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UNIVERSAL FAMILIES OF FOLIATIONS BY CURVES* 

Xavier GOMEZ-MONT 

For different reasons, the theories of Dynamical Systems and of 
Complex Analytic Geometry have been interested in parameter families 
of objects. A typical problem of dynamical systems is to know if 
for a given family of vector fields the orbit structure obtained by 
integrating the vector field remains topoloqically the same as the 
parameter moves, see Palis [14]. Complex analysts have been interes­
ted in constructing versal spaces of analytic objects, in such a way 
that one may reconstruct all parameter families of such objects by a 
simple method of pull-back, see Kuranishi [12] or Douady[4]. These 
theories have a non-trivial intersection in the theory of holomorphic 
foliations. 

The main point of the present work is to exploit the fact that 
for a holomorphic foliation with singularities by one dimensional 
leaves, the line bundle tangent to the leaves on the non-singular 
points extends to an abstract holomorphic line bundle on all of M. 
Douady1s parametrization of quotient sheaves in [4] applied to the 
tangent bundle of M plus the above fact produces a universal family 
of foliations by curves in M, where the parameter space is a complex 
analytic space. Douady has also shown that in order to solve parame­
trization problems of this sort one must impose on the families under 
consideration to have a flat variation with respect to the parameter. 
Again using the existence of the extended line bundle we show that 
this flatness condition is always satisfied if the parameter space is 
a reduced analytic space. We then proceed to describe the pattern of 
the universal families, where the Chern class of the line bundle 
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springs as the discrete numerical invariant and then the continuous 
moduli appears. 

The work is divided into three sections. In the first section 
we start from the geometric definition of a foliation, which is defi­
ned by local coordinate charts built on the model of the family of 
lines in Cn4JwxC, W£Cn . These local models are given in M-V, where 
V is a subvariety of codimension bigger than one. The main result of 
this section is in showing that the line bundle on M-V formed by vec­
tors tangent to the leaves of the foliation has a natural extension 
as an abstract holomorphic line bundle L on all the manifold M and 
the existence of a holomorphic map X:L ->TM from the line bundle L 
into the tangent bundle of M where the singularities of the foliation 
appear as the set of points where X vanishes. The proof relies on 
the Levi extension theorem. The fact that the foliation is non-sin­
gular in M-V is reflected in the fact that the map X is non-vanishing 
outside of a set of codimension bigger than one. This restriction 
is a natural one, since we want to avoid having an essential singu­
larity along a codimension 1 subvariety. 

Motivated by this geometric definition, we give an extended ana­
lytic definition of a foliation by curves as a non-identically equal 
to zero analytic map from the line bundle L into the tangent bundle 
of M, X:L +TM. Two such maps define the same foliation if the line 
bundles are isomorphic as holomorphic bundles, and if after this iden­
tification the maps differ by multiplication by a never vanishing ho­
lomorphic function. 

If X vanishes on a subvariety of codimension one, we could divi­
de by an equation defining this subvariety and, modifying L accor­
dingly, obtain a foliation ^X:L' + ™ as before. We consider these 
two foliations as distinct, since they have a different behaviour 
from the variational point of view that will interest us in section 
two. 

Section two is devoted to proving the existence of a universal 
family of foliations. We begin by obtaining an equivalent definition 
of a foliation using subsheaves of the tangent sheaf, and then we use 
Douady's theorem of universal families of quotient sheaves to obtain 
the desired family. We then proceed to show that if the parameter 
space is reduced, then the flatness condition in Douady's theorem is 
always satisfied. 
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Section three is devoted to give a general outlook on what kind 
of analytic spaces one expects in this universal families. The first 
observation is that the Chern class remains constant in each connect­
ed component, which then brakes the problem into two: which Chern 
classes carry foliations, and what is the structure of those folia­
tions that have constant Chern class. 

