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EXPOSÉ n°V 

THE BERNSTEIN-OSSERMAN-XAVIER THEOREMS 

Donald B. O'SHEA 

I. INTRODUCTION. 

The classical Bernstein theorem is the following. 

THEOREM 1(Bernstein [3]). If f : H -> R is a C -function whose graph is a mini-
mal surface, then f is linear. 

This theorem provides a lovely example of a striking, non-trivial statement 
about a partial differential equation. For the condition that the graph of a C -
function f : U -> E. , where U <= ]Rn is a domain, be minimal is that f satisfy 
the minimal surface equation 

n r, n n 
(2) (1 + Z |D.f| ) Z D. .f - I (D.f)-(D.f)D. .f = 0 

i=l 1 j=l J'J i,j=l 1 J X'J 

for all x G U . Here, D.f = 3f/3x. and D. .f = D.(D.f) . The Bernstein theorem 
asserts that when n = 2 the only global solutions (i.e. for which U = ]R ) are the 
trivial (i.e. linear) ones. This is all the more surprising because a modest amount 
of ingenuity supplies non-trivial local solutions. For example, it was observed 
classically that the functions obtained by setting f(x ,̂X2) equal to tan (—) 

-1 /2—T COS X2 X]~ 
or cosh (vx+xj or log( ) satisfy (1) over their domains of definition. 1 2 to cos x̂  J 
The corresponding minimal surfaces are known as the helicoid, the catenoid and 
Scherk's surface, respectively. 

So striking is the Bernstein theorem, that oneneeds scarcely say that many 
mathematician-hours have been devoted to generalizing i t . The question of whether 
it generalizes to functions f : ]Rn -» E. or, alternatively, whether every function 
f satisfying (1) for all x £ Rn is linear, has come to be known as the codimen-
sion-one Bernstein problem. De Giorgi [8] settled the case n = 3 , Almgren [2] 
the case n = 4 , and Simons [19] the cases n = 5,6,7 of this problem affirma­
tively. It came, therefore, as somewhat of a surprise to the mathematical community 
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when Bombieri, de Giorgi and Giusti [4] constructed non-linear global solutions to 
(1) for all n > 7 . Both [4] and [19] made decisive use of ideas due to Fleming 
[9]. Subsequently, the Schoen-Simon -Yau estimates [18] have unified to some extent 
the treatment of the codimension-one Bernstein problem in the cases n < 7 . For an 
account of the proof that every entire function satisfying (1) with n < 5 is 
linear from this latter point of view, we refer the reader to Lawson's lectures 
[13]. 

There is, of course, no reason to restrict oneself to attempting to generalize 
the Bernstein theorem to functions from R to R . At the opposite extreme, one 
might ask whether a suitable analogue of the theorem holds for functions 

f : R -»R .In this case, if we write f = (f^,...,f^) , set 
D.f = (D.f ,...,D.f. ) for i = 1,2 and interpret (D.f)-(D.f) as the scalar pro-l i l i k i j 
duct of the vectors D̂ f and D̂ f , then the condition that the graph of f be a 
minimal surface is precisely the condition that f satisfy (1) with n = 2 . Here, 
(1) is a vector equation representing a system of k scalar equations for the 
k-functions f̂ ,...,f̂ _ . (As in the codimens ion-one case, the equations (1) come 
from computing the Euler-Lagrange equations for the area integral - see, for exam­
ple, Osserman [17,§3].) Now, if k = 2m is even and if f : R̂  -» R̂m is complex 
analytic when viewed as a function from (C to Q)n , then an easy computation 
establishes that f satisfies (1). Hence, the graph of f is minimal. Alternative­
ly, observe that the graph of a complex analytic function from £ to (Cm is a 
complex submanifold of the Káhler manifold £m+ and, hence, minimal (see, for 
example, Lawson [12, p.36]). At first blush, this would seem to indicate that any 
attempt to generalize Bernstein's theorem to functions f : R - » R . , k > 1 , is 
doomed to barrenness. Nothing could be further from the truth, for it is in precise­
ly this case that the impulse to generalization has borne the most fruit, resulting 
in theorems set apart by their rich geometrical content and graced by a beauty all 
their own. 

Nirenberg first conjectured that Bernstein's theorem might generalize to the 
statement that the set of positively oriented unit normals to a complete, regular, 
simply-connected minimal surface M in R is dense in the unit sphere unless M 
is a plane. Notice that this statement immediately implies Bernstein's theorem 
because the graph of a function f : R -> ]R is certainly simply-connected and the 
set of unit normals to M is necessarily contained in a hemisphere. Osserman proved 
Nirenberg's conjecture in [14] and subsequently removed the hypothesis of simple 
connectivity in [15]. Osserman further generalized his result in [16], proving that 
the set of normals to a regular, complete minimal surface M c= R. , which is not 
a plane, cannot omit a neighbourhood of some direction. Chern and Osserman sharpened 
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this result in [7] by exploiting the notion of the generalized Gauss map which 
Chern had introduced in [6]. Among other things, the latter provided a convenient 
set of spaces in which to speak of the density of the set of normals and allowed one 
to keep track of orientation. 

