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1. Introduction. %. Levy families; the concentration property. 3. First geometrical 

applications. 4. General methods of analysing concentration property. 5. The concept 

of spectrum. 6. Applications to topology and fixed point theorems. 7. Averages of 

uniformly continuous functions on infinite dimensional manifolds. 

1. Introduction 

In this survey we discuss the concept of concentration of measures and some applications 

of this idea, mainly to geometrical problems. The idea, which first appeared around the 1920s, 

remained almost dormant, to regain prominence only some 50 years later. At the present 

time, it remains at the peak of its development and at the focus of interest of a large group of 

mathematicians. 

The phenomenon of concentration for homogeneous measures on high dimensional struc­

tures was first realized by P. Levy on an example of the family of Euclidean spheres {Sn}. It 

is also clear that Levy realized that his observation had a far more general meaning and looked 

for other examples. 

P. Levy's starting point was a remark made by E. Borel [Bor] (published ~1914) concerning 

a geometric interpretation of the law of large numbers (which I give here with a deviation 

estimate). 

Let Cn = [—l,l]n be a cube in JRn with the standard Euclidean distance "dist". Then 

diamCn = 2y/n. Consider a linear functional /, f(x) = ^2x{ (i.e., Kerf = (1,..., l)-1). 
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Then (l /2 n )Vol{x e Cn : dist(x,Ker/) > Sy/K) = P { | £ £ ? e . | > e | a r e uniformly 

distributed in [—1,1] independent random variables} < ci exp(—c2er2n). Therefore, "most" of 

the volume of Cn is concentrated near a "small slice" (relative to the diameter). 

Poincaré [Poi] also used, indirectly (at least in 1911), the following similar fact for the 

Euclidean sphere Sn (always equipped in our note with the rotation-invariant probability 

measure fi and the geodesic Euclidean distance p); fixed xo £ 5 n + 1 ; then 

ti{x e S n + 1 : |(x,x 0)| >e}< ^ e x p ( - e

2 n / 2 ) . 

P. Levy [L] (around ~1919) connected this with the isoperimetric property of caps on Sn to 

prove the following theorem. 

Theorem 1.1 (P. Levy). Let A C Sn+1 be a Borei subset, ti{A) > 1/2 and Ae = {x e 

5 n + 1 : p(x, A) < e}. Then fi{Ae) > 1 - y/nJSexp(-e2n/2) -+ 0 for n oo. 

Corollary 1.2 (P. Levy). Let f(x) e C(Sn) be a continuous function on Sn with the modulus 

of continuity Uf(e). Let Lf define the median (Levy mean) of f(x), i.e., 

n{xeSn : f{x)>Lf}>\ and fi{x G Sn : f(x) < Lf} > | . 

Then 

/z{* e Sn :\f(x) - Lf\ > uf(e)} < ^exp(-e2n/2) . 

Interpretation (of P. Levy): functions defined on a high dimensional Euclidean sphere with 

a "good" uniform continuity property (i.e., with a small local oscillation) are "nearly" constant 

with a high probability. 

Levy applied these facts to develop a notion and a theory of a Laplacian operator on 

that is an infinite dimensional Hilbert sphere (called today the Laplace-Lévy operator). 

This direction of application was studied intensively by Shilov and his school, and Polishtchuk, 

Feller, Hida and others (see, e.g., [Hi] and a recent survey [F]). Another line of application, 

also noted by P. Levy, gives descriptions of different compactifications of the Hilbert sphere -

see Grinblat [G]. These applications will not be discussed in this survey. 

First, we develop a general idea of concentration and then we connect it with another 

concept of "spectrum" and outline some applications to geometry, topology and infinite di­

mensional integration. 

274 



THE HERITAGE OF P. LEVY IN GEOMETRICAL FUNCTIONAL ANALYSIS 

2. Levy families; the concentration property 

Let (X,p,/z) be a metric compact set with a metric p, diamX > 1, and a probability 
measure p. Define the concentration function a(X\ e) of X by 

a(X\e) = 1 — inf {/j,(Ae) \ A be a Borel subset of X, fi(A) > |} 

(here Ae = {xeX\ p(s,A) < e}). Theorem 1 implies 
Example 2.1: Let Sn be the Euclidean sphere equipped with the geodesic distance p and the 
rotation-invariant probability measure fxn. Then 

a ( 5 n + 1 ; e) < >/7r/8exp(-e2n/2) —• 0 for n oo 

for any fixed e > 0. 
Following this example, we call a family ( X n , p n , ^ n ) of metric probability spaces a Levy 

family ([Gr.M.l]) if, for any e > 0, ct(Xnie • diamX n) —• 0 for n —• oo, and a normal Levy 
family [Am.M.2] with constant {c\\C2) if, 

a(Xn\e) < Ci exp(—C2£2n) . 

(When the factor diamX n is omitted most of the examples below become normal Levy families 
with their natural metric and natural enumeration.) 

Let / G C(X) be a continuous function on a space X with the modulus of continuity 
u>/(e). As in Corollary 2, define a median Lf (also called a Levy mean) as being a number such 
that »{x e X : f(x) > Lf) > \ and f/,{x G X : f(x) < Lf} > | . Then fi{x : \f(x) - Lf \ < 
Vf{e)} > 1 — 2a(X,e). This means that if a(X,e) is small, then "most" of the measure of X 
is concentrated "around" one value of / (x). 

Comparing the above remark of E. Borel with the definition of a Levy family, we see that 
the concept of a Levy family (and especially a normal Levy family) generalizes the concept 
behind the law of large numbers in two directions: a) the measures are not necessarily the 
product of measures (i.e., no condition of "independence") and b) any Lipschitz function on 
the space is considered instead of linear functional only. 

During the last 10-15 years, many new examples of Levy families have been discovered 
and different techniques of estimating the concentration function have been developed. It still 
surprises me that (normal) Levy families are widespread phenomena and not very rare ones. 
In this section, we mention three more such examples. However, we will analyze them and put 
them in a general framework in section 4. 
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Example 2.2: The family of orthogonal groups {SQ{n)}new equipped with the Riemannian 
metric p (which is equivalent up to w/2 to the Hilbert-Schmidt operator metric) and the 
normalized Haar measure fin: 

a(SO(n);e) < ^ J e x p ( - e

2 n / 8 ) . 

(This follows from Gromov's isoperimetric inequality [Gr], see [Gr.M.l].) 

Example 2.3: If F£ = {—l , l } n has the normalized Hamming metric 

d(M) = -|{«:«#ti}| n 

and the normalized counting measure /z, i.e., /x(A) = |A|/2 n, then 

a(F?;e) < \ exp(-2e:2n) . 

(This follows from the Harper isoperimetric result [H]; see in such form [A.M.I].) 
Example 2.4: The group n n of permutations of { l , . . . , n } with the normalized Hamming 
metric 

d{irun2) = : *Ti(t) ^ T T 2 ( 0 } | 

and the normalized counting measure: 

a(Tln\e) < exp(-e2n/64) 

(B. Maurey [Ma]). 

