed subgroup. 

A Gstructure is a reduction PCGKM) of the frame bundle to the subgroup G. 
Equivalently, it is a section of the quotient bundle GKMVG. (We refer to [8] and [22] 
for examples and motivation). 

A diffeomorphism 0:Mx—*M2 induces a bundle map d^GUM^ —•G1(M2). Two G-
structures Pt and P2 defined over Mlf resp. M2 are said to be equivalent if there 
exists a diffeomorphism mapping P! isomorphically onto P4. 

They are said to be locally equivalent at the points xx E M! and x2 € M2, if 
there are open neighbourhoods Ui and U2 of Xj resp. x2, such that P2 restricted to Uj 
is equivalent to P2 restricted to U2. 

1 he canonical parallelism of the vector space Rn defined by translations induces 
the standard trivialization of the frame bundle Gl(Rn) - RnXGl(n). For any GCGl(n), 
we call the trivial G-structure RnXG C RnXGl(n) induced by the inclusion, the 
flat canonical G-structure. 

A G-structure P is said to be integrable iff it is locally equivalent to the flat 
canonical structure, i.e. if we can find at every point local coordinates x:U —>M so 
that the induced framing dx:U->Gl(M) factors through PCGl(M). 

On the frame bundle pr:GKM)—»M, there exists an Rn-valued 1-form, called the 
canonical Uform: A2 :TGKM)-*Rn defined by: u(A2(X)) dpr(X), where 
XGTGKM), u:Rn—*TxM and x - pr(u) . X2 is horizontal , i.e., it vanishes on 
vectors tangent to the fibres, and it is equivariant under the natural action of Gl(n). 
(In the literature Az is usually denoted by 0.) 

Let pr:P—>M be a G-structure. A subspace HUCTUP is called horizontal if A2 
restricted to Hu is an isomorphism A2:Hu=*Rn. Hu is then complementary to the 
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vertical space Vu , spanned by the vectors tangent to the fibres. A distribution of 
such horizontal subspaces define a connection if in addition it is equivariant under 
the action of G. There is a natural identification: X*-X* of the Lie algebra © of G 
and Vu at each u. The projection along the horizontal space Ax :TUP—>VU (£> is 
called the convection form. 

If H is any horizontal distribution, connection or not, on P, then the restriction 
of dA2 to horizontal vectors define a linear map: cH(u): RnARn-4Rn on identifying 
Rn with Hu via A2 . The map: cH :P—•Homi ]Rn A Rn,Rn ) is called the torsion of 
H. (If H is a connection this is just the usual torsion of a linear connection.) 

If H' is a different choice of horizontal subpaces, then H and H' differ at each 
point uEP by a linear map Su:Rn—defined by (SU(X))* = X'-X€VU , where 
XGHU, X'6H'U with A2(X)=Ai(X')=X€Rn and the difference in torsion at that 
point is then given by cH(u,v) — CH,(U,V) S(u)(v) — S(u)(v) . Thus if we define 
d2:Hom(Rn,©WHom(RnARn,Rn) by d2S(u,v) = S(u)(v) - S(u)(v) , then cH = C/ 
modulo the image of d2 . 

The function c:P —•Horn(Rn A Rn, Rn) /Im(d2) is therefore independent of the 
choice of horizontal spaces and is called the torsion of the G-structure. 

The kernel of d2 is also of interest and is called the first prolongation of ©. 
(We refer to [22] for more details about these concepts, where c is called the 
structure function.) 

The torsion transforms naturally under equivalence of G-structures and since the 
canonical flat G-structure has obviously c = 0, a necessary condition for the 
integrability of a G-structure is the vanishing of its torsion. This is obviously 
equivalent to the condition that the structure admits a torsion free connection, since 
given any connection H' with CH/ = 0 mod (Im d2) then Ch, is an equivariant 
map:P —•Horn(Rn ARn,Rn) with cH/ = d2S for some equivariant map S :P—•HomfR11,©) 
and hence the modified connection H = H'-}-S is torsion free. However, in general, 
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this necessary condition is far from being sufficient and one has to study the torsion 
of higher order structures obtained by prolongations. 