Osserman's theorems immediately raise the question of the size of the set 
omitted by the normals to a complete, non-planar minimal surface. Osserman proved 
in [15] that, in the classical case M c: ]R , the set of points on the sphere omit­
ted by the set of oriented, unit normals to M had logarithmic capacity zero. The 
latter result sti l l did not exclude the possibility that the set of omitted points 
could be infinite, a state of affairs that persisted for ten years until Xavier 
showed in [21] that the set of omitted points was finite and, in fact, less than 
seven. At present, it is s t i l l an open question as to whether there exists a com-
plete, minimal surface in R. , other than a plane, whose set of unit oriented no 
mals omit more than four points on the unit sphere. 

In what follows, we give an exposition of this set of ideas including a com­
plete proof of Xavier's result. The author has relied heavily on the excellent ex­
positions of Lawson [12] and Osserman [17], to which the reader is referred for 
related results. The author is grateful to C. Margerin, B. Lawson,and D. Hoffman 
for comments on the subject matter of this manuscript. He thanks I.H.E.S. for its 
support and hospitality during the preparation of this paper. He was also supported 
by a NATO grant from the Natural Sciences and Engineering Council of Canada and a 
grant from the National Science Foundation. 

II. THE GENERALIZED GAUSS MAP. 
We begin with some general remarks on immersions of surfaces into ]Rn . We then 

introduce the notion of the generalized Gauss map. The latter is a natural global 
object associated with an immersed surface and, as much, affords not only a conve­
nient technical tool, but a genuine mean to understanding the nature of the surface. 

Let y : M E be an immersion on an oriented, two-dimensional C manifold 
with k _> 2 .We take the metric on M to be that induced from Hn by ^ 

Choose an oriented atlas on M representing the given C structure. Then, 
each point p € M possesses a chart (0,h,U) consisting of a neighbourhood 0 of 
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p in M and a homeomorphism h : 0 -» u » where U is a domain in IR . The theo­
rem about the existence of isothermal parameters (see, for example, [5]) asserts 
that if k > 2 , then each point p possesses a chart, again denoted (0,h,U) , 
compatible with the original atlas with the further property that = ̂ °h ^ is 
conformal as a map U -> H . Given two charts (0.,h.,U.) which are C compatible 
with the original atlas on M -and such that . = lF°h. : U. 3R , i = 1,2 , are 
conformal, it is evident that the transition functions h.°h. , 1 < i,j < 2 are 
conformal or anticonformal where defined. Since M is oriented, these latter two 
remarks mean that we can replace our original C -atlas on M with a compatible 
atlas A = ((0 ,h ,U )} , where a runs over some index set, which is i) conformal a' a' a ' ' 
(in the sense that the transition functions h °h are conformal where defined) 
and such that ii) ^ = ̂ oh : U -> H is conformal for every a . If we view 
the U as domains in £ , then it is easy to see that the transition functions 
are in fact holomorphic and we have, therefore, established the following. 

PROPOSITION 3 . Let y : M -> R.n be an immersion of an oriented, two-dimensional 
C manifold M into JR . I f k > 2 and M is given the Riemannian metric 
induced by y , then there exists a complex-analytic structure A on M which is   ^ _ . . — 
C compatible with the original differentiable structure on M and with respect 
to which M is a Riemann surface and ¥ a conformal map. 

Let A be as above and fix a chart (0,h,u) € A . The induced metric is 
ds = Z g..dx.dx. where g.. = (D ) • (D .ib) and ijj = ¥ °h . The map is • •-, eiJ i J ij i J 
conformal if and only if ds = X(dx̂ +dx̂ ) where A = X(x̂ ,x̂ ) > 0 ; that is, if 
and only if g ^ = ĝ 2 = A , and = 0 . Now, view U as a domain in (C , and 
set z = x̂  + ix^ and D = (D -̂iD )̂ . The conditions on the ĝ_. can be rewritten 
as conditions on the map cp = Dxp : U -> £n as follows. 

PROPOSITION 4 . Let ¥ : M -> 3Rn and A be as in proposition 1. If (0,h,u) is 
any chart in A , then the function cp = Dip : U -> £n , where \p = ¥ °h , sat is-
f ies 

4. i) cp'cp = 0 , and 
4. ii) 2|cp| 2 = X > 0 

where the induced metric is given by 
2 2 i.iii) ds = xldzl 

Condition4 , ii)merely expresses the fact that »u IR is conformal and condition 
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4.iii) the fact that ¥ is a regular immersion. 

Starting with the immersion ¥ : M •+ ]Rn , we get a complex structure 
A : {(0 ,h ,U )} on M and, hence, a family {cp : U •> (Cn) of maps by setting a a a a a 

= y°h 1 and <p = .Each to satisfies equations 4ii) and 4. i i i ) . Since this a a a a a 
family was manufactured out of a global object, namely ¥ , it is natural to ask 
whether the family represents the local data corresponding to some global 
object defined independently of a particular set of coordinates. This is, indeed, 
the case and we shall see below (Proposition 6) that the appropriate global object 
is the Gauss map. 

