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EXPOSÉ n° XV 

SOME CRYSTALLINE VARIATIONAL TECHNIQUES AND RESULTS 

J. E. TAYLOR 

The geometric configuration of grain boundaries and surfaces seems to play 
a significant role in phase transformations and surfaces phenomena in metals. (Metals 
are usually a mass of small crystals, called grains, which meet each other along 
grain boundaries ; the union of these grain boundaries is often described as being 
like a soap froth, although this model neglects the orientation-dépendance of surface 
energies caused by the underlying crystalline structure. The word "surface" is often 
used to designate the boundary between crystals and other phases, such as in catalysis.) 
Determining the equilibrium (surface energy minimizing) conf igurations of such interfaces 
for a given orientation-dependent surface free energy function is additionally an 
interesting mathematical problem ; it reduces in the case of isotropic surface 
energy to the minimal surface problem. A framework is given here for determining 
and describing local configurations in the nonisotropic cases. More global results 
are also given in the case where the Wulff shape (the shape of minimum surface ener­
gy for the volume it contains) is a polyhedron. 

In what follows, temperature, pressure, and the orientation of each crys­
talline region are fixed. One of the regions is arbitrarily denoted by I (crystal) 
and the other by II (matrix) ; the interface is oriented so that the unit normal 
points from I to II. The surface free energy function $ is then defined on the space 

of unit vectors in R (corresponding to oriented normal vectors to the interface). 
To such a <j) there is associated a positively oriented convex body 

3 
W = {x € R : x • n < <j)(n) for each unit vector n} , 

the Wulff shape ; it is the equilibrium shape of the crystal of fixed volume embed­
ded in the matric (113][1][6]). The proof is given again in the appendix to this 
paper. The central inversion WI of W is the equilibrium shape of the matrix of 
fixed volume embedded in the crystal and has all its normal vectors pointing inwards. 
(Note : if (J) is extended by positive homogeneity to a function on ]R and if it is 
then a convex functional, it is the support function of the convex body W.) 
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Since any edges and corners of W are particularly important (the tangent 
cones at such points are automatically minimizing [6] and so can be used as barriers), 
it is convenient to describe the Wulff shape in terms of an n-diagram. The n-diagram 
is the decomposition of the unit sphere S induced by the generalized Gauss map of 9W. 
That is, the n-diagram is a plot on the unit sphere of all the oriented normals to 
the boundary of the Wulff shape, together with the lines in W . Tie lines are geode­
sies connecting the orientations of two planar wedges that meet along a ray in some 
tangent cone to 8W. If such a tangent cone consists of two half planes, it is a tangent cone 
to 9W at a point on an edge of W , and the normal to the plane containing the corresponding 
tie line is the direction of the tangent line to that edge of W . Spherical tie regions 
represent corners of the Wulff shape, with the regions being tie polygons bounded by tie 
lines if the tangent cone to the corner is polyhedral. If W is itself a polyhedron (in 
which case <j> will be called crystalline) then the n-diagram contains only isolated 
vertices, each representing a facet of W , connected by tie lines and tie polygons, 
representing respectively edges and corners of W . The n-diagram was introduced and 
called the crystal graph in that case in [ 7 ] . It was introduced in general inde­
pendently in [2] . A W and its corresponding n-diagram are shown in figure 1. 

Minimizing surfaces are surfaces of minimum surface free energy compared 
to all other surfaces spanning the same boundary curve. Physically, one can think 
of prescribing a boundary curve as a way of isolating part of a larger interface. 
This way of regarding a prescribed boundary curve is particularly apt for the des­
cription of local features of surfaces, such as edges and corners. 

One would like to exploit the n-diagram and as a start to be able to show 
that the set of normal directions to a minimizing surface should be only vertices 
of the n-diagram. However, it is not true : any segment of any plane can be given 
a varifold structure (sort of an infinitesimal corrugation) so that it becomes 
minimizing on its boundary. Furthermore, if the normal to the plane is inside a tie 
region of the n-diagram, there are uncountably many other minimizing surfaces having 
the same boundary, and if the normal is inside a tie line, it may be the case that 
the varifold referred to above is the unique minimum-there may be no classical mini­
mum. 

This problem has been handled in several ways. For some simple problems 
illustrating particular singularities, the solutions can be explicitly determined 
and shown to have only good normals. In classifying possible minimizing cones (trun­
cated to sit inside the unit ball), we simply look only at those which are classi­
cal surfaces and have all of their normals being vertices of the n-diagram. In 
looking at more global questions for crystalline surface free energy functions, 
however, we make further assumptions on W and on the directions of the tangent 
lines to the boundary of W , and we assume that the surface in question is the 
image of a polyhedral mapping which is minimizing and also volume-maximizing among 
all minimizing surfaces ; in that case, it can be proved that all normal directions 
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of the surface are vertices of the n-diagram [ 9 ] . 
On the other hand, there are other, very natural situations involving more 

general integrands which seem to require varifold solutions, so the prejudice in 
favor of vertices of the n-diagram should not be allowed to be too strong. 