Examples: 
(i) G » {e} the trivial group. An (e)-structure is an absolute parallelism for M 
defined by everywhere linearly independent vector fields {Xj,...,Xn>. The torsion c is 
given by the Lie bracket of the vector fields: [XpXj] = Cij Xk. One of Lie's 
Fundamental Theorems states that c is a constant function on M iff M is locally a 
Lie group* 
(ii) G - O(n). Here c - 0 for all 0(n)-structures, and the first prolongation of O(n) is 
trivial since d2: Hom(Rn,0(n)) Hom(Rn ARn,Rn) is an isomorphism. This proves 
the well known fact that every Riemannian metric admits a unique torsion free 
connection, the Levi-Civita connection and that there exist coordinates which are flat 
up to first order, namely the Riemannian normal coordinates. 

Now let H be a closed subgroup of a Lie group G and let us denote by M the 
homogeneous space G/H. We will always assume that the linear isotropy representation 
of H in the tangent space of M, H —•GKTQM) Gl(n) is injective, since we would be 
dealing only with first order structures. 
Definitions: 

An almost-homogeneous structure of type G/H for a manifold M with dim(M) 
- dim(G/H) is an H-structure for M, where H is imbedded in Gl(n) via the linear 
isotropy representation of the homogeneous space G/H. 

The projection G—*G/H defines an almost-homogeneous structure for the model 
space M=G/H, which we call the standard homogeneous structure of type G/H. 
Our main concern is to deform nearly integrable almost-homogeneous structures into 
the standard structure. 
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Example 
(iii) Let G/K be an irreducible symmetric space of rank > 1 . Then a remarkable 
rigidity theorem of M.Berger[4] and J.Simons [21] can be interpreted in our language as 
follows: 
Theorem 
An almost-homogeneous structure of type G/K of rank > 1 on a manifold M has  
vanishing torsion, i.e.. c = 0, if and only if it is locally equivalent to the standard  
structure G—*G/K or to the standard structure of the dual symmetric space (G/K)* 
or to the canonical flat structure of Rn. 

In order to explain the above formulation in the context of the original papers, 
we first recall some relevant definitions from [21]. 

According to a well known theorem of Ambrose and Singer the infinitesimal 
holonomy algebra at a point p of a Riemannian manifold M is generated by the set of 
all endomorphisms: 7*R(u,v): TpM —»TpM , where u,v runs over all tangent vectors at 
p, and 7 runs over all paths emanating from p. Here 7*R(u,v) = a~*o(R(a(u),a(v)))oa, 
where a denotes the parallel translation along 7. Motivated by this, we define: 

An (abstract) holonomy system (V, R, K) is a connected group K C O(V) of 
isometries of a Euclidean vector space V together with a tensor R:VAV—>VAV 
satisfying all the algebraic identities of a curvature tensor and with the property that 
R(u,v)€ft for all u,vGV. 

K operates in a natural manner on R via a R(u,v) = a (R(a(u),a(v)))a and a 
holonomy system is said to be symmetric if a*R = R for all a € K. 

A holonomy system is said to be irreducible if K operates irreducibly on V. It is 
not required that the action of K on V is irreducible. 

If ft is the subalgebra of ft spanned by the elements a R(u,v) for all u,v£V and 
a 6ft, then the corresponding subgroup K CK is called the holonomy reduction. 
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Theorem. (J.Simons [21,Thm.4D 

If (V,R9K) is an irreducible holonomy system such that K does not act  

transitively on the unit sphere of V9 then (K,R,K) is symmetric. 

If G/K is an irreducible symmetric space with Cartan decomposition (B = Si ® 3ft 
and curvature tensor R, then (3ft,R,K) is a symmetric irreducible holonomy system 
with K = K operating transitvely on the unit sphere of 3ft iff rank(G/K)« 1. 
Moreover, if rank(G/K) ;> 2, then R is uniquely determined up to a constant in the 
sense that for any such (3ft,R,K) , R - c.R. (This is Thm.6 and its corollary in [211). 

