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Some asymptotic laws for crossings and excursions t 

by Krzysztof BURDZY, Jim W. PITMAN and Marc YOR 

1. Introduction. 

Consider the number of times NAC(t) that the trajectory of a Markov process X has crossed between 

two subsets A and C of its state space by time t. We want to consider the distribution of NAC(t) for large 

values of t. For instance, suppose X is planar Brownian motion, with A and C two closed subsets of the 

plane, such that neither A nor C is polar, but A n C is polar. For example, A and C could be two circles, 

possibly intersecting. Suppose that X starts at a point which is not in A n C . Then the number of cross­

ings NAC(t) is a.s. finite for every t and increases to oo as t - » o o . A focal point of this paper is provided 

by the following proposition: 

PROPOSITION 1.1. For a planar Brownian motion X, started at x <t A nC, as t -> oo, 

2nNAC{t) d 

logr 

where denotes convergence in distribution, Cap(AtC) is the logarithmic capacity of A relative to 
the grounded set C, and H has the exponential distribution 

P(H*dh) = e-hdht h >0. 

Proposition 1.1 is a simple combination of results due to Kallianpur and Robbins (1953) and Maruyama 

and Tanaka (1959). See also section 6.8 of Ito and McKean (1965). We give a proof in Section 2 below, 

along with some variations and extensions for crossings of a recurrent Hunt process. 

Section 3 shows how the results for crossings in Section 2 can be extended to processes counting vari­

ous kinds of excursions. This development is related to the notion of a Palm measure associated with a sta­

tionary process of excursions, as described in Pitman (1987). See also Getoor and Steffens (1986) for 

some related developments of capacity theory. 

Section 4 concerns what more can be said about the distribution of NAC(t) in the planar Brownian case 

when Cap(A, C) = oo. Results obtained here are closely related to asymptotic laws for crossing numbers 
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of Brownian motion on the sphere S , due to Lyons and McKean (1984), and similar results for planar 

Brownian motion and the symmetric Cauchy process on the line described in Pitman and Yor (1986a) and 

(1986b). 

2. Crossings of a recurrent Hunt process. 

Let X = { f ^ F ^ F , ) , ^ ) ^ © , ) , ^ * ) } be a Hunt process, with state space E which is locally compact 

with a countable base. Assume further that the process is Harris recurrent, with a single recurrent class, 

and invariant reference measure m. For background and definitions of these terms, see Blumenthal and 

Getoor (1968), Azema, Duflo and Revuz (1967). 

Let A and C be two closed subsets of E such that A n C is polar. The number of crossings NAC{t) 

from A to C by time t is Px a.s. finite for every x tAr\C. For if not, there would be an accumulation 

of crossings at some time s with 0 < s <t, implying either Xs_ or Xs was in A n C . But a Hunt process 

cannot touch a polar set even as a left limit: see Blumenthal and Getoor (1968), Proposition 1.10.20. 

We will now be precise about just when each crossing is counted. Say the path of X touches the set A 

at time t if either Xt or Xt_ is in A. For times u < v, say there is a crossing from A to C which starts at 

time u and ends at time v if X touches A at time u, then does not touch either A or C until time v when 

X touches C. The number of such crossings ended by time t gives a counting process which is adapted to 

(F,), but not additive with respect to the shifts (@ r). The number of such crossings which have started by 

time t gives a counting process which is not (¥ t ) adapted but which is (6 , ) additive. These two possible 

definitions of NAC(t) differ by at most one, which is negligible so far as asymptotics are concerned. We 

now adopt the convention that crossings are counted as they start and that a crossing which starts at time 0 

is ignored. Thus NAC{t) means the number of crossings from A to C which start in the interval (0, t]. 

The counting process NAC{t) is Px additive for every x * A nC, hence is Pm additive for the shift invari­

ant measure Pm. Here we use the following: 

DEFINITION. Let P be a measure on (Q, F), not necessarily a probability. A process (Vt, t > 0) with 

values in [0,oo] is P additive if each of the following properties holds except on a ? null set, possibly 

depending on s and t in the case of (iii): 

(i) V0 = 0; 

(ii) (Vt, t > 0) is right continuous and increasing; 

(iii) Vt+s=Vt+Vso®ti s,t>0. 

Note that we do not assume that Vt is F,-measurable. By the shift invariance of F m , if (Vt) is Pm 

additive then 

PmVt = tPmVl. 