It is easiest to describe cones all of whose normals are vertices of the 
n-diagram in terms of "labelled cycles" on the n-diagram. We define a labelled cycle 
of length k to be an oriented closed curve on the n-diagram, composed of a sequence 
(ej,...,e^) of k oriented geodesies on S , called edges of the cycle, with each 
edge being labelled "regular" or "inverse" and with the second endpoint n̂  of ê  
being the first endpoint of ei+1 for i = 1,...,k (here ek+1 = e^). To any oriented 
minimizing cone which is composed of a finite number of wedges whose normals are 
normals of W and which is a mapping of the disk, a labelled cycle can be uniquely 
associated. Its vertices are the normals of the wedges, its edges are the geodesies 
linking the normals of the wedges (each is in fact either a tie line or its end-
points are vertices of a single tie figure [ 11 ]), its orientation is given by the 
orientation of the cone, and its edge labels are regular or inverse according to 
whether a neighborhood of the intersection of the corresponding planar wedges is 
like that in W ("normals point away from each other") or that in WI ("normals 
point towards each other"). Conversely, to each labelled cycle there corresponds a 
unique cone S , constructed as follows. To each edge ê  there corresponds a "north 
pole" given by the orientation of ê  (the end of the thumb in the right hand rule); 
let be the line segment from the origin to the north pole if ê  is labelled in­
verse and be the line segment from the origin to the south pole if ê  is labelled 
regular. The wedge P(n^) corresponding to the i*"*1 vertex n. of the cycle is the 
part of the two-dimensional unit disk with normal n̂  swept out by rotating R̂  into 
R.+1 . Finally, 

S = U P(ni). 

Labelled cycles are used extensively in the description of the results and the 
proof of the second theorem below. The use of the n-diagram plus labels is a gene­
ral tool for describing minimizing polyhedral surfaces, not just cones, and it is 
exploited in the proof of the last theorem listed below. 

The following are some of the results that have been proved : 

THEOREM 1 [ 4 ]. For every non-equatorial triangle of tie lines in the n-diagram, 
there are minimizing non-self-intersecting saddle-shaped cones consisting of three 
planar wedges which have the vertices of that triangle as their normals ; their  
labelled cycles are the triangle, with negative orientation, and with not all three 
edges lables the same. See figure 2(e). When this surface does not have all its 
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normals coming from one corner of W , as in figure 2(e), it provides a counterexam­
ple to several expectations previously expressed in the metallurgy literature (see 
for example [ 3 ] and [2 ] as well as [4 ]). The proof uses barriers and is given in 
the appendix. 

THEOREM 2 [11][10] . Suppose that S is a non-self-intersecting cone (truncated to  

lie in S ) which is minimizing for <j> and suppose that all of its normals are vertices  
of the n-diagram. If all tie polygons of the n-diagram are tie triangles, then S 
consists of one, two, three, four, five, or six planar wedges, as specified in 
(1)-(10) of the catalog in [11], or it is a modification of one of these types as 
in (11) of the catalog. If the n-diagram contains tie polygons that are not tie 
triangles, but no tie regions that are not tie polygons, then the catalog is s t i l l 
finite, consisting of those basic 11 types and minor variations on them, plus one 
new modification ((12) of the catalog). Tie regions that are not tie polygons lead  
to an infinite number of polyhedral cones of type (12), having highly branched 
generalized Gauss maps. See figure 2 for examples of each of the types. The surfaces 
of the previous theorem are two of the types, depending on whether a tie triangle 
is bounded or not. The catalog is given and its implications discussed at length in 
[ 11 ] . It is proved in [10] that it is a complete catalog. 

THEOREM 3 [ 12] . If W is a cylinder, then there are minimizing surfaces with sin-
gular curves containing interior cusps.See figure 3(a).Such cups have also been seen 
experimentally (see figure 3(b), although the W in those cases seems not to be a 
cylinder but to be a ball with six small caps sliced off, leaving planar facets 
near where the coordinate axes would protrude from the ball.) 

THEOREM 4 [1] [8] . Let be an n-dimensional region of volume 1 contained in the 
upper half space and having least total energy (surface energy plus gravitational 
energy) in a gravitational field with gravity constant g . _If g is large enough, 
if Wg is convex (an open problem !),and if the vertical vector (0,...,0,1) is, 
inside a tie region of the n-diagram for W (so that W has a corner on top), then 
there is a facet on top of W with vertical normal. If n = 3 and the vertical unit 

vector is part of a tie line on the boundary between two tie regions, then under 
some conditions on the n-diagram there must be a facet on top of W and under others 
there can be no such facet but there must be gravity-induced curvature near the top 
of . In either case, if § is not a convex integrand in the region around the 
vertical unit vector, this facet or curved region must be infinitesimally corruga-
ted-that is, W is not a classical solution but only a varifold solution. 
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THEOREM 5 [ 9 ]. Suppose that 
(1) W is a polyhedron such that only three facets meet at each corner, each facet 
of W has an even number of sides with opposite sides being parallel, and the angles 
between adjacent facets of W are less than 90° ; 
(2) For some positive integer b , B is the union of b disjoint oriented simple 
closed polyhedral curves, with each line segment of B parallel to some edge of W ; 
(3) For some non-negative integer k , h : M —]R is a polyhedrally parametric 
mapping of a polyhedral disk with b boundary components and k handles, taking 
boundary B , and 
(4) h is minimizing among all surfaces taking boundary B and is volume maximi­
zing compared to all other such minima. 
Then the number of plane segments in h(M) is bounded by 