A torsion free connection on an K— principal bundle with K represented 
orthogonally as the isotropy representation of a symmetric space of rank ^ 2 is a 
metric connection whose curvature tensor at each point R: Cr(n) —•O(n) factors through 
the representation •Cr(n) a* 0(311) and hence defines a holonomy system with 
group K acting non-transitively on the unit sphere of 3ft. Therefore R -« c.R , for 
some constant c at each point of the manifold. By the second Bianchi identity c must 
be a constant function. Since the torsion of a K-structure is zero if and only if the 
structure admits a torsion free connection our interpretation of the rigidity theorem 
of Berger and Simons now follows. 

Definition. 

A Cartan connection of type G/H on a H-principal bundle P over a manifold M 
with dim(M) - dim(G/H) is a ©-valued 1-form A: TP—*© with the following properties: 
CI A(X*) = X for all X G£, where X* is the induced vertical vector field. 
C2 Ra A = ad(a )A, for all a GH, where Ra denotes the right action of a on P. 
C3 A(X) T̂ O for all X 7̂  0. This means that A defines an absolute parallelism for P. 

The curvature of a Cartan connection is defined to be the ©-valued 2-form : 
(2.1) F = d A + [A,A] , 
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or more precisely by: F(X,Y) = X(A(Y)) - Y(A(X)) - A([X,Y]) + [A(X),A(Y)]. 

The standard structure G—*G/H admits an obvious Cartan connection of zero 
curvature defined by the Maurer-Cartan form A of the Lie group G. 

Although a Cartan connection is not a connection in the usual sense, for the H-
bundle P, it induces an ordinary type of connection on a larger bundle, namely the G-
bundle Q = PXG It can also be thought of as a connection for the associated fibre 
bundle B =* QXG/H . This bundle admits a tautoligical section which gives the 
reduction P C Q . 

In case G/H is reductive, i.e., if © admits an H-invariant decomposition: © = 
5 0 an, then the tangent bundle of an almost homogeneous space M of type G/H can 
be expressed as TM = PX3H , and a Cartan connection A splits as A = Ai+A2, 
where kx is now an ©-valued 1-form on the H-bundle P defining a connection in the 
usual sense, and A2, which is an 3H-valued horizontal 1-form on P, can be interpreted 
as a gauge transformation A2:TM—>TM. ( A2 is the identity map.) 

For the standard structure of a reductive homogeneous space with the flat 
Cartan connection A, Ax is the canonical connection with parallel torsion and 
curvature, and A2 is the canonical 1-form, usually denoted by 0 in the literature, 
corresponding to the identity gauge transformation. In particular for Riemannian 
symmetric spaces we obtain the Levi-Civita connection. 

Given a representation p:G G1(V), we can restrict it to H and construct the 
vector bundle Efl= PxV on the almost homogeneous manifold M. Denoting also by p 
the representation on the Lie algebra level, its restriction to 911 defines a bundle map 
p:TM -• EndCEp). If we denote by V the covariant differentiation for Ep induced by 
the H-connection form A^ then the covariant differentiation D of the Cartan 
connection can be written as: 

(2.2) Dx = + p(A2(X)) 
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§3. VANISHING THEOREMS FOR COHOMOLOGY GROUPS ASSOCIATED TO 
SIMPLE LIE ALGEBRAS 

In order to deform almost integrable into integrable ones, we need to prove certain 
vanishing theorems. In particular, we will study here the cohomology groups of 
discrete subgroups of semi-simple real Lie groups with values in the adjoint 
representation, using bundle valued harmonic forms. 

Let G be a non-compact simple Lie group with maximal compact subgroup K and 
associated symmetric space M = G/K. Let TC G be a discrete subgroup acting 
without fixed points on M and with a compact quotient M - jAG/K. For any 
representation p of G in a vector space V, we can define cohomology groups of T with 
values in V, to be denoted by H*(r;/?). Since M is a K(I\l)-space, these cohomology 
groups are the same as the deRham cohomology defined by exterior forms on M with 
values in a flat, but non-trivial bundle defined by the representation. The bundle is 
Bp = r/G X V equipped with the standard flat Cartan connection D coming from the 
Maurer-Cartan form A of G. The corresponding exterior derivative on forms will be 
denoted by dD. Besides the flat connection D, there is another natural connection V 
defined on £, which is the one induced by the Levi-Civita connection of the 
symmetric metric. V is of course not flat and does not define cohomology groups. We 
will denote the covariant exterior derivative of V on Ep-valued forms by d̂  Then: 

(3.1) dD - dx + d2 

where d2 is an algebraic operator given by: 

P j 
(3.2) d2a(v0,..„vp) = £ (-1)1 p(vi).a(v0,...,vi,...vp) 

i-0 
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for an Ep-valued p-form a. Here we interpret p restricted to SR as a bundle map 
p:TM -» End(Ep). We note that d^d! and d2od2 are not 0. 