The most basic additive functional is 
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time(Bit) = ^ìB(Xs)dsi 

the time spent in B before t, for a Borel subset B of the state space. Much of the asymptotic behaviour of 

Pm additive processes is dictated by the following ergodic theorem, which is a variation and consequence 

of the results of Azema, Duflo and Revuz (1967), (1969): 

ERGODIC THEOREM. Suppose that (V,) is Pm additive, and that Pm(Vl = oo) = 0. Then 

(i) Px(Vt < oo for all t) = I, for all x except perhaps a polar set; 

(ii) provided x does not belong to this exceptional set 

V, Pm(Vx) 
hm = P a.s. 

M o o time(B,t) m(B) 

for every Borel subset B of E with 0 < m ( # ) < oo. 

REMARK. The exceptional set of starting points x cannot always be eliminated, even in the case 

t 

Vt=^F(Xs)ds 

for a positive function F with JFdm < oo. This is due to the possibility that V may explode immediately 

on starting at points x where F has a singularity. See Pitman and Yor (1986c) for an example with planar 

Brownian motion. The statement of Remarque 1) on p. 170 and part 3)(ii) of the Theoreme on p. 181 of 

Azema, Duflo and Revuz (1967) should be modified accordingly to allow for an exceptional polar set of 

starting points x. 

As an immediate consequence of the ergodic theorem, we obtain the following: 

PROPOSITION 2.1. For closed subsets A and C such that A nC is polar, 

(2.1) hm = P a.s. 

time(B,t) m(B) 

for every x $ A C\C, and every Borel set B with 0<m(B)<oo. 

For many processes X, there is a limit law for occupation times of the form 

/ 1 o\ time(B,t) dK / D \ L J 

(2.2) * — m ( B ) H as t —» oo 
g(t) 

for some deterministic function g(t) and limiting variable / / , no matter what the starting point x. In par­

ticular, for complex Brownian motion X with m the area measure in the plane, Kallianpur and Robbins 

(1953) showed that (2.2) holds with g(t) = (27c)_llogf and H exponentially distributed as in Proposition 

l . l . Section 7.17 of Ito-McKean (1965) and Section 4 of Pitman and Yor (1986a) offer alternative proofs. 

Other results of this general form may be found in Darling and Kac (1957). See also Kasahara and Kotani 

(1979), Kasahara (1977), (1982), Bingham (1971) for various extensions and refinements. Touati (1988) 

gives a recent survey. 
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Now (2.1) combines with (2.2) to yield 

(2.3) ¿* Pm[NAC(ï)]H as t -> ~. 

To complete the proof of Proposition 1.1, it only remains to be seen that the constant Pm[NAC(l)], the 

equilibrium rate of starts of A to C crossings per unit time, is identical to a capacity in the sense of poten­

tial theory. To this end, consider the measure XAC on the state space E of X associated with the Pm addi­

tive process NAC(t) by the formula 

(2.4) 
t 

Pmj>lB(Xs-)dNAC(s) = tXAC(B), 

as in Azema, Duflo and Revuz (1967). Thus XAC(B) is the equilibrium rate per unit time of A to C cross­

ings starting with a left limit in B. Assume now that X has a dual process X relative to the invariant refer­

ence measure m. Then the work of Azema, Duflo and Revuz (1969) and Getoor and Sharpe (1973) shows 

that (2.4) extends to 

(2.5) P*\h<.Xs-)äNAC(s) = l^ZX^^ciäy) 

for initial points x <t A n C and all stopping times T. In particular, for T = TC the hitting time of C, 

dNAC(t) = 0 on [0,TC] unless TA <TC, in which case dNAC(t) on [ 0 , r c ] is the unit mass at time t = LAC, 

the last time that X was in A before Tc. Now (2.5) becomes the last exit formula of Getoor and Sharpe 

(1973) and Chung (1973): 

(2.6) PX(TA<TC ;X(LAC-)edy) = Uc(x,y)XAC(dy), 

where Uc(x,y) is the density with respect to m{dy) of the potential kernel for X killed on first hitting C. 

Thus XAC is the capacitary measure or equilibrium distribution on A in the potential theory of X killed on 

hitting C. And the total mass of \ A C , which is the constant Pm[NAC(l)] appearing in (2.1) and (2.3), is 

the capacity of A in this potential theory. In particular, it is well known that the potential theory of 

Brownian motion killed when it hits C is the logarithmic potential theory with ground C. This yields Pro­

position 1.1. 

