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MONODROMY AND THE KOWALEVSKAYA TOP. 

J. P. Françoise 

We consider algebraically completely integrable Hamiltonian systems 

which are separable [A-M], [Mo], [Moe] and [Mu]. For these systems, we 

prove that the symplectic form can be reduced to a simple expression 

involving Abelian forms. We use then Arnol'd's method [A] to define the 

Actions. The determination of the Actions turns out to be equivalent to a 

monodromy computation. The Actions are not given, in general, by simple 

functions of the first integrals. But we can write the corresponding 

Picard-Fuchs equations. We consider in detail the Kowalevskaya Top and we 

write down the H-th order differential equation which is involved in this 

case. 

It is a pleasure for me to thank V. Guillemin for stimulating 

discussions in the beginning of this work at M.I.T. and P. Deligne for 

helpful comments. 

1• Algebraically Completely Integrable Hamiltonian System 

We see here a completely integrable Hamiltonian System (H,w) as an 

algebraic mapping H - (H,, .... H ):V 2 m H. I1" which is submersive on a non­

empty Zariski open set V* . v 2 m \ s, where v2m is a symplectic algebraic 

variety, and such that the fibers of H are Lagrangian for the symplectic 

form a). 

Definition. A completely integrable Hamiltonian system is 

algebraically separable if 

i) there is a family of hyperelliptic curves 

C Q = {(z,w) e Œ /z - $c(w)} 

S.M.F. 
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such that the fiber H (c) is the affine part of Jac(Cc) and constants 

v. e (Em such that 1 

(1.1) 
k=1 

m w k 
j-1 {Hlfwk} 

v Q(wk) 1 1 J 

{ } is the Poisson bracket for co and v. * 0 for all i = 1, .... m. 
i ' ' 

Let us consider a Hamiltonian system (Hfw) which is a 

complexification of a real mapping H:V 2m •> R. If the fibers H 1(c), 

c e Rm are compact, the connected components of the general fiber are real 

tori (Arnol'd-Liouville). 

The system is said to be algebraically completely integrable when the 

fibers are affine part of Abelian varieties [A-M]. Most of the interesting 

completely integrable Hamiltonian systems have this property. For instance, 

the three cases of integrability of the motion of a rigid body about a fixed 

point and their extensions [R], [R-M], the Toda Lattice and its extensions 

by Kostant [K] the examples of J. Moser [Mo] ect. Furthermore for all these 

examples, the Abelian varieties are Jacobians of Riemann surfaces Cc, 

Jac (C ) 
v cJ 

= H°(C,n I)*/H (C,Z). 
2 

Let us recall that if z = *(w) is an equation for a hyperelliptic 

curve C, $ being a polynomial of degree 2g or 2g + 1, the Abelian 
forms of the first kind wJ dw 

A>(w) 
3 = 0, g - 1 ) generate a basis of 

H ° ( C , O J ) -

So the equation (1.1) means that the Hamiltonian flows of the functions 

H. 
i 

are linearized on the Jacobian and that they have a constant velocity 

v. i relatively to the basis of the Abelian forms of the first kind. 
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The velocities vi are usually independent of H in the classical 

examples. The algebraic polarization of the complex tori is not given by 

the expected one (Projective embedding of the fibers H 1 (c) by 

homogenization) but is provided by the existence of Laurent developments for 

the solutions of the H [A.M.]. In this sense, following Torelli's theorem 

the smooth curves CC are uniquely determined by the couple (H,u)). 

We consider now an example. 

2. The Integration of Kowalevskaya Top. 

Euler's equations governing the motion of a rigid body about a fixed 

point are given by the following 

(2.1 ) 

£p + (C - B)qr = mg(y0Y - z ^ ) 

Bq + (A - C)pr = mg(z Y - x Y ) 

Cr + (B - A)pq = mg(x QY 2 - y ^ ) 

*1 = r T 2 " ^3 

Y 2 - P Y 3 - rY1 

T 3 - QT1 " PY 2 

It is natural to restrict the vector field that they define to the 
4 6 

algebraic variety VD C R given by the equations 

2 2 2 Y1 + Y 2 + Y^ - 1 = 0 

2(pY 1 + qY 2) + rY - 21 = 0, 

i z R is fixed. 
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We get by restriction on V a Hamiltonian system for the symplectic 

form: 

(2.2) W 
2 

Y3 
•dp A dï2 -

2 

Y3 
dp A dY -

r 

Y 2 
3 

dY A dï2 

and the Hamiltonian is 

(2.3) 
2 2 

H - p + q + 

2 
r 
2 - cy1, c = 

mgx 

C 

for the Kowalevskaya Top which corresponds to the values 

A = B = 2C, y0 - zo - 0 

of the parameters. 

