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EXPOSE n°Vv

THE BERNSTEIN-OSSERMAN-XAVIER THEOREMS

Donald B. O'SHEA

I. INTRODUCTION.

The classical Bernstein theorem is the following.

THEOREM [(Bernstein [3]). If £ : R2 R is a C2—function whose graph is a mini-

mal surface, then f 1is linear.

This theorem provides a lovely example of a striking, non-trivial statement

. ) . . - 2
about a partial differential equation., For the condition that the graph of a C -
function f : U->R , where U<& R" is a domain, be minimal is that £ satisfy

the minimal surface eguation

2 n n
. . f - D, f}-(D.£)D, .f =
D, £]°) £ D, .f I (D,E}-(D.£) f=0
1 s 1] ij=1 *t 37771,

(23 1+

i=1 =1

o3

for all x € U . Here, Dif = af/axi and Di jf = Di(Djf) . The Bernstein theorem

3
asserts that when n = 2 the only global solutions (i.e. for which U = Rz} are the
trivial (i.e. linear) ones. This is all the more surprising because a modest amount

of ingenuity supplies non-trivial local sclutions. For example, it was observed

x
classically that the functions obtained by setting f(xl’XZ) equal to tan 1(;%)
: cos x 1
- /2
or cosh 1( X1+X§) or log(EEEAEA) satisfy (1) over their domains of definitien.
1

The corresponding minimal surfaces are known as the helicoid, the catenoid and

Scherk’'s surface, respectively.

So striking is the Bernstein theorem, that oneneeds scarcely say that many
mathematician-hours have been devoted to generalizing it. The question of whether
it genmeralizes to functions f R SR or, alternatively, whether every function
f satisfying (1) for all x € r" s linear, has come to be known as the codimen-—

sion-one Bernstein problem. De Giorgi [8] settled the case n = 3 , Almgren [2]

the case n = 4 , and Simons [19] the cases n = 5,6,7 of this problem affirma-

tively. It came, therefore, as somewhat of a surprise to the mathematical community

95



D. B. O'SHEA

when Bombierl, de Giorgi and Giusti [4] constructed non-linear global solutions to
(1) for all =n > 7 . Both [4] and [19] made decisive use of ideas due to Fleming
[9]. Subsequently, the Schoen-Simon ~Yau estimates [I8] have unified to some extent
the treatment of the codimensionone Bernstein problem in the cases n < 7 . For an
account of the proof that every entire function satisfying (1} with n <5 s

linear from this latter point of view, we refer the reader to Lawson's lectures

[13].

There is, of course, no reason to restrict oneself to attempting to generalize
. . k .
the Bernstein theorem to functions from R te R , At the opposite extreme, one
might ask whether a suitable analogue of the theorem holds for functions

2 k . . .
f :R"=»R . In this case, if we write £ = (fl""’fk) , set

i
duct of the vectors Dif and Djf , then the condition that the graph of f be a

Dif = (D'fl""’Difk) for 1 = 1,2 and interpret (Dif)-(Djf) as the scalar pro-

minimal surface is precisely the condition that £ satisfy (1) with n = 2 . Here,
(1) is a vector equation representing a system of k scalar equations for the
k~functions fl""’fk . (As in the codimension-one case, the equations {1) come
from computing the Euler-Lagrange equations for the area integral - see, for exam—
ple, Osserman {17,§3].) Now, if k = 2m 1is even and if f : F? 4‘Rzm is complex
analytic when viewed as a fumetion from € to & , then an easy computation
establishes that f satisfies (1). Hence, the graph of f is minimal. Alternative-
1y, observe that the graph of a complex analytic funection frem € to ™ is a
complex submanifold of the Kihler manifold Em+l and, hence, mirnimal (see, for
example, Lawson [12, p.361). At first blush, this would seem te indicate that any
attempt to generalize Bernstein's theorem to functions f : E? R, k>1, is
doomed to barrenness. Nothing could be further from the truth, for it is in precise-
1y this case that the impulse to generalization has borne the most fruit, resulting

in theorems set apart by their rich geometrical content and graced by a beauty all

their own.

Nirenberg first conjectured that Bernstein's theorem might generalize to the
statement that the set of positively oriented unit normals to a complete, regular,
simply—connected minimal surface M in R3 is dense im the unit sphere unless M
is a plane. Notice that this statement immediately implies Bernstein's thearem
because the graph of a function f : R2 >R is certainly simply-connected and the
set of unit normals to M is necessarily contained in a hemisphere. Osserman proved
Niremberg's conjecture in [14] and subsequently removed the hypothesis of simple
connectivity in [15]. Osserman further generalized his result in [16], proving that

- k . .
the set of normals to a regular, complete minimal surface M <R , which is not

a plane, cannot omit a neighbourhood of some direction. Chern and Osserman sharpened
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BERSTEIN-OSSERMAN-XAVIER THEOREMS

this result in [7] by exploiting the notion of the generalized Gauss map which
Chern had introduced in [6]. Among other things, the latter provided a convenient
set of spaces in which to speak of the density of the set of normals and allowed one

to keep track of orientation.

