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Recent progress in rigorous percolation theory 

by Harry KESTEN 

Abstract : We discuss some recent results in (Bernoulli) 

percolation. In particular these include 

(i) p^, = Pjj. This equality (proved in [1] and [21]) between 

two differently defined critical probabilities solves one of the 

major problems of the subject. 

(ii) Uniqueness of infinite clusters. With probability one 

there exists at most one infinite open cluster; this holds in 

independent models in any dimension. 

(iii) Scaling relations for two-dimensional percolation. 

Some relations between the singularities of various quantities 

near the critical probability can be proven; these show that in 

two dimensions most of the conjectured scaling relations between 

critical exponents have to be true, provided the critical 

exponents exist. 

1. The simplest model. The simplest percolation model is bond  

percolation on . In this model each bond (also called edge) of 

1^ is open with probability p and closed with probability 
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q := 1-p; all bonds are independent of each other. will 

denote the corresponding product measure on configurations of open 

and closed bonds, and will denote expectation with respect to 

Pp. An open path is a path on 1^ all of whose edges are open. 

An open cluster is a maximal set of vertices of any two of 

which are connected by an open path. We shall write W for the 

open cluster containing 0, the origin, and |w | for the number 

of vertices in C. 

This model is of interest, especially to statistical 

physicists, because it exhibits a so-called phase transition. For 

small values of p there are no infinite open clusters, while for 

large values of p such infinite open clusters do occur. In the 

latter case we also say that the system percolates or that 

percolation occurs. The value of p where the transition between 

these two phases takes place is called the critical probability, 

P c . Thus, if we define the percolation probability as 

0(P) = P p { I w I = » } , 

then 

p c = P C ( Z D ) = sup{p : e(p) = 0}. 

0 ( # ) is believed to have a graph as shown in Fig. 1. 
e ( p ) + 

o P C l P-> 

Fig. 1. General features of the graph of ©(•)• 

218 



RECENT PROGRESS IN RIGOROUS PERCOLATION THEORY 

Broadbent and Hammersley ([5], [15]), the originators of the 

subject, proved already in 1959 that 0 < p c < 1 so that both 

phases indeed occur. Much of the early work in percolation (see 

for instance [16], [28], [23], [25], [17], [32]) consisted of 

attempts to find p c exactly. Sykes and Essam, [28], gave an 

incomplete argument for 

(1) P C ( Z 2 ) = \ . 

but this was rigorously proved in 1980 ([17]). 
2 

A key step in the proof of* (1) was to show that p (Z ) 
2 

equals another critical probability Pj(Z ) which is defined as 

follows (for general dimension d ) : 

X(P) = E p { | w | } , 

P T = P T ( 2 d ) = sup{p :x(p) = o o } . 

Note that for p > p ^ c 

\(p) > °°.Pp{ |W| = co} = o o . e(p) = oo 

so that always p^, < p . In addition the proof of (1) relied 

heavily on graph duality, which restricted the method very much to 

two dimensions. p c ( Z d ) is still unknown for d > 3. 
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l2. Generalizations and equality of critical probabilities. It 

is easy to replace Z d by a general graph *5 in the above. Here 

we deal only with periodic graphs, i.e., graphs which can be 

imbedded in R d, such that they are (i) invariant under 

translations by any of the coordinate vectors, (ii) have only 

finitely many vertices and (iii) the maximal degree of the 

vertices is bounded. See [18, Sec. 2.1] for details. In bond  

percolation on *3 the edges of ^ are independently open with 

probability p. In site percolation on ^ the sites of ^ are 

independently open with probability p. In the latter case one 

calls a path on ^ open if all its sites are open. With this 

modification all the previous definitions carry over without 

difficulty. It is not hard to see ([18, Sect. 2.5, 3.1] and its 

references) that bond percolation on <5 is equivalent to site 

percolation on the so-called covering graph or line graph of ^. 

