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Reminiscences of some of Paul Levy's ideas 
in Brownian Motion and in Markov Chains 

by Kai-Lai CHUNG 

We begin with a resume. Let {P(t), t > 0} be a semigroup of 
stochastic matrices with elements Pij{t),(i,j) E J X J, where I is a 
countable set, satisfying the condition 

(1) Hmp,,(i) = 1. 

It is known that p'{. (0) = g tJ exists and 

(2) 0 < qxi = -qi{ < +oo, 0 < g t ; < oo, i ^ j; 

(3) E Qij < Qi-

The state i is called stable if q{ < +oo, and instantaneous if q{ = +oo 
(Levy's terminology). The matrix Q = (qrt-y) is called conservative 
when equality holds in (3) for all i. 

If the convergence in (1) holds uniformly with respect to all i, or 
equivalently if the set of all gt is bounded, then we have 

(4) P(t) = e«' 

Let {X(t), t > 0} be a Markov chain with P(t) as its transition 
matrix, separable and measurable. Then in the special case just men
tioned, almost all sample functions are step functions in any finite 
time interval. The Poisson process is an example, as well as the case 
when J is a finite set. 

Before Levy, the regularity properties of the sample functions of a 
general Markov chain have been investigated by Doob by martingale 
methods (1942, 1945). To describe the allure of a typical path, let us 
start it at a stable state i. The Markov property implies that it will 
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remain at i during a sojourn time px with P{p\ > t) = e~qit. Unless 
q{ = 0, Pi is finite but X{px+) need not exist if inequality holds in (3), 
or if there is some instantaneous j\ in fact the path may encounter an 
infinity of states immediately after px and so the analysis is halted. 
To avoid such a quick termination let us assume that all states are 
stable and the Q-matrix is conservative, also that all q{ > 0 to exclude 
a trivial case. Then at the time px the path will jump from i to j 
with probability g t J /g t for all j / i, and we can resume the analysis 
starting with j. The path will remain in j during another sojourn 
time p2 with P(p 2 > t) = e-*'*, then jump again, and so on. The 
analysis proceeds by induction until the time 

Pi + Pi + ... + Pn + . . . = r. 

If r = +oo then the entire path has been traced, as in the Poisson 
case. The discovery of the possibility that r may be finite with posi
tive or even full probability caused a sensation, and much confusion. 
Read the Prologue of my Strasbourg Lectures for some historical per
spective. The tracing of the path has been stopped in its track, what 
happens after r? Confusion arose because a wrong question: "what 
can we do after r?" was asked. The proper question is of course 
"what will the path do after r?". The path exists, and there is noth
ing we can do except to find it! Looking back, we now realize that 
the problem lies in the insufficiency of the initial date given by the 
Q-matrix, and further structure of the paths must be searched out. 
This leads to a boundary theory which yields new clues to the paths 
but cannot deal with the general situation. I do not believe there is 
any complete solution, and certainly bulldozing the countable state 
space into something unrecognizable is no solution at all. 

Levy forsook the old way of tracking the path and instead plunged 
in midstream, as it were. If i is stable it is intuitively clear that the set 
{t : X(t) = i} is a collection of disjoint (maximal) intervals. He made 
the crucial observation that the number of these i-intervals is finite 
up to any finite time (almost surely). This requires a proof; a short 
one is given in my Strasbourg Lectures. Once this is established, 
it follows that the z-intervals may be ordered in sequence and that 
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their lengths form independent and identically distributed random 
variables. Moreover, these lengths are also independent of "everything 
outside the intervals". Hence if all states are stable, this global picture 
gives a bird's-eye view of the paths, with an abundance of mutual 
independence among various portions thereof. He applied this idea 
to the following theorem, one of the finest in the theory. (In his 1951 
paper he attributed its origin to this result, which I discussed with 
him at the Berkeley Symposium a year before. Thus some conferences 
yield fruits.) 

Theorem. For any i and j, either Pij{t) = 0 for all t > 0, orp{j(t) > 0 
for all t > 0. 