Given an immersion ¥ : M ->• E.n as in Proposition 1, define the generalized  
Gauss map G to be the map which assigns to each point p € M , the oriented tan­
gent space T̂M to M at p viewed as a linear subspace of E.n . Thus, G is a 
map from M to GQ(2,n) where GQ(2,n) denotes the Grassmannian space of oriented, 
two-dimensional subspaces of H . The map G obviously does not depend on the 
choice of coordinates on M . 

The space GQ(2,n) can be naturally identified with another space which 
carries a canonical complex structure. To see how this works, observe that an orient­
ed plane T c: E.n can be viewed as a complex line in (En . Choose {u,v} , where 
u,v £ Hn , to be an oriented orthonormal basis of T and defined X(T) to be the 
complex line spanned by the vector u-iv € £n . If {u',vT} is any other oriented 
orthonormal basis of T , then e (u-iv) = u'-iv' for some 0 £ 6 < 2TT . Thus, 
the map T -> A(T) is well-defined and induces a map K : GQ(2,n) -> ICPn 1 . 

The map K is clearly injective. It is not surjective since any line in (Cn 
which is the image of a plane in Hn must be spanned by a vector w € (Dn of the 
form w = u-iv , where u and v are orthogonal vectors in ]Rn . In other words, 
if w = (w, , .. . ,w ) , the components must satisfy the equation w«w = w..+»«»+w =0. 
Viewing (w^,...,wn) as homogeneous coordinates on C ]P , we see that the image 
of k lies on the hypersurface Q _9 c <EPn 1 defined by the equation 
2 2 . n Z ŵ +*««+wn = 0 . It is easy to check that the map k : Go(2,n) -> Q̂ _2 is bijective. 

In what follows, if w € (En-0 , we let [w] denote the point in CPR 1 with 
homogeneous coordinates w = (w^,.. .^ ) . Thus, if T € G (2,n) and u,v is any 
oriented orthogonal basis with ||u|| = ||v|| , we have 

(5) k(T) = [u-iv] . 

Since Qn_2 inherits a natural complex structure as a submanifold of (CPn ^ , 
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it will be convenient to work with the following definition. 

Def inition. If V : M -> E.n is an immersion (M as in Proposition 1) , then the 
(generalized) Gauss map $ : M -> QR_2 ŝ tne maP ^ E K°G • 

Notice that 0 depends only on the immersion ¥ : M -> Hn and is defined indepen­
dently of any coordinate system. However, $ has a particularly nice representation 
with respect to any chart (0,h,U) belonging to the complex structure A given by 
proposition 1. This is so because the fact that ijj : U -> E.n is conformal means 
that, for any £ 6 U , the vectors D̂ip (C) and D^ (̂c) are of equal length and 
form an oriented orthogonal basis of T M . Recall that we have set 

1 . h (C) 
cp = — (D î̂ -iD^̂ ) . Comparing with (5) gives the following result. 

PROPOSITION 6 . Let ¥ : M -> Rn be an immersion and <2> : M + Q 0 the associated   ^n-z 
Gauss map. Let ¥ and A be as in Proposition 1, and suppose that (0,h,U) is_ 
any chart in a . If <j> = $°h : U -> Qn_2 denotes the local representative of 
<f> , then <J> = [cp] (where cp = Dip and = V°h 1) . 

Thus, the family of maps {cp̂  : •> £n} , defined earlier, just represents 
the Gauss map $ with respect to the conformal atlas A on M and homogeneous 
coordinates on (EPn ^ . 

Now,let us make the additional assumption that ¥ : M -* ]Rn is a minimal 
immersion. Let A be the complex structure given by Proposition 1. Then ¥ is 
minimal if any only if, for every chart (0,h,U) in A , the map \p = y°h ^ is 
harmonic (see [12, p.13] or [17, p.29]). Since the Laplace-Beltrami operator is 
-i D(Di|>) with respect to the induce metric A.iii)^ the map \p is minimal if and only A 
if D(Dip) = 0 and, hence, if and only if cp = Dip is analytic. Applying Proposition 6 
and the fact that the map (Cn-0 -> (EPn ^ given by z -> [z] is holomorphic clearly 
establishes the following. 

PROPOSITION 7 . If_ ^ : M -> ]Rn is a minimal immersion, then the Gauss map 
$ : M ->- Qn_2 is holomorphic where M is given the complex structure that makes 
¥ conformal with respect to the metric on M induced by ¥ and QR_2 the complex 
structure it inherits as a complex submanifold of (CPn ^ . 

The converse of Proposition 7 also holds and is a pleasant exercise using the 
local representation of <±> (Proposition 6 ) and the definition of the complex 
structure on (EPn ^ . For details, see [11, p.9]. 

In view of Proposition 6 and the definition of the operator D , Proposition 7 
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is just a more global reformulation of the classical result that an immersed surface 
S in ]Rn is minimal if and only if the restrictions of the coordinate functions 
on E.n to S are harmonic functions of any local isothermal parameters on S . 