3. First Geometrical Applications 

We now turn back to an application of the Levy example of Sn. Let / G C(Sn) be a 
continuous function, Wf(e) its modulus of continuity and Lf the median (Levy mean). Let 
A= {xeSn : \f(x) - Lf \ < wf(e)}. By Corollary 1.2, we know that fi(A) > 1 - ^/fe"* 2' 1/ 2. 
Fix xo G Sn and let v define the Haar probability measure on SO(n). Clearly 

v{T G SO{n) : Tx0 G A} = fj,(A) > 1 - yj^e'**"'2 • 

This implies that, for any finite set M C 5 n , /N/ = N, 

v{T G 50(n) : TU C i } > l - N^e-pnt2 . 
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Therefore, if N < y/2/7ree2n/2, we may find a rotation T such that TM is a subset of A. Now, 
we choose M to be an e-net for the unit sphere of some fixed fc-dimensional subspace. This is 
possible for k ~ ce2n/ logl/e (for some numerical constant c > 0). Then TM is again an e-net 
for some great (k — 1)-dimensional sphere and therefore we derived the following result (see 
[Ml]): 

Theorem 3.1. There exists a universal constant c > 0 such that, for every integer n and 
k = [ce2n/ logl/er] and any continuous function f G C(Sn), there exists a great k-dimensional 
sphere Sk C Sn (i.e., the unit sphere of a (k + 1)-dimensional subspace) such that, for any 
xeSk 

\f(x)-Lf\<wf(2s) , 
where Wf(e) is the modulus of continuity of f(x). 

(Recently, Y. Gordon [Gor] removed the logl/e factor in the above formula for k.) 

Using this theorem, we choose a function / in such a way that / = Const, means a given 
geometric property. Then, by the theorem, we find subspaces of large dimension where this 
property is "almost" satisfied. (See [M4] for a number of such applications). 

The estimate on dimension k in the above theorem is important and leads to numerous 
geometric results. As an example, we mention the famous Dvoretzky theorem [Dv] about 
almost euclidean sections of a convex symmetric body in Mn. (This theorem appears in many 
books and surveys, so we will not discuss it here - see, i.e., [FLM], [MSch] or [P]). 

In the following applications we consider functions of a few variables. 
Let Wnik be the Stiefel manifold, i.e., the set of all indexed sets of fc-orthonormal vectors in 

the n-dimensional euclidean space Mn. We introduce in Wn}k the natural Riemannian metric p 
n r ~ ^ — 

induced by the geodesic distance pg on the unit sphere Sn 1 of lRn : p(x,y) = Wj]P g{xi,yi) 2, 
and the normalized (probability) rotation-invariant measure fi (induced by the Haar measure 
on 0(n)). Note that, of course, Wn^ is a homogeneous space 0(n)/0(n — k) and WUti = 5 n _ 1 , 
^n,n_! = SO(n). 

Example 3.2. ([M2]. [GrMl]) a. Fix k > 1; the family {Wntk}n>k is a Levy family. 

Moreover 

ct{Wnfk;e) < ^exp{-e2n/S) . 

b. Let Xn = (Sn)k = Sn x ... x Sn be the product of k spheres Sn equipped with the 
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product measure and the natural Riemannian distance. Then 

a(Xn;e) < y/^j2exp(-e2n/2) . 

In the next section we will see a reason for this fact but here we outline how it can be 
derived from Theorem 1.1 up to different, worse constants. We demonstrate arguments in the 
case Wnt2. 

Realize Wnf2 as a submanifold of the unit sphere 5 2 n _ 1 of 2ra-dimensional space M2n in 
the following manner: Let {efc} 2 n be an orthonormal basis in 2R 2 n, 

z = ^2аквк + 11, аквк = (x; y)e -ZR2n » x = ^2,akek , y = yZ ak*k 

Thus, every z G M2n is mapped onto a pair of vectors x and y of n-dimensional space 2Rn. 
Define two functions on the sphere S2n~l : fi(z) = \\x\\2 — \\y\\2 ; /2(2) = (x,y) where 

2n 
z = {x\y) = ^2<ikek 

k=i 
and the scalar product 

n 
(x, y) = ^ak- an+k . 

1 
It is clear that the manifold M2 = {z G S2n~x : fi(z) = /2(2) = 0} realizes an embedding of 
Wnt2 in the sphere 5 2 n _ 1 . Let us state the basic properties of this realization. 

a) M 2 is invariant relative to a subgroup On of the orthogonal mappings 0(2n) such that 

A0 e On A°(x]y) = [Ax\ Ay), where z = (x; y) € lR2n and A e O(n). 

b) The (2ra —3)-dimensional Lebesgue measure /x on M2 (induced by the Lebesgue measure 

lis on S 2 n _ 1 ) is the Haar measure of the homogeneous space M 2 (= ^ , 2 ) -

c) The value 0 is the Levy mean for the functions /¿(3), * = 1»2. 

d) Let z = (x;y) G 5 2 n _ 1 and |(x,t/)| < • ||y||. Then there exists a unique point 

zo G M 2 closest to z\ it is connected with z by a geodesic normal to M 2 . Denote the set of all 

such z G S , 2 n " 1 by D(z0); we also put De{z0) = {z G D(z0) : Pg{z,z0) < e}, DeT = \J De{z) 

(where T C Af2). It is obvious that if A0 G On and A°zx = z2 {z{ G M 2 ), then A°De(zi) = 

De{z2). 

e) Let T{, % = 1,2, be arbitrary open subsets of M 2 . It follows from a), b) and d) that 

fj,(Ti)/fx{T2) = iis{DeTi)liis{DeT2) for small enough e > 0. 
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Therefore, the measure of subsets of M2 can be evaluated from the measures of the cor­
responding subsets of the sphere . 9 2 n _ 1 . This allows us to apply, in the proof of Example 3.2 
(in the case of WUt2), the similar result for sphere S2n~x - Theorem 1.1 - due to P. Levy. 

We now use Example 3.2 to prove the next results in exactly the same way as Example 
2.1 was used to prove Theorem 3.1. 

Theorem 3.3. 

a. Let f G C(Sn x Sn), i.e., f{x\y) is a continuous function of two variables x and y from 
the euclidean sphere Sn, and let Lf be the median of this function. Then there exist 
k-dimensional subspaces E\ and E2 for 

k > ce2n/ logl/e 

(c is some universal constant) such that 

\f(x;y)-Lf\<wf(s) 

for any x G S(E1) and y G S(E2). 

b. Let f G C(Wnt2). Then there exists a k-dimensional subspace E for 

k > c€2n/ logl/e 

such that 

\f{x;y)-Lf\<wf{e) 
for any x and y from E. (Of course, we have to remember that f is defined only for x and 
y such that \x\ = \y\ = 1 and x _L y.) 

In both the above results, we see that the continuous function / defined on a high di­

mensional "structure" (Sn x Sn in (a.) and WUt2 in (b.)) has the global oscillation on some 

substructures {S(Ei) x S(E2) in (a.) and Wkt2{E) in (b.)), no larger than the local oscil­

lation Wf(e). We will discuss this phenomenon in a general form later, but now we would 

like to understand if Theorem 3.3.a can be improved and, in particular, if the same subspace 

E — Ei = E2 may be found for both variables x and y. An obvious example of the inner prod­

uct f(x,y) = (x,y) shows that this cannot be the case. On any two dimensional subspace the 

inner product f(x,y) changes its values between —1 and 1, i.e., it has oscillation 2. However, 

as the following result shows, this example is, in some sense, the only one. 
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Theorem 3.4. Let f(x;y), x and y G -S n ~ 1 , be a continuous function. Then there exist a 
continuous function (p(i), t G [—1,1] and a k-dimensional subspace E for 

k > ce2n/logl/e 

such that 

\f{x\y)-<p({x,y))\<Wf{2£) 

for any x and y from the unit sphere S(E) for the space E. (Recall that (x, y) means the inner 
product of x and y.) 