To define the Laplacian, we introduce a positive definite metric < , > in the 
representation space V with the following 2 properties: 
(i) < , > is K-invariant; 
(ii) p(v) is symmetric w.r.t. < > for all v 6 an , 
where © = ft ® 2R is the Cartan decomposition of G/K. 

Such a metric, called admissible, always exists. (See for example [13,Lemma3.1]). 
In the case of the adjoint representation we just change the sign of the Killing form 
on ft. With respect to an admissible metric on V and the metric on M, we can now 
define the adjoint of dD to be 8° == Sl-\-62i where the algebraic part S2 is given by: 

(3.3) d2a(v1,...,vp) = -f n 
z 
k-1 

p(ek).a(ek,v1,...,vp) 

The Laplacian is now defined as A° = dV + 6°d°. The following "L2-
Weitzenbock formula" for AD due to Matsushima and Murakami [13] (see also 
[5,Chap.Il] and [20,Chap.VII] for a proof) plays a fundamental role: 

(3.4) AD = A, 4- A2 

where Aj = dl6l + 6^ , d^+tMi+^Az+^di 55^this is a non trivial fac*) and 
A2 = d2d2 4- 62d2 is given by : 

(3.5) AjaCv̂ .̂ Vp) 
n 0 n P i4« 

= E P(ekr.a(vlf...fvp) + £ Z (-1) V[vi,ek]).a(ek,...,vi,...,vp) 
k-1 k=l i-1 

To prove a vanishing theorem for a co-compact T it is therefore sufficient to 
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show that the algebraic Laplacian A2 is positive definite. We are mainly interested in 
the vanishing of the first and second cohomology groups with values in the adjoint 
representation of G in its Lie algebra © = Si ® 3ft. Since A2 is obviously K-invariant 
we can study the cases of Si-valued forms and 3H-valued forms separately. For a Si-
valued 1-form oc: 3H —*Si C SJ1 ASH with components = — oĉ  , d2a =0 means 
aij^~aji^« This implies a=0, since the first prolongation of O(n) is trivial.(See 
example(ii) in §2). 

For a tf-valued 2-form r:311 ASH—*Si C SIASH , d2r = 0 means that r satisfies 
the algebraic Bianchi identity, and hence is a curvature like tensor. tf2r = 0 means 
that the "Ricci" part of r vanishes. Now, by the rigidity theorem of Simons [21] 
mentioned in example (iii) of §2, this implies r = 0 , provided rank(G/K) > 1 . 

In order to study 3H-valued forms we introduce the operator Q acting on 
symmetric 2-tensors via: 

(3.6) QfrHy - RiPqjSpq 

where R is the curvature tensor of the symmetric space M. 

Q is a self-adjoint endomorphism with eigenvalues estimated by : (see [15,p.429]) 

(3.7) B(/z,Ai) ^ Q >_ -1 

where B is the Killing form of the compact dual U of © and /i is the highest weight 
of the adjoint representation. 

An 3H-valued 1-form a:3Jl—•3ft can be decomposed as ot=a-J-s, where a is skew-
symmetric and s is symmetric. A computation now shows that : 

(3.8) A2a - a - i|(a) 
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where R(a) is the curvature operator of G/K acting on a 2-form a. Hence Д2 is 
positive definite on the skew-symmetric component, since R of M is non-positive. 

For the symmetric component s we find that (see [15]): 

(3.9) A2s - s - 2Q(s) 

This proves that A2 is positive on ЯП-valued 1-forms if В(д,д) < A . A 
simple check of the tables for simple Lie algebras in [6] now shows that this is the 
case except for Q> = Sl(2;R). 