In the literature, the conjugate $ = K°G of 0 is often referred to as the 
(generalized) Gauss map. This is because GQ(2,n) has a natural Riemannian struc­
ture as a symmetric space (see [6]) with respect to which the map K is conformal. 
However, the price paid for preferring a conformal to an anticonformal identifica­
tion of G (2,n) with Q _„ is an antiholomorphic Gauss map. 

III. OSSERMAN'S THEOREM. 
We now want to prove Osserman's generalization of Bernstein's theorem. 

THEOREM8(0sserman [16]). If the normals to a complete minimal surface in ]Rn omit  
a neighbourhood of some direction, then the surface is a plane. 

The proof will proceed in several steps. We retain the notation of parts I 
and II. 

a) We first interpret the hypothesis of Osserman's theorem in terms of the 
Gauss map. Suppose that the surface is given by a minimal immersion ¥ : M -> ]Rn , 
and let A be the complex structure on M given by proposition 1. Fix p £ M and 
a chart (0,h,U) in A such that p € 0 . A vector v € E.n is normal to M at p 
if and only if vD î(i = v D ^ = 0 (where = V°h ̂ ) or, equivalently, VDIJJ = 0, 
the partials being evaluated at h(p) . By proposition 6 9 v = (v^,...,v^) is normal 
to T M if and only if $(p) satisfies the equation v1w., + '*-+v w =0 where p J r l i n n 
w, , . . . ,w are homogeneous coordinates on (CP . Thus, v = (v, ,. . . ,v ) is nor-
mal to M at some point if and only if the image of $ meets the hyperplane 
v. w.. +• • • +v w =0 . 

On the other hand, to say that the normals to M omit a neighbourhood of some 
direction v is to say that the cosine of the angle between any tangent vector w 
to M and v is uniformly bounded away from zero by some e > 0 : 

(9) lv;,v|, 11 > e > o . 
II v|| II w || -

If the above holds for every w € Hn tangent to M , it certainly holds for every 
w = -i (u-iu') E (En where u,u' G ]Rn are orthogonal and both tangent to M , and 
hence, for every w £ £n such that [w] = $(p) for some p € M . Thus, the hypo­
thesis of Osserman's theorem can be rephrased as : 
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(*) There exists v € Hn and e > 0 such that (9) holds for any w £ £n 
such that w = (w^,...,w ) are homogeneous coordinates for some point in the  
image $(M) of the Gauss map. 

3) Now, observe, that we can pass to the universal cover TT : M •> M where 
M is simply connected and IT a local homeomorphism. The complex structure on M 
making ¥ : M -> E.n a conformal map lifts via IT to a complex structure on M 
making ^ ~ V ° TT : M -> E.n a conformal immersion. Moreover , ¥ is minimal if and 
only if ¥ : M -> E.n is minimal. It is clear from proposition 6 that the image of 
the Gauss map 0 coincides with the image of 0 and, hence, that $ satisfies 
hypothesis (*) on M if and only if $ satisfies (*) on M . Finally, it is easy 
to check that the induced metric on M is complete if and only if that on M is 
complete. 

y) By the Koebe uniformization theorem (see, for example, [1]), M is confor-
mally equivalent to either the unit sphere S , the open disk A = {z f_. (C : |z|<l}, 
or the complex plane (C . The first possibility is ruled out because a minimal sur­
face cannot be compact. Thus, upon passing to the universal cover we obtain a mini­
mal (conformal) immersion a) V : A -> H or b) V : (E -> E. . In both cases, we 
have a global parametrization. 

Our strategy will be to show that the theorem holds in case b) (step 6 ) and 
to show that case a) cannot arise, because it contradicts completeness (step e) . 

6) Suppose that passing to the universal cover gives a minimal (conformal) 
immersion ¥ : (E -> lRn . We have the Gauss map $(z) = [tp(z)] , where cp = , 
defined for every z £ (C . Set cp = (ip1 , .. . ,cp ) . Choose a unit vector v and a 
number e satisfying hypothesis (*). For each k , 1 < k < n , the entire function 
tp̂ ./(v«cp) satisfies the inequality |cp^|/|vcp| < |tp|/|vtp| < 1/e and is, therefore, 
a constant, say c^, by Liouville's theorem. Thus 

cp(z) = (vcp(z)) (c1,. .. ,cn) 

for all z £ (L . Taking the image in (EPn ^ , we get $(z) = [c^,...,c^] for all 
z £ (E . Thus, the Gauss map $ is constant and, hence, the Gauss map $ of 
y : M -> ]Rn is constant. Thus, the image of M (under has the same tangent 
plane everywhere. Since M is complete, (̂M) must be a plane. 

e) We now show that passing to the universal cover cannot give a minimal 
immersion ¥ : A •> E.n and, so, complete the proof of Osserman's theorem. We formu­
late the main point as a lemma. 
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LEMMA 10. If_ ¥ : A -> IRn is a minimal, conformal immersion and if the Gauss map 
§ satisfies (*), then the metric on A is incomplete. 