In that case, we have an extra integral K: 

(2.4) K - [(p + iq)2 + c(Y + iY2)] [(p - iq)2 + c(Y1 - iY2)]. 

We define by H = (K,H): V4 Œ + Œ a completely integrable Hamiltonian system. 

If we follow S. Kowalevskaya's computation [Ko], [Go], we choose 

x1 - P + iq, x2 = p - iq, Y1 , Y2 4 
as a system of coordinates on V . We 

introduce the polynomials 

R(x) = -X + 2Hx + Hclx 
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R(x 1,x 2) = - X l x 2 + 2H X lx 2 + 2cJl(x1 + x 2) + c - K 

R l(x 1,x 2) - -2H X lx 2 - (c - K)(x1 + x 2) - l4cS,x1x2(xl + x 2 ) 

+ 2H(c2 - KÌ - kc2l2. 

We use then 

(2.5) 

W1 = 

R( X lx 2) - •Rlx1 jR[x2J 

(x -x J 

W2 = 

R( X lx 2) + •RLx1 jRlx2J 

( x ^ x ^ 

and the polynomials 

(2.6) 

<j)(w) = (w + H)(w2 + c 2 - K) - 2c 2£ 2 

$(w) = -2(w - K)(j)(w). 

Now an algebraic computation shows that the equations (2.1) are 

equivalent to 

(2.7) 

w1 = -(H.w^ = /$lw1 J/w - w 2 
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w2 = -{H,W2) = /$[w2 J/w - w2 

and so, we have 

(2.8) 

dw 

v (W1) 
+ 

dw2 

/*lw J 
= 0 

ŵ  dw^ 

v (W1) 
+ 
w2dw2 

/*lw J 
= -dt. 

Let us introduce the hyperelliptic Riemann surface C defined by 

2 

z = $(w) in (EP2 = {(z,w)}. It is a compactification of a double cover of 

the plane minus three cuts and so it is a Hyperelliptic curve of genus 2. 

Let Jac (C) = H° (C, to l}*/H1 (C,Z) be the Jacobian variety of C . The forms 
u 1 

dw 

A ( w ) 

wdw i 

/$(w) 
provide a basis of H ° ( C . Q J ) . We can associate to (w ,w ) 

an element (z1,w1) - (z2,w2) of the Picard group P Ì C Q ( C ) where 

z1 = <D(w1 ) and z2 = ̂ ^w2^ So the equations (2.8) describe a linear 

motion on Jac (C) and the real tori given by Arnol1d-Liouville are real 

part of Abelian varieties on which the motion is linear. 

[f we introduce 

Q(w,Hfx ,x2) = (x1 - x2) w - 2R(xlfx2)w - Rl(x1,x2) 

we deduce from (2.5) that 

Q(w ,H,x ,x ) = Q(w2,H,x1,x2) = 0. 
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So we have an identity 

3Q 

9w. 
l 
dw. l + 

3Q 
3X! dX1 + 3Q 

3 x 2 
dx2 + 

3Q 
3H 
dH + 

3Q 
8 K 

dK 
w=w. l 

= 0 

for i = 1, 2. 

We can deduce from this identity that 

(2.9) 

| K , W 1 ) = 2w2/$(w1)/w - w2 

{ K , W 2 | = 2w1/$(w2 J/w - w . 

So the condition (1.1) holds for the Kowalevskaya top with v1 = +2 

and v2 = 1 . 

3 • Preparation of the Symplectic Form 

Proposition 3 . 1 . If (H,to) is algebraically separable, then there are 

functions qj such that the forms dqj 
H (c) 

are sums of Abelian 

integrals and such that 

0) = 
m 

j « 1 
dqj A dH.. J 

Proof. We start with the expression of the symplectic form oo in the 

coordinates (H,w) 

co = 
j,l 

A J* dH AdH£ + B.̂ dw AdH^ + C dw Adwr 
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We have 

(3.1 ) -dH. = l 
j,l 

B {H1(w )dĤ  + 2C |H.,w jdwr 

It is convenient at this point to introduce a matrix notation. Let F, 

B, W, V be the matrices whose general terms are: 

( F ) I J = {Hi'WJ} (B). . = B. . 
1 J lj 

(W)ij 
W 

1 
J-1 

vQ (W1) 
(V) 

ij 
= V.6. .. 