Osserman's theorems immediately raise the question of the size of the set
omitted by the normals to a complete, nen-planar minimal surface. Osserman proved
in [15] that, in the classical case Mc RB , the set of points on the sphere omit-
ted by the set of oriented, unit normals to M had logarithmic capacity zero. The
latter result still did nmot exclude the possibility that the set of omitted points
could be infinite, a state of affairs that persisted for ten vears until Xavier
showed in [21] that the set of omitted points was finite and, in fact, less than
seven. At present, it is still an open question as to whether there exists a com—
plete, minimal surface in R3 , other than a plane, whose set of unit oriented no

mals omit more than four points on the unit sphere.

In what follows, we give an exposition of this set of ideas including a com—
plete proof of Xavier's result. The author has relied heavily on the excellent ex-
positions of Lawson [12] and Osserman [17], to which the reader is referred for
related results, The author is grateful to C. Margerin, B. Lawsom,and D. Hoffman
for comments cn the subiect matter of this manuscript, He thanks I.H.E.§. for its
support and hospitality during the preparation of this paper. He was also supported
by a BATO grant from the Matural Sciences and Engineering Council of Canada and a

grant from the National Science Foundation.

IT. THE GENERALTZET} GAUSS MAP.

We begin with some general remarks on immersions of surfaces into R" . We then
introduce the notion of the generalized Gauss map. The latter is a natural global
object associated with an immersed surface and, as much, affords not only a conve-

nient technical tool, but a genuine mean to understanding the nature of the surface.

n . . . . . .
Let v : M >R be an immersion on an oriented, two-dimensional Ck manifold

with k > 2 . We take the metric on M to be that induced from R" by ¥

. . . k
Choose an oriented atlas on M representing the given ¢ structure. Then,

each point p € M possesses a chart (0,h,U) consisting of a neighbourhood 0 of
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p in M and a homeomorphism h : O -y , where U 1is a domair in Rz . The theo-
rem about the existence of isothermal parameters (see, for example, [5]) asserts
that if %k > 2 , then each point p possesses a chart, again denoted {0,h, )

. . . . -1,
compatible with the original atlas with the further property that P = ¥eoh is

)

conformal as a map U -~ R" . Given two charts (Oi’hi’Ui) which are Ck compatible
with the original atlas on M .and such that ¢i = Wuhi : 1. . , 1 =1,2 , are
conformal, it is evident that the transition functions hi°h31 ,» 1 €1,j €2 are
conformal or anticonformal where defined. Since M 1is oriented, these latter twoe
remarks mean that we can replace cur original Ck—atlas on M with a compatible
atlas A = {(Oa’hu’Uu)} , where o runs over some index set, which 1s 1) conformal
{in the sense that the transition functions hu"h;,1 are conformal where defined)
and such that i1} wa = Woh;l H Ua >R" is conformal for every o ., 1f we view
the Ua as domains in € , then it is easy to see that the transition functions

are in fact holomorphic and we have, therefore, established the following.

PROPOSITION 3. Let Yy : M- E" be an immersion of an oriented, two-dimensional

Ck manifold M into R" . If k >2 and M is given the Riemannian metric

induced by y , then there exists a complex-analytic structure A on M which is

k . . .. . . .
€ compatible with the original differentiable structure en M and with respect

to which M is a Riemann surface and V¥ a conformal map.

Let A be as above and fix a chart ({(0,h,;) € A . The induced metric is
2

-1 N

= - .. - R L.o= R o L, = ° . h

ds . 271 gljdxldxJ where glJ (Dl+) (Djw) and U Yoh The map ¢ 1is
L=

conformal if and only if d52 = A(dx§+dx§) where A = A(xl,xz) >0 ; that is, if

and only if 811 = 89p = » , and 81y = 0 . Now, view U as a domaip in € ,and
set z = x1+ix2 and D =A% (Dl—iDZ} . The conditions on the gij can be rewritten
as conditioms on the map ¢ = D¢ : U > t" as follows.

PROPOSITION 4 . Tet ¥ : M >R and A be as in preposition 1, If {(0,h,1) is

. . -1 .
any chart in A , then the function @ = Dy : U~ " , where L o= ¥eh , satis—

fies

4.1) wp=0, and
.. v 2

4,i1) 2‘ml =3 >0

where the induced metric 1s given by

§.1i1) ds® = Aldz(?

- . n . S
Condition4.i1)merely expresses the fact that y:u0 + R is conformal and condition
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4.1ii) the fact that ¥ 1is a regular immersionm.

. . . . n
Starting with the immersion ¥ : M >H ,we get a complex structure

. n .
Az {(Ou’ha’ua)} on M and, hence, a family {wa : Uu +~ €'} of maps by setting

b, = W°h;1 and @ = Db .Each @ satisfies equations 4ii) and 4.111). Since this
family was manufactured out of a global object, namely ¥ , it is natural to ask
whether the family {wa} represents the local data corresponding to some global
object defined independently of a particular set of coordinates. This is, indeed,
the case and we shall see below (Proposition 6) that the appropriate global object

is the Gauss map.