Proof of lemma 1. We show that the metric is incomplete by finding a path a 
joining the origin of A to a point on the boundary 3A for which Ja^s < 00 , 
where ds is the arclength with respect to the metric. 

By proposition 6, the Gauss map $ is given by $(z) = [cp(z)] , for all 
z £ A , where cp = .By proposition 3, ds = A | dz | where 2|cp| = A .By 
hypothesis (*), there exists a unit vector v and an e > 0 such that 
I v,cP| /1| cp|| _>e>0 at every z C A . Thus, for any path in A , we have 

Jads = /aAldz| = /2/a|«p| |dz| <^la|v-cp| |dz| . 

Define w = f(z) = J vcp(c)d£ • The function w is holomorphic, non-constant, 
and f'(z) 4 0 for any z € A (because vcp(z) 4 0 for any z € A) . 

Thus, we have an inverse function z = h(w) defined in a disk about w = 0 . 
Let R be the radius of the largest such disk. Because |h(w)| < 1 , we have 
R < 00 (otherwise, Liouville's theorem would force h to be a constant). Thus, 
there exists a point ŵ  with |w | = R with the property that h cannot be 
extended throughout a neighbourhood of ŵ  . Let L = {tw : 0 < t < 1} and set 
a = h(L) . Then, a is an analytic curve in A beginning at 0 and going to c»A 
(if a does not go to 3A , there would exist a sequence of points on a converg­
ing to a point z € A for which w = f(z ) ; but, since fT(z ) 4 0 , h 

would extend throughout a neighbourhood of Wq) . Moreover, 

J |v(p| |dz| = / |xW| |dz| = J |dw| = R . 'a ;a dz" 1 J 1 1 

Thus, a has length less than or equal to /TR'/E . Since this is finite, the 
metric on A is not complete and the lemma is proved. 

Thus, if we start with a minimal immersion ¥ : M •> 3Rn satisfying (*) , and if 
passing to the universal cover gives ¥ : A -> ]Rn where A is conformally equiva­
lent to M , then the metric on M is not complete. Thus, the metric on M cannot 
be complete and this establishes Osserman's theorem." 

REMARK. Notice that the statement we have given of Osserman's theorem does not 
immediately imply Bernstein's theorem when specialized to n = 3 . For it does not 
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rule out, as possible candidates for minimal surfaces, graphs of functions with the 
property that the set of all oriented (say "upwards") unit normals is dense in a 
hemisphere. The set of all unit normals (that is, both "upwards"- and "downwards"-
pointing normals) to such a graph would be dense in the sphere. Fortunately, we 
have actually proved somewhat more than we stated. To see this, observe that we 
never used the fact that v ERD in hypothesis (*). All details of the proof carry 
through without change upon assuming that v 6 £n . This remark, together with the 
comments in step a) of the proof, allow us to rephrase what we have proved as follows 

THEOREM 11 . (0sserman-Chern[7]) . If_ V : M -» Rn is a complete minimal surface which  
is not a plane, then the Gauss map 0 meets a dense set of hyperplanes. 

Because the Gauss map involves oriented tangent spaces, this latter statement 
does imply the Bernstein theorem when n = 3 . In fact, it is easy to see that when 
n = 3 , it actually implies that the image of the Gauss map is dense in the conic 

c: (CP . We have already seen that there is a continuous bisection between 
and GQ(2,3) and, since there are obviously continuous bisections between GQ(2,3), 
the set G (1 ,3) of oriented lines or normals in R̂  , and the unit sphere , 
we conclude that the set of oriented normals to a complete minimal surface in ]R 
is dense in S . This clearly implies the Bernstein theorem. 

IV. THE CLASSICAL GAUSS MAP. 
We now turn to the question of the size of the set omitted by the normals to a 

3 
complete, minimal surface. We restrict our attention to surfaces immersed in R As always, if ¥ : M -> R is the immersion, we suppose that M is an oriented C 
manifold, k >̂  2 , endowed with the Riemannian metric induced by y . I n the case 
of immersions m R , it is more convenient to define the Gauss map directly in 
terms of the normals to the surface. 

Definition 12.Let ¥ : M -> R be an immersion. If S denotes the unit sphere in 
]R , then the classical Gauss map N : M -> S is the map which assigns to each 

p £ M the oriented unit normal to M at p , viewed as an element of S 

For future use, we want to establish some of the properties of the classical 
Gauss map N . We do this by first establishing a relationship between N and the 
generalized Gauss map $ . 