We prove that for a compact Kàhler manifold with vanishing first 
Betti number, the space of foliations with a given Chern class forms 
in a natural way a projective space . For projective manifolds we 
show in general that the space of foliations with a given Chern class 
is compact (and projective). Also for projective manifolds we show 
how for some Chern classes the variety of foliations having this 
Chern class has a structure of a holomorphic bundle of projective spa­
ces over a complex torus of dimension one half the first Betti number 
of the manifold and that sometimes one can say exactly what is the 
dimension of this space. All these results use deep theorems of glo­
bal analytic geometry, namely, the Kodaira-Nakano vanishing theorem, 
the existence of the Poincaré bundle on the Picard variety and the 
Riemann-Roch theorem. 

Other applications of the line bundle technique may be found in 
[5], where we relate foliations to meromorphic vector fields, we 
sketch another construction of the universal family using the Poinca­
ré bundle on the Picard variety of a projective variety and do expli­
cit computations for projective spaces. In [6] we have analysed fo­
liations by curves in singular spaces, where one only obtains a mero­
morphic line bundle, but interesting invariants appear as one measu­
res the obstructions to make it a holomorphic line bundle. In [7] we 
persue the approach presented in this paper, where we let the complex 
structure of the base manifold to move and we give a method to cons­
truct tangent spaces and calculate universal derivatives. It turns 
out that the holomorphic cohomology of the line bundle carry informa­
tion about the different complex structures that can be put on the 
leaves of the foliation. This fact is interesting since these groups 
depend only on the abstract analytic class of the foliation (i.e. the 
line bundle) and not on the topological foliation itself. In forth­
coming works we will give a detailed picture for foliations in ruled 
surfaces and jointly with J. Seade and A. Verjovsky show that the 
Chern class is an invariant under homeomorphisms preserving the lea­
ves of the foliation. 
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This project has been carried out surrounded by the stimulating 
atmosphere around Alberto Verjovsky, and with the overall support of 
Jacob Palis and Christopher Zeeman. Special thanks also to Cesar 
Camacho and Robert Moussu for their support to our research group. 

1. Foliations by Holomorphic Curves 

In this section we will define the objects that we will analyse 
throughout the paper: Foliations of complex manifolds by holomorphic 
curves. We will begin with a natural geometric definition, that mo­
tivates the extended analytic definition that we will use. 

Let M be a complex manifold. A non-singular foliation of M by  
curves F can be given by an open covering of M by coordinate charts 
(UL ,cj) J such that if 

cj) . . 
ID 

- 1 (A 1 A 2 A 11 •4. U u. 
D *i u. 1 

IU . 
D 

is the expression for a change of coordinates, then they satisfy 

M 
1 

3Zn 
3d) 
n-l 
^zn 0 (1) 

Such coordinate charts will be referred as foliated coordinate charts 
The differential condition (1) has the geometric meaning of leaving 
invariant the set of vertical lines given by z =Kw...,z =K 

Since this local partition of C into a family of complex lines 
^n_^n-l^^ _̂  £n~l is being left invariant by the changes of coordi­
nates, we may induce this partition into M , giving rise to a decom­
position of M into leaves ^U^L^ obtained by gluing the local lea­
ves. Each L will be a Riemann surface and the natural inclusion of 

OL 
1 into M is an immersion, but it may wander around M and reaccumulate a 
on itself, so it is not necessarily an embedding. The foliation ac­
tually may be defined by adjoining all coordinate charts compatible 
with the given cover in the sense of satisfying ( 1 ) . 

Geometric Definitions: Let M be a connected complex manifold of di­
mension n. A foliation (with singularities) F of M by curves is a 
non-singular foliation of M-V by curves where V is an analytic sub-
variety of M of codimension bigger than one. A point p in V is a 
removable singularity of the foliation F if we may find a coordinate 
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chart on a neighborhood of p that is compatible with the atlas on 

M-V defining F in the sense of satisfying (1). The set of points 

that are non-removable singularities is called the singular set of  

the foliation and denoted by Sing(F). 