Given an immersion ¥ : M + R" as in Proposition 1, define the generalized
Gauss map G to be the map which assigns te each point p &€ M , the oriented tan-
gent space T M to M at p viewed as a linear subspace of r" . Thus, G 1is a
map from M to GD(Z,n) where GD(Z,n) denotes the Grassmannian space of orieuted,
two-dimensional subspaces of R" . The map G obviously does neot depend on the

choice of coordinates on M

The space GO(Z,n) can be naturally identified with another space which
carries a canonical complex structure. To see how this works, observe that an crient—
ed plane T < R® can be viewed as = cemplex Iine in z" . Choose {u,v} , where
u,v € R” , to be an oriented orthonormal basis of T and defined X(T) to be the
complex line spanned by the vector u-iv € ¢t o1t {u’,v'} 1is any other oriented
orthonormal basis of T ,then eie(u—iv) = u'-iv’ for some 0 < B < 2Zm . Thus,

the map T +~ A{T) 1is well-defined and induces az map ¥ : GO(Z,n) S

. A . . . . . . . s}
The map « 1is clearly injective. It is not surjective since any line in €

which is the image of a plane in R" must be spammed by a vector w € L% of the

] . n
form w = u-iv , where u and v are orthogonal vectors in R . In other words,

if w = (wl,...,wn) , the components must satisfy the equation w.w = wi+---+wi =0,
Viewing (wl,...,wn) as homogeneous coordinates on C Pn_l , we see that the image
of k lies on the hypersurface Qn—Z c EPnﬂl defined by the egquation

2 2 . . .. .
witeeotw = 0 . It is easy to check that the map k : GO(Z,n) Q. _, s bijective.

In what follows, if w € t -0 , we let [w] denote the point in C anl with

hemogeneous coordinates w = (wl,...,wn) . Thus, if T € GO(Z,n) and u,v 1s any
oriented orthogonal basis with [lul] = Hvl{ , we have
(5) k(T) = [u-iv]

Since Q inherits a natural complex structure as a submanifold of CPn_] y

n-2
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it will be convenient to work with the following definition.

Definition. If 9 : M +R"™ is an immersion (M as in Proposition 1), then the

(generalized} Gauss map ¢ : M ~ Qn—Z is the map & = koG

Notice that ¢ depends only on the immersion ¥ : M > R" and is defined indepen—
dently of any coordinate system. However, @ has z particularly nice representation
with respect to any chart {0,h,U) belonging to the complex structure A given by
proposition l. This is so because the fact that ¢ : U -~ R" is conformal means
that, for any ¢ € U , the vectors D1W(C) and D2W(€) are of equal length and

form an oriented orthogomal basis of T - M . Recall that we have set
h (2}
¢ = % (Dlw—iDzw) . Comparing with (5) gives the following result.

PROPOSITION 6 . Let ¥ : M * R be an immersion and & : M + Qn—2 the associated

Gauss map. Let ¥ and A be as in Proposition 1, and suppose that (0,h,U) is
-1

any chart in a . If ¢ = o<h ;U Qn—2 denotes the local representative of
& , then ¢ = [¢] (where @ =Dy and ¢ = ¥°h_1)

Thus, the family of maps {wa : U& - En} , defined earlier, just represents

the Gauss map ¢ with respect to the conformal atlas A on M and homogeneous

. n-1
coordinates on P

A . n . ..
Now,let us make the additional assumption that Y : M + R is a minimal

immersion. Let A be the complex structure given by Proposition 1. Then ¥ 1is
- . : . -1 .
minimal if any only if, for every chart {0,h,U} in A , the map ¢ = ¥-h is

harmonic (see [12, p.13] or {17, p.29)). Since the Laplace-Beltrami operator is
;'B(Dw) with respect to the induce metric 4,iii), the map ¢ iIs minimal if and only
if T(DV) = 0 and, hence, if and only if @ = DY is analytic. Applying Proposition

and the fact that the map L0 = EPn4l given by z + [z] is holomorphic clearly
establishes the following.

PROPOSITION?7 . If ¥ : M ~R" is a minimal immersion, then the Causs map

¢ M > Qn*Z is holomorphic where M 1is given the complex structure that makes

¥ conformal with respect to the metric on M induced by ¥ and Q,_, the complex

L . . n-1
structure it inherits as a complex submanifold of TP

The converse of Proposition 7 also holds and is a pleasant exercise using the
local representation of @ (Proposition6 ) and the definition of the complex

sftructure on " L For details, see [l1, p.9].