The above arguments are closely related to results of Maruyama and Tanaka (1959), Ueno (1960) and 

McKean (1965), all of which generalize easily to the present setting. These results will now be mentioned 

briefly. Their proofs are straightforward applications of the ergodic/potential theory of X and X as 

presented above, and the ergodic theory of Harris recurrent Markov chains as presented in Revuz (1975). 

Let GAC denote the time at which the nth crossing from A to C starts, so 

NAC(0 = £ 1 ( G ^ C < 0 . 

By repeated last exit decompositions, (X(GAC-)> n = 1,2, • • • ) is a Markov chain. By the ergodic 

theorem applied to the process counting visits of this chain to B, as in (2.4), this chain is Harris recurrent 
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with invariant measure the capacitary measure XAc, which is a-finite and concentrated on A. Let DAC 

denote the first time after GAC that X returns to A. Then (X(DAC), n = 1,2, • • ) is also a Harris 

recurrent Markov chain with invariant measure pAC which is concentrated on A. A duality argument 

identifies p A C as the equilibrium measure on A in the potential theory of the dual process killed on first hit­

ting C. According to Ueno and McKean, if the original process X is started with distribution pAC, then 

X(GAC-) has distribution \ A C and X(DAC) has distribution pAC for every n. Finally, there is the 

Maruyama-Tanaka-Ueno formula 

Die 

(2.7) PpAC I lB(Xs)ds = m(B), 

where 

(2.8) pAC(E) = XAC(E) = Cap{AX) = PmNAC{\). 

These results become very natural in terms of a two-sided stationary Markov process with time parameter t 

varying over JR. Then \ A C , pAC and F p A C may be interpreted as Palm distributions associated with the 

alternating stationary point processes which count the beginnings and ends of excursions away from A 

which reach C. See for example Geman and Horowitz (1973), Neveu (1968) (1976), Pitman (1987). As 

shown in the next section, these results for crossings admit extensions to numerous other processes count­

ing excursions of various kinds. 

EXAMPLE 2.2. BROWNIAN CROSSINGS BETWEEN CIRCLES. In case X is planar Brownian motion, 

and A and C are nonintersecting circles, calculation of the capacitary measure XAC is a classical problem. 

See for example Morse and Feshbach (1953), p. 1210 for a solution in terms of bipolar coordinates. The 

formulae below can be obtained from those in Morse and Feshbach by a change of variables. Another 

approach is to first solve the simplest case of two concentric circles. Then the capacitary distributions are 

uniform, and it is easy to show that 

Cap(A,C) = TcllogCa/c)!"1, 

where a and c are the radii of A and C. The invariance of hitting and capacitary distributions under con-

formal mapping, in this case a Möbius transformation (see for example Cohn (1967), Kellogg (1929) ), can 

be exploited to show the following: 

For non-intersecting circles A and C with centers at distance d > 0, there is a unique pair of points x 

andy ^, such that x^ is inside A and the circle B with diameter [Jt

00»>,

00] is orthogonal to both A and C, 

^ A C ( - ) = Cap(A,C)HA(Xoo,) = Cap(A,C)HAiyco>) 

where HA {x, •) is the hitting distribution on A starting from x, and 

Cap(A9C) = rc|log| ^ 2 - g 2 - c 2 - ^ | | f w h e r e A _ ( d _ a _ c ) ( ^ _ a + c ) ( ^ + a _ c ) ( ^ + a + c ) 
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The density of HA (x, •) with respect to length measure on A is given by the well known Poisson ker­

nel. A more detailed discussion of this example and related results in higher dimensions are given in Sec­

tions 3 and 4 of Burdzy, Pitman and Yor (1987). 

3. Excursions 

We continue in this section in the framework of a recurrent Hunt process introduced in Section 2. Let 

M be a closed homogeneous optional subset of [0, oo), as in Maisonneuve (1975), for example the closure 

of {t: Xt e A } for a Borel subset A of the state space E. Let 

R = inf M n ( 0 , o o ) , Rt = i ? o 0 / ( G = {t>0: Rt_ = 0, Rt >0} , 

so G is the set of left end points of maximal intervals in the complement of M. We assume Q is the space 

of paths in E that are right continuous with left limits. For g e G, define the excursion eg e Q to be the 

path started at time g and stopped at time g + Rg which is the right end of the interval of M° whose left 

end is g: 

= X , A / ? ° © S = Xg+(s,Rg),s>0. 