Suppose that w = (w ,w?,w .̂) are homogeneous coordinates of a point on 
Q-j c CP . Then, we have seen that w = u-iv where u,v £ R are orthogonal and 
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and 11 UL11 = || vll . The unit oriented normal to the plane spanned by {u,v} is 
just ———— , where u x v denotes the usual vector product of u and v in 

3 lluxvH 
~R . Since u and v are orthogonal, ||uxv|| = ||u|| ||v|| . Since 
I) w 11 2 = || u 11 2+ ||v|| 2 and || u 11 = ||v|| , we have ||uxv|| = ||w|| 2/2 . On the 

other hand, u x v = Re(w) x (-lm(w)) = ~(w+w) x (w-w) = ^((w x w) - (w x w)) = 
= - -̂ (w x w) , where we have formally extended the vector product on E.̂  to . 
Thus, if w = (w,,w9,w«) are homogeneous coordinates of points on Q and S 
is the unit sphere centered at the origin in E. , define the map v : -> S by 

(13) v : „ + - A ^ - . 
Ilwll 2 

2 
(Observe that ||w x w|| = 2 ||u x v|| = ||w|| because w € Q , so that 

v(w) £ S ; moreover, v (w) = v(cw) for any c € (E , so that v does not depend 
on the choice of homogeneous coordinates for a point). 

Note also that if $(p) = [w] for some p € M and if we write w = u-iv 
as above, then u and v can be thought of as orthogonal vectors in T M . Thus, 
v(w) is the unit normal to M at p . This remark clearly proves the following. 

PROPOSITION 14. If_ ¥ : M ]R is an immersion, then the classical Gauss map  

N : M S is related to the generalized Gauss map <J> : M -> by the formula 

(15) N = 

where v : -> S is the map defined by (13). 

Relation (15) holds independently of the choice of local coordinates on M . 
In conjunction with proposition 6 , it implies that N has a nice expression in 
terms of the complex structure given by proposition 1. 

PROPOSITION 16. Let y : M -> ]R be an immersion and let A be the complex  
structure on M given by proposition 1. If (0,h,U) is any chart in A , then 

(17) n ^ W 1 - ^ * 
Ml2 

where [cp] = $oh ^ 

Now, suppose that ¥ is minimal, so that $ is holomorphic. We want to 
show that N is holomorphic. The reader may enjoy proving this directly by 
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2 showing that v is holomorphic, where the complex structure on S is the standard 
one given by stereographic projection onto the complex plane. We follow a slightly 
different approach which will allow us to introduce the very useful Weierstrass 
representation of a minimal surface. 

PROPOSITION 18. Let U be a domain in (C . If_ g is an arbitrary meromorphic  
function in U and f an analytic function in U , which has a zero of order 2m 
at each point where g has a pole of order m , then the functions 

(19) ipx = \ f(1-g2) , cp2 = | f(1+g2) , cp3 = fg 

will be analytic in U and satisfy cp.cp = 0 where cp = (cp̂  jCp̂  ,cp̂ ) . Conversely, 
every triple cp = (cp ĵtp ĵ̂ ) of analytic functions on U , satisfying cp-cp = 0 , 
can be represented in the form (19) except for cp̂  = icp̂  , cp̂  = 0 . 

Proof. That the functions (19) satisfy cp«cp =0 is a straightforward computation. 
Conversely, given f and g one sets 

(20) f = (fL-iip. "1 ""2 ' 6 <p,-i«P, • 
^3 2 . . . 

A short computation yields the relation (p̂  + itp̂  = - ^ _̂  = -fg , which implies 
(19) and shows the necessity of the condition on the ^ ^ zeroes of f and the 
poles of g . The relation (20) fails only when cp̂  E icp̂  , in which case (p̂  = 0 . 
This completes the proof. • 

In practice, the exceptional case cp̂  = 0 of the above can always be avoided. 
For ,the functions cp = (cp̂  ,cp̂  >cp̂ ) will always arise as the local expression of 
$ with respect to a chart (0,h,u) of the complex structure A on M making 
¥ : M -> H a conformai map . I f cp = 0 , then ¥(0) c H lies on the plane 
x̂  = 0 . This can easily be avoided by rotating the coordinates in H 

Proposition 18 means that for any choice of f and g as above, we can think 
of a : C (f(c)»g(c)) + (cp-j (C ) »cp2 (C ) ,cp3 (c) ) as giving an (analytic) parametri-
zation of . Since, again by proposition 18,every analytic parametrization of 

Q1 (with one exception, which is easily handled separately) can be written in this 
form, to show that n is holomorphic when cp is, it suffices to show that for any 

a , as above, the composition (E + Q ^ Ŝ  -2 (L is meromorphic. Here, a : Ŝ  •> (C 
is stereographic projection from a point, say (0,0,1) , of S and we are using 
the elementary fact that the standard complex structure on S is defined so that 
the analytic functions on S are precisely those that correspond to meromorphic 
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functions on Œ U {°°} under stereographic projection. 

If (a^.a^.a^) is a point on S , then an easy computation shows that the 
image of (a^,a2,a^) under stereographic projection a from (0,0,1) to the 
plane = 0 with complex coordinate z = x̂ +ix̂  is given by 

Via2 
(21) a(a1,a2,a3) = 1 - A3. 

We now compute a°v°a . By (10), we have -i(ipxcp) = |f|^(1+|g|^)(Re(g),Im(g), 
1 2 2 1 2 2 2 
2"(|g| ~D) and IMI = 2"lfl ( 1+ i g I ) • Taking the quotient gives an expression 
for v°a . Using (12), we get a^v°a(c) = g(ç) • This, together with proposition 2, 
implies the following. 