3NL/ci + (2/a - l)(b + 2k - 2), 

where NR is the number of line segments in B and 2-rra is the area of the smallest 
tie triangle of the n-diagram. 
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APPENDIX 

Proof of Wulffs construction. Let W be the Wulff shape for the surface free ener­
gy function <f) : Sn ^ -> R+ , as given in the body of this paper. Let P be any other 
region with piecewise boundary and the same volume and center of gravity as W . 
We will show 

ф(ЭР) E Г *(v.p(x))dHn 'x 

Р) E Г *(v.p(x))dHn 'x 
5 ф(ЭЫ). 

By approximation, then, this result holds with only the hypothesis that P has 
finite perimeter. The proof that W is the unique minimum in the strongest possible 
sense is given in [T6]. 

The proof (for 8P piecewise Ĉ ) has three ingredients. 

I . There exists a smallest integrand \p with the same Wulff shape W as (j> . 
This integrand is a convex function on Rn (when viewed as a function on hyperplanes 
rather than their normal directions, it is a semielliptic integrand in the termino­
logy of [F 5.1.2]), and is in fact the support function of the convex body W . 

II . i|;(v) = distOHV,3(HV + W)) for each v in S*1""1 ; here HV is the half 
space whose oriented unit normal is v and 

HV + W = {x + y : x £ HV, y € W} . 

III . Ln(A+B) > (Ln(A)1/n + Ln(B)1/n)n , with equality if and only if A and 
B have the same shape (differ only by a translation and/or a homothety),, for any 
sets A and B in Rn . This is the Brunn-Minkowski inequality (see[F 3.2.41]). 

As a final bit of notation, for any h > 0 let u, : Rn Rn be the 
homothety taking each x in R to hx , and let v (x) be the exterior unit normal 
to 3P at x (which is defined for almost all x in 3P). 

We now prove that <J>(3P) ^ (̂3W). 
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4> OP) E ; cKv_p(x))dHn !x 
x€8P 3P 

> J i|;(v.p))dHn"1x (by I) 
x€8P 9P 

= f lim, _(l/h)dist(x,P + ŷ W)dHn lx (by II) 
xeap h 

= limh^0(l/h)(Ln(P + yhW) - Ln(P)) 

> lim, n(l/h)(nhLn(W) + (n(n-l)/2)h2Ln(W) + ...+hnLn(W)) 
n->u 

(by III and Ln(P) = Ln(W)) 
= nLn(W) 
= limh^0(l/h)(Ln(W + uhW) - Ln(W)) (by III) 

= / ip(v:,TT(x))dHn"1x (by II) 
x€8W 9W 

= J (j)(v.y(x))dHn"1x (by I). 
xeaw dW 

Proof of Theorem 1. The proof uses barriers. Any uniquely minimizing surface can 
be used as a barrier surface to try to prove that a given surface S with a given 
boundary curve is also uniquely minimizing. The idea is that if the given boundary 
curve lies to one side of the barrier surface, any minimizing surface having the 
given curve as boundary must also lie to that side of the barrier surface. If S 
did cross over the barrier surface, then that part of the barrier surface which 
would be cut out by S is uniquely minimizing, and replacing that part of S with 
the cut-out of the barrier would decrease the energy. In order to prove by this 
technique that S is uniquely minimizing one must be able to pin down every point 
of S by barriers from both sides. For the S specified in the hypotheses of this 
theorem, two barriers from in front of S and two from in back of S suffice. 

Suppose that the vertices of the labelled cycle corresponding to S are 
nj , n̂  , n̂  , with both edges to n̂  being labelled regular and the other edge of 
the cycle labelled inverse. Then one barrier from in front is the plane with nor­
mal n̂  and another is two half-planes, with normals n̂  and n̂  , meeting in an 
inverse intersection. Both barriers from in back consist of two half-planes making 
a regular intersection, one with normals n̂  and and the other with normals n̂  
and n̂  . 
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Figure 1. (a) A Wulff shape W. (b) Stereographic projection from the direction 
of the n-diagram corresponding to this W . 
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Figure 2. (a) through (1) are examples of cones of types (1) through (12). Cones (a) 
through (k) are minimizing for the W shown in figure 1, but (1) requires a diffe­
rent W such as the octahedron where planes 4,5,6, and 7 meet at a single corner. 
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Figure 3. If the Wulff shape W is a vertical cylinder then a minimizing surface 
is the surface shown in (a), which has a horizontal ledge terminating in a cusp 
half way up a vertical wall. In (b) is shown a photograph (magnification 2000X) of 
a single crystal of a steel whose surface contains cusps ; the W for this alloy 
is apparently a ball distorted somewhat toward a cube, with six caps cut off lea 
ving six facets with sharp edges. Photograph courtesy of John L. Walter, G.E. 
Research and Development Center. 
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