We have thus proved the classical vanishing theorem for H^Tjad) due to A.Weil 
[23], which is the infinitesimal version of the rigidity theorem of Mostow[19] about 
compact locally symmetric spaces of dimension ;> 3 . 

By an argument very similar to the above we proved in [15] that there are no 
harmonic ЭП-valued 2-forms if dim(M) > 6. Combined with Simons theorem on ft-
valued 2-forms this leads to the following result: 

Proposition 3.10 

Let G/K be an irreducible symmetric space of non-compact type of dimension > 6 
and rank > 1 . Then Д2 is positive definite on 2-forms with values in the adjoint  
representation. In particular, H*(T;ad) = 0 for any co-compact discrete subgroup  
ГС G. 

Remark: The above result is also true in the case of the dual space of the Cayiey 
projective plane, which is a rank 1 symmetric space with G - a real form of with 
maximal compact subgroup Spin(9). Here we cannot use Simons result, but a direct 
computation (see[l6]) shows that there are no curvature like tensors which are Ricci 
flat with values in Cr(9) С (Compare also[l] and [7]) 
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§4 CURVATURE DEFORMATIONS 

Let A:TP—•© be a connection form on a G-principal bundle P over a compact 
manifold M. P is not required to be G-structure. Let E = Pad X © be the Lie algebra 
bundle associated to the adjoint representation. The curvature F of A is then a 2-
form with values in E and the difference of any 2 connections is an E-valued 1-form. 
The connection A induces a covariant differentiation D on E, and hence also an 
exterior differential dD on E-valued forms. The Bianchi identity can be written as: 

(4.1) dDF - 0 

In general dDo dD ^ 0 , but is given by the formula: 

(4.2) dDo dD = FA 

However the fundamental sequence of operators: 

JD .D 
(4.3) Q°(M;E) nx(M;E) fi2(M;E) -+ ... 

where QP(M;E) denotes the E-valued p-forms on M, although not a complex, is still 
elliptic in the sense that the sequence of symbols is exact. If we now introduce 
positive definite metrics, denoted by < , > on M and also for the Lie algebra ©, then 
we can define the adjoint 6D of dD by: 

(4.4) 5°(v2,-,vp) = ~ Z (De. )(ek,v2,...,vp) 
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where {ê } is an orthonormal base on M. Since we want to deform connections in 
directions transversal to the gauge transformations of the bundle, which are 
infinitesimally given by Q°(M;E), we introduce the gauge condition: 

(4.5) S°k = 0 

for our deformations AGQ^MjE). 

Besides the Bianchi identity, the curvature also satisfies: 

(4.6) 6Do 6° F =0 

This follows easily by taking the adjoint of (4.2) and applying it to F itself. 

Therefore the most natural direction to deform a connection is —6°F9 and we 
consider the evolution equation: 

This can be regarded as the gradient flow for the Yang-Mills functional J |F| . 
The change in curvature is Ĵ F = F =» d°A , and therefore by the Bianchi identity, 
we obtain the following heat equation for the evolution of the curvature: 

(4.8) ^F + ADF - 0 

The equation (4.7) for A is not strictly parabolic because we are dealing here with 
a geometric problem with a large group of symmetries giving rise to various 
integrability conditions. However, we can still show that (4.7) can be integrated for a 
short positive time on any compact manifold. 

(4.7) À = Ал = _ 6° F 
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Proposition 4.9 
The evolution equation .4 = — S°F for connections on a compact Riemannian  

manifold has a unique smooth solution for some time interval [0,t0] with t0 > 0 for  
any smooth initial connection *4(0). 

Proof: We apply Theorem 5.1 of R.S.Hamilton [11] to the equation and check the 
conditions therein. Condition (A) follows from (4.6). Condition (B) follows from the fact 
that the symbol sequence of (4.3) is independent of the connection and is exact. In 
fact, we could follow Hamilton further and prove a more precise statement: 

Proposition 4.10 

The equation A = — SDF can be integrated for a maximal time interval [0,T], 
with 0 < T < oo , and if T < oo , then Urn max\F(t)\ = o© . 

