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Société Mathématique de France 

Astérisque 157-158 (1988) 

Sharp inequalities for martingales 
and stochastic integrals 

by Donald L. BURKHOLDER 

This paper contains sharp inequalities for differentially subordinate 

martingales taking values in a real or complex Hilbert space H. These sharp 

inequalities, new even for H = Œ, lead to the best constants for some inequalities 

between stochastic integrals in which either the martingale integrators or the 

predictable integrands are H-valued. In addition, they yield new information 

about the square-function inequality for H-valued martingales even in the case 

H = ]R. 

It will be convenient to denote the norm of x 6 H by |x|, the inner 

product of x and y by (x,y), and the real part of (x,y) by (x,y). 

1. AN INEQUALITY FOR H-VALUED MARTINGALES 

Let (Q,3 ,P) be a probability space and 3 = (3 ) ^ ~ a nondecreasing 

œ n n > U 
sequence of sub-a-fields of 3 . Suppose that f = (f ) w _ and g = (g ) w _ 

œ n n > 0 n n > 0 
are H-valued martingales with respect to 3. Denote their difference sequences 

n n 
by d and e: f = I d and g = Z e, , n > 0. Set llfll = sup llf II . 

n k=0 k n k=0 k 11 P n n P 

THEOREM 1.1. Let p be the maximum of p and q where 1 < p < » and 

1/p + 1/q = 1 . If 

(1.1) |ek(o))| < |d k(œ)| 

for all a) € Q and k > 0, then 

(I- 2) l l s l l p S <P* " D | | f | | p • 
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The constant P - 1 is best possible. In the nontrivial case 0 < | j f | | < oo, 

there is equality in (1.2) if_ and only if p = 2 and equality holds in (1.1) for  

almost all and all k > 0. 

Observe that p - 1 = max{p - 1, l/(p - 1)}. Here "best possible" is to 

mean that if (3 < p - 1 then, for some probability space (0,3^,P) and 

filtration 5, there exist H-valued martingales f and g as above such that 

l l s l l p > Pllf l l p . 

For a proof of Theorem 1.1 in the case H = H , see [7], where it is also 

noted that the martingale condition can be relaxed. 

Condition (1.1) may be described by saying that g is differentially 

subordinate to f. 

PROOF. To prove the inequality (1.2), we can assume that ||f||p is finite. 

By (1.1), 

K\\< I K I L < I ||d || < (2n+ l)||f|| . 
n P k=0 k P k=0 k P P 

So both ||fn|| and ||gn||p are finite. Define v: H x H -«E by 

d.3) v(x,y) = |y|P - (p* - l) P|x| P . 

Then Ev(f n,g n) = ||gn||P - (p* - l)P||fn||P and (1.2) would follow if, for all n, 

(1.4) Ev(f n,g n) < 0 . 

Rather than proving (1.4) directly, we shall prove the analogous inequality 

(1.5) Eu(f ,g ) < 0 
/ v n n — 

for a more convenient function u, one that majorizes v on H x H. The function 

u: H x H -» H is defined by 

d.6) u(x,y) =a p(|y| - (p* - l)|x|)(|x| + \y\)P'1 
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/ * p-1 
where a = p(l - 1/p ) . As we shall prove, P 
(1.7) E v < f „ » 0 - E u ( f n ' S n ) * 

n n n 11 

d- 8) E u( f
n,g„) < Eu(f ,,g„ ,) , n > 1 , 
n n — ri-1 n-1 — 

d.9) E u < f o ' g o ) - 0 • 

These inequalities imply (1.2). 

Inequality (1.7) follows from 

(1.10) v(x,y) < u(x,y) . 

To prove this we shall use the elementary inequality 

(1.11) (P - l ) 9 " l / p P " 2 < 1 if 1 < p < 2 , 

> 1 if p > 2 , 

which follows at once from the fact that if cp(p) is the left-hand side, then 

cp(l+) = cp(2) = 1, lim cp(p) = 0 0, log cp is convex on (1,2] and is concave on 
p -» 00 

[2,oo). If |x| + |y| = 0, then (1.10) is satisfied. Therefore, to prove (1.10), 

we can assume that |x| + |y| > 0 and, by homogeneity, that |x| + |y| = 1. 