However, site percolation on ^ is in general not equivalent to 

bond percolation with independent bonds on another graph. Thus, 

as long as we stay in the class of independent percolation 

problems, as we do here, then site percolation is more general 

than bond percolation. 

For very few examples is p c known. It has been proven (cf. 

[18, Sect. 3.4] and the references cited there) 

(2) P c(Z d,bond) = p c ( t r iangu lar la 1 1 i ce , s i te ) = g-, 

(3) P c( triangular lat t i ce , bond) = 2 sin yg-, 

(4) P c(hexagonal lattice,bond) = 1 - 2 sin yg-. 

2 2 0 
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(The triangular and hexagonal lattice are represented in Fig. 2 ) . 
o 

However p (Z .site) is unknown (it is > 0.503478; [30]) and 

mm 
Fig. 2. Illustrations of the triangular and hexagonal lattices. 

P c ( Z d ) is unknown for the bond and site problem when d > 3. In 

fact (2)-(4) rely heavily on duality for two dimensional graphs, 

as well as special symmetry properties of the graphs in question, 

and we do not know how to find p c for any graph in dimension 

> 3. Even though there is little hope of finding general methods 

to evaluate p c one has been able to prove the first basic 

ingredient for the results (2)-(4) in complete generality. The 

following theorem, proved independently by Menshikov, Molchanov 

and Sidorenko [21] and Aizenman and Barsky [1]. represents the 

most important progress in percolation in many years. It uses new 

tools which do not depend on properties of the plane, but hold in 

all dimensions. 

(5) Theorem. For any periodic graph <5 

P T( (5,bond) = p c(^,bond) 

and 
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P T( (5,site) = p c( <5,site). 

In fact [21] and [1] prove a more general result in which not 

all bonds or sites have the same probability of being open, and 

for the bond problem one may even allow the degrees of the 

vertices to be infinite. 

A remarkable consequence of Theorem 5 and earlier work ([3], 

[18, Theorem 5.1]) is that for p < P c the distribution of |w| 

must decay exponentially, i.e., for p < p c there exist constants 

0 < C i(p) < « such that 

(6) P p{|w| I n} < C i e x p ( - C 2 n ) . 

For the experts we point out that the results of [1] and [21] 

even give us something new when d = 2. This is so because [1] 

and [21] make no symmetry requirements on the percolation problem 

(in contrast to [18, Ch. 3]). In particular it can be used to 

prove that for the three parameter bond percolation problem on the 

triangular lattice - with probabilities p^, Pg and p^ for 

bonds in the three directions to be open, respectively (cf. [18], 

pp. 58-62 and 380-381) - percolation will occur if and only if 

(7) P j + p 2 + p 3 - P 1 P 2 P 3 > 1. 

This condition was already conjectured by Sykes and Essam [28]. 

In [18, Ch. 12] this was listed as the first open problem and it 

was shown that (7) is a necessary condition for infinite open 

clusters to occur. (The proof used Theorem 12.1 which was given 

without proof in [18], but a proof of a more general result will 

appear in [13].) To see that (7) is also sufficient, we note that 
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if p = ( P j . P 2 . P 3 ) lies in the surface 

^ : = { P 1 . P 2 » P 3
: 0 < Pi < 1 • p l + p 2 + p 3 ~ p l p 2 P 3 = t h e n b v T h e o r e m 

12.1 of [18] infinitely many open circuits surround the origin 

with P— -probability one. Here, P— is the obvious product 

measure on open and closed bonds; see [18, Sect. 3.2] for details. 

But if there is an open circuit through the point (n,0) which 

surrounds 0, then the open cluster of (n,0) contains at least 

n edges. Thus, by the Bore1-Cante11i lemma the occurrence of 

infinitely many open circuits implies 

2 P-{ IW I > n} = -. 

and a fortiori (6) with p replaced by p cannot hold (compare 

proof of Prop. 1 in [23]). By the multiparameter version of 

Theorem 5 tells us that if the distribution of |w | does not fall 

of exponentially for a given p then for any e > 0 and 

p(e) = (l+e)p = ((1+eJPj,(l+e)p 2,(l+e)p 3) there do exist infinite 

open clusters under the measure ^ p ( e ) * * n particular, when (7) 

holds, we can write p = (p^.p^.p^) = (l+fc)p for some e > 0 and 

p € so that there is percolation when (7) is satisfied. 