Proof: We follow Hamilton's proof of Theorem 4.1 in [111. The Bochner-Weitzenbock 
formula for the operator AD is: 

(4.11) AD F = AF + Q2(F) + F(F) 

where: 
(i) A F = — tr is the rough Laplacian, 
(ii) Q2(F) is an algebraic term linear in F and the curvature of M and 
(iii) F(F) is a term quadratic in F. ( F(F)iJ = - £ [Fik»Fkj' } 

If F ^ denotes the k**1 covariant derivative of F, then by repeated 
differentiation of (4.11) we obtain the equation: 

(4.12) ( ^ + A ) F(k) = £ F(i)*F(j) 
dt i+j=k 

235 



M. MIN-OO 

where F *F is a certain linear combination of the i and j derivatives of F, 
with coefficients depending on the metric and the curvature (including its derivatives) 
of the base manifold M. 

Using now the general interpolation inequalities in §12 of [11] and integrating over 
M we get: 

(4.13) |L ||F(k)||22 + 2||F(k+1)||22 £ C IIKIloo IIF(k)||22 

where || ||2 and || denote the L̂ , resp. the C°-norm. 

Hence if HFU)!!̂  ^ C for all t€[0,T), then we have uniform a-priori bounds on 
all the L -norms of the derivatives of F. The interpolation inequalities together with 
the Sobolev inequalities now give ||F(k) < C(k) for all k, and this proves the 
proposition. 

Now let X2 denote the minimal eigenvalue over M of the operator Q2 appearing in 
(4.11). Q2 acting on a 2-form is given by: 

(4.14) Q2(0)(u,v) - 0(Ric(u),v) + /3(Ric(v),u) - 0(R(u,v)) 

where R is the curvature operator on 2-forms. 

If we normalize the metric on © so that 2|[X,Y]| ^ |X|.|Y| then the last term 
appearing in (4.11) can be estimated by: 

(4.15) |<F(F),F>| £ IF I3 

As an example of using the heat flow method to deform curvature we can now 
prove the following: 
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Proposition 4.16 
If A is a connection on a G-principal bundle over a compact Riemannian manifold  

M whose curvature F satisfies : IIFIÎ  < X2 » with X2 an(j the norm defined above,  
then the flow (4.7) can be integrated for all time and Ait) converges to a smooth flat  
connection A = A(o&) as t -»o© . 

Proof: From the formula (4.11) and the assumptions of the Proposition we get the 
following differential inequality for the positive function u = |F i on M: 

(4.17) ( J L + A)u <; - X2u 4- u2 

By the maximum principle we obtain the C°-estimate: 

(4.18) HFCDIÎ  £ X2.e.exp(-\2t) 
€.(1 - exp(-X2t)) -f X2 

where e = ilFCO)!!̂  . 
So if e < X2 then F(t) - 0 as t - oo . 

The proof of the last proposition, which describes the underlying method used in 
our proof of pinching theorems for symmetric spaces of compact type [14], uses very 
strongly the fact that the Laplacian is coercive, allowing one to use the maximum 
principle .This is also the basic method used by Hamilton in [11]. This easy method is 
obviously not applicable to manifolds which are not positively curved, since we cannot 
make use of the simple Weitzenbock formula (4.11). In order to deform curvature on 
an almost symmetric space of non-compact type we have to use a Laplacian to which 
we can not apply the maximum principle directly. However, in case we know that the 
relevant Laplacian is L -positive definite, we get exponential decay of the I/'-norm 
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of the curvature, at least for a short time before the C°-norm explodes (possibly). 
Now since the curvature is evolving along a heat flow with only zero**1 order non-
linearity one can estimate the C°-norm in terms of the L̂ -norm, provided that the 
initial curvature is already small in the C°-norm. 