Our aim now will be directed towards obtaining an analytic ex­

pression of the foliation F. The main analytic concept that we will 

need in order to provide this expression is that of a (holomorphic) 

line bundle over M. A line bundle over M may be described by an open 

covering {IL} with local trivialisations ILxC and with transition 

functions for the intersections 

4> . (u.nu .) xC 
1 1 J 

* j (U.HU.)xC 

(z,t) ( d> (z) , Í . . (z) -t) 

where the £ are holomorphic non-vanishing functions satisfying the 

cocycle condition £..=£..•£;., on U.nu.Hn (see Griffiths-Harris [9 ] 1 ik sij sjk i l k 
p.66). 

Let {(tL,cf)̂ )} be a foliated coordinate cover of a foliation F 

on M-V. We obtain as a consequence of the compatibility conditions 

(1) that in the compositions of the Jacobians D (cj> ) =D (<f> . . ) * D (4) .,) 

the term 3* 1 . 

3zn 
at the lower right entry multiplies as a cocycle; so 

it defines a line bundle L1 on M-V provided with the natural inclusion 

of Lf into T(M-V) given by t -> (0,0,...,t). The image of L1 in 

T(M-V) consists of those vectors tangent to the leaves of the folia­

tion in M-V. 

Theorem 1 ([ 5] ) : Let F be a singular foliation of M by curves, non-

singular on M-V, with V an analytic subset of codimension bigger than 

one, and let L' be the holomorphic line bundle on M-V of tangent vec­

tors to the foliation. Then: 

1) L1 has a canonical extension to an abstract holomorphic li­

ne bundle L on all of M and a bundle map X:L ^TM whose image restric­

ted to M-V are the tangent spaces to the leaves. X is unique up to 

multiplication by a nowhere zero holomorphic function on M. 

2) A point p of V is a removable singularity of F if and only if 

X(p) is not the zero map X(p) :L T M. 
P P 
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3) The singular set of the foliation is an analytic subvariety 
of M. 
Proof : 1) The proof relies on the Levi extension theorem, which can 
be seen as a geometric version of Hartog1 s extension theorem (see 
Griffiths-Harris [ 9 ] p.396). 

Let p be a point of V and choose a coordinate patch U of p which 
is biholomorphic to a polycilinder D in Cn. Let V'=VflD so that L1 
restricts to a line bundle L1 on D-V and it comes with a map on 
D-V',X:L'^ T(D-V'), but since the tangent bundle on D is trivial, X 
has an expression X=(X^,...,X^) where each X^ is a bundle map 

X^L» -*(D-V')xC 

Suppose X^ is not identically equal to zero, and let A the divisor of 
its zeroes j X^ = o| . By the Levi extension theorem A is a divisor on 
D. Now since D is a contractible Stein manifold we may find a holo­
morphic function g on D vanishing exactly on A. Consider then the 
map 

X. 1 
g 

L1-* (D-V')xC 

it is holomorphic and nonvanishing on D-V, so it is an isomorphism 
on D-V1. But the right hand side extends as a line bundle to all of 
D, so we consider the extended line bundle L obtained by adjoining 
these extended coordinates. 

That all this mappings glue correctly is caused by the following 
fact. Let L^ and L2 be two line bundles on the open set U, then any 
isomorphism f of L^ to L^ defined outside of a set of codimension two 
extends to an isomorphism on U. By Hartog1s theorem we may extend 
f locally, but in local expression f is given by a function, so the 
set of points where it vanishes is of codimension 1. But by hypothe­
sis it must be nonvanishing outside of one of codimension 2 so it is 
never vanishing. So the isomorphism extends to all of U. 

Since at least one of the X. is non-identically zero we obtain 
an extension at every point, and hence a unique global extension to 
all of M. Also the map X:L ->TM extends to give an injection over 
M-V, and as a map from the abstract L is unique up to an automorphism 
of L, which is given by multiplication by a nonvanishing function on 
M. 
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2) If X(p)^0 then the local triviality of the bundle and the 
local flow box theorem imply that p is a removable singularity. 

Conversely, if p is a removable singularity then we may find an 
extension of L so that X is nonvanishing in a neighborhood. By the 
uniqueness of X we imply that X(p)^0. 