3. Uniqueness of infinite clusters and continuity of the  

percolation probability. Harris [16] and Fisher [10] proved early 

on that on many two dimensional graphs there occurs w.p.l at most 

one infinite open cluster. Again the proof was tied to properties 

of the plane and it was not clear whether this result also held in 

higher dimensions. The next theorem of [2] proves this uniqueness 

in general. The proof has been considerably simplified in [12]. 

2 2 3 
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(8) Theorem. For any periodic graph <5 and any p there exist  

(a.e. [P p]) at most one infinite open cluster. 

As with (5) the theorem holds more generally than for 

periodic and one can even allow some dependence (see [11]). 

By an argument of van den Berg and Keane [31], (8) 

immediately implies the following 

(9) Theorem. For any periodic graph *5 the function p -» 0(p) 

is continuous except possibly at the point p c . 

It is easy to see ([23]) that 0 ( # ) is always right 

continuous, so that continuity of 9 ( # ) at p c is equivalent to 

0(p c) = 0 (as we have drawn the graph in Fig. 1 ) . For some two 

dimensional graphs this is known to hold (cf. [24], [18, Sect. 

3.3]) but it is still an open problem whether e ( P c ) = 0 i n 

general (this is even unknown for site or bond percolation on 1^ 

when d > 3 ) . (It is known that O(') can have a jump 

discontinuity at p c in so-called long range percolation problems 

in dimension one; cf. [4].) 

4. Power laws and scaling relations. The most important open 

problems concern the singularity of various functions at or near 

P c« It is believed that many quantities behave like powers of 

(p-p c) or n (cf. [14], [26], [27]). As a specific example, we 

mention the conjecture 

(10) e ( P ) = p p { | w | = » } ~ ( P - P C ) P . P I P C . 
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for some 0 < /3 < 1 . Here and in the relations below 

A(p) ~ B(p), respectively A(n) ~ B(n), means 

log M P ) i a s p -> p , respectively log M N ) -» l as n -* ». log B(p) K *c* K J log B(n) 

A further conjecture is that for some nr > 0 

(11) X
f ( p ) == E p { | W | ; | w | < «>} = } n P p { | w | = n} 

n<°° 

~ | P " P C 1 " ^ . P -* P c -

f 
It is still debated whether the behavior of \ (p) is different 

on the two sides of p c . Some people believe that two exponents 

nr+ and nr_ should be used in (11), the first for p i p c and 

the second for p f p c . For brevity we list here only the simpler 

versions of such "power laws", without distinguishing the approach 

to p c from the right and from the left. Sykes and Essam [28] 

introduced the number of clusters per site 

-C(P) - I J P p { | w | = n>. 
1 

This function plays a role very similar to the free energy in 

statistical mechanics, and it is believed that 

(12) K M ,(p) ~ | p - P c l ~ 1 ~ a . P -» P c , for some -1 < a < 0 . 

A crucial role is played by the correlation length f(p). It is 

believed that this is the single length scale of importance. When 
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everything is measured in this length scale, then most quantities 

should become independent of the detailed structure of , but 

should depend only on the dimension of Alternative heuristic 

descriptions of f(p) are "the diameter of a typical finite 

cluster" or "the minimal length at which one can see a difference 

in the connectivity picture at p from that at p c " (see for 

instance [6], [14], [22], [26]). The last description can be 

justified a bit more. Define 

T(p,x,y) = Pp{^ open path from x to y but |w | < °°} . 

Subadditivity arguments (see [6, Prop. 2.9] and [9]) show that for 

all p there exists a C(p) < » such that 

T(p,0.(n,0 0)) 2 exp(-n C(p)). 