In view of Proposition 6 and the definition of the operator D , Proposition 7
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BERSTEIN-OSSERMAN-XAVIER THEQREMS

is just a more global reformulation of the classical result that an immersed surface
. n - . . . . . . - .
S in R is minimal if and only if the restrictions of the coordinate functions

0 . . -
on R to S are harmonic functions of any local isothermal parameters on S

In the literature, the conjugate @ = ¥oG of % 1is often referred to as the
(generalized} Gauss map. This is because GO(Z,n) has a natural Riemannian struc-
ture as a symmetric space (see [6]) with respect to which the map r is conformal.
However, the price paid for preferring a conformal te an anticonformal identifica-

tion of GO(Q,n) with Qn—Z is an antiholomorphic Gauss map.

III. OSSERMAN'S THEOREM,

We now want to prove Osserman’s generalization of Bernstein's theorem.
P g

THECREM 8(0sserman [161). If the normals to a complete minimal surface in R  omit

a neighbourhood of some direction, then the surface is a plane.

The proof will proceed in several steps. We retain the notation of parts I

and TI.

@) We first interpret the hypothesis of Osserman's theorem in terms of the
Gauss map. Suppose that the surface 1s given by a minimal immersion Y : M »> r" ,
and let A be the complex structure on M given by proposition 1. Fix p € M and
a chart (0,h,U) in A such that p € 0 . A vector v E R" is normal to M at P

if and only if v-Dlw = v-D2¢ = 0 (where UV = W°h_1) or, equivalently, v-Dy = O,

the partials being evaluated at h{(p} . By propositicn®, v = (VI""’Vn) is normal
to TPM if and only if &(p) satisfies the equation APL AR A N 0 where
W,,...,W_ are homogeneous cocordinates on EPn_l . Thus, v = (v,,...,v ) 1is nor-

1 n 1 n

mal to M at some point if and only if the image of ¢ meets the hyperplane

VWt -ty woo= 0
nn

171

Cn the other hand, to say that the normals to M omit a neighbourhood of some
direction v is to say that the cosine of the angle between any tangent vector w

to M and v is uniformly bounded away from zero by some E >0

©) v > e >0
avil fiwtl = 7 =
If the above holds for every w € r" tangent to M , it certainly holds for every
1 .
wv=s (u-iu') € " where u,u' € RY are orthogonal and both tangent to M , and
hence, for every w € C° such that [w] = $(p) for some p £ M . Thus, the hypo-

thesis of Osserman’s thecrem can be rephrased as
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(*) There exists v € R" and & > 0 such that (9) holds for any w & t"

such that w = (wl,...,wn) are homogeneous coordinates for some point in the

]'_magei B (M) of th_e‘ Gauss map,

2} Now, observe that we can pass to the universal cover T : M+ M where
M is simply connected and © a local homeomorphism. The complex structure on M
making ¥ 1 M - R" a conformal map lifts via 7 to a complex structure on ¥
making ¥z ¥en: ¥ + R a conformal immersion. Morecver ¥ is minimal if and
only if % : M - R" is minimal. It is clear from proposition 6 that the image of
the Causs map + coinvides with the image of & and, hence, that T satisfies
hypothesis (%) on M if and only if ¢ satisfies (#¥) on M . Finally, it is easy
to check that the induced metric on M is complete if and only if that on M is

comp lete.

¥) By Che Koebe uniformization theorem (see, for example, [11), ¥ is confor-
mally equivalent to either the unit sphere 52 , the open disk & = {z ¢ C : |z|<1},
or the complex plane € . The first possiblility is ruled out because a minimal sur-
face cannct be compact. Thus, upon passing to the universal cover we obtain a mini-
mal (conformal) immersion a) ¥ : 6 ~R" or b) ¥ : & -R" . In both cases, we

have a global parametrization.

Our strategy will be to show that the theorem holds in case b) (step 8 ) and

to show that case a) cannot arise, because it contradicts completeness {stepe ).

&) Suppose that passing to the universal cover gives a minimal {conformal)
immersion T : € -+ R . We have the Gauss map F(z) = [B(z}] , where ©=0¥ ,
defined for every =z £ € . Set G = (51,,..,6n) . Choose a unit vector v and a
number ¢ satisfying hypothesis (*). For each k , 1 < k < n , the entire function
Gk/(v-a) satisfies the inequality ]ak|/|v‘$1 57|$E/\v-$| < 1/e and is, therefore,

a constant, say by Liouville's theorem. Thus

Ck’
B(2) = (v B lep,enn,e)

. . . -1
for all =z € € . Taking the image in zp” , we get @{z) = [Cl,...,cn] for all
z € € . Thus, the Gauss map ¥ is constant and, hence, the Gauss map % of
w . M +R" is constant. Thus, the image of M (under ¥) has the same tangent

plane everywhere. Since M 1is complete, ¥(M} must be a plane.

¢) We now show that passing to the universal cover cannot give a minimal

. . o n
lmmersion ¥ : A >R and, so, complete the proof of Osserman's theorem. We formu—

late the main point as a lemma.
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LEMMA LG, IE ¥ @ A~ R" is a minimal, conformal immersion and if the Gauss map

? satisfies (*), then the metric on A& is incomplete.

Proof of lemma 1. We show that the metric is incomplete by finding a path o

joining the origin of A to a polnt on the boundary 84 for which fﬂds <

where ds 1s the arclength with respect to the metric.