Letting s = |x|, we see that the proof of (1.10) reduces to showing that 

F(s) = a p d - P*s) - (1 - s ) P + (p* - l) Ps P 

is nonnegative for 0 < s < 1. If p = 2, then F = 0. If p > 2, then there is 

a number s^ satisfying 0 < s^ < 1/p such that F is concave on [0,s^] and 

is convex on [s Q,l]. Therefore, it follows from F(l/p ) = Ff(l/p ) = 0 that 

F is nonnegative on [s Q,l]. By (1.11), F(0) > 0, so concavity implies that F 

is also nonnegative on (0,s Q). If 1 < p < 2, the argument is similar: F is 

convex on an interval containing [0,1/p ], F is concave on its complement, and 

F(l) > 0. 

Before proving (1.8), we shall show that if x,y,h,k € H, |k| < |h|, and 
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|x + ht| and |x + kt| are strictly positive for all t € 1R, then 

(1.12) u(x + h,y + k) < u(x,y) + (cp(x,y),h) + (i|r(x,y),k) 

(recall that (•,») = Re (• , • )) where 

cp(x,y) -a px'[(p - p*)|y| - p(p* - D|x|](|x| + | y | ) P " 2 , 

•<x,y) = a py'[p|y| + ( P + P * - PP*)|X|](|X| + | y | ) p " 2 , 

and x f = x/|x|, y' = y/|y|. To prove (1.12), let 

G(t) = u(x + ht,y + kt) . 

The conditions on x, y, h, k imply that G is infinitely differentiable on ]R, 

and a little calculation shows that the inequality (1.12) is the same as 

(1.13) G(l) < G(0) 4- G'(0) . 

Since G is concave on H , as we shall see, (1.13) follows. To show the 

concavity of G, we can reduce the problem by translation to showing that 

G"(0) < 0. If p > 2, 

(1.14) G"(0) = - otp(A + B + C) 

where 

A = p(p - l)(|h|2 - |k|2)(|x| + | y | ) p - 2 

is nonnegative since |h| > |k|, 

B = p(p - 2)[|k|2 - (y',k)2]|y|-1(|x| + lyl) 1 5- 1 

is nonnegative by the Cauchy-Schwarz inequality, and 

C - p(p - l)(p - 2)[(x',h) + (y,,k)]2|x|(|x| + | y | ) P " 3 

is also nonnegative. If 1 < p < 2, a similar expression for (p - 1)G"(0) can 

be obtained from (1.14) by interchanging x and y, h and k, and then 
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multiplying the right-hand side by -1. This follows from 

(p - l)u(x,y) = - a p(|x| - (p - l)|y|)(|y| + | x | ) p - 1 

and uses the identity (p - 1)(p - 1) = 1, which is valid for 1 < p < 2 C This 

completes the proof of (1.12). 

Now let HQ be a closed subspace of H such that ^ ( u 3 ) » ^n^^ ̂  

all (JD € Q, n > 0. We can and do assume that is a proper subspace of H 

(otherwise enlarge H slightly). Let a £ H be in the orthogonal complement of 

H„ with 0 < la I < 1 and write F = a + f and G = a + g . Then, by (1.12), 

(1.15) u(F G ) < u(F G ) + (cp(F ,G ) ,d ) + (|(F G ),e ) . 
n n n-1 n-1 T n-i n-1 n n-i n-i n 

These four terms are integrable: 

|u(F n,G n)| < C p [ | F n | + |Gj]P < c p [2 + | f j + I g j f , 

tcpCFn,Gn> 1 < cp[2 + |£ n| + | g n | ] P _ 1  

By the martingale condition, the last two terms of (1.15) have zero expectation. 

Therefore, 

Eu(F ,G ) < Eu(F -,G ,) . n n — n-1 n-1 

Now let a -* 0 and use the continuity of u and the dominated convergence 

theorem to obtain (1.8). 