Note that the excursions are stopped rather than killed at their right ends, so the right end point is a func­

tion of the excursion: 

XRoeg =XRoeg =Xg+Rg,geG. 

For B e F, define 

NB{t) = #{g : 0<g <t, g ^ G , eg*B} 

the number of excursions of type B which have started by time t. Let (NB finite) denote the event that 

NB(t) is finite for all t. The additivity property 

NB(t+s) = NB(s) + NB(t)o®s, 5 , r > 0 , 

and the assumption that X is Harris recurrent with invariant reference measure m, imply 

either 

(3.1) PX(NB finite) = 0 for every x*E 

or 

(3.2) PX(NB finite) = 1 except for x in a polar set. 

By the additivity property of NB (t) as t varies 

PmNB{t) = tQ(B), 

for some Q (B). Call Q (B) the equilibrium rate of excursions of type B. This defines a measure Q on 

(£2,F), which is the rate measure of the stationary marked point process (zg,g * G) under Pm. Call Q the 

equilibrium excursion law. Clearly, if Q{B)<ooi then we are in case (3.2) above. But Q(B)<oo is not 

6 4 



SOME ASYMPTOTIC LAWS FOR CROSSINGS AND EXCURSIONS 

necessary for this, as shown by the examples of Section 4. Essentially, Q is a Palm distribution and Q is 

a-finite by general properties of Palm measures. See Pitman (1987) for further discussion and references to 

related work. 

If Q (B) = 0, then it is clear that 

PX{NB =0) = I for all x, 

while if Q(B)>0 then 

Px(\imNB(t) = oo)= I for all x, 

f -»oo 

due to the following special case of the ergodic theorem of Section 2: 

For every B e F, and Borel subsets F of the state space with 0 <m (F) < oo 

0.3) .im - M > _ = mi P*a,. 
time (F,t) m(F) 

for every x^E such that PX(NB finite) = 1. 
On the set (NB (t)<oo for all t and NB{t) - > o o as t - » oo) define 

to be the successive times g e G such that e B, and let zB = e(GB)t the nth excursion of type B. 

PROPOSITION 3.1. Suppose thatQ(B)>0, let 

EB={x:Px(NB finite) = 1} 

and assume that ER is not empty. Then E —ER is a polar set for X. For x e ER, D e F define 

PB(x,D) = Px(el

BeD), 

the probability starting at x that the first excursion of type B is in D. Then 

(i) for every x in EB, under Px the sequence (£*) of excursions of type B is a Markov chain with state 

space B and transition function PR (XR (e),D) where XR (e ) is the right end in E of excursion e. 

(ii) This Markov chain is Harris recurrent with invariant measure QB which is the restriction of Q to B. 

NOTE. Strictly speaking, the state space of the Harris chain is B0 = {e e B : X/?( g) 6 ER }, so that the 

definition of the transition function makes sense. 

PROOF, (i) Let DB be the right end point of the interval in M° whose left end point is GB. Then Dg is 

an (Ft) stopping time, for every j <n, zJ

B is F D „ measurable, 

Xi , (eJ)=X(D»), e ; + 1 = e j o e D . . 

It follows at once from the strong Markov property of X at time DB that, under Px for x e EB, 

(EB, FDn, n = 1,2,...) is a Markov chain with transition probabilities as stated. 
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(ii) For any e e B0, with XR(e) = x say, under Px the sequence of excursions e£, n = 1,2, • • • is dis­

tributed as a Markov chain with the specified transition function, as if this chain had started in state e at 

time n = 0. The ergodic theorem (3.3) above shows that for any F e F with Q(F nB)>0 there will be 

infinitely many excursions of type F C\B, Px a.s. It follows by Proposition 2.9 of Revuz (1975) that the 

chain of excursions is Harris recurrent with invariant measure QB which is absolutely continuous with 

respect to QB, the restriction of Q to 5 . Comparison of the ergodic theorem above and the ergodic 

theorem for Harris recurrent chains (Theorem 3.6 of Revuz (1975)) now shows that QB must be a constant 

multiple of QB. 