This theorem is, indeed, a consequence of Theorem 3.3.b. For a fixed t G (—1,1), we 
consider a generalized Stiefel manifold Wnt2(t) = {(z; y) C S' n ~ 1 : (x,y) = t} and use Theorem 
3.3.b. Indeed, we consider a S-net {tj} C (—1,1) and a family of Stiefel manifolds Wnt2{tj). To 
prove Theorem 3.4 we have to find a subspace E, as in Theorem 3.3.b, which is the same for 
every Wnt2(tj). This follows from a slight improvement of Theorem 3.3.b which states that a 
large measure (meaning an exponentially close to the full measure) of fc-dimensional subspaces 
satisfy the condition of the theorem. 

An important observation behind all the Theorems 3.1, 3.3 and 3.4 is that a function 
with a small local oscillation ("good" modulus of continuity) depends essentially (in the sense 
explained in precise forms in the theorems) on orbits of orthogonal transformations. We see 
this, in the most clear way, in Theorem 3.4: the orbit of a pair of vectors (x;y) C 5 n - 1 , 
x ^ ±y, is a generalized Stiefel manifold Wnt2{t) for t = (x,y). 

We meet such an observation even more often than the phenomenon of concentration and 
we call it a concept of "spectrum" of functions. We discuss this in section 5. 

(The subject of Theorems 3.3 and 3.4 is related to [M2] and [M3].) 

4. General Methods of Analyzing Concentration Property 

We return to the study of a general metric probability space (X, p, fi). As in section 2, 
most of our spaces are compact, however, in a more general framework, we typically need only 
a finite volume, fJ>{X) < oo. Clearly, the main problem in the investigation of concentration 
phenomenon is estimating the concentration function ct(X\ e) (see section 2). We classify below 
different techniques to estimate this function. 
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4.A. Isoperimetric inequalities approach. 

4.A.1 Riemannian case. 

The following comparison theorem of Gromov ([Grl]; see also [GrMl] and [Gr2]) cov­

ers most cases of Riemannian compact manifold with positive Ricci curvature. Let X be a 

connected Riemannian manifold without boundary and let fix be its normalized Riemannian 

volume element. Let R{X) be the Ricci curvature of X. Recall that R(X) = inf r Ric(r, r) 

where r £ T(X) runs over all unit tangent vectors (see [Gr2] for a proof and an explanation of 

all notions involved). 

Theorem. Let AC. X be measurable and let e > 0; then 

ux (Ae) > ux (Be) 

where B is a ball on a sphere r • Sn with n = dimX, and r such that 

R{X)=IHr.S») (= (n-l)/r2) 

and tix{A) = V>(B), p being the normal on r • 5 n . 

The value of R(X), known in some examples (see, e.g., [CE]), together with the compu­

tation for the measure of a cap in Sn (this computation is also reflected in Theorem 1.1) lead 

to the following examples ([GrMl]): 

4.A.2. a. Consider the family of orthogonal groups {5 '0 (n ) } n € ^ equipped with the Hilbert-

Schmidt operator metrics and the Haar normalized measures. Then 

ct(SO{n);e) < y/n/8exp(-e2n/8) . 

(This means, in the language of section 2, that the family {SO(n)} is a normal Levy family 

with constants c\ = y/n/8, c2 = 1/8.) 

b. Similarly for each m the family Xn = Sn x Sn x ... Sn (m — times), n = 1,2,..., with 

the product measure and the metric 

m 
d(x^y) = (X^ p ( X t ' î 2 / t *) 2 ) ' X = (xU-~>xm) i V = (yi,--->2/m) € Xn 

t=l 

(p - the geodesic metric in 5 n ) , is a normal Levy family with constants c\ = y/n/8, c2 = 1/2. 
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c. Note also that homogeneous spaces of SOn inherit the property of being a Levy family. 
Let G be a subgroup of SOn and let V = SOn/G. Let p, be the Haar measure on V and let 
dn be the metric 

dn(t,s) = inf {p(g,h) ; (pg = t , £>/i = s} 

where <p is the quotient map. 

Clearly fi(A C V) = u(cl-1(A) C SO n). By the definition of dn, <p_1(^e) 5 fcp"1^)*. 
Therefore, if fi(A CV)> 1/2, then ii(<p-l{A) C SO n ) > 1/2 and ^(Ae) > |*((^- 1 A) < ). So, 
we have: 

For n = 1,2,..., let Gn be a subgroup of SOn with the metric described above and with 
the normalized Haar measure p,n. Then (SOn/Gnidn,p,n), n — 1,2,..., is a normal Levy 
family with constants c\ = \/7r/8 and c2 = 1/8. 

d. As a consequence, we see that any family of Stiefel manifolds, which we introduced in 
section 3, {^n,fcn}nS=i w i t n 1 < A:n < n, n = 1,2,..., is a normal Levy family with constants 
ci = y/n/& and C2 = 1/8. 

e. Recall that the Grassman manifold Gn,&, 1 < k < n, is a metric space of all k-
dimensional subspaces of Mn with the distance being the Hausdorff distance between the unit 
spheres of the subspaces £ and n: p(^rj) — sup {p(x,5n_1 D £) | x G Sn~x fl rj}. Clearly, 
Gnjjfe is a homogeneous space of O(n) and let p. be the normalized rotation invariant (Haar) 
measure on Gn>fc. Then, again {Gntk,p,p) is a normal Levy family with constants c\ = u/8 
and C2 = 1/8. 

f. Let Vnik = {(£; x) \ £ G Gn>jt and x G 5 n - 1 fl £} be the canonical sphere bundle over the 
Grassman manifold Gn>fc. Vn,k is a homogeneous space of O(n) and therefore we may define a 
natural metric and the normalized Haar measure. Again, any family {Vntkn , 1 < kn < n} n >i 
is a normal Levy family with the same constants ci = \Ar/8 and c2 = 1/8. 

g. Let Tn = (S1)17, be an n-dimensional torus equipped with a Riemannian metric and the 
Haar probability measure. Then there exist universal constants c\ and c2 > 0 such that 

<x{Tn,e) < ci exp(-c2e:2) . 

(Note, that Diam. Tn = ny/n and therefore e > 0 runs up to « ŷ n.) 

The same estimate on the concentration function is true also, of course, for a cube Cn = 

[0, l ] n , equipped with the euclidean metric and the Lebesgue measure. 

The result may be derived from Theorem 4.A.1 (although R(Tn) = 0). However, the 

easiest way to prove it, as noted by G. Pisier, is to use the result 4.A.3 below, for the canonical 
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Gaussian measure 7 on №n. Indeed, there exists a Lipschiptz-1 measure preserving map 
(Rn, y)-f (Cn, Vol). Then, clearly a{Cn;e) < a((Mn,7); e). 

4.A.3 Isoperimetric approach, probabilistic case. 