1 I J 

Then, the equation (1.1) gives 

F • W = V. 

From (3.1), we deduce that 

F • B = -1 

and since det(V) = 
m 

i = 1 
v. * 0, 
l 

that 

B = -WV-1 

or 
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(3.2) Bjl= 
1 
V l 
w 8.-1 /vg(wj). 

Another consequence of (3.1) is 

C.fl{H. ,w.l « 0 

and because det F * 0, we have 

(3.3) C = 0 for all j, A. 
J A 

We introduce now the pre-angles q̂  in the following way. The symplectic 

form can be written: 

w= 
m 

j = 1 
nj A j 

Let n be a one-form such that OJ = dn defined on an appropriate universal 

cover. We have 

n = 
i 
a.dH. 
l l 

+ eidwi 

3B, 

3w, k 

8ßK 
3w. l 

Let us introduce a function S such that ßi 
3S 
3w. 
l 

and write: 
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n ' - n - dS - I(a. - H-)dH. 
i 

q. = a. -1 1 
3S 
3H. 1 

w = dn ' = I d q . A dH.. 

4. Arnol'd's Definition_qf the Actions 

A system of Action-angles for (H,w) can be defined following Arnol'd 

[A] when H:V2m -> R has compact fibers. In that case the connected 
— n 

components of H ^(c) are tori and we define an Action-angle coordinates 

system, relatively to a basis ^j^£^ of the homology of the real tori 

H 1(c), as coordinates (p,q) so that 

i) OJ = 

m 

j -1 
dq A dp 

ii) H = H(p) (the first integrals do not depend on the angles) 

iii) 
T (c) 

dq. = 6. .. 
i iJ 

Basic references for Action-angles are Arnol'd [A], Nekhoroshev [N]. A 

nice example of R. Cushman of non-existence of global Action-angles is 

analyzed in [Du]. See also [F.M.]. Action-angles are very useful, for 

instance, for the quantization of classical mechanical systems [G-S]. 
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For algebraically separable Hamiltonian systems, we have previously 

prepared the symplectic form 

CO = 
m 

J-1 
dq. A dH.. 
J J 

So the Actions are determined as functions of H by the periods 

Wj(H) =-
i,k' T (H) 

w. dw, k k 
vkvg (Wk) 

The periods are given by Abelian integrals of the first kind. Thus, their 

computation is a problem of Algebraic Geometry once we know explicitly how 

the Hyperelliptic curves C C depend on H. 

5. Computation of the Angles 

Proposition 5.1. The angles are given by 

qi= 
m 

>1 
T (H)q 

where the matrix T: (T). . = T. . 
ij iJ 

is the inverse of T: 

(T) -
Y . J 

dqi. 

In general, for a family of Hyperelliptic Riemann surfaces, it is not 

possible to compute explicitly the Abelian integrals as functions of the 
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parameters, but they are solutions 01 a Picard-Fuchs differential equation 
[D], [ M ] . 

The same situation appears for the Milnor fibration where the Gauss-

Manin connection provides a Regular Singular Differential System which is 

very useful to study the local monodromy [D], [M], [Gr]. The integrals are 

in that case related to the Birkhoff series of Hamiltonian Systems [F], [V], 

We make more explicit the computation of these differential equations 

for the Kowalevskaya Top. 

6• Picard-Fuchs Equations for the Kowalevskaya Top 

We must, first of all, choose a system of generators for the homology 

of the real part of H 1 (c). The coordinates (w ,w ) represent a point or 

H 1(c). If p, q; Y1, Y2 are real, then x = x2 and (cf. (2.5)) w , 

w e R (in fact w e R_). With (w ,w ) we can parametrize an element 

(z1,w1) - (z2,w2) of Pic0(CC). 

The mapping h : C w c Jac(c ) defined by 

hw2:(z1,w1)—>(z1,w)-(z2,w2), 

where w2 is fixed, is a quasi-isomorphism. 

So a system of generators for the Homology of H (c) can be 

prescribed by paths in the w -plane. 

For our case, the polynomial $ (2.6) is of degree 5 and we know 

that +/K and -/K are two roots of Q. So we can explicitly compute the 

three other roots. They will be denoted (e^e^e^). The equation of the 

Discriminant locus of C is 
c 
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(6.1 ) ôô1 = 0 

where 

(6.2) 6 = -K + (H - 21 ) 

6? - Mp3 + 27q2 

with p = (c2-K- H2/3) and 2Hr 2 v^ q = — [c - KJ - 2c2l2 . f . 
Thus the Discriminant locus is the union of a Parabola and of a 

singular sextic (with four singular points in its affine part). 