REMARKS, (i) Asymptotic behaviour of excursions of type B. As a consequence of the above proposition, 

the asymptotic behavior of eB as n - » oo is governed by the measure QB in accordance with the ergodic 

theory of Harris recurrent Markov chains. See for example Chapter 6 of Revuz (1975). The chain of 

excursions of type B may be either null recurrent (Q (B) = oo) or positive recurrent (Q (B) < oo), and the 

chain may be either periodic or aperiodic. In particular, if 0 < Q (B) < oo and the chain of excursions of 

type B is aperiodic, then for every x such that PX(NB finite) = 1, the Px distribution of eB converges in 

total variation to Q (• \ B) as n - » oo, by the ergodic theory of Harris chains. To illustrate this point, let X 

be one-dimensional Brownian motion, M = {t: Xt = 0 or 1}. For B = (R > 1), which picks out excursions 

away from 0 or 1 lasting longer than unit time, the chain of excursions of type B is aperiodic and positive 

recurrent. But for B = (XR * X 0 ) , which picks out excursions crossing either from 0 to 1, or back from 1 

to 0, the chain is obviously periodic with period 2, and positive recurrent. 

(ii) Nesting of sequences and Itb's excursion law. If B c C, then the chain of excursions of type B is 

embedded in the chain of excursions of type C as the latter chain watched only when it hits B. If 

M = {t: Xt = a or Xt_ = a } is the set of return times to a single point a e E, then the chain of excursions 

of type B is simply a sequence of independent random variables, identically distributed according to 

Q(-\B), whenever 0<Q(B)<oo. In this case, Q is a multiple of Ito's excursion law. See Ito (1970), 

Maisonneuve (1975), Greenwood and Pitman (1980), Pitman (1987). 

(iii) Endpoints and Maisonneuve's excursion laws. For B as in the Proposition 3.1, consider the left 

and right end positions 

X(GJ) = eJ(0), X(D») = eJ (* ) 

of the chain of excursions of type B. The argument used to prove the proposition shows that the sequence 

of right ends is Markov with transition probability function on ER given by 

(x,H)^>Px(X(DB

1)*H). 

This chain is Harris recurrent with invariant measure the QB distribution of XR. Also, last exit decomposi­

tions derived from Maisonneuve's formula show that the sequence of left ends is Markov with transition 

function on the state space EB = {x : Qx(B)<oo} defined by 

(x,H)^>Qx(X(GB

l)e H \XR s B) 

where XR is X stopped at time R and Qx is Maisonneuve's exit measure for excursions leaving from x. 
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This chain is Harris recurrent with invariant measure the QB distribution of X0i which is 

QB(X0eH) = \${dx)Qx(B) 

where $(dx) is the measure on the state space associated with the additive functional in the Maisonneuve 

exit system. From the present point of view, Maisonneuve's excursion laws Qx give a disintegration of the 

equilibrium excursion law Q with respect to the starting point of excursions. With duality assumptions, 

there are nice disintegrations with respect to the end point as well. See for example Getoor and Sharpe 

(1982), Mitro (1984), Kaspi (1984) (1985), Fitzsimmons (1987). 

(iv) Occupation and Palm measures. Let pB be the QB distribution of XR , which is the equilibrium 

distribution of final points of excursions of type B. The form of the transition function for excursions of 

type B shows that QB is the PPB distribution of zB for n = 1, and hence for every n. Thus, if the process 

X is started with initial distribution pB, the sequence of excursions of type B is stationary. For example, 

the equilibrium distribution of initial points of excursions is the P p B distribution of X(GB) for every n. 

According to a standard result in the theory of Palm measures, the probability distribution invariant under 

shifts 0 , can be recovered from the Palm measure of a stationary point process as the occupation measure 

between points. See Neveu (1977). In the present setting, this gives the formula 

Р р » = т < / ) . 

In the case when M is the set of visits to one set, B the set of excursions which cross to another set, this 

becomes formula (2.7) above. Essentially this is Theorem 4.1 of Maruyama-Tanaka (1959). See also Ueno 

(1960) p. 121. The above formula holds just as well with pB replaced by the QB distribution of X 0 , 

described above as the invariant measure for the chain of left ends of excursions of type £ , and DB 

replaced by GB

L. 