3) X can be thought of as a global section of the bundle Horn 
(L,TM) hence the set of points where it vanishes is an analytic sub­
set .|| 

Motivated by this result we give: 

Analytic Definitions: A holomorphic foliation (with singularities) 
on M by curves is a holomorphic map from a line bundle L on M into 
the tangent bundle of M, X:L+TM. Two such (L,X) and (L',X') define 
the same foliation if and only if L is biholomorphic to L1, and after 
identifying L with L1 X=fX' where f is a never-vanishing holomorphic 
function. The singular set Sing (X) of the foliation is the analytic 
subvariety defined by the zeroes of X,X=0. In M-Sing(X) we may defi­
ne a non-singular foliation by curves obtained by integrating vector 
fields given by local expressions for X. 

2. The Universal Family 

In this section we will show that the set of foliations by cur­
ves on a compact complex manifold has a natural structure of a com­
plex analytic variety. This result is far from trivial when viewed 
from the geometric definition and we obtain it since the analytic 
definition allows one to use Douady1s approach to the moduli problem 
[4]. In order to phrase our problem in Douady1s language, we have 
to give a sheaf theoretic definition of a foliation: 
Lemma 2: There is a one to one correspondence between foliations by 
curves on M and invertible subsheaves of the sheaf of holomorphic 
vector fields on M, Lc9„. 
Proof: If X:L +TM is the map defining a foliation, let I be the in­
vertible sheaf of local sections of L and clearly X(L)c0^ is an in­
vertible subsheaf of 0 . Conversely, given an invertible subsheaf L 
C©M, let L be the line bundle associated to L. The inclusion L 0M 
induces a holomorphic non-identically equal to zero map X:L^TM, de­
fining a foliation. If we multiply X by a never vanishing holomor­
phic function then the associated sheaves in 0W coincide, hence the 

M 
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correspondence between foliations and invertible subsheaves is one to 
one .j| 

By the Lemma then, a foliation is completely determined by the 
subsheaf L 0^ that we will call the sheaf tangent to the foliation. 
The set of foliations by curves then is in one to one correspondence 
with the set of invertible subsheaves L of 0 . One would like to 
put a complex analytic structure in this set in such a way that one 
may construct all holomorphic families by a simple method of pull 
back. Such a task was done in a more general context by Douady [4j, 
where he shows that in order to solve such a problem it is natural to 
restrict to families with flat quotients with respect to the parame­
ter. We will henceford restrict to such families and show that in 
the space of all subsheaves of © the sheaves that are invertible 
form an open subset. Hence, restricting Douady's family to this open 
set provides a universal family of foliations by curves. We will be­
gin with some definitions. 

If E is a coherent sheaf on the complex space T, the corank of 
E at t is the dimension over C of Et <S) Q , where is the ma­
ximal ideal in the local ring 0^. By Nakayama's lemma, the corank is 
the minimum number of generators that Et needs over 0 . 

Let S be a complex analytic space, not necessarily reduced, M a 
compact smooth manifold, II:SxM^ S, I^iSxM-* M the two projection map­
pings and denote by 0^ = 11*0̂  the sheaf of tangent vectors to the fi­
bers of n. 

Definition: A family of foliations parametrized by S will consist of 
an exact sequence of coherent sheaves on SxM 

О + L î 0 P+ N -̂ 0 (2) 

where the kernel sheaf L is of corank one at every point of SxM and 
the quotient sheaf W is 0 -flat (i.e. for every point (s,p)eSxM,W 

S , p is 0 -flat). s 
Remarks: 1) The process of restricting to a fibre sxM is obtained 
by tensorinq with 0 IM . We use the notation LIS) = L 0 /M for 2 ^ s s p s , p C ) s s L s 
the stalk of the restriction to sxM at (s,p). Restricting (2) we 
obtain a family of sequences 

0 -> LIS) + ©sxM + N(s) + 0 <2>s 
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where 0 = 0 (s) is the tangent sheaf to the complex manifold sxM. sxM ix ^ 
It is easy to see that the hypothesis imply that Lis) has also corank 
one at every point of sxM. For reduced complex spaces the notion of 
corank one and invertible sheaf coincide (see Grauert-Remmert [8] p. 
91) and since M is a complex manifold it follows that Ms) is an in­
vertible sheaf on sxM. This fact means that we may interpret (2)g 
as a family of foliations on M parametrized by S. 