The isoperimetric problem for the euclidean space Mn, equipped with the canonical Gaus­

sian measure 7, was solved by C. Borell [Bo]. He used the isoperimetric property of caps in Sn, 

i.e., Theorem 1.1 of P. Levy, and the following useful observation of H. Poincare: a Gaussian 

measure in Mn may be viewed as a limit when N —• 00 of measures induced by the orthogonal 

projection MN —• Mn from the rotation-invariant probability measure on y/NSN~1. There­

fore, 

•««••*•> i/2u e-t/2 dt = wr'"-
The direct simple proof of this result with the slightly worse constants due to Maurey and 

Pisier may be found in [P] or [MSch], Appendix 5. 

Note that, in the language of section 2, the above estimate on the concentration function 

means that the family (2Rn,7) is a normal Levy family although JR n is not a compact space 

(even with the infinite diameter). 

4.A.4 Isoperimetric approach; discrete examples. 

We have already mentioned that Example 2.3 is a direct consequence of the solution of 
the isoperimetric problem in F2

n by Harper. For the really simple proof of this fact, see [FF]. A 
far reaching generalization of this isoperimetric problem was considered by Wang-Wang [WW] 
who used a discrete analog of the classical Steiner symmetrization. 

4.A.5 Convex compact sets in № n . 

Consider a fixed convex compact body K C 2Rn equipped with a euclidean metric p and 
the volume probability measure /zVoi (i-e., fiy0\(A) = Vol(A fl K)/ VolK). We know how to 
estimate the concentration function a{K\e) for some special examples (like K = Dn - the 
euclidean ball or K = Cn - the n-dimensional unit cube). However, in a general case, one 
knows only how to estimate a "restricted" concentration function (by restricting infimum on 
convex symmetric subsets of Mn): 

Define 

OL{K\ e) = 1 —inf {/xvoi(Ac) I A be a convex symmetric subset of MN such that /ivoi(^) ^ 1/2}-

The following theorem is a reformulation of C. Borell's [Bo] result in our language (see 

[MSch] App. III). 
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Theorem. There exist universal constants c\ and c2 > 0 such that 

a(K',e) < ci exp(—c2e) . 

(Note, that in many natural examples e varies up to y/n.) 

Indeed, Borell proves a more general statement which involves probability measures on 
Mn satisfying the log-concavity condition: p,(\A + (1 — X)B) > p>(A)xp,(B)1~x. The Brunn-
Minkowski inequality allows us to apply this general fact to A*Vol- Because the Brunn-Minkowski 
inequality is, indeed, an isoperimetric type inequality in JRn, we see again that isoperimetric 
inequalities imply the concentration phenomenon for convex sets in !R n. 

4.A.6. The unit spheres of uniformly convex finite dimensional Banach spaces have a good 
concentration property as was shown in [GrM3], More precisely: 

Let a normed space X = (IRn+1, || • ||) have, for a fixed e > 0, the modulus of convexity at 
least 6(e) > 0. It means that for every two points x, y in X, \\x\\ — ||y|| = 1 and ||x — yj| > e, 

! _ ! ! £ + » ! ! > « ( * ) . 
2 ~ v J 

Also let 6(e) be a monotone (increasing) function. Let K — {x £ 2R n + 1 | < 1} be the unit 
ball of X and S(X) = {x \ \\x\\ — 1} the unit sphere. The standard (n +1)-dimensional volume 
on J R n + 1 induces the probability measure \x on S(X): for any Borel set A C S(X), 

H(A) d = Voln+!(UL4, 0 < t < I)/ Vo\K . 

Theorem ([GrM3]). Let 6x(s) be the modulus of convexity of a normed (n -f 1)-dimensional 

space X and \i be the above probability measure on S(X). Define a(e) = 6((e/8) — 0n) and 

6(0n/4) = 1 - ( l /2) 1 / ( n ~ 1 ) - (ln2)/(n - 1). Then, for every Borel set A C S(X), fi(A) > 1/2, 

and for every e > 0 

H(AS) > 1 - e-'W'1 

where Ae = {x £ S(X) ; p(x,Ae) < e} and p(x,y) = \\x — y\\. (This means that the 

concentration function ct(S(X);e) < exp ( — a(e)n).) 

4.B Probabilistic Methods. 

A concept of concentration was started, as we noted in section 1, from a probabilistic 

observation and the main interpretation is also probabilistic. So, it is only natural that some 

probabilistic methods may be useful in proving a concentration property in some examples. 
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The most developed technique here is a martingale approach which was started by B. Maurey 

on Example 2.4 [Ma] and became a developed method after a series of results of G. Schechtman 

([Schl], [Sch2]; see also [MSch], Chapters 7 and 8) 

4.B.1 Martingale approach. 

Let (H, 7, P) be a probability space, let Q be a sub-<7-algebra of 7 and let / £ Li(Q, 7, P). 

Then fi(A) = JAfdP, A £ defines a measure on Q which is absolutely continuous with 

respect to P \ Q. Consequently, by the Radon-Nikodym Theorem, there exists a unique 

h 6 Li(0, P) such that. JAhdP = fA fdP for all A £ Q. This h is called the conditional 

expectation of / with respect to Q and denoted h = E(f \ Q). 

Given a sequence 7\ C J 2 Q • • • Q 7 of a-algebras, a sequence / i , / 2 , . - . of functions 

£ I,i(n,^i ,P) is said to be a martingale with respect to if E(fi \ 7i-\) = fc-i for 

¿ = 2,3,... 

The following special case is typical for most of the applications: 0 is a finite set, P is the 

normalized counting measure P(A) = |A|/|n|; {fii}k

=i is a sequence of partitions of fi each 

of which refines the previous one; 7i is the algebra generated by Qt-. For a function / on fl, 

E(f | 7i) is simply the function which is constant on atoms of 0,-, the constant on each atom 

is the average value of / on this atom. 

The following deviation inequality (see, e.g., [St.] for this and similar inequalities)plays 

a central role in a martingale approach to the concentration phenomenon. It estimates from 

above the probability of large deviation of a function from its expectation. 

Lemma. Let f £ Loo(n,7,P), 0} = 70 C 7X C .. . C 7n = 7, and put d{ = E(f | 7{) -

E(f | i = 1,.. .,n. Then, for all e > 0, P( | / - Ef\ > e) < 2 e x p ( - e 2 / 4 £ ? = 1 ||d t||^). 

In examples, a "right" chain {7%} of a-algebras gives a "right" algebraic organization of 

a computation. In such a way Examples 2.3 and 2.4 can be proved. We formulate one more 

result which contains both these examples. 

Given a compact metric group G with a translation invariant metric d (i.e., d(g, h) = 

d(rg,rh) = d(gr,hr) for all g,h,r £ G) and a closed subgroup H. One can define a natural 

metric d on G/H by 

d{rH,sH) = d{r,sH) = dis'^H) . 

The translation invariance of d implies that this is actually a metric and that d(r,sH) does 

not depend on the representative r of rH. 
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Theorem, (see, e.g., [M.Sch], Chapter 7). Let G be a group, compact with respect to a 

translation invariant metric d and let \L be the normalized Haar measure on G. Let G — GQ D 

5 ••• ¡5 Gn — {1} be a decreasing sequence of closed subgroups of G. Let ak be the 

diameter of Gk-i/Gk, k = 1 , . . . , n. Then the concentration function 

n 
a{G;s) < 2exp(-e2/16^ 4) . 

k=i 
(We have, in the case of Example 2.4, G = nn, Gk = nn-k, <*k = 2/n, and we derive the 

result.) 