The case i = j is easy. Now assume all states stable and i ^ j . 
Suppose Pij(t0) > 0, then P{{Tj < t0} > 0, where P{ is the probability 
starting from i, and Tj is the hitting probability of j. Let In (k) denote 
the nth fc-interval, and | / n (&) | its length. Then the global description 
above implies that 

T y = E|/„(fc)| 

where the sum is taken over all In(k) contained in [0, Tj). By hy
pothesis Tj < oo on a set of positive probability. Hence by Egorov's 
theorem, for any e > 0 there exists finite integers K and N such that 

T y = S + fl<S + £, 
it 

where S is the sum S restricted to k < K and n < iV, and R is the 
rest. There are only a finite number of permutations of the 7n(.t) 5s 
after the restriction, hence there is a subset A of the previous set with 
P(A) > 0 on which 

m 

(5) Tj = E %.(Ml + R, and R < 
v-l 

where {nVlkVll < v < m } , kv < K,nv < TV, is a fixed sequence not 
depending on the sample function. The set A is defined by a specific 
ordering of the intervals, hence it is independent of their lengths. It 
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follows that 

P ( A ; t < £ ) > P ( A ; J 2 < | ) P ( E | / . . ( * . ) | < f ) > ° 
v = l 

because each | / n (&) | is exponentially distributed. Q. E. D. 

This proof does not seem to extend to the case when there are 
instantaneous states. D. G. Austin first proved the general case by 
a brilliant probabilistic argument using the right separability of the 
process and Lebesgue's theorem on differentiation of monotone func
tions. Later D. Ornstein gave another more analytic proof. All three 
proofs are given in my book on Markov chains. An exposition of 
Levy's proof was included in R. V. Chacon's dissertation as a special 
assignment. 

Levy gave a tantalizing example of a Markov chain with only 
stable states and no jumps at all, all discontinuities being of the second 
kind; in particular all g tJ = 0 for i ^ j. Take a strictly increasing 
function on [0,oo) with jumps at all the rationals, the size of the 
jump Jr at r being randomized with P{Jr > t) = e~qrt, and all Jr's 
are independent. The set of gr's are chosen as follows: 

Vr : qr+1 = qr\ Y, ( l / t f r ) < 00. 

0 < r < l 

This will ensure that almost all the functions are finite and increases 
to infinity. The right continuous inverse of each such function is a con
tinuous singular monotone function. There is a Markov chain whose 
sample functions are the collection of these inverses. Thus each path 
goes through all the positive reals in their natural order, sojourning 
in each rational but passing through all the irrationals in (Lebesgue) 
null time. This example is a veritable Columbus's egg stood on its 
flattened head. It is possible to write down explicit formulas for X(t) 
as well as as I did in my book, but it is a tedious and not very 
enlightening task. Levy gave a number of such examples of Markov 
chains by prescribing the sample functions. Often they seem intu
itively clear but require painstaking verification apres coup. This 
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provokes a curious, and I think important question: are there more 
effective ways of recognizing a Markov process without going through 
the usual formalities? 

A week ago I received the fourth instalment of Dellacherie-Meyer's 
tomes, which gives an account of Levy's ideas on local time and ex
cursions of a Brownian motion on the line, together with later devel
opments. Time being short I may therefore confine myself to a few 
remarks to fill some gaps, perhaps. 

(I) Levy derived a multitude of formulas for the excursions by 
means of the equivalent process: 

Yt=Mt-Xt, 

where X is the Brownian motion, and Mt = max X8. He showed 
0<8<t 

that Y and \X\ are equivalent processes, so their zero-sets are also 
equivalent. Most of his calculations rely on the vertical variation of 
the space variable, the values of X , M and Y. I found it easier to do 
the calculations by using the horizontal variation of the time variable 
£, using only X itself. Having recovered several of his key formu
las this way, I looked for something new to do; so at the suggestion 
of my colleague D. Iglehart, computed the exact distribution of the 
maximum of the (positive) excursion straddling £, conditioned on the 
location and duration. This turns out to be expressible by a theta 
function and its derivative. I could not verify its monotonicity and 
asked Iglehart to plot it on a computer. Due to faulty transmission by 
telephone, a slight error in the plotted formula led to a curve decid
edly not monotone. After the error was corrected the monotonicity 
was, of course, confirmed. Later I learned that the distribution had 
been found by N. H. Kuiper in a statistical test of random points on 
a circle. He became director of IHES, you know. 