To prove (1.9), observe that under the condition |y| < |x|, 

|y| - (p* - l)|x| < (2 - p*)|x| < 0 . 

Therefore, 

(1.16) u(x,y) < a p ( 2 - p*)|x|P < 0 if |y| < lx| . 

Accordingly, u ( f
0 > g 0 ) < 0, and (1.9) follows. This completes the proof of (1.2). 
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Suppose that 0 < ||f|| < ». In the case p = 2, the statement of the theorem 
2 0 0 2 

about equality in (102) follows from orthogonality: |(f|| = £ \\ci M . If p 4 2, 
1 k=0 k 1 

strict inequality holds in (1.2), which can be seen as follows. Let m be the 
least integer n such that ll^nllp > 0- Then, with probability one, 

|g I = | e I < Id I = If I so that, by (1.8) and (1.16), m 1 m m ' m 

Eu(f g ) < Eu(f g ) < a n ( 2 - P*)||fm||P < 0 n n — m m — p 11 m Mp 

provided n > m, in which case 

I M ; * (p - 1) lip 
f а р(2 - p * ) i u ; • 

This implies that strict inequality holds in (1 02). 

The constant p - 1 is best possible since it is best possible for 

H = 1R; see [6] or [7]. 

This completes the proof of Theorem 1.1. 

REMARK 1.1. Let 1 < p < oo. In [21], Peiczynski conjectured that the 

complex unconditional constant of the Haar basis (h ) w _ of LP[*0,1) is the 
n'n > 0 ( C L , / 

same as the unconditional constant for the real case. To be precise, let 8 
P 

be the least number |3 such that 

u * V A I L - p u * a k h J D 
k=0 k k k P k=0 k R P 

for all a, € H , e, € fl.-ll, and n > 0. Let y be the least number v such k k — 'p 
that 

II * e l 6 k c k h kHp * Ml S c h « k=0 k k P k=0 k k p 

for all c k £ CE, 0 k £ R , and n > 0. Clearly, P p < Y P and Peiczynski's 

conjecture is that equality holds. By [7], (3̂  = p - 1, so to prove 

Pelczynski1s conjecture we need to show only that y < p - 1. But this follows 

at once from Theorem 1.1: the martingale difference sequences defined by 
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i 9 k cL = c. h and e = e c,h, satisfy (1.1). For a slightly more direct proof, k k k k k K 
see [10]. 

REMARK 1.2. The function u defined by (1.6) has the property that, for 

all x,y,h,k € H with |k| < |h|, the mapping 

(1.17) t M u(x + ht,y + kt) 

is concave on H. But it is not the least majorant of v with this property. 

If 1 < p < 2, let 

U(x,y) = u(x,y) if |y| < (p* - l)|x| , 

= v(x,y) if |y| > (p* - l)|x| , 

where u is given by (1.6) and v by (1.3). If p > 2, interchange u and v. 

For 1 < p < », the function U is the least majorant of v satisfying the 

concavity condition (1.17). It has the following martingale interpretation. Let 

x,y £ H. If f and g are H-valued martingales with respect to the same 

filtration, f Q = x, g^ = y, and |e^| < |d^| for all k > 1, then 

l | g | | J<(P*- l)P||f||P + U(x,y) 

and no number strictly smaller than U(x,y) has this property. 

The function U, which is defined on H x H, is closely related to the 

function u:]R x R - * R of [8]: U(x,y) = u(|y| + |x|,|y| - |x|). This formula 

could be used to define a function that majorizes v on B x B where B is any 

Banach space. But the concavity condition is less adaptable. It is easy to see 

that if p = 2, then U(x,y) = |y|^ - |x|^ and U satisfies the concavity 

condition if and only if B = H. In fact, if B is not isomorphic to a Hilbert 

space, then there is no constant that can be substituted for p - 1 in (1.2) 

that would make the inequality valid. See Section 5 of [5] where the proof is 

based on Kwapien's characterization of spaces isomorphic to Hilbert space [20]. 
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2. EXPONENTIAL AND WEAK-TYPE INEQUALITIES 

Let $ be an increasing convex function on [0,») with §(0) = 0 and 
« -t 
J $(t)e dt < ». Assume that $ is twice differentiable on (0,») with a 
0 
strictly convex first derivative satisfying $f(0+) = 0. 