By proposition 6, the Gauss map ©® is given by ©{(z) = [w(z)] , for all
A 2 2 2
z € &, where 4 = D¥ . By proposition 3, ds” = Aldz|” where 2{p|” =1 . By
hypothesis (%), there exists a unit vector v and an e » 0 such that

[v-2| /] o] > e >»0 at every z € A . Thus, for any path in 4 ,we have
J ds = J /¥ldz| = V2] |@| |de| </—51 [vew| |dal
o @ o J — & ‘o !

b
Define w = f(z) = [ v-p(c)dc . The function w is holomorphic, non-constant,

0
and f'(z) # 0 for any z € A (because v.@(z) # 0 for any z € A).

Thus, we have an ionverse function z = h{w) defined in a disk about w =0
Let R be the radius of the largest such disk. Because !h(w)| < 1, we have
R < = (otherwise, Liouville's theorem would force h to be a constant). Thus,
there exists a point LA with |wo| = R with the property that h cannot be
extended throughout a neighbourhood of LA Let L = {two VR i} and set
a = h(L) . Then, « 1s an analytic curve in 4 beginning at 0 and going to @A
(if o does not go to 3A , there would exist a sequence of points on a converg-
ing to a point 7, € A for which W, o= f(zo) ; but, since f'(zo) #0, h

would extend throughout a neighbourhood of wo) . Moreover,
[ lveellaz] = [ 158 Hdz] = f Jawi = &
o o' dz ' L f

Thus, @« has length less than or equal to V2E/¢ . Since this is finite, the

metric en & i3 not complete and the lemma is proved.

- . P - - n . . a
Thus, if we start with a minimal immersion ¥ : M =+ R satisfying (%), and if
. - . o~ n . .
passing to the universal cover gives Y : A >R where A 1is conformally equiva-
lent to M , then the mettric on M 1is not complete. Thus, the metric on M cannot

be complete and this establishes Osserman's theorem.m

REMARK. Notice that the statement we have given of Osserman's theorem does not

immediately imply Bernstein's theorem when specialized to n = 3 . For it does not
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rule out, as possible candidates for minimal surfaces, graphs of functions with the
property that the set of all oriented (say "upwards™) unit normals is dense in a
hemisphere. The set of all unit normals (that is, both "upwards'- and "downwards'-
pointing normals) to such a graph would be dense in the sphere. Fortunately, we
have actually proved somewhat more than we stated. To see this, observe that we
never used the fact that v € R" in hypothesis (#). All details of the proof carry
through witheout change upon assuming that v € £" . This remark, together with the

comments in step a) of the proef, allow us to rephrase what we have proved as follows.

THEQREM 11. (0Osserman-Chern[7]}.1f ¥ : M- RB" is a complete minimal surface which

is not a plane, then the Gauss map ¢ meets a dense set of hyperplanes.

Because the Gauss map Involves oriented tangent spaces, this latter sratement
does imply the Bernstein theorem when n = 3 . In fact, it is easy to see that when
n =3, it actually implies that the image of the Gauss map is dense in the conic
Q1 = EP2 . We have already seen that there is a continucus bijection between Ql
and GO(Z,B) and, since there are obviously continucus bijections between GO(Z,E),
the set GO(I,B) of oriented lines or normals in Rq , and the unit sphere 52 ,
we conclude that the set of oriented normals to a complete minimal surface in Rj

, . 2 I . . .
is dense in S . This clearly implies the Bernstein theorem,

IV. THE CLASSICAL CAUSS MAP,

We now turn to the question of the size of the set omitted by the nermals to a
complete, minimal surface. We restrict ocur attention to surfaces immersed in R3
As always, if ¥ : M - R3 is the immersion, we suppose that M is an oriented Ck
manifold, %k » 2 , endowed with the Riemannian metric induced by ¥ . In the case
of immersions in F} , it 1s more convenient to define the Causs map directly in

terms of the normals to the surface.

P n . . 2 . .
DefinitionlZz.Let % : M~ R3 be an immersion. If § denotes the unit sphere in
. 2, . .
Rs , then rhe classical Gauss map N : M » § is the map which assigns to each
2

p €M the oriented unit normasl to M at p , viewed as an element of 5§ .

For future use, we want to establish some of the properties of the classical
Gauss map N . We do this by first establishing a relationship bhetween N and the

generalized Gauss map @ .