PROPOSITION 22. Let ¥ : M -> R be a minimal immersion and let (0,h,U) be a chart  
of the complex structure A given by proposition 1. Define f and g as in (2Q )  
(where [cp] = $°h . Then 

(23) a°n = g 

where n = №h and a : S -> C is stereographic projection from the point 
(0,0,1) € S . The induced metric is given by ds = Adz where 

(24) A = |f |2(l+|g|2)2 . 

Proposition 22and the remarks following proposition 18 allow us to assert the 
following 

PROPOSITION 24. If_ ¥ : M -> ]R is a minimal immersion, then the classical Gauss  

map N:M -> S is holomorphic where M is given the complex structure making Y 

conformai and S the usual complex structure induced from Œ by stereographic  
projection. 

As in proposition 7, we have obtained a holomorphic (instead of antiholomor-
phic) Gauss map at the price of an anticonformal identification. Here, the map a , 
defined by (21), is anticonformal with respect to the Riemannian structure on S 

induced from 1R 
We remark that propositions 18 and 22 are exceedingly valuable in the (classical) 

theory of minimal surfaces. For example, using the fact that a simply connected 
minimal surface in E. can be reconstructed from its Gauss map, we can find many 
examples of minimal surfaces by choosing f and g appropriately. For details, 
see [12] and [17]. 
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V. XAVIER'S THEOREM. 
We now prove Xavier's theorem. 

THEOREM 25.(Xavier[21]).Let ¥ : M •> R be a regular minimal immersion whose image 
is not a plane. If the induced metric on M is complete, then the image of the  

Gauss map N : M S cannot omit seven points or more. 
The proof follows the same general outline as the proof of Osserman's theorem. 

As in steps 3) and y)of the latter, we pass to the universal cover IT : M -> M to 
get a minimal immersion ¥ : (E -> E. or ^ : A H , according to whether M is 
conformally equivalent to (E or A .We show that the theorem holds in the former 
case,and that the latter case cannot arise because it contradicts completeness. 
Again, we break the proof into several steps. 

а) We now show that the theorem holds when M is conformally equivalent to 
(E . By the remarks in step 3)of the proof of Osserman's theorem, this will clearly 
follow from the lemma below. 

LEMMA 6. If_ y : C -> ]R is a minimal conformal immersion and if the induced  
metric on (C is complete, then the image of the Gauss map N omits at most two  
points, unless the image of ¥ is a plane. 

Proof. Set cp = . I f cp̂  = icp2 , cp̂  E 0 where cp = (cp̂  ,cp2 ,cp̂ ) , then the X3 
coordinate on is constant on (̂(C) and, by completeness, the image of ¥ 
must be a plane. Otherwise, define g as in (20). The function g is meromorphic 
and defined on the entire plane. By Picard's theorem, g omits at most two points. 
Since g = an (proposition 22) , the same is true of n and this completes the 
proof. • 

б) In view of the above, we can restrict our attention to the case when M is 
conformally equivalent to the unit disk A . Since the image of the Gauss map on 
the universal cover A coincides with the image of the Gauss map on M, and since 
M is complete if and only if A is complete, we may as well assume that M = A 

and let \\) : A -> E. be the minimal conformal immersion. We then have globally para­
metrized Gauss maps $ = $ = [cp] and N = n on A .We define g as in (20). 
The formula g = an (proposit ion 22) shows that the poles of g occur exactly 
where n takes the value (0,0,1) . Since we subsequently assume that n omits 
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3 seven points, we can assume by rotating coordinates in R , that (0,0,1) is one 
of the omitted points and, hence, that g is analytic on A (and omits six points 
on (C) . Thus to prove Xavier's theorem, we need only establish the following. 

LEMMA 27. Let ¥ : A -> R be a minimal conformal immersion and suppose that 
g = n is analytic on A and omits six distinct points of (E . Then the induced 
metric on A is not complete. 

y)To prove lemma 27, we will need some device which allows us to determine 
when a metric on A is incomplete. In the proof of Osserman's theorem, we used the 
fact that completeness implies that the arclengths of curves starting in D and 
ending at 3D are infinite, and we produced a curve of this sort for which the 
arclength was finite. To prove Xavier's result, we use a more delicate criterion, 
due to Yau, which states that completeness implies that the result of integrating 
certain functions over the entire space (in our case, A ) is infinite and we pro­
duce a function of the required type whose integral is finite. Yau's result is the 
following (we state it without proof). 

LEMMA 2&(Yau [22, theorem l]) . Let M be a complete Riemannian manifold with  
infinite volume and let u be a non-negative function with the property that 
log u is harmonic almost everywhere. Then 

JUP = » 
M 

for every p > 0 . That is, u 0. LP(M) for any p > 0 . 

The hypothesis of infinite volume is made merely to avoid having to treat 
constant functions separately. Notice that any simply-connected, complete minimal 

surface in R is a simply connected, complete surface of non-positive curvature 
in R and, hence, certainly has infinite area. 