2) If S is a reduced complex space, it is equivalent to recqui-
re that L is of corank one at every point or that L is an invertible 
sheaf on SxM. 

We will show the existence of a universal family of foliation by 
curves on M: 
Theorem 3: Let M be a compact complex manifold. There is a complex 
analytic space V and a family of foliations parametrized by V with 
defining sheaf sequence on VxM 

0 + L $ 0 ^ W + C (3) 

such that for any other family of foliations parametrized by S with 
sheaf sequence (2), there is a unique holomorphic map f:S-»p such 
that f*(L)=L via the natural identification 0=f* 0 . 

Proof: Let V be the Douady space of quotient sheaves of 0 ̂  (see Doua-
dy [4]), with its universal sequence 

0 * 0 ^ hi +0 (4) 

By definition, there is a one to one correspondance between points of 
V and quotient sheaves of G „ , and hence with subsheaves of 0 ̂ . Let 
V be the subset formed by those points of s in V such that the co-
rank of L is one for every point p in M. 

s, p 
We claim that V is an open subset of V , and hence has a natural 

structure of a complex analytic space. Granting this claim for a 
moment, define sequence (3) as the restriction of (4) to this open 
subset. It follows that the map f:S-*V obtained from the universali­
ty properties of the Douady space applied to (2) actually has values 
in V , f:S-*Pand f * U ) = L as desired. 

Now we show that V is an open subset of V by means of the follo­
wing lemma: 
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Lemma 4: Let M be a compact complex manifold and E a coherent sheaf 
on SxM that is Og-flat. If the corank of E is one at every point of 
s xM, then there is a neighqorhood U of s in S such that E has co-o J J o 
rank 1 at every point of UxM. 
Proof: By the compactness of M, it is enough to show that every 
point (S0/P0) nas a neighborhood where E has corank one at each point. 
Recall that by Nakayama1s lemma, the corank is also the minimal num­
ber of generators of E as an 0 -module. Let F be a local sec-
tion of E that generates E , and consider the sheaf map E ob-

So' ^o 
tained by multiplication with F. By coherence of E it follows that 
this map is surjective perhaps on a smaller neighborhood of (sQ,po). 
Define J by the exact sheaf sequence 

0 -*J -> 0 xF r- n -> E -> 0 (5) 

Let S' and U be neighborhoods of s and p such that (5) is defined 
on S1xU and U is a coordinate neighborhood. We now assume acquain­
tance with Douady [4]. Let K be a privileged polycilinder for J(SQ). 
By [4], we have that there exists a neighborhood S" of Sq in S1 such 
K is J(s) privileged for S€S" and that it is possible to define a 
Banach vector bundle over S" whose fibre at any scS" are the sections 
of J(s) over sxK, B(K,j(s)). But on SQXM we have by flatness of 
S"xU over SM 

0 -> J(s ) -> 0 o s xM o 
xF 

E(SQ) -> 0 

As mentioned before, since U is reduced E(Sq) is an invertible sheaf 
and hence J(SQ) is identically zero over SQXU. But then B(K,j(s))=0 
for all s in S", since they are fibers of a Banach vector bundle with 
fiber B(K,J(s ))=0. 