4.B.2. The empirical distribution method; Khinchine-type inequalities. 

A very successful use of concentration phenomenon through an empirical distribution 

approach was demonstrated by G. Schechtman [Sch3] and further developed in [BLM]. We 

outline some remarks from [BLM]. Let be a probability space and let $(t) be a convex 

increasing function on [0, oo) such that $(0) =0 and lim $(t) = oo. We denote by LQ(II) the 

(Orlicz) space of all measurable real-valued functions / on fi such that /n $(|/|/A)<fyi < oo for 

some A > 0 and put 

||/IU*(M) =inf {A > 0 ; / *(|/|/A)d/. < 1} . 
Jn 

Of course the functions tp give rise to the LP(/J) spaces. 

We are concerned here with two more functions 

xpi(t)=et-l , xl)2(t) = e*2 - 1 t>0. 

Lemma. Let {gj}jLx be independent random variables with mean 0 on some probability space 

(0,//). Assume that \\gj\\L+ (p) < M for some constant M and every 1 < j < N. Then, for 

0 < e < 4M, 

Prob | Y^gj- > firjvj < 2exp(-e 2iV/16M 2) . 

If, in addition, ||flfy||L*30i) — M then there exist universal constants c\ > 0 and c2 > 0 such 

that, for any e > 0, 

Prob | ^gj- > e ivj < ci exp{-c2e
2N/M2) . 
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When one usually applies this lemma, we have a function f(t) defined on H and we are 
looking for an approximation of an integral 

£ E l / ( * . O I =* jQ\n*)\Mf) = 1 1 / I U . M • (4-1) 

Indeed, we need to have a good estimate on a measure of such a t = ($t)iLi € ftN that (4.1) 
will hold up to some e > 0. Then we introduce a random variable defined by a function 
g(t) = \ f(t)\ — \\f\\Li(p) a n < i the use of the lemma will now depend on an inequality of the type 

l l / lk , < C\\f\\Ll ( o r | | / | | L , 3 < C | | / | | L l ) . 

Note that these inequalities are equivalent to the following ones: 

ll/IU, < Cp.\\f\\Ll (respectively \\f\\Lp < Ctf\\f\\Lt) 

for all p > 1 and a universal C > 0. We call such inequalities Khinchine-type inequalities 
because of the following simplest of examples due to Khinchine: 1 < p < oo, VAt- € M, 

n n 
( ^ve |X>. -A , -D 1 / P < C • v/p Ave E ± A , | 

C 1 1 
(C is a universal constant). Such inequalities are a much studied subject. They are known in 
different situations by different names (Kahane inequality; Landau-Shepp-Fernique Theorem; 
Marcus-Pisier inequality - see, e.g., [MaP]; in the case of linear functionals / on a convex 
compact body in lRn - see [GrM2]). 

4.C The Laplacian operator approach. 
A unified approach to estimate the concentration function ct(X; e) of a metric probability 

space (X, p, p) involves the first non-trivial eigenvalue of Laplacian-type operators on X. We 
consider separately a smooth (Riemannian) case and a discrete case. 

4.C.1 Riemannian case. 
Consider a compact connected Riemannian manifold M with p. being the normalized Rie­

mannian volume element of M. Then the Laplacian - A on M has its spectrum consisting of 
eigenvalues 0 = Ao < AX(M) < A2(M) — The first non zero eigenvalue Ax may be represented 
by the min-max principle as the largest constant such that 

A i | | / | | i 2 < ( - A / , / ) = / |V / | 2 d M 

for every "sufficiently smooth" function / on M such that fMf = 0. This inequality contains 
an estimate on the concentration function a(M;e): 
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Theorem ([GrMl]). Let (M,p,p) be a compact connected Riemannian manifold (p. the nor­
malized Riemannian volume). Let ACM with a = p,(A) > 0. Then, for all e > 0, 

p,(AE) > 1 - (1 - a 2) exp ( - ey/x[\og{l + a)) . (4.2) 

Therefore, 

a(M,e) < ~exp ( - ey/\x{M) log 3/2) . 

When we apply this theorem to Examples 4.A.2, we see that we indeed obtain worse 
results than using Theorem 4.A.I. (Note that, e.g., Ai(5 n) = n and X\(Tn) = 1.) However, 
in general,the above theorem cannot be essentially improved. We will show this in the next 
discrete case. The examples to come have, in some sense, hyperbolic type, as opposed to 
Examples 4.A.2 which are, in a sense, "elliptic". Non-exactness of (4.2) in all cases of 4.A.2 
may be related to this difference. I don't yet have a correct understanding of this distinction. 

4.C.2 Discrete case. 

A generalization of 4.C.1 to graphs was realized in [A1M1]. We give below (section 4.C.2 
and 4.C.3) a short account of these results. 

Let G = (V,E) be a connected graph on |V| = n vertices. We equip V with the counting 
probability measure p,(A C V) = |A|/|V| and with the path metric: p(x,y) = {the smallest 
number of edges in a path which joins vertices x and y}. Let D be an orientation of G. Let 
C = CT> = (c, v)vEE,vev be the incidence matrix of D, i.e., a matrix with \E\ rows indexed by 
the edges of D and |V| columns indexed by the vertices of D in which c c > w = 1 if v is the head 
of c, —1 if v is the tail of c, and 0 otherwise. 

Define Q = QG = CT • C. Then Q = diag {d(v))veV — AQ, where d(v) is the degree of 
the vertex v G V and AQ is the adjacency matrix of G. Therefore Q is independent of the 
orientation D of G. 

Let L2(V) (L2(E)) denote the space of real valued functions on V (on E) with the usual 
scalar product (/,#) and the usual norm ||/|| = y/{f, f) induced by it. 

Consider the quadratic form (Qf,f) defined on / £ L2(V). Then 

(<?/,/) = (Cf„Cf) = £ (f(e+) - f(e-))2 

eEE 

where e + and e~ denote the head and the tail of the edge e of D. Since G is connected 

we conclude that (Qf,f) > 0 for all / € L2(V) and equality holds iff / is a constant. Let 
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0 = Ao < Ai = Ai(G) < A2 < • • • < An_i be the eigenvalues of Q, each appearing in accordance 

with its multiplicity. 

It is helpful to consider the operator A : L2(V) —> L2(V) as the (minus) Laplace operator 

for the graph G = (V, E). Then the analog of Theorem 4.C.1 may be shown for such a discrete 

Laplace operator. 

Theorem ([Al.M]). Let d = max{d(v) \ v 6 V} be the maximum degree of a vertex of the 

graph G. Then (using the above notations) the concentration function of (V, p,p) is estimated 

by 

<x{V\e) < iexp{-e v/A 172dlog2} . 

(Note that e is an integer in this case and ranges from 1 to the diameter ofV.) 