Suppose that w = (WI’WZ'wB) are homogeneous coordinates of a point on

2 . 3
Ql c CP~ . Then, we have seen that w = u-iv where u,v £ R are orthogonal and
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and  flul] = | . The unit oriented normal to the plane spanmed by {u,v} is
just —2Y | uhere w *x v denotes the usual vector preduct of u and v in
2ol e v are orchogonal, [weell = Jull llvl| . Since

ol 2 = Tl 2+ 0ol ® ana flull = vl . we have [Juxv]| = [lul| ®/2 . 0n the

other hand, u x v = Re{w) » (~Im(w)) = z(wan) x (ww) = 7((w « w) ~ (w x w)) =
= - %(w x w) , where we have formally extended the vector product on Fq to C3 .
. . 2
3) are homogeneous cocordinates of points on Q1 and 5

2

Thus, 1f w = (WL’WZ’W
is the unit sphere centered at the origin in R3 , define the map Vv : Q1 + 5 by

(13 VoW - iiﬂig%
llwll
{Observe that Jlw x %] = 2 ]lu x vi]| = Hw|\2 because w £ Ql , 8o that

viw) E 32 ; moreover, vw(w) = v(ew) for any ¢ € © , so that v does not depend

on the choice of homogeneous coordinates for a point).

Note alse that if ¢{p) = [w] for some p € M and if we write w = u-iv
as above, then u and v «can be thought of as orthogonal vectors in T M . Thus,

w{w) is the unit normal to M at p . This remark clearly proves the follewing.

PROPOSITION 14, If ¥ : M >R is an immersion, then the classical Gauss map

o

N :M~> Sé is related to the generalized Gauss map & : M - Q1 by the formula

(15) N = vet

where v : Q1 > Sz is the map defined by {13).
Relation (15) holds independently of the choice of local coordinates on M .
In conjunction with propositioné , it implies that N has a nice expression in

terms of the complex structure given by proposition 1.

PROPOSITION 6. Let ¥ : M 4*R3 be an immersion and let A be the complex

structure on M given by proposition 1. If (0,h,U) is any chart in A , then

(17) n s oNen b= Zh@0)
Lol #
o]l

where [@] = ¢oh_1

Now, suppose that ¥ 1is minimal, so that ¢ is holomerphic. We want to

show that N 1is holomorphic. The reader may enjoy proving this directly by
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showing that v is holomorphic, where the complex structure on 82 is the standard
cone given by stereographic projection onto the complex plane. We follow a slightly
different approach which will allow us to introduce the very useful Weierstrass

representation of a minimal surface.

PROPOSITION 18. Let U be a ddmain in L . If g 1is an arbitrary meromorphic

function in U and f an analytic function in U , which has a zerc of order Zm

at each point where g has a pole of order m , then the functions

1L, 2 i 2 B
(1%9) wl—if(lg),wzuffﬂ*fg), w, = fg

will be apnalytic in U and satisfy ®-¢ = 0 where ¢ = (w1’¢b’w3) . Conversely,
every triple @ = (w1,®2,®3) of apalytic functions on U , satisfying @.0 =0 ,
S0y, 0y =0

can be represented in the form (19} except for ©

1

Proot. That the functions (1%) satisfy @-@ = 0 is a straightforward computation.

Conversely, given f and g one sets

Q

. -~ 3
{20) E=o-ig, , 2= RN
1 2
2
. ) . . 3 2 e
A short computation yields the relatien ®1+1w2 = - ET:TE_ = ~-fg” , which implies
(19) and shows the necessity of the condition on the 1 zerces of £ and the

poles of g . The relation (20) fails only when @ = ﬁgz , in which case 9, =0

This completes the proof. m

In practice, the exceptional case @, = 0 of the above can always be avoided.
For ,the functions ¢ = (¢1’w2’m3) will zlways arise as the local expression of
¢ with respect to a chart (O,h,U} of the complex structure A on M making
YoM R3 a confarmal map . If w, = 0 , then ¥(0) E'R3 lies on the plane

3
. . . . . : 3
%y = 0 . This can easily be avoided by rotating the coerdinates in R

Proposition I8 means that for any choice of f and g as above, we can think
of o 1> (£(2),glz)) +-(w](t),m2(c),m3(c}) as giving an (analytic) parametri-
zation of Q1 . Since, again by proposition 18,every amalytic parametrization of
Q1 (with one exception, which is easily handled separately) can be written in this
form, to show that n 1s holomorphic when ¢ 1is, it suffices to show that for any
© , as above, the composition ( % Q1 3 52 fr is meromorphic. Here, ¢ : 82 - L
is stereographic projection from a point, say {0,0,1) , of 52 and we are using
the elementary fact that the standard complex structure on 52 1s defined so that

. . 2 . .
the analytic functicns on § are precisely those that correspond to meromorphic

106



BERSTEIN-OSSERMAN-XAVIER THEOREMS

functions on € U {«} under stereographic projectiocn.

. . 2 :
If ) is a point on S° , then an easy computation shows that the

(31’32’33
image of (al,az,aa) under stereographic projection ¢ from (0,0,1) to the

plane xy = 0 with complex coordinate z = x1+ix2 is given by
a.+ia
1 772

(21) o{al,az,a3) 175,

We now compute Gevea . By {10), we have -i{px@) = |fE2(1+\g|2)(Re(g),Im(g),
%(|g{2—1)) and Hw[iz = %ﬂf[2{1+ig|2)2 . Taking the quotient gives an expression
for wvea . Using (12}, we get 0Ovwvea(c) = g(c) . This, together with proposition 2,

implies the following.