THEOREM 2.1. Suppose, as in Section 1, that f and g are H-valued  
martingales with respect to the same filtration and g is_ differentially sub­
ordinate to f. If 11 f ||w < 1, then 

00 
(2.1) sup E$(|gn|) <f J Ut)e'Zdt 

n 0 
and the constant on the right is best possible. 

For example, if p > 2 and $(t) = tP, then 

(2.2) ||g||J < \ r<p + 1) . 

If 0 <a < 1 and #(t) = e a t - 1 - at, then Theorem 2.1 gives the exponential 
inequality (2.14) below. 

See [7] for (2.1) and (2.2) in the case H = P.. 

PROOF OF THEOREM 2.1. Let S = {(x,y) 6 H X H: |x| < 1}. By the assumption 
Wf Woo - L» w e c a n a s s u m e t h a t (F

N(«3) >Sn(̂ )) £ s f o r a 1 1 w € Q and n > 0. We 
shall exhibit a function u: S -» It with the following properties: 

(2.3) E$(|gn|) < Eu(fn,gn) , 

(2.4) Eu<f„>Sj < Eu<f„ i»8n ,) , n > 1 , 
n n n-l n-i 

(2.5) 00 
Eu(f0,g0) < \ J $(t)e_tdt . 

0 
These inequalities give (2.1) but without the strictness, which will be proved 
below. 
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To define u let A and B be the functions on [1,») given by 

B(t) = $(t - 1) and 

00 CO 

A(t) = eZ J B(s)e"Sds = e J $(s)e"Sds . 
t t-1 

Now define u: S K. by 

(2.6) u(x,y) = (1 + |y|2 - |x|2)A(l)/2 if |x| + |y| < 1 , 

= (1 - |x|)A(|x| + |y|) + |x|B(|x| + |y|) if |x| + |y| > 1 . 

This is a continuous function: if |x| + |y| = 1, both expressions on the right-

hand side are equal to |y|A(l). In fact, 

(2.7) u(x,y) = u°(|y| + |x|,|y| - |x|) 

where u^ is the function u of Section 6 of [7] and this is one way to see that 

$(|y|) < u(x,y) for (x,y) e s . This majorization gives (2.3). 

Here define cp and f on S by 

tp(x,y) = - A(l)x if |x| + |y| < 1 , 

= C-A(|x| + |y|) + B(|x| + |y|) + B'(|x| + |y|)]x if |x| + |y| > 1 , 

t(x,y) = A(l)y if |x| + |y| < 1 , 

= [(1 - |x|)A(|x| + |y|) + (2|x| - l)B(|x| + |y|)]y' if |x| + |y| > 1, 

where y 1 = y/|y| as before. Note that, for (x,y) G S, the condition 

|xj + |y| > 1 entails |y| > 1 - |x| > 0. The functions cp and i|r are 

continuous on S. 

Now suppose that (x,y) 6 S, (x + h,y + k) € S, and |k| < |h|. Then 

(2.8) u(x + h,y + k) < u(x,y) + (cp(x,y),h) -f (t|;(x,y),k) 

and strict inequality holds if, in addition, 

(2.9) |x| + |y| < 1 < |x + h| + |y + k| . 
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By (2.9) and the condition |k| < |h|, we have that h ^ 0, which we can assume 

in the proof of (2.8). If t € [0,1], then |x + ht| < 1 so 

G(t) = u(x + ht,y + kt) defines a continuous function G on [0,1]. Inequality 

(2.8) is equivalent to 

G(l) < G(0) + G'(0+) . 