4.C.3. The most important examples of the use of Theorem 4.C.2 are the so called Cayley 
graphs. Let V be a finite group and S C V some set of generators. Assume S = 5 _ 1 and the 
identity e £ S. We join v and u from V by an edge if u = s~xv for s £ S. Then a path distance 
in such a graph, G = (V; E), is the word distance in V induced by S. The degree d of G is equal 
to |5|. Consider L2(V) and let 7r be the left regular representation of V: n(i)f(v) = f(t~1v). 
So if {et}tev is the natural basis of L2 then n(t)ev = etv and the Lapalcian 

Q = | A | . « - X > M -

This is a self-adjoint operator (note that S = 5 _ 1 ) and Ai(Q) = {|5| - the second largest 
positive eigenvalue of A(G) = ]T 7r(s)} > |5| - ||A| , 0 | | where L2 © {Const.} = L2(V). 

aes 2 

To use Theorem 4.C.2 for a construction of a Levy family of graphs, we have to find 
natural families of groups Vt-, |V| = nt- —> 00, and generators S{ C Vt-, \S{\ = d{ < Const., 
such that ||j4(G t-)|L 0|| < |5 t | — e for some positive fixed e. This brings us to the well-known 
- in Representation Theory - T-property of Kazhdan [Kl] which gives us a number of most 

interesting examples of Levy families. 

Remark. If |V| = n and p(A) < £ then p(A) = 0. This helps us to estimate diamG < 

2[\/2d/Ai log2 n]. So, if Ai(G) > c > 0 and G is, say, 4-regular, then diamG < Clog 2 n and, 

of course, diamG > c\ log2 n. This shows that (4.2) cannot be improved for these series of 

examples. 
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Example. Fix k > 2 and consider a group of matrices SLk{2Z) (of determinant 1 and integer 
entries). Fix a set of generators S = {si,$2,s^1,s^2} (such a set exists), i.e., \S\ = d = 4. Let 
2Zp be the ring mod p > 2 and let 

<pp : SLk(Z) —+ SLk(Zp) (W Vp) 

be the natural surjection. Then <ppS = Sp are generators of Vp which define a word-metric pp. 
Then there exists a numerical constant c > 0 such that the concentration function 

*{Vp;t) < |exp(-c*) 

(the bound does not depend on p). Note also that n = 1 5 X ^ ( ^ ) 1 = p * 2 - 1 and DiamVp ~ 
clogn ^ c(A;) log p. So, taking t being a small portion of diameter t = £logp, we have a very 
strong concentration phenomenon for a family {Vp}. 

Warning. As D. Kazhdan has proved in [Kl], SLk{Z) has the T-property only for k > 3; 
however the above construction works (as was also shown by Kazhdan) even for k = 2. 

Remarks:. The Levy families of graphs constructed above are examples of what is known 
in Combinatorics as families of linear expanders. Expanders, which are the subject of an 
extensive literature, have numerous applications in theoretical computer science, including 
design of various sorting and interconnection networks. See [Al] and its references for more 
details. 

4.C.4. As Theorems 4.C.1 and 4.C.2 show, the concentration property on a Riemannian 
manifold (or a graph) depends on a Ax of a suitable Laplacian. Therefore, all available methods 
for estimation Ai from below may be applied for estimation of the concentration function. This 
brings us to different types of mathematics. I will give one example, elaborated to me by D. 
Kazhdan [K2], which uses a modern knowledge of semisimple Lie groups. 

Example. Consider the group SLn(JR) equipped with the standard Riemannian metric (i.e., 
infinitesimal Hilbert-Schmidt metric) and a Haar measure. Let T be any lattice of SLn(M) 
(for example T = SLn(ZZ)). Consider the Riemannian manifold (of a finite volume) M = 
r/SLn(R). Then Ai > cn3 (for some universal constant c > 0). Therefore 

a(M]e)£>exp(—cen3/2) . 
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5. The Concept of a Spectrum 

We have already noted in section 3 that the concept of concentration is often applied in 
geometry through another concept of "spectrum" of uniformly continuous functions on high 
dimensional structures. 

It will be easier to emphasize the main idea in an infinite dimensional language. 

5.1. Let X be an infinite dimensional Banach space, S = S(X) = {x G X \ \\x\\ = 1} and 
let UC(S) be the space of all uniformly continuous real valued functions on S. If / G UC(S) 
then a G M belongs to the spectrum S (/) of the function / iff for every e > 0 and every n G IN 
there exists a subspace E <̂ -> X, dimJ£ = n and \f(x) - a\ < e for any xe S HE. 

Theorem [M6]. For every f G UC(S), the spectrum S(f) ^ 0. 

Remarks. 1. In the case of X = H being an infinite dimensional Hilbert space, this is an 

immediate consequence of Theorem 3.1. 

2. Some applications of this theorem to Geometry of Normed Spaces, see [M4]. 

We describe a few more examples in the same spirit. Let S°° = S (£2). 

5.2. Let WQO,2 = {(^;y) I x and y G S°° and x ± y} be a 2-Stiefel manifold; then we may 
define, in a similar way, the spectrum S(f) for / G UC(Woof2): a € № belongs to the spectrum 
S(f) of the function / iff for every € > 0 and every n G IN there exists a subspace E ¿2, 

dimE = n and \f(x, y)-a\<e for any x G 5°° fl E and y G S°° fl E. 

Theorem [M3]. For every f G UC(W00f2)J the spectrum S{f) ^ 0 . 

(Clearly, this is a consequence of Theorem 3.3.b.) 

Similarly, we could define a spectrum of a uniformly continuous function of two variables 

/ G UC(S°° x S°°) and the statement $(f) ^ 0 would be, in this case, an interpretation of 

Theorem 3.3.a. 

In the definition of the spectrum of functions defined on WQQJ (and S°° x S°°) , we did 

not emphasize the role of groups which act on these manifolds. However, the fact that these 

were homogeneous spaces, i.e., suitable groups act transitively, was crucially important when 

we defined a point of the spectrum as a number. 

5.3. If, for example, we consider in the second case of 5°° x S°° an action in S°° x 5°° of 

another group G = {(T]T) , T G U(S°°) - a unitary operator in ¿2}, then G does not act 

transitively on 5°° x S°°. Therefore, the spectrum S(G; f) of a uniformly continuous function 

/ G UC(S°° x S°°) with respect to the action G consists in this case of continuous functions 
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<p(t) of a parameter t G [—1,1] which determines different orbits of the action G. This is an 
interpretation of Theorem 3.4. 

The main observation behind the notion of spectrum is that uniformly continuous functions 
on infinite dimensional G-spaces depend "essentially" only on orbits of an action G. Of course 
we may interpret differently the word "essentially". An interpretation by measure will bring 
us back to the Levy family-notion. However, considering substructures (say, linear subspaces 
in 5.1-5.2) where a function is "almost" constant we come to the concept of spectrum. (This 
notion is discussed in [M3], [M4] and, in a more general context of G-spaces, in [GrMl] - see 
5.6 below. For the case of Riemannian manifolds - see Gromov [Gr3].) Note that the well 
known Ramsey type theorems in Combinatorics are very close in spirit to the discussed notion 
of spectrum. 