PROPOSITION 22. Let ¥ : M - Fg be a minimal immersion and let (Q,h,U) be a chart

of the complex structure A given by propesition l. Define f and g as in 20Q)
(where [ip] = ¢°h_1} . Then

(23) gen = g
-1 2 . . . . .
where n = Noh and ¢ : 8 > C is stereographic projection from the point

(0,0,1) € 52 . The induced metric is given by d52 = Adz2 where

(24) = g P g) D2

Proposition 22and the remarks following proposition l8allow us to assert the

following

PROPOSTITION 24, If ¥ :+ M **R? is a minimal immersion, then the classical Gauss

2 . - . . .
map N:M > 8 is holomorphic where M 1is given the complex structure making V¥

2 . .
conformal and 5 the usual complex structure induced from T by stereographic

projection.

As in proposition 7, we have obtained a holomorphic (instead of antihclomer-
phic) Causs map at the price of an anticonformal identification. Here, the map ¢ ,
defined by (21), is anticonformal with respect to the Riemannian structure on §
induced from m3

We remark that propositions 18and 22are exceedingly valuable in the (classical)
theory of minimal surfaces. For example, using the fact that a simply commected
minimal surface in R3 can be reconstructed from its Gauss map, we can find many

examples of minimal surfaces by choosing f and g appropriately, For details,
see [12] and [17].
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V. XAVIER'S THEOREM.

We now prove Xavier's thecrem.

THEQOREM 25. (Xavierl21]).Let ¥ : M - R3 be a regular minimal immersion whose image

is not a plapne. If the induced metric on M 1is complete, then the image of the

2 . .
Gauss map N : M =+ 5 cannet omit Seven polnts or wore.

The proof follows rthe same general outline as the proof of Osserman's theorem.
As in steps B) and v)of the latter, we pass to the universal cover 1 : MM to
get a minimal immersion ¥T.c +fR3 or ¥ i A~ R; , according to whether ™ is
conformally equivalent to @ or A ., We show that the theorem holds in the former
case,and that the latter case caunnot arise because it contradicts completeness.

Again, we break the proof into several steps.
2} We now show that the theorem holds when M is conformally equivalent to
C . By the remarks in step Blof the proof of Osserman's theorem, this will clearly

follow from the lemma below.

LEMMA 6. 1f ¥ : U + R’ is a minimal conformal immersion and if the induced

metric on € is complete, then the image of the Gauss map N omits at most two

points, unless the image of ¥ is a plane.

Proof. Set @ =Dv . If @ = i@, , @, = 0 where ¢ = (wl'wQ’wB) , then the x

coordinate on R3 i3 constant on ZW(E)B and, by compieteness, the image of ¥ ’
must be a plane. Otherwise, define g as in (20). The function g is meromorphic
and defined on the entire plane. By Picard's theorem, g omits at most two points.
Since g = on (proposition 22, the same is true of n and this completes the

proof, =

g} In view of the above, we can restrict our attention to the case when ¥ is
conformally equivalent to the unit disk £ . Since the image of the Gauss map on
the universal cover & coincides with the image of the Gauss map on M, and since
M 1is complete if and only if & is complete, we may as well assume that M = 4
and let 1y : A +'R3 be the minimal conformal immersion. We then have globally para-
metrized Gauss maps % = ¢ = [p] and N =nun on & . We define g as in (20).

The formula g = cn (proposition2’) shows that the poles of g occur exactly

where n  takes the value (0,0,1) . Since we subsequently assume that n omits
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. . . . 3 .
seven points, we can assume by rotating coordinates in R™ , that (0,0,1) 1is one
of the omitted points and, hence, that g 1is analytic on 4 (and omits six points
on €) . Thus to prove Xavier's theorem, we need only establish the following.

LEMMA 27. let ¥ : A » R3 be a minimal conformal immersion and suppose that

g = n 1is analytic on & and omits six distinct peints of € . Then the induced

metric on A 1is not complete.

¥)To prove lemma 27,we will need some device which allows us to determine
when a metric on A 1s incomplete. In the proof of Osserman's theorem, we used the
fact that completeness implies that the arclengths of curves starting in D and
ending at 3D are infinite, and we produced a curve of this sort for which the
arelength was finite. To prove Xavier's result, we use a more delicate criterion,
due to Yau, which states that completeness implies that the result of integrating
certain functions over the entire space {(in our case, & ) is infinite and we pro-
duce a function of the required type whose integral is finite. Yau's result is the

following (we state it without proof).

LEMMA ZB(Yau [22, theorem 1}). Let M be a complete Riemannian manifold with

infinite volume and let u be a non—megative function with the property that

log u 1is harmonic almost everywhere. Then

for every p > 0 . That is, u & tPon  for any p > O

The hypothesis of infinite wvolume is made merely to avoid having to treat
constant functions separately. Notice that any simply-connected, complete minimal
. 3. - -
surface in R 15 a simply connected, complete surface of non-positive curvature

. 3 ] C e
in R and, hence, certainly has infinite area.