We need a quick analysis of the respective localization of each roots 

of <J). For instance if I = 0 then (cf. (2.6)) 

(6.3) cf)(w) = (w + H)(w2 + c2 - K). 

If K is small enough, there is only one real root -H. If -H << -/K, 

let e be the real root of $ which equals -H for I = 0 ; for datas 

which are small perturbations of this situation, we get sign of <j> 

e -vk /K 
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Hence, we can choose the segments [-°°,e] and [/K,-/K] to have a 

basis of the real homology of Jac ( C ) . We are concerned with the four 

integrals 

(6.M) 

P1 -
e 

— 00 

dw 
/JTwT 

P2 • 
e 
— 00 

wdw 
/*(w) 

Q1 • 
V K 

- A 
dw 

A ( w ) 
Q2 » 

V K 

-/K 
wdw 

/$(w) 

and their analytic extensions to any values of H = (K,H). 

The Picard-Fuchs equation does not depend on the generator of the 

homology so we can restrict ourselves to the path "Y defined by going from 

-« to e on the first sheet of C then back from e to -°° on the 
c second sheet of C . We have to deal with c 

P. = l 
y 

w dw 
/ilwT 

for i = l , v. 

For the Kowalevskaya top there is a nice simplification of the 

monodromy computation because there is a vector field X Q: 

(6.5) x o 
1_ 
2 

Э_ 
ЭН -

Э 
"эк 

- 1/2 э_ 
9w 

such that X • *(w) = 0. 

From this and the relation 

1 0 0 
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(6.6) 
y 

4 . w dw 
vG y 

w dw 
vG 

1 
5 y 

Q' 
VG 

dw 

y 

4 H  w dw 
vg(w) =-

4 
5 H P 4 -|(c

2 - 2k)P3 -|[(c 2 - 2k)H - 2cV]P 2 

+ ^K(c - k)P1 . 

We get 

(6.7) %P /№ = 23P2/3K 

3P./3H = 23P. ,/3K - iP. . for i = 1, 2, 3 l 1+1 1-1 

3P./3H = 8/5H 3 P M 

3K - |(c 2 - 2K} 
3 P 3 
3K 

" |[(c2 " 2K)H - 2ch2) 
3P 2 

3K~ 

3P 
+ -Kfc2 - K l — - - -P + - - P + -[2c 2 - 4K 1 P 5 1 J3K 5 3 5 2 5 L J 1 * 

This allows to separate simply the Picard-Fuchs equations into two 

parts involving respectively only the partial derivatives relatively to H 

or K. 

Let us see now, for instance, the system for the partial derivatives 

relatively to H. We follow here the usual way [D]. 

We start with 

(6.8) 
ЭР. 1 
эн =-

1_ 
2 y 

i-1 
w 
/$(w) 

H 
4> 
dw = - 1 

2 
i-1 

w 
vB 

H 
4) 
dw 
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we denote by X, X - w - K, then G = 2x .Q 

(6.9) 2 2 2 (f) ' = w - K + c = X + C • n 

We can check that 

(6.10) 1 = A<j) + mx 

with 

(6.11) A = - W - ( H - 2 J T ) 

c 26 
y = 

2 2 ? ? ? w +2fc (w+H)-H + 2 & H + C 

c 26 

so 

(6.12) 
Y 

i-1 
w 
/*(w) 

• H dw = 
Y 

i-1 
w 
/<fr(w) 

2, . •c Adw + 
Y 

i-1 
w 
VB 

(1 + c pftw. 

Let us consider the first integral 

(6.13) 
Y 
w1dw 
VB 

+ 
(H-2l2) 

6 Y 
w dw 
/$Tw) 

and so for i = 1 , 2 , 3 we find it is 

(6.14) - Ip 
(S i + 1 

+ 
2 

Н - 2 Я , 6 P. . 
l 

1 0 2 
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For i = 4, with (6.6), we have 

(6.15) 
2 

W-21 6 p ^ 6 
Y 

4^ w dw 
vG 

5H-2A 2 
6 P4 + 

|(c2-2K) 
6 P 3 4 

§ ( ( c 2 - 2 K ) h - 2 c V ) 
6 P2 

-
1 K ( c 2 - K ) 

E p1 

The second integral in (6.12) is slightly harder to compute. First of 

all, we have: 

(6.16) 1 + c2u = T [w2 + 2il2w + 4£ 4 - 2£2H + c 2 - K] =R/8 
0 0 

With the notations of (6.3) and A H 
z - w + 3 

(6.17) <J>(z) = z + Pz + q. 