5.4. The next example (from [GrMl]) will be used in topological applications. Define Gk{H) 
the Grassmann manifold of A;-dimensional subspaces of an infinite dimensional Hilbert space 
H and let S°° = S(H) be the unit sphere of H (i.e., S°° = {x G H \ \x\ = 1}. Consider 
^oo,* = {(£* x ) I £ € Gk{H) , x G i fl 5 °°} - the canonical sphere bundle over Grassmannian. 
Let / : Voo,* —• JR be a uniformly continuous function (/ G UC(Vootk)). We say that a G 1R is 
from the spectrum S(f) iff for every n G IN, n > k, and any € > 0 there exists an n-dimensional 
subspace E «—• H such that 

| / ( £ ; s ) - a | < e 

for every € Vn>fc(i£), i.e., for every fc-dimensional subspace £ E and any x G £, |x| = 1. 
Again, we have 

Theorem. For every f G tfCfVoo^), t£e spectrum S(f) ^ 0. 

This result follows from a concentration propery of a family {Vntk}n>k - see example 
4.A.2f. 

5.5 G-spaces. Consider a metric space X with a uniformly continuous action of a group 

G. Let G = U G n where Gn C G n +i are subgroups of G. Following [GrMl] we call G-space 

[X] G) Levy if there is a sequence of G"n-invariant probability measures \in on A such that 

{Yn = X,fin} is a Levy family. Assume in addition that X is the closure of | J Xn, Xn C X, 
n>l 

/xn is supported by Xn and G n acts transitively on Xn. To describe a few typical examples, 

we consider an infinite dimensional Hilbert space H with an orthonormal basis {e{}f2=l. Let 

the orthogonal group SO(n) be realized as unitary operators on H which are the identity on 
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span{et}t>n. Then SO(n) C SO(n +1), n e N. Define G = SO(oo) d= |J SO(n) equipped 
with the Hilbert-Schmidt operator metric. In all the following examples Gn = SO(n) and 
G = SO(oo). 

a. X=S°° and Xn = 5(span{e t-}?)(= 5 n " 1 ) 

b. X = Wk(H) - fc-Stiefel manifold (i.e., the manifold of all indexed sets of k orthonormal 

vectors from H with the metric described in section 3); Xn = ^fc( sP a n{ c»}£=i) (= ^n,k)> 

c. X = Gk{H) - the Grassmann manifold of A;-dimensional subspaces of H\ Xn = GH)k = 

Gn.JbCspanfcJJLj. 

5.6 Spectrum of functions on G-spaces. Let / : X —• M be a uniformly continuous 
function on X, i.e., / G UC(X). We say that a number a G № is from t/ie spectrum of / iff, 
for every e > 0 and for every n, there exists g G G such that |/(x) — a| < e for every x G ^X n. 

Theorem ([GrMl]). J / (X;G) is a Levy G-space and {Gn}n>i are compact groups, then for 
any bounded uniformly continuous function f : X —• M the spectrum of f is not empty. 

5.7. Some generalizations to a Riemannian case were shown by Gromov ([Gr3], section 9). 
We give an example of such a result. 

Let V be a complete Riemannian manifold of dimension > n and let a locally compact 
group G act isometrically on V. Consider a Lipschitz map / : V —• X onto an m-dimensional 
subset of Riemannian manifold X. We denote 

Lip(/) = s u p l d i s t t / ^ ^ / ^ J / d i s t t * ! , ^ ) } 

the Lipschitz constant of the map / (= Dil/ in Gromov's terminology). 

Theorem ([Gr3],section 9.3). Let either the group G be amenable or the function f be invari­
ant under a discrete subgroup T C G for which the quotient V/T has subexponential growth.* 
Then, for every (q + l)-points set K C V, there exists g G G such that we have, for a translate 
K0 — gK, 

Osc/ | K o < Lip(/) • (Diam K)y/qm/n . 

(Therefore, if the dimension nofV is much larger than the dimension m of the image Imf, 

then oscillation of f on some translate of K is very small.) 

* We say that a Riemannian manifold M (in our case V/T) has subexponential growth if 

the function <p(p) = Vol(*)^ has subexponential growth. (Here (*)p means the /̂ neighborhood 

of the point (*).) 
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5.8 Historical notes. The concept of spectrum first appeared in [M5] and was later 

developed in [M6] and [M3]. It was called, at that stage, (*)-spectrum (or finite dimensional 

spectrum) and the term "spectrum" was kept for an infinite-dimensional analog. However, 

it was (and is) a problem if any uniformly continuous function /(x) on 5°° = S(H) has a 

non-empty infinite-dimensional spectrum. This means: 

Does there exist a € M such that for any e > 0 there exists an infinite-

dimensional subspace E of a Hilbert space H, such that \f(x) — a\ < e for any 

x€ S°°UE1 

(In a slightly different but equivalent form it is known today as the "distortion problem" 

for ¿2) Because this main fact of the theory could not be proved, a term (infinite-dimensional) 

"spectrum" became obsolete and then, with time, we dropped (*) and started to define "spec­

trum" as it is defined in this paper. 

It is also curious to note a geometric problem, the solution of which first pointed towards 

the concept of spectrum and made use of the Levy concentration property of spheres. 

Let X be an infinite dimensional Banach space and x G S(X), i.e., ||x|| = 1. Is it true that 

for any n G IN and A > 0 

inf sup{||x + y\\ I y G En , ||y|| = A} < sup inf{||x + y\\ \ y G En , = A} ? 
Bn a subspace En*-*X dim En=n dim En = n. 

The positive answer [M7] was obtained using the following lemma: 

Lemma. For any x G S(X), any A > 0, n G IN and e > 0 there exists an n-dimensional 

subspace En such that a function f(y) = ||x + y|| has an oscillation osc{ f(y) | y G En , = 

A} < e. 

Clearly, the Lemma follows immediatly from Theorem 5.1. 

6. Applications to Topology and Fixed Point Theorems 

Results of this section were originated in [GrMl]. We start with an interpretation of 

Theorem 5.4 in the case S(f) = {0}. 

6.1 Corollary. Let f : VQO,* —• JR be a uniformly continuous function. If for every k-

dimensional subspace £ H there exists x$ G £, |x |̂ = 1, such that /(£,x^) = 0 then for any 

e > 0 there exists a subspace fe G Gk{H) such that |/(£«,x)| < € for every x G f«, |x| = 1. 
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Clearly, this statement has a topological spirit. Indeed, nonexistence of a uniformly con­

tinuous section <p : Gk{H) —• Voo,fc is an immediate consequence: 

If such a uniformly map <p exists then consider Mi = {(£, x = £>(£))}£eGK(H) c ôo,* a n < ^ 

M2 = {(£, — £>(£)) }^ C VQQ̂ ; the distance between sets M\ and M2 is positive and therefore, 

by Urysohn's Theorem, there exists a uniformly continuous function, such that /(Mi) = 0 and 

f(M2) = 1 which contradicts Corollary 6.1. 

Of course, it is well known that even a continuous section does not exist in this example. 

However, such an approach leads to a general fact which we describe next. 

6.2 The bundle sections. Let [X\ G) be a Levy G-space and Y a compact G-space. If G 

acts freely on X we have a natural fibration ( I x Y)/G —> X/G with fiber Y (use a diagonal 

action in X x Y : (x;y)g = (xg,g~1y)). Let G act equicontinuously on X. Then 

Theorem. The uniformly continuous section X/G —• (X xY)/G exists only in the trivial 

case of existence of a common fixed point of G onY. 