(II) The excursions of Brownian motion bear remarkable resem
blance to those of a Markov chain with a single sticky recurrent bound
ary (see my Strasbourg Lectures). By identifying the explicit formulas 
for excursions with the general ones in the chain theory, hidden mean
ings of certain quantities are revealed. This is because in the final 
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analytic expressions factorization and cancellation have taken place 
without our notice. Here is an example. One of the deeper formulas 
for Markov chains is the last exit decomposition: 

Pa (') = / Pai8) 9ij (* - s)ds-o 
The analogue for Brownian motion is (for y > 0) 

(6) p{t; 0,2/) = / p{a; 0,0)</(* - « , 0 , y ) d « 

which is identical to the first entrance formula owing to symmetry. 
We have 

p ( « ; 0,0) = - ^ = , g{+, 0 , y ) = -J=e- « . 
V27T8 y/2ni* 

Putting these quantities together we obtain for the right member of 
(6): 

^ Jo 2nVs(t- s)t- 8 

= I P ( 7 ( « ) € ds)P (\X{t)\ E dy I 7(0 = a) da 

o 1 

where i(t) is the last zero of X before t. Both probabilities in the 
last-written integral are derived by Levy by his methods. The first 
is the arcsin law made famous by Feller's propaganda (mentioned by 
Levy in his Notice aur lea travaux). The second apparently was not 
understood by other authors until my 1976 paper which resulted from 
my attempt to unravel it. It is Theorem 4 2 . 5 in Levy's book and it 
plays a key role in his etude profonde.1 

(Ill) However pretty those excursions may be, Levy's grand scheme 
is to string them all together on a new time scale, the local time at 
zero, and recover the Brownian motion as a Poisson point process run 
by the local clock. An illustration of this idea is his proof of the fol
lowing theorem, the piece de reaiatemce of his conception of "meaure 
die voiainage", later known as local time. 
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Theorem. We have almost surely 

lim ì-m {{s<t: \X(t)\ < e}) = L(t) 

where m is the Lebesgue measure and L(i) is the local time at t. 

Recall that Levy defined L(.) by an inversion of a strictly in

creasing purely jumping stable process of index 1/2. It is a profound 

analogue of his construction of the singular Markov chain discussed 

earlier. 

Levy's proof, given at the end of his great paper Sur certains 

processus stochajtiques homogenes, Compostio math. 7, 1939 2, and 

not reproduced in his book (1948/1965), runs as follows. The total 

occupation time of (0,e) by \X\ up to time t is the sum of the same 

occupation time u€{<p) during all the excursions <p up to local time 

L(t): 

(8) u€((p) = j u€dN 

[ 0 , L ( f ) ] x Ä + 

Here N is the Poisson point process of the excursions, whose mean 

measure is the Levy measure of the inverse local time, namely the sta

ble process with exponent 1/2, given explicitly by Levy in his work on 

"Levy Processes". The expectation of the right member in (8) can be 

computed since we can compute the occupation time during an excur

sion, and there is indépendance between disjoint excursion intervals. 

(It has a neat density.) We need also an estimate for the second mo

ment, which is supplied in my paper (dedicated to Levy). Now under 

very general conditions on the first two moments of a Poisson sum like 

that in (8), the value of the random sum is asymptotically equivalent 

to its expectation in the limit, here as e | 0. Thus the theorem is 

proved by a straightforward computation of the expectation (a nice 

integral), and an adequate bound for the second moment, exactly as 

in the grand tradition of classical probability. 

The same method gives quick proofs of a number of similar but 

easier results: the downcrossing result and Kingman's Cesàro mean 
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result, etc. (Notes by A. A. Balkema on this topic exist.) Despite later 
alternative approaches to these matters, Levy's original way should 
be preserved, not as a museum piece, but as a monument conjuring 
up the past and beckoning to the future. 

Footnotes 

(1) Levy's grand tradition of deriving a wealth of explicit formulas 
has been continued in the recent work by Biane and Yor. 

(2) It is regrettable that this paper was not cited in the volume by 
Dellacherie-Meyer mentioned above, but I was pleased to see it 
publicized in the exhibition at École polytechnique during the con
ference. When I first met Levy in 1950, I asked him for a reprint 
of this paper and was told that all his papers were burned by the 
Nazis. His treatise Théorie de l'addition des variables aléatoires 
was not accessible to me during the war because library collec
tions were stored in underground caves in China to escape from 
Japanese bombing. 
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