Thus, in first order, the connectivity probability r does not 

become very small until n is much larger than [C(p)] 

Unfortunately we can only prove C(p) > 0 when p < p c or p 

close to 1. (For p < p c this is immediate from (6).) In this 

case one can take [C(p)] * as the definition of f(p). Whatever 

definition one adopts for f(p), it is believed that 

(13) f(p) ~ IP~P CI V for some v > 0. 

(10)-(13) are so-called power laws in (p ~ P c ) - Other 

conjectured power laws deal with behavior at p c« For instance it 

is conjectured that for suitable 0 < 6 < » and TJ 

(14) P {|W| I n) « n _ 1 / 6 , 
*c 

226 



RECENT PROGRESS IN RIGOROUS PERCOLATION THEORY 

(15) T ( p c . O , x ) * | x | 2 - d - n 

The a, ¡3, nr.... appearing in these relations are called cr i t ical  

exponents. 

None of the above power laws have been proven for periodic 

graphs, but they are supported by simulations and experimental 

evidence for other systems which undergo phase transitions. It is 

perhaps the principal open problem to establish such power laws. 

So far only power bounds have been established for many of the 

above quantities (see [1], [3], [7], [18, Ch. 8]). 

Another important feature of the conjectures here is the 

universality hypothesis. As mentioned, it is believed that on a 

certain scale only the dimension of ^, and not its fine 

structure, is important. Correspondingly, it is believed that the 

critical exponents depend on the dimension of ^ only. For 

instance for the bond and site problems on the square, triangular 

and hexagonal lattice we should find the same values for 

a,/3,... . If correct, this property should make the critical 

exponents more significant than the value of p c (which is not 

universal, cf. (2)-(4)), and perhaps also easier to find. In fact 

specific values have been proposed for the two-dimensional 

critical exponents (see [27] and its references). 

The attempts to justify the power laws and universality go by 

the name of scaling theory. One of the predictions of this theory 

are the so-called scaling relations 

(16) 2-a = T+2P = P(6+l). 
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Somewhat more controversial are the hyperscaling relations which 

say that for d less than or equal to the critical dimension 

d c = 6 all members of (16) equal di> and 

(17) „ = 2 _ d . 

For d > 6 the exponents are supposed to become independent of d 

as well, and then their values are the so-called mean field  

values. which are the values of these exponents when *S is a 

homogeneous tree, or Bethe tree (-n is somewhat exceptional; its 

mean field value is not defined by means of percolation on the 

tree). A Bethe tree is not a periodic graph in for any 

finite d, but it plays the role of an infinite dimensional graph. 

On such a tree one can prove the power laws and calculate the 

critical exponents (cf. [14, Ch. 7] and its references). The 

values of the critical exponents on the tree have been proven to 

be one-sided bounds for their values on periodic graphs (provided 

the latter exist) in a number of cases ([1], [3] , [7]). 

H. Tasaki ([29]), and independently J. T. Chayes and L. 

Chayes [8], have shown that the critical dimension d c ha£s to be 

at least 6. More specifically they prove various inequalities 

which show that if the various power laws hold with the mean field 

exponents, and if the scaling and hyperscaling relations hold, 

then one cannot have d < 6. 

Despite the conjectured state of much of this section we have 

made progress on the scaling relations when d = 2. In [19] and 

[20] we have proved the following result. 
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2 

(18) Theorem. For bond and site percolation on Z , i f the  

critical exponents exist, then all the scaling relations (16) and  

the hyperscaling relations, including (17). hold, with the  

possible exception of relations involving a. 

In fact [19] and [20] derive various relations between 0, 
f 

X , T, etc. without any hypotheses on the existence of critical 

exponents. If one adds to this the assumptions (13) and (15) then 

(for d = 2) the other power laws with the right exponent follow, 

with the exception of (12). We have essentially no results for 

a, except that K is twice differentiable with K" Lipschitz 

continuous on all of [0,1], including at p c . (This corresponds 

to a < 0. ) 
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