In the example described in 6.1, we have X = Wk(H), G = 0{k) - the orthogonal group 
and Y = S * - 1 . As it is clear from the Theorem, we could take instead of fiber any 
compact 0(A:)-space Y where O(k) acts without common fixed point. 

6.3 Fixed point theorems. The next general fact shows that a concentration property of 
a space puts a limitation on an equicontinuous action in this space. 

6.3.a Theorem. Let (X, G) be a Levy G-space, X-compact and G act equicontinuously on 
X. Then there is x € X which is fixed under the action of G. 

In a proof of the next, more concrete, fact the concentration property of the family of 
sphere {Sn} is used together with the spectral theorem for a unitary operator: 

6.3.b Theorem. Let K be a Hausdorff compact space and Ai : K —• K - continuous maps. 

If there exist a uniformly continuous map <p : S°° —> K and pair-wise commutative unitary 

operators U{ : S°° —> 5°° such that (pU{ = A^p (i.e., we have commutative diagrams) then 

there exists a common fixed point XQ = A{XQ (i's run through any set of indices). 

To describe the main idea behing this kind of application of Levy families, we introduce 
an infinite dimensional analog of the concentration property. 
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6.4 Concentration property of infinite dimensional G-space. Let M be a metric 
space (with a metric p) and let G be a family of uniformly equicontinuous maps from M to M. 
This means that there exists a continuous function u(e) (defined for e > 0), u;(0) = 0, such 
that p(gx, gy) < u(p(x,y)) for any x,y G M and any g EG. 

We say that a subset A C Mis essential (with respect to the action of G) iff, for every 
e > 0 and every finite subset {<7i,...,g n} C G, 

П OiA. ф 0 

where A 8 = { i G M : p(a;,A) < e}. 
The idea behing the notion of "essential" set is, clearly, some kind of substitution for 

sets of full (or "almost" full) measures in the finite dimensional case. Note, that in all our 
applications we used sets of "almost" full measures - "random" subsets. So, essential sets are, 
indeed, "random" subsets of infinite dimensional manifolds. 

Definition. The pair (M, G) has the property of concentration iff for every finite covering 
N 

M = (J Mi 9 M{ C My there exists M t 0 which is essential (for the action of G). 
l 

A map <p : M —• K from a metric space M to a compact K is called uniformly continuous 
if for any closed subset A C K and any open neighborhood O(A) there exists e > 0 such that 
<P{\V-\A)\.) C 0(A). 
Theorem. Consider a pair (M, G) with the property of concentration and a compact K. Let 
<p : M —> K and ga : M —• M, {<7a}a€A C G, be uniformly continuous maps and let continuous 
maps {Aa : K —> if} a G A be such that <pga = Aa<p for a £ A. Then there exists x0 G K such 
that Aaxo = XQ for every a G A. 

To apply this theorem, we have to have a developed method to check that a pair (M, G) 
has a concentration property. Unfortunately, the only known way to check a concentration 
property is through concentration of a measure phenomenon. In such a way we establish the 
following examples. 

Examples. 
A. Let H be an infinite dimensional Hilbert space and {ei}'jl1 an orthonormal basis of H. 

Let, as in 5.5, the orthogonal group SO(n) be realized as unitary operators on H which 
are the identity on span{e t } t > n . then SO(n) C SO(n + 1), n G W. We consider M = 
G = SO(oo) ^ f (J SO(n) with the Hilbert-Schmidt operator metric p on M. Then: 

n>l 
(M, G) has the concentration property . 
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B. Let 5°° = {x G H ; \x\ = 1} be the unit sphere of the Hilbert space H with the standard 
euclidean distance. Then 

(S°°,G = 50(00)) has the concentration property . 

C. Let u be any unitary operator on H and G = {un}^L_OQ. Then 

(S°°,G) has the concentration property . 

D. Let M be a family of pairwise commuting unitary operators in H. Then 

(S°°, M) has the concentration property . 

Indeed every Levy family of spaces corresponds to some space with the concentration 
property in the above sense. However, we don't know any answer for the following question. 

Problem. Let U be the group of all unitary operators H —• H, dim IT = 00. Does (S°°, U) 
have the concentration property? 

More details on the subject of this subsection and proofs may be found in [M8] where a 
finite dimensional version of fixed point theorems 6.3 and of this subsection are also discussed. 

7. Averages of Uniformly Continuous Functions on Infinite Dimensional Manifolds 

In this final section, I would like to show how the notion of spectrum, developed in sections 
3 and 5, can be used for the original Levy purpose - to define an Average of a uniformly 
continuous function f(x) on 5°°. 

Let e = {et"}i° be an orthonormal basis of H, En = span{e t}J and the unit sphere 
S(En) = S°° fl En = 5 n _ 1 . Define Lf(n) = Lfign_l the Levy mean of f(x) restricted on 
Sn~K 

If there exists limL/(x) d= Lf(e) we may consider it to be an average of the function / 
on S°°. Clearly, it depends on the basis e. 

Important remark. Let / G UC(S°°), i.e., / is a uniformly continuous function defined 

on S°°. Then Lf(e) exists for any orthonormal basis e iff the spectrum S(f) is a single point: 

S(f) = {a}. Clearly, in this case, that limit is independent of a basis e and Lf(e) = a = 

Ave{f(x) I x G 5°°} . We may describe this observation in other terms. Fix an orthonormal 
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basis co; then any other orthonormal basis c is the unitary rotation of eb : c = Tcb for a unitary 
operator T. Therefore, if we want the average Lf(e~o) to be invariant with respect to any 
unitary transformation (i.e., Lf(e~o) = LfoT^o) = Lf(Te0)), then, automatically, S(f) = {a} 
and Lf = a. 

We see that the algebra of uniformly continuous functions on S00 having the spectrum 
consisting of a single value coincides with the class of functions having an invariant average with 
respect to any unitary rotation. So, the following criterion on a function to have a single-valued 
spectrum may be useful. 

Proposition. Let f G UC(S°°); S(f) = {a} iff for every e > 0 there exists n € IN such that 
for any n-dimensional subspace E, 

inf{|/(x) - a\ : x G E fl S°°} < e . 

In a more general framework, we may be interested in a notion of an average of a function 
invariant with respect to a subgroup G of the unitary group U{H) of a space H. Then, 
similarly, the spectrum on orbits of the action of G has to be a single point. For example, let 
H = Hi © #2, and i : H\ —• H% an isometry. Define groups 

Gx = {(A-,B) I A e U{HX), B e u(H2)} , 

i.e., T € Gi iff T(xi;x2) = (Axx\Bx2) where xk 6 Hk, k = 1,2, and 

G2 = {(A]iA)\AeU{H1)} . 

Then the orbits of the action G\ are r\S°° x r2S00-manifolds (r\ + r | = ||x||2 where x = 

(xi\x2) G H) and the spectrum from 5.2 has to be used. The orbits of the action G2 are 

^00,2-manifolds and again 5.2 has to be used. 

If we consider a function of two variables f(x,y), x E S°°, y G then a unitary 

tranformation preserves the inner probuct t = (x,y) and the orbits are generalized Stiefel 

manifolds, as in Theorem 3.4 and 5.3. 

In all of these cases there exists an easy criterion on functions to have the spectrum 

consisting of a single value, similar to the above proposition. 

More information on this subject and a few concrete integral formulas may be found in 

[M2], [M3]. 
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