4. The Case of Infinite Capacity. 

For a nice recurrent process, when Cap (A, C) is finite, the asymptotics of the number of crossings 

NAC (/) as t - » o o is dictated by the asymptotics of occupation times, as explained in Section 2. But there 

are many interesting examples where Cap (A, C) is infinite, A n C is polar, so NAC (r) is a.s. finite for all 

starting points x <tAc\C. The question then arises of what governs the asymptotic distribution of NAC (t) 

as t — L y o n s and McKean (1984) give some particular results for Brownian motion on the sphere, as 

do Pitman-Yor (1986ab) for planar Brownian motion and the symmetric Cauchy process on the line. We 

do not know of any general theory governing the asymptotics of NAC (t) in this case. But we present here 

a number of results for crossings of planar Brownian motion, all closely related to windings of the 

Brownian path. 

Suppose for the rest of this section that Z is planar Brownian motion. 

PROPOSITION 4.1. Suppose A is a closed connected set containing more than one point, and so is C. If 
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either (i) A nC is not empty 

or (ii) both A and C are unbounded 

then Cap {A, C) = «>. 

PROOF. This is similar to the argument involving windings at the top of page 259 of Ito-McKean (1965). 

Consider first case (i). Without loss of generality, we suppose that 0* A n C , and that both A and C inter­

sect the unit circle. Let Dn = {z e C : |z | = l /2 n }, n > 0, D = \jDn. Let Bn denote the set of excursions 

from D which start in Dn and intersect themselves after making a loop around 0. Let B = \jBn. By a 

scaling argument, the rate of excursions of type Bn is the same for every n, and this rate is strictly positive, 

so the rate of excursions away from D of type B is infinite. But, since every excursion of type B contains 

at least one excursion from A hitting C, or at least one excursion from C hitting A, 

*fc(0 ^ NAC(t) + NCA(t) < 2NAC(t)+l 

for all t and co, since |A^ C (t)-NCA (01 ^ 1- It now follows from the identification of Cap {A, C) with 

Pm [A^4C(l)j in Section 2, and the ergodic theorem as in (3.3), that Cap {A, C) = °°. The result in case (ii) 

is deduced from case (i) by inversion, using the conformal invariance of capacity. 

Asymptotic Distributions. 

We propose now to study the asymptotic behaviour of NAC (t) in case A and C meet at a finite number 

of points, say z j , . . . , zn, and perhaps also at °°. We assume that at each of these points the sets meet at 

a finite number of well defined angles. To illustrate terminology, we say the positive real axis meets the 

positive imaginary axis at 0 at two angles, K/2 and 3TC/2. And these axes meet at «> at the same angles. 

Or let A = {x + iy : x = y } , C = {x + iy : x2 - y }. Then A and C meet 

at 0 at 4 angles rc/4, TC/4, 3TC/4, 3TC/4, 

at 1 + i at 4 angles a, a, n - a, n - a, where a = arctan (2) - n 14, 

at oo at 2 angles, 7t/4, 37t/4. 

The meaning of angles at a point of intersection is quite obvious for sets defined or bounded by smooth 

curves, such as the above. Angles at °° are defined by inversion. The definition of angles between sets A 

and C can be extended to some sets without smooth boundaries by squeezing. But we must require both A 

and C to be arcwise connected in some neighbourhoods of their meeting points. Note that the number of 

angles at any meeting point will always be even. 

THEOREM 4.2. Suppose A n C = {zj, . . . , z„}, that A and C meet at z, at a finite number of angles 
a n » • • • > V-im , i = I, • • , n, and that in case both A and C are unbounded that they meet at at angles 

( X o o l f • • • , 0Coomoo. Let 

ОС/* 
m¡ - 1 

Í = 1, . . . , Л , о о ; а 
t=l 

Then 
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16nNAC (0 a a_ a + 

(4.1) - -» — + , 
log2(0 a 

where the coefficient of a+ is zero /n ca.se either A or C is bounded, and a_ and o+ are defined as follows 

in the terms of a one dimensional Brownian motion ($t,t > 0) up to the time G that p first hits I: 

G_ is the time p spends in (—«>, 0) before G, 

G+ is the time p spends in (0, <*>) before G. 

REMARKS. This result is a close relative of Theorem 2 of Pitman-Yor (1986b), and could be recast to 

give the joint asymptotic laws of variously classified crossing numbers as introduced in the following proof. 