6) We now want to use the hypotheses of lemma 27 to construct a function u 
which satisfies the hypotheses of Yau's theorem (lemma 28, but which is such that 
u £ L̂ (A) for some p > 0 . This will show that the metric on A is incomplete. 

Let ¥ : A -> R be as in lemma 27and construct f and g by formula (20) 
(where cp = (cp̂  ,ip̂  ,cp̂ ) = M) . Let a^,...,a^ be six distinct complex numbers 
omitted by the image of g (on A ) . By proposition 18 ,|f | > 0 on A . Set 

(29) h = f"2/P 6 
g' n (g-a.) i=l 

-a 
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where a is any number of the form 1-1/k , k £ 7L , such that 10 
11 _< a < 1 and 

p = 5/(6a). In other words , 

(30) P = 5k 
6k-1 , k > 11 , k £ 7L . 

Set u = |h| . 

Notice that u satisfies the conditions of lemma 28.For the induced metric 
on A is given by A|dz| where A is as in (24). The Laplace-Beltrami operator 
with respect to this metric is ^ DD and, so, the function u = |h| is harmonic 
almost everywhere (there can be a discrete set where g' vanishes). Thus, to prove 
lemma 27and, hence, Xavier's theorem, it suffices to establish the following claim. 
CLAIM 31 Let u = |h| where h is as in (15). Then u £ LP(A) where p is as in 
(30). 

e) Before proving the claim, we establish two estimates which we will need 
later. In order to avoid confusion, we write L^(A^) in lemmas 5 and 6, below, to 
indicate that we are considering the unit disk with its standard, incomplete metric. 
LEMMA 32. If_ v is a holomorphic function in the unit disk A which omits two  
values, then there is a constant C such that 

03) v' 
1+ V 2 < С 

1- z 
2 

for all z in A In particular, —-—^ £ LP̂ Ast̂  for a11 0 < p < 1 . 

Proof. A function v on A is said to be normal if the family (v(6(z))} , 
where 6 ranges over all conformal transformations of A to itself, is normal in 
Montel's sense. Any function omitting two values is normal in this sense (by p.169 
of [I0]),and any normal function satisfies an estimate of the form (33) by theorem 
6.5 of [10]. 

LEMMA 34. Let w be a holomorphic function on A which omits two values, one of  
which is 0 . _If k is any positive integer and a = 1-1/k , then 

I ^ L - e LP(A ) 
|w|a+|w|2-a 

for every p with 0 < p < 1 . 

1 /k 
Proof. Apply the estimate (33) with v = w 
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cp) With these two estimates in hand, we can now prove the claim and, hence 
Xavier's theorem. Since the area element is Adxdy , we must show that 

j ig;iP(i+!si2)2 dxdy < . . 

A " | g - a . r 
i=l 

Denote the integrand by H . Let 4, = {z 6 4 | |g(z)-a.| <_ e] where 
1 J 6 j 

0 < e < - min | a.-a | . Let A1 = A ^ U A. . Then 
4 l<i<k<6 1 k j=l J 

6 
/ Hdxdy = £ / Hdxdy+ J Hdxdy 
A j=l j A' 

On A. , we have the estimate J 
leTlP H < C( l-̂ J ) . 

- lira. | P" 

We may also assume that e < 1 so that 

I I ot j 12-a |g-aj I >. |g-aj | 

Adding | §~aj Ia to both sides and taking p*̂ 1 powers yields 
2P | g-a . | pa _> ( | g-a . | a + | g-a. | 2 a)P from which we obtain 

g' P 

g-a pa < 2p g' P 
g-a. a 

+ 
g-a 2-a,p 

By lemma34, the integral is bounded and hence, certainly, Hdxdy < 00 
j 

It remains to bound the integral of H over A' . 

Notice that since &~aj DOUn̂e<l away from zero on A' for 1 < j < ( 

the quotient | g-a | / | g-a^ | is bounded away from zero on A' for 1 < j < 6 . 
Note also that |g|/|g-a^| is bounded from above on A1 . It follows that on A' 

H < c —Ls-L - = c — I l bpa-4 |g-a6l 
>» IP 

g-a6l 

for some constant c . (The equality results from the fact that 6 pa = 5), 
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If, in addition, we choose a = l - r i > ^ , we have (2-a)p = -^-(2-a) < 1 . 
Using again the fact that |g-a^| is bounded away from zero on A' , we conclude 
that |g-a6| > C'(|g-a6r+|g-a6|2"a)P . Thus 

H < c" 
( | g -a6r+ |g -a6rV 

Apply lemma 34,as above, to conclude that 

J H < «> . 
Af 

This completes the proof of the claim and, hence, of Xavier's theorem. • 

In closing, we remark that a result of Voss ([20], or see [17, p.72]) asserts 
that, for any set of k points in S , where 1 £ k £ 4 , there is a complete 
minimal surface in H whose Gauss map omits exactly these points. There is no 
known example of a minimal surface whose Gauss map omits five or six points and it 
would be interesting to know whether such exists. Indeed, until this question is 
resolved, there can be really no satisfactory conclusion to this acc6unt. 
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