This follows from the mean-value theorem and the fact that G f is nonincreasing 

on (0,1). To see that G 1 is nonincreasing, let M(t) = jx + ht|, 

N(t) = |y + kt|, and F = A - B. If s > 1, then, by the strict convexity of 

we have that F(s) > 0, F f(s) > 0, F M(s) > 0, and sF'(s) - F(s) > 0. Let 

I - {t € (0,1): M(t) + N(t) < 1} , 

J = {t 6 (0,1) : M(t) > 0 and M(t) + N(t) > 1} . 

By the strict convexity of M and the convexity of N, the complement of I U J 

relative to (0,1) is finite. Both M and N are strictly positive on J. 

Therefore, G is infinitely differentiable on I U J and it is easy to check 

that G f exists and is continuous on (0,1). Accordingly, to prove that G* is 

nonincreasing on (0,1), we need to prove only that G n is nonpositive on 

I U J. If I is nonempty, then G" < 0 on I: G" = - (|h|2 - |k|2)A(l). If 

J is nonempty, as it is under the condition (2.9), then G" < 0 on J: 

(2.10) G" = - (|h|2 - |k|2)F'(M + N) 

- N"[(M + N)F1 (M + N) - F(M + N)] 

- M(Mf + N^ V'CM + N) . 

This proves (2.8). The assertion about strict inequality follows from the fact 
2 

that, under (2.9), the function M(Mf + N 1) has only a finite number of zeros 

in J so G f is strictly decreasing on J. 
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By (2.8) and the assumption | | < |dn|> 

(2.U) u(fn,gn) < u t f ^ ^ ^ p + (tf^.g^),^) + (•<fn.l'8n-l)'en) 

with strict inequality holding with positive probability if 

(2.12) p ( l f „ - l l + ISn-ll S 1 < l f

n l + lg n D > 0 • 

Each term in (2.11) is integrable since ||gnlloo 5 2 n + 1- Therefore, taking 
expectations and using the martingale condition, we obtain (2.4), with strict 
inequality under (2.12). 

Also, by (2.8), u(fQ,g0) < u(0,0) which implies (2.5), with strict 
inequality if 

(2.13) P(|f0l + |gQ| > 1) > 0 . 

^ lls|| < 1> then sup E$(|g |) < $(1). Since $f is strictly convex, 
1 " n 

$(1) = J $!(t)dt < j $'(1) and, by Jensen's inequality, 
0 

00 00 
$f(l) < J $t(t)e"tdt = I $(t)e"tdt . 

0 0 
So, in this case, (2.1) holds with strict inequality. If ||g|| > 1, then either 
(2.13) holds or (2.12) holds for some n > 1. So strict inequality holds in this 
case also. 

That the constant on the right-hand side of (2.1) is best possible follows 
from the case H = It; see [7]. This completes the proof of Theorem 2.1. 

THEOREM 2.2. If f and g are H-valued martingales with respect to the  
same filtration, g is differentially subordinate to f, and ||f|| < 1, then, 
for 0 < a < 1, 

a!sJ i 2/9 (2.14) sup Ee n +a(l - ||g|L) < V V n " a 

and the constant on the right is best possible. 
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Note that Ijgl^ < ||g2|| < ||f||2 < ||f|| < 1. It can happen that 

E U J 

sup Ee = oo„ 
n 

PROOF. Let $(t) = e a t - 1 - at and 1 < p < 1/a. Then $P satisfies the 

conditions of Theorem 2.1 so ^ ( l s n l ) ) n > Q i s a n LP-bounded, hence uniformly 

integrable, submartingale. Therefore, sup E$(|gn|) = Ê lĝ J) where ĝ  is the 

almost sure limit of g. Accordingly, by Theorem 2,1, 
a , 8 J ,i a2/2 E(e . ! . a| gJ) <a-¿L. 

and the constant on the right is best possible. The theorem follows. 

REMARK 2.1. Let g*(u)) = sup |g (<d) | . Then, under the conditions of the 
n n 

above theorem, 

(2.15) Eeag < l l > 0 < a < 1 . 