é) We now want to use the hypotheses of lemma 27to construct a function u
which satisfies the hypotheses of Yau's theorem {lemma 28, but which is such that

u € LP(8) for some p > 0 . This will show that the metric on 4 1is incomplete.

Let ¥ : A +-R3 be as in lemma 27and construct f and g by formula (20}
(where ¢ = (w1,®2,®3) = DY) . Let Apreeesilg be six distinct complex numbers

omitted by the image of g (on A) . By proposition 18,/f] > 0 on & . Set

-2/p 6 —a
(29) h = ¢f g' T {(g-a.)
i=1 '

109



D. B. O'SHEA

where o 1s any number of the form 1-1/k , k € Z , such that %% <o <1l and

p = 3/{6u). In other words

»

{30) p = ~ , k> 11

Notice that u satisfies the conditions of lemma 28.For the induced metric
on 4 is given by A|dz|2 where X is as in {24). The Laplace-Beltrami operator
with respect to this metric is % DD and, so, the function u = ;h‘ is harmenic
almost everywhere (there can be a discrete set where g' wvanishes). Thus, to prove
lemma 27 and, hence, Xavier's theorem, it suffices to establish the follewing claim.
CLAIM 31Let u = |h| where b is as in (I5). Then u € LF(4) where p is as in
(Bu.

£} Before proving the claim, we establish two estimates which we will need
later. In order to avoid confusion, we write Lp(ﬁst) in lemmas 5 and 6, below, to
indicate that we are considering the unit disk with its standard, incomplete metric.

LEMMA 32. If v is_a holomorphic function in the unit disk & which omits two

values, then there is a constant C  such that

v C

G3) vl

2~ P2
1+{v] 1-1z]
'
for all z im & . In particular, A—Xf—;rE Lp(ﬁqt) for all 0 <p <1
1+]v]” '

Proof. A function v on & 1is said to be normal if the family {v(8{z))} ,
where 8 ranges over all conformal transformations of A to itself, is normal in
Montel's sense. Any function omitting two values is normal in this sense (by p.169
of [10]),and any normal function satisfies an estimate of the form (33) by theorem

6.5 of [101.

LFMMA 34. Let w be a holomorphic function on & which omits two values, one of

which is © . If k 1is any positive integer and o = 1-1/k , then

P
€ L (Ast)

for every p with 0 <p <1

Proof. Apply the estimate (33) with v =
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) With these two estimates in hand, we can now prove the claim and, hence,

Xavier's theorem. Since the area element is Adxdy , we must show that

P D 2.2
§ 186 (1+lg|™) dxdy <

pa
i |ga. |
i=1 t

Denote the integrand by H . Let &j =1{z € 4 rig(z)—aj| < e} where

6
| . Let A" =A~1U4. . Then
1 Tk’

0< e < 1 min |a,-a
1<i<ked j=1 7

LI I+ o)

IA Hdxdy = IA. Hdxdy+ IA‘dedy

i=i 7]
Oon 4, , we have the estimate
J

v |P
H < cngjﬁiAng)
,;g_aj|P

We may also assume that € < 1 so that

lg-a. 1% > fg-a. [P7"
1 - ]

Adding fg—aj|u to both sides and taking pth powers yields

2p|g—aj;pGt > (‘g*aj|“ + [g‘ajlz_&)p from which we obtain

e ? . ,p 5'1P
lg-a |P™ T (lg-a.|%+|g-a. 2_OL)]J
g-a, | gra; | +{eayl

By lemma34, the integral is bounded and hence, certainly, IA Hdxdy < =
i

It remains to bound the integral of H over &'

Notice that since g-aj is bounded away from zero en A' for 1 <} < 6 ,

the quotrient |g—a.]/\g—a61 is bounded away from zero on A' for 1 < i < 6 .

Note alsoc that \g{/|g—ab| is bounded from above on A' . It follows that on A' ,

PR F 0 LA Pl b
‘g_3646pa—h ]g—aﬁ[

for some constant c¢ . (The equality results from the fact that 6 px = 5).
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If, in addition, we choose o =1 - %—) %% , we have {(2-a)p = éi(Z—uJ < 1
-z o =
Using again the fact that Jg—ael is bounded away from zeroc on A4' , we conclude
o 2-n
that Lg—aﬁ‘ > C'(Jg—a6] +\g—a6] 3% . Thus
Io1|P
B o |§| —
(lgmag |+l g-a |775P

Apply lemma 34,as above, to conclude that

[ H<w
A'

This completes the proof of the claim and, hence, of Xavier's theorem. ®

In closing, we remark that a result of Voss ([20], or see [17, p.72]) asserts
that, for any set of k points in S2 , where 1 < k < 4 , there is a complete
minimal surface in AM3 whose Gauss map omits exactly these points. There is no
known example of a minimal surface whose Gauss map omits five or six peints and it
would be interesting to know whether such exists. Ilndeed, until this questiom is

resolved, there can be really no satisfactory conclusion to this account.
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