Now let M be a compact manifold with an almost homogeneous structure P of type 
G/K, where G/K is an irreducible symmetric space of non-compact type. Let A = 
A1H-A2 be a Cartan connection for P with Al9 ft-valued and A2, SR-valued. As was 
explained in §2, A2 induces a gauge transformation TM—•TM, or equivalently a bundle 
automorphism A2:G1(M)—fGl(M). By applying this gauge transformation (or rather its 
inverse) to the K-structure P and the Cartan connection A, we can assume that A2 is 
in fact the canonical 1-form 0 = A2 on P. The Cartan curvature F splits now as F — 
Fi -f- F2 , where the ft-valued component Fx is the difference of the curvature of the 
K-connection Ai , whose covariant derivative we will denote by V , to the curvature 
of the model space G/K, and the 9Jl-valued component F2 is just the usual torsion of 
this connection. The covariant derivative induced by the full Cartan connection will 
be denoted by D. Since K is compact and acts orthogonally on SR , the K-structure P 
defines a Riemannian metric on M, which is invariant under the connection V. Using 
the natural metrics given by the structure we want to integrate along the heat flow 
(4.7) starting with a given initial Cartan connection of small curvature. The evolution 
of the curvature is given by (4.8) and we therefore have to investigate the positivity 
of the Laplacian: AD = d°SD 4- S°dD on 2-forms with values in the adjoint bundle 
E — P X C5 over M. The Weitzenbóck formula we need now is a generalization of the ad 
formula (3.4) to the case of a not necessarily integrable almost symmetric structure. A 
computation shows that: 

(4.19) A°/3 = A^ + A20 + F2(/3) 
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for an E-valued 2-form /3 where Ax , A2 are defined as in (3.4) and F2(#) , the 

correction term, depends only on the 9ft-valued torsion part F2 of the Cartan 

curvature. If we define S.TMXTM—*TM by: 

<S(u,v),w> = <F2(w,u),v> -h <F2(w,v),u> , then F2(£) is given by: 

(4.20) F2(/3)(u,v) = ¿ { [S(u,ek), 0(ek,v)] - [S(v,ek), 0(ek,u)] - [S(ek,ek), 0(u,v)] } 
k=4 

where (ek) is an orthonormal base. If A2 is not the canonical 1-form on P, the above 

formula is true after a gauge transformation with A2~* . 

For all symmetric spaces G/K with positive A2 , as given by Prop.3.10 and the 

remark following it, we can now estimate the first eigenvalue of A° from below by a 

uniform bound depending only on the dimension n and independent of the diameter and 

other geometric data of the manifold M, provided that we have a bound: 

(*) Halloo < 10€ with 6 depending only on n. 

We begin therefore with initial curvature satisfying ilFÍO)!!̂  < e . Then there 

exists a universal time t,, depending only on n, such that : 

(**) IIF(t)||̂  < 10 e holds in the interval (0,tj. 

This follows from the fact that in (4.11) the lowest order non-linear terms are 

universal polynomials quadratic in F. (Here we use the maximum principle). Therefore 

there exists a positive h , depending only on n so that 

(4.21) iiF(t)l|2 < ||F(0)||2 exp(-Xt) fortElO,^] 
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In order to control also the change in the connection during the flow we derive 

the evolution equation for A : 

AÂ - A(- 6°F) = — 6DF — S°F - - À VF - 6°dDS°F at at 
= - À VF — ADÀ 

n 
where (AVF), = £ [A,.,Fit] and hence: 

k-1 K IK 

(4.22) ( | + A°)À + À VF = 0 

Here we have made essential use of the basic identity (4.6), which is an 

integrability condition for the curvature. 

Now AD ~ Ai -f A2 4- F2 » aiK* by the proof we gave in §2 of the vanishing 

theorem of A.Weil, we know that A2 is positive on ©-valued 1-forms for n >2. 

Therefore if (**) holds , with a smaller e(n) if necessary, we obtain the following L̂ -

estimate for A: 

(4.23) ||A(t)||2 <; ||A(0)!J exp(-Xt) fort€[0,tj. 

To bootstrap the L -̂estimates (4.21) and (4.23) into C°-estimates we use the 

powerful iteration method of Moser [18]. 

First we make a running assumption that: (The square on the left hand side is 

deliberate, in order to leave some room for a contradiction.) 