To prove (2.15), use e a t = 1 + at + a't1/l\ + Doob's [17] inequality 

lls*Hp < «lllsllp f o r P = 2>3>««-> a n d t h e inequality (2.2). 

REMARK 2.2. There is an inequality that is dual to (2.1). Suppose that $ 

• * 
is as above but with $ strictly concave. Then g > 1 a.s. implies that 

(2.16) \ J iitjê dt < sup E$(|f |) . 

0 

The proof is similar to that of (2.1) and, as before, the inequality is sharp. 

For example, if 1 < p < 2, then -| T(p + 1) < ||f|lP. The following theorem is 

closely related. 

THEOREM 2.3. Suppose that f and g are H-valued martingales with  

respect to the same filtration and g ts differentially subordinate to f. Let 

1 < p < 2. Then 

(2.17) sup XPP(g* > X) < 2||f||P/r(p + 1) 
\ > 0 P 
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and the constant 2/r(p +1) is. best possible. Strict inequality holds if 
0 < ||f ||p < oo and 1 < p < 2 but equality can hold if p = 1 or 2. 

See [7] for (2.16) and (2.17) in the case H = H as well as related 
inequalities that carry over to the present setting. 

3. APPLICATIONS TO THE MARTINGALE SQUARE FUNCTION 
The inequalities of Sections 1 and 2 throw new light on the martingale 

square function. Let f = (f ) R > Q be an H-valued martingale with difference 
oo 2 1 /2 

sequence d. Its square function S(f) is given by S(f)(uj)= ( £ |d, (oo)| ) 
k=0 k 

THEOREM 3.1. Let 1 < p < oo. Then 
(3.1) (P* - D^UswIlp < l l f ! l p < (P* - D||s(f)||p • 

In particular, 

(3.2) ||f|| > (p - l)||S(f)||p if K p < 2 , 

(3.3) ||f||p < (p - l)||S(f)||p if 2 < p < co , 

and the constant p - 1 iŝ  best possible. If 0 < ||f\\̂  < oo, then equality holds  
if and only if p = 2. 

This improves one of the inequalities of [2]. For further information about 
the cases not covered by (3.2) and (3.3), see Remark 3.1 below. 

For the maximal function f , we have the inequality 

<3-*> l l f \ < Pl|S(f)|lp . 2 < P < - , 

in which strict inequality holds if 0 < ||f|| < «. This follows from (3.3) and 
-k 

Doob's inequality ||f j| < q||f||p, 1 < p < oo, which is a strict inequality when 
0 < ||f||p < oo as is obvious from his proof [17]. In (3.4), the constant p is 
best possible. 
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Klincsek [19] proved the inequality in (3.4) for p = 3,4,5,... and con­

jectured that it holds for p > 2. Pittenger [22] proved part of (3.3), namely, 

the case p > 3. In both [19] and [22], the proofs are given for H = H but can 

be carried over to any Hilbert space. Our approach is quite different and yields 

(3.3) and (3.4) for the full range 2 < p < « and, in addition, (3.2) for 

1 < p < 2. 

2 
PROOF OF THEOREM 3.1. Let K = .£„, the Hilbert space of sequences 

ri 
x = ( X Q J X ^ , . . . ) with X j € H and 

W K - ( * | x . | 2 ) l / 2 < o o . 
K j=0 J 

Let F = (F ) be the K-valued martingale with difference sequence n n > u 
D = ( ° k ) k > o defined by \(u>) = (dk(cu) ,0,0,...) . Let G and E be defined 

similarly but with E^(co) = (0,... ,0,d̂ (o)) ,0,...) where d̂ (u)) is the k-th 

term in this sequence. Note that 

(3.5) |Dk(o))|K = 1̂ (0)) 1 R . 