These are all log scaling limit laws for planar Brownian motion, as considered in Pitman-Yor (1986a) and 

(1987). As a consequence, the above result holds jointly with Proposition 2.1 when the exponential vari­

able H there is identified as half the local time L of p at 0 before o. The Laplace transform and further 

information about the joint distribution of L, a_ and G+ are given in the Introduction of Pitman-Yor 

(1986b). 

PROOF. The basic idea is to decompose the total number of crossings from A to C as 

(4.2) NAC{t) = Z ¿ ^ ( 0 + 8(0, 
j'eS y'=l J 

where 5 = {1,2, . . . for i e 5 , 1 < j < mh , (t) is the number of crossings across the jth angle 

between A and C near the point z, (z^ = °°), and z(t) is a remainder term of order log(f) in law. To be 

more precise, choose radii rt so small that within radius rt- of z4- the region defining the jth angle between 

A and C is well approximated by a sector of angle a y , for each j = 1, . . . , mit and choose similarly a 

sufficiently large value of r^. It may be assumed in the first instance that, within each of these neighbour­

hoods of zi, the complement of A n C is simply a union of mz sectors of angles a y , y = 1, . . . , mt-. 

Approximations for more general A and C can be justified later by squeezing arguments, using monotoni-

city of the crossing numbers as a function of angle. Define Ny (t) to be the number of crossings from A to 

C initiated before time t by excursions away from A, which leave A within the neighbourhood of zt 

defined by the radius ri, by entering the region of (A n C f whose angle at z, is . No matter what the 

choice of r,-, it follows from Proposition 1.1 and (3.3) that the neglected count e(r) will be of order log(r) 

in law, whereas each of the Ntj (t) will be of larger order. Indeed, we claim the following: 

LEMMA 4.3. Provided Ofy > 0, as t - » °o 

\6nNu(t) 4Ui(t) d Gi 
(4.2) = 4r^ > — 

log2(0 a y l o g 2 ^ ) oc4> 

where the symbol = means the difference between the two random variables tends in probability to zero 

as t —» oof 

t 
U ^ f ) = f | 2 l ( | Z J - ^ [ < r t ) , i = l, ...,n 

t \ZS - Z i \ 2 
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= J _ | L _ 1 ( | 2 j | > 0 , 

and GT has the distribution of G_ for i = 1 n, and that of G + for i = «>. Moreover, as j varies and 

t —» f/iere /5 convergence of finite dimensional distributions, to a limiting joint distribution of random 

variables <5\, . . . , G„, defined on the same space as random variable L such that 

(i) for each i, (G^L,®^) has the same joint distribution as ( G _ , L , G + ) , the time spent positive, the 

local time at 0, and the time spent negative by a Brownian motion p before G = inf {t : p, = 1}; 

(ii) the random variables (G,- , / = 1 ° ° ) are mutually conditionally independent given L. 

PROOF. The result on the joint asymptotic distribution of the processes Ui {t) is due to Pitman-Yor 

(1986a), where these processes arise as the increasing processes associated with local martingales derived 

from windings. The comparison between N-tj (t) and Ut {t) is justified by a slight development of the argu­

ment used in Pitman-Yor (1986b). A minor variation of the results (3.6b) and (4.1) in that paper gives the 

first approximation in (4.2) in the case of two adjacent subintervals of a line, say C— (-°°, 0 ] , A = [0, «>). 

Then n = 1, there are two angles at zx = 0 of a n = oc12 = n, and two angles at °°, oc^ = oc^ = n. Now 

consider crossings from A = [ 0, <*>) to C = {z : arg (z) = a } for some 0 < a < rc, counting only counter­

clockwise crossings through the angle a, and counting only crossings initiated in [0, r]. The rate of such 

crossings is easily compared with the rate of clockwise crossings from [ 0,°°) to (-«>, 0 ] initiated in [0, r ], 

because these form disjoint sets of excursions away from [0,°°), and given that an excursion is of one of 

these types, the chance that it winds counterclockwise angle a before clockwise angle K is simply 

KI(K + a) , independently of all previous excursions. The law of large numbers thus implies that crossings 

of the angle a occur relative to crossings of the angle -n in the asymptotic ratio of TZ to a almost surely. 

This gives the required approximation (4.2) for crossings of an arbitrary angle a. 