(***) HFWIL,2 <: 10||F(0)|L 

holds for a maximal time interval [0,T] , we can bound the coefficients of the non-
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linear terms in the evolution equations for F and A so that we have a parabolic 
differential inequality: 

(4.24) (^ + A)u £ c(n)u 

valid in the interval [0,T], where u could either be the function |F | or |A |. By 
applying now the Moser iteration technique to this inequality we get the estimate: 

i 

(4.25) HuCDIlJ2 £ 2nc(n)n/2 T~n/2 V.fC^)-1 j V~l\\}i\\22 dt 
T/2 

where V is the volume and Ciso is the isoperimetric constant of the Riemannian 
manifold M defined by: 

(4.26) CisQ = inf {(vol8D)n.(vol D)1""" } 

where the infimum is taken over all domains DCM with smooth boundary and with 
2.volD <. volM . This constant appears in Moser's estimate because its inverse is 
equal to the best constant for the Sobolev inequality: 

(llflln^)n <; csob iidfC , for f with / f - o . 

Combining this with the L2-estimates (4.21) and (4.23), and using ||u||22 £ V Ijull̂ 2, 
we obtain the following exponential decay estimates for the C°-norm of F and A: 

(4.27) Hutt)!!̂  <; C(n)(Ciso)-1 HuW)!!̂  exp(-Xt) 

wh«re Ciso = CisoV" 
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Optimal estimates for the isoperimetric constant in terms of the lower bound for 
the Ricci curvature (scaled correctly w.r.t. diameter) have been obtained by P.Berard 
and S.Gallot [31 based on Gromov's isoperimetric inequality [10]. In particular Gallot [7] 
gives the following esimate: 

(4-28> Ciso - V_1 Ciso * C(n'a) d_" 

where d is the diameter and C(n,a) depends only on n and a = d2 . min Ivl-l Ric(v). 

Substituting such an of estimate in (4.27) would give us a contradiction to the 
fact that (***) holds for some finite maximal time interval, provided the initial 
curvature |F(0)| is less than e, where e now depends on the constants appearing in the 
above estimate. The assumption |F(0)| small implies that the curvature and torsion of 
the Cartan connection are near that of the model space M so that we have universal 
bounds on the quantities on which all our constants depend. 

Once C°-estimates are established higher order estimates, as in the proof of 
Prop .4.9 above, follow in a rather standard fashion since the non-linearity of the 
parabolic equation for F occurs only in the zero**1 order terms. This proves that the 
flow exists for all time and converges smoothly to a limit connection with zero 
curvature. 

The exponential decay of the C°-norm of A shows that the limit connection A(<x>) 
is still a Cartan connection satisfying the non-degeneracy condition C3. By applying 
the smoothing Lemma of [2] as in [16], which is to say that we let some time elapse 
along the heat flow before we start doing the estimates, we can assume that A(0) 
= — tfDF(0) is of the same order of magnitude as F(0) . 

Thus we have arrived at the following main result of this paper: 
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THEOREM. 

Let G/K be an irreducible Riemannian symmetric space of non-compact type of  

rank > 1 or the dual of the Cayley projective plane . Then for any n > 6 and d > 0 

there exists an e(n,d) > 0 depending only on n and d such that if M is an n-

dimensional compact almost homogeneous manifold of type G/K with diameter <̂  d and 

if ¿4 is a Cartan connection for M whose curvature F satisfies max\F\ < e(n,d) , 

then A can be deformed to a flat Cartan connection. In particular M is diffeomorphic  

to a compact quotient of G/K by_ a discrete group of isometries rC G . 

Remark: The theorem is also true for the 3-dimensional hyperbolic space as model, 

since by Poincare duality H (M;ad)o* H (M;ad) which vanishes by the theorem of 

A.Weil. 

Problems: 

(i) (suggested by M.Gromov) Can one get rid of the dependence of the pinching 

constant e on the diameter? There is good evidence that the isoperimetric constant 

for the standard locally symmetric spaces of non-compact type of rank ^ 2 do not 

depend on the diameter. 

(ii) Can one prove a pinching theorem corresponding to the rigidity phenomena 

discovered by M.Berger and J.Simons? In other words can one prove the above 

pinching theorem assuming only that the torsion part of the Cartan connection F2 is 

small ? 

(iii) Can one find a proof of a version of Mostow's rigidity theorem using a 

Weitzenbock formula, imitating Y.T.Siu's method for the Kahlerian case ? 
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