Also, F = (f ,0,0,...) and G = (dA,...,d ,0,...) so 
n n n u n 

1 
(3.6) \Y\ = | f J and | G j K = ( 2 ^ l 2 ) 2 . 

k=0 

Therefore, ||F||p = ||f||p and ||G|(p = ||S(f)||p. If f is a martingale relative to 

a filtration 3, then F and G are martingales with respect to 5. By (3.5), 

G is differentially subordinate to F and F is differentially subordinate to 

G. Consequently, by Theorem 1.1, 

(P*-l)" 1||6 | | P <W p<(P*-l)||G|| p, 

which is the same as (3.1). The assertion about equality also follows at once 

from Theorem 1.1. 

The martingale f of (5.79) in [7] shows that p - 1 is best possible for 

(3.2) and (3.3) and that p is best possible for (3.4). 
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REMARK 3.1. For the cases not covered by (3.2) and (3.3), the best 

constants arfi not yet known. However, their orders of magnitude are known. If 

H = H., then as p -» » on the left-hand side of (3.1), the order of magnitude of 
-1/2 

the best constant is the same as p (see [3]) and, as p 1 on the right-

hand side, the order of magnitude is the same as the constant function 1 (see 

[11], [14], and [12]). These results can be carried over to a general Hilbert 
1 /9 ie 

space H. In fact, Garsia's proof [18] of j|S(f)Hp < (2p) ||f ||p, p > 2, carries 

over without change. This inequality and the inequality (3.1) give, for p > 2, 
||S(f)|| p < min{p - l,(2p)1/2q}||f||p < 2p1/2||f||p . 

REMARK 3.2. As in the proof of (3.1), inequality (2.1), its dual (2.16), 

the exponential inequalities (2.14) and (2.15), and the weak-type inequality 

(2.17) lead to similar inequalities for S(f), However, sharpness need not carry 

over. For example, the sharp inequality (2.17) implies that 

(3.7) XP(S(f) > X) < 2 1 1 ^ , X > 0 . 

However, for H = H , Cox [13] has shown that the best constant is not 2 but 

e 1 / 2 . 

4. QUADRATIC VARIATION IN CONTINUOUS TIME 

Here and in the following section, we assume for simplicity that the Hilbert 

space H is separable. Let (Q,3 ,P) be a complete probability space and 
00 

3? s O T ) T > Q a filtration that is continuous on the right. Suppose that 2?Q 

contains all A £ 5 with P(A) = 0. In this setting, we consider an H-valued 
00 

martingale M = (̂ t̂ t > 0 t^ i a t *-s c o n tinuous on the right. The space H may be 

real or complex, but to study the quadratic variation of M we can assume that 

H = 4 „ So 

M t ( o ) ) = (M|;((»),M2(U)),.O.) € 4 
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and the square bracket [15] of M can be written as 

[M,M] = S [M j,M j] , 0 < t < oo . 
J-l 

Let S(M) = [M,M]* / 2 and ||M||p - sup l|Mt||p. Then, for example, 

(4.1) (p* - D " 1 | | s(M)|| p < ||M||p < (p* - l)||S(M)||p , 

an inequality that follows from (3.1) by approximation (see Doleans [16]). By 

Theorem 3.1, this inequality is sharp on the left-hand side for 1 < p < 2 and 

on the right-hand side for 2 < p < oo. 

5. INEQUALITIES FOR H-VALUED STOCHASTIC INTEGRALS 

Let (Q,3f ,P) and 3 be as in Section 4. We assume here that 
00 

M ss (M f c) t > ^ is a martingale relative to 3 with right-continuous paths on 

[0,») and limits from the left on (0,»). Let U = ( u
t ) t > 0

 a n d v = < V
t>t > 0 

be predictable processes. Consider, for H a separable Hilbert space, the 

following two cases: (i) the case in which U and V are H-valued and M is 

scalar-valued, and (ii) the case in which U and V are scalar-valued and M 

is H-va lued. If f |U | d[M,M] is finite a.s., as we shall always assume, 
[O^co) t z 

then the stochastic integral U • M exists (see [15]) and 

s ( u • M) = [ u • M,U • M ] ^ / 2 = [ J | u t | 2 d [ M , M ] t ] 1 / 2 . 
[0,«) 

THEOREM 5.1. Let 1 < p < oo. If, for all tu € Q and t > 0, 

(5.1) |V t(tü)| < |ü t(»)| , 

then, for both (i) and (il), 

(5.2) ||V • M|| < (p* - 1)||U • M|| . 