COMPLETION OF THE PROOF OF THEOREM 4.2. This theorem is an immediate consequence of the 

basic decomposition (4.2) and the asymptotics of the components in this decomposition described in 

Lemma 4.3. The coefficient oct* comes from combining the counts N-tj for j = 1, . . . , mt-. Then summing 

over / = 1, . . . , n gives the coefficient 6c for G_, using the fact that the joint distribution of 

(G 1 ? . . . , G N , G O Q , L ) described in Lemma 4.3 is identical to that of (Oj / / 2 , . . . , 0» H2, o^lH) where the 

variables G 1 ? . . . , 0» are all independent with the same stable (1/2) distribution as G, independent of 

(G^, L) and H = L 12. Thus the limit contribution from i = 1 to n is 

£ ( 0 ^ ) - ^ = Z ( a I + ) _ 1 / / 2 q - -
t=i 1=1 

But by scaling and convolution of the stable (1/2) laws, 

n d n 2 
Z c2 GT = ( £ Ci) G, any Ci > 0 

t=i / = 1 

and taking c2 = ct^1, the limit law is seen to be that of 
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( Z (aimTV2YH2G = a_/a. 
/ = 1 

EXAMPLE 4.4. Suppose A and C are two circles which meet at angle a. Then letting zx and z 2 be the 

points of intersection, we get 

ccn = a 1 2 = a, a 1 3 = a 1 4 = K - a 

a 2i = a 2 2 = a, a 2 3 = OC24 = 7C - a. 

Thus 

/ 1 , 1 , 1 , 1 , - 1 ( 2n \ 
au = «2* = ( — + — + + ) = I — ) 

a a n-a TU-OC x a(7c-oc) ' 

a = 12(«UT^ = l a , . = 

That is to say, for circles intersecting at angle a 

2a(n-a)NAC(t) d 

l o g 2 ^ ) 

What if the circles touch tangentially? Then it is clear from the above that normalization by log 2(f) 

gives a limit of <*>. Our calculations suggest that in this case there do not exist normalizing constants at 

and bt so that (A^ c (t) - at)lbt converges in law. Rather, no matter what the radii of the circles A and 

C, Mountford (1987) has shown 

2log(NAC (0) d 
- > - inf 
log? Ozs<a 

where p and a are as in Theorem 4.2. This is yet another log scaling law (see Pitman-Yor (1986a), Sec.8) 

relative to the point of intersection. More generally, for two bounded arcs A and C which are tangent at a 

point the way the graph of y = xn is tangent to the x axis at x = 0, Mountford has shown that the above 

result holds with denominator (« - l)logf instead of log*. 

i ds 
— — instead of NAC(t), where Rt is the radial part of the Brownian 
/ ? " + 

motion at time t. This is a much more elementary fact which can be derived using the methods leading to 
Table 1 in Pitman-Yor (1986a). Both results hold by comparison with - log( inf Rs). 

0<s<t 

Contrast with results on the sphere. 

Note how touching at °° produces a different component into the asymptotic law. Compare with the 

situation for Brownian motion on S2, as discussed in Lyons-McKean (1984) — see also Le Gall-Yor 

(1986). On the sphere, if A and C do not touch, then 

ATsphere / f x a s ^ 

A C

 t

 ( ) -> Cap*"™'(A,C), 

the capacity of A in the potential theory of BM(S2) killed on hitting C. But if A and C touch at points 
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wlt . . . , WntW^ and angles defined in the obvious way, then the result becomes simply 

NË"{t) ^ Kg 
¿2 ^sphere 

where K is a universal constant, o = a_ + o+, and 

a"*" = ( L ( a w r 1 / 2 + (c^.)- 1 / 2)" 2. 
i=l 

After stereographic projection of the sphere onto the plane, this corresponds to a variation of Theorem 4.2, 
namely 

h2 asphere 

as h —>oo, where NjJĉ CO *s number of crossings up to time t between the planar images of A and C 

on the sphere, and %h is the inverse of a planar additive functional Lt with \Lt || =1. If z-t is the image of 

Wi and °° the image of wM at the north pole of the sphere, this result may be compared to Theorem 4.2 

above. Then 

asphere = [ ( à ) - l /2 + ( a o o + ) - l / 2 ] 2 

See Pitman-Yor (1986a) for further discussion, explaining in particular how these results hold jointly if 
instead of a we substitute A - 1 (1), where A is the common local time process at 0 of the Brownian motion 
ß in terms of which G_ and o + are defined, and the substitution t = e2h is made in Theorem 4.2. 
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