We write now 

(6.18) 2 
R = z + uz + v 

with 

u - - 2H/3f + 2.2 

(6.19) H2 8il2H lin4 2 v = — — + 4£ + c - K. 

103 



J. P. FRAN^OISE 

Then we have 

(6.20) R = L<j> + M<j)» 

with 

(6.21) L - ̂ -[-3rz - 3s] 

M = -~-[rz2 + sz + t] 

and 

(6.22) 
r 
s 
t 

2 P 2 

"3qp 
- 9 Q

2 

-9q 
- 2 P 2 

-6pq 

-6p 
9q 
-4p 2 

1 
-u 
v 

3 2 
and were 6' = -4p - 27q is the notation of (6.2). 

So we can write 

(6.23) 
Y 

i-1 
w 
/$(w) 

(1 + c u)*dw = 1 
Y 

i-1 
w 
/?(w) 

(L<t> + M(|)' )-£dw 

= 1 6 Y 
i-1 

w 
VG 

Lxdw + -
Y 

WI-1^ M / Y 

* 3 / 2 

cj)'dw. 

The first integral gives 

1 0 4 
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(6.24) 1 
66f Y 

w1 1 f-3rw-rH-3s)(w2-K+c2] 
VG 

dw 

= 1/88,[-3r] 
T 

i + 2 
w 
/5 

dw - (rH + 3s) 
T 

i + 1 
w 
VG 

dw 

- 3r(-K + c2] 
T 

i 
w 
VG 

dw - r̂H + 3s)(c2 - K) 
Y 

i-1 
w 
VG 

•dw]. 

The second integral of (6.23) gives 

1_ 
6 Y 

2 f ( i-1 )wX 2M+w1 ^ ' I Y + W 1 1MY' 
VG 

dw 

and then 

(6.25) jlr[2(i + 2)r 
Y 

i + 2 
w 
VG 

dw + 2 ( i + 1 ) r2Hr > l-j- + s] 
Y 

i + 1 
w 
VQ 

dw 

+ [2i(rJ- + f- + t) + 2(i + 1)r(-K - c2)] 
Y 
w1dw 
/$(w) 

0.f2Hr W T, 2> + 2i[ --- + s J[-K + c J 
Y 

i-1 
w 
VG 

dw 

+ 2(i - 1)[r-J-- + s^ + t][-K + c2] 
Y 

1-2 
w 
VG 

dw]. 

Mow we have to express the integrals 
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' Y 

4 
w dw 

VG Y 

5 
w dw 

/<!> Y 

6^ w dw 
VG 

as a combination of the Abelian integrals of the first and the second kinds. 

This is a classical computation. 

For the first one, we have the formula (6.6). For the others, we use 

the formula 

(6.26) 
. m, m-1 , 
b w +b w +... +bm 

vG 

b o 
k+5/2 

d/dw[wkVQ]S/vQ 

where S is of degree lower than m, choosing a k in such a way, that 

m = k + 4. 

So if we denote 

5 M 3 2 
$ ( w ) = w + a „ w + a 0 w + a^w + a,.w + a._, 1 2 i 4 b 

we find 

(6.27) 
Y 

6 X w dw 
vG 

= -2/9[4q1 
Y 

5 
w dw 
vG 

+ 2°2 
! Y 

w dvv 

/ 0 
+ 3ö3PM + 2önP3 + 2°5P2] 

and 

(6.28) 
Y 

h 
w dw 
VG 

= -2/7[3o1 
Y 

4 
w dw 
VG 

+ 2°2P4 + 2a3P3 + W 2 + °5P1]-
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Finally, if we put together (6.14), (6.15), (6.24), (6.25) and (6.6), 

(6.26), (6.27), we find explicitly the Picard-Fuchs equation in the form 

(6.29) 
3P. 

l 3H 
4 

j = 1 

a. . p. . 

L ô ôôtJ j 

where a., are given by (6.14) and (6.15) and B.. are derived irom 

(6.24), (6.25). The ex.. and 0„ are simple polynomial expressions of 

H = (K,H). 
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