The cons tant p - 1 is best possible. 

90 



SHARP INEQUALITIES FOR MARTINGALES 

The special case in which U, V, and M are all real-valued is proved in 

[7] and, by a different method, in [9]. 

In the proof of (5.2), we can assume that ||u • MJ|p is finite and that H 
2 2 

is either or j ^ . Also, we can assume (see Section 2 of [7]) that M^ = 0. 

Let S (for elementary) consist of all U of the form 
Ut(u>) = a k if Tk-1(a)) < t < Tk(u)) and 1 < k < n , 

= 0 if t t (0,T ((«)] 
where 0 s T^ < T^ < ... < T^ are bounded stopping times taking only a finite 

number of values. In case (i), the constants a^ £ H. In case (ii), a^ or 

(C. Theorem 5.1 follows at once from Theorem 1.1 and the following lemma, 

LEMMA 5.1. For both (i) and (ii), there exist U n and V n in $ such that 

(5.3) |v n(co)| < |U^(C D ) | , 

(5.4) lim | | u n • M - U * MJ| = 0 , 
n -• 00 ^ 

(5.5) lim ||vn • M - V • M|| - 0 . 
n -• oo P 

Note that if n is a positive integer, the same stopping times 

T ,T..,...,T can be used for defining U and 
v n 

Consider the proof of (5.4). The case H - H (that is, the integrand is 

It-valued and the integrator is H-valued) is proved in the same way that Bichteler 
2 2 

[1] proves the case ~R - B.. The cases (E - and - ffi then follow. 

So (5.4) and (5.5) can be satisfied. Can (5.3) also be satisfied? By 

(5.1), 
(5.6) | V * | - |U^| < |vn| - | V J - | u n | + | u t | < 1 ^ - + |U* - . 
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Define Wn g $ by 

W"(u)) = V ^ a ) if |v£<«> | < | l £ < « > I , 

= |l£(ad|v£(«>/|v£<«>| if |v£((ri>| > |U^(«,)| . 

Note that |w"((»)| < |u"(ii>)|. By (5.6), 

K - \ i * K - u

t i + 2K - \ \ • 

Therefore, by (4.1), 

jjw 1 1 • M - V • M||p < (p* - l)||S((Wn - V) • M)|| p 

< (P* - D[||S((Un - U) .M)||p + 2||S((Vn - V) . M)|| ] 

< (P* - i ) 2 [ | | u n • M - u • M|| + 2 | |v n . M - V • M|| ] 

and the right-hand side approaches 0 as n -» OD. Therefore, we can replace v 1 1 

by W n in (5.3) and (5.5) to obtain the desired result. 

Other inequalities and applications will be presented elsewhere. But there 

are many natural questions that are as yet unanswered. We shall mention several 

in the next section. 

6. SQUARE-FUNCTION SUBORDINATION 

Can differential subordination be replaced by square-function subordination 

without changing the values of the best constants? To be specific, let M and 

N be H-valued right-continuous martingales with respect to the same filtration. 

Let SfM) = [M,M]7 and S(M) = S (M) as before. Consider the condition 
t t 00 

(6.1) Sfc(N) < S t(M) , t > 0 , 

and the less restrictive condition 

(6.2) S(N) < S(M) . 
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Note that under the conditions of Theorem 5.1, Sfc(V • M ) < Sfc(U • M ) , t > 0. Does 

(6.1) imply that ||N|| < (p* - 1)||MH ? Does (6.2)? We conjecture that, at least 

for (6.1), the answer is positive. There are similar questions for exponential 

and weak-type inequalities and all of these questions are open even for H = H „ 

A positive result for Ito integrals U • B and V • B, where B is Brownian 

motion, is given in [4]. But, for these problems, discontinuous and discrete-time 

martingales are more challenging. 
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