By Cartan's theorem A, it follows that B(K,J(s)) generate each 
stalk J(s) , hence J(s)=0 for all s. Interpreting J as the ideal de-P 
fining the support of E,J(s)=0 means that sxM is completely contained 
in the support of J(s) for every s«S; hence the variety defined by 
J is all of SxM, which means that J is contained in the nilradical 
ideal W of ^S"xU* This will produce an exact sequence of sheaves on 
S"xU 

0 ^N/j+E red 
US"xU 0 (6) 
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where ORE<^ = 0 / ̂  is the reduction of S"xU. The corank of ^gn^u ~"~S â ~~ 
ways one, and since (6) is surjective the corank of E is bigger or 
equal to one at every point. Since F generates each stalk, the co-
rank is less than or equal to one. So it is exactly one, and this 
proves the Lemma and hence the theorem.|| 

The following result tells us that the condition that the quo­
tient sheaf is flat with respect to the parameter is automatically 
satisfied in a very general situation. 
Theorem 5: Let L be a line bundle on SxM and X:L ->n*TM a holomorphic 
bundle map on SxM such that for every s in S the restriction of X to 
sxM does not vanish identically on an open set. Then the action of 
X on the invertible sheaf associated to L gives rise to a family of 
foliations parametrized by S 

0 ^ L 
X 

0 
TT 

P 
N •+ 0 (7) 

Proof: What we have to prove is that the quotient sheaf /V is S-flat. 
Since this is a local assertion, and assuming momentarily that S is 
smooth, we are reduced to proving the following: Let X=(X^,.,Xm) be 
an m-tuple of holomorphic functions in UxV, where U and V are polydi-

1 k 
scs in C and C with t=(t1,.,t,) and z=(z1,.,z, ) as variables, X in-
duces by multiplication a holomorphic mau X:G> TT->0TT ™ such that its 
restriction to txV is injective for every t in U, then we have to 
show that the quotient sheaf is U-flat at (0,0). Let W-UxO be the 
subvariety of UxV defined by z=0. The idea of the proof is to show 
first that the formal completion of the quotient sheaf along W is 
U-flat, and then use that the process of formal completion is faith­
fully flat. 

Let S be the sheaf ^UxV restricted to W, so that its stalks at 
every point are the convergent power series in t and z, and let 

О + 8 $ ВФт •> О ->п (8) 

be the exact sequence in W obtained by restricting (7) to W. The ob­
jective is to prove that Q is W-flat at (0,0). Let I be the sheaf of 
ideals in B generated by (z^,...,z^) and consider the inverse system 
formed by B/In. Let B be the sheaf of rings obtained as limit of the 
inverse limit. (W,B) is what is known as the formal completion of 
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UxV along W, see Hartshorne [l0]p.194. The stalk of B at a point 
consists of power series in z with coefficients convergent power se­
ries in t. 

Let 2 be the inductive limit of Q / TnQ_ in the category of sheaves 
of abelian groups on W. The sequence (8) gives rise to an exact se­
quence of inverse systems of coherent sheaves on W. 

0 -> (B/TnB) * ( B / I n B ) ® m - (a/in2)-> 0 

If W is any subpolydisc in W, Cartan's theorem B guarantees that we 
obtain a similar inverse system of groups of global sections of W . 
The first term H°(W',B/inB) consists of polynomials in z of degree 
n-1 with coefficients holomorphic functions on t, so it forms a sur-
jective system (see Atiyah-MacDonald [l]p.104) hence the inductive 
limit of the sequences is exact on W . Since polydiscs from a funda­
mental system of neighborhoods of W we obtain an exact sequence of 
sheaves in W 

o - B I B ® M - 2 - o (9) 

For every point t in W, let N(t) be the degree of the first non­
zero term of X evaluated at t in its power series expansion in z, 
that exists by hypothesis. This number is upper semicontinuous as a 
function of t, so after perhaps shrinking the domain W we may find an 
upper bound N for N(t) along W. It is then easy to see that the vec­
tor bundle maps induced from the 0 -sheaf mappings 

B 
Tn 

X Ben 
T n+N _8m 
I O 

are always injective on W. This implies that the quotient is an 
0T -locally free sheaf, hence 0-flat. The inductive limit of all W 2 
this sequences converge to (9), and since flatness is preserved under 
inductive limits (see Matsumura [13]) we obtain that £ is c^-flat. 
In particular the stalk at t=0,2o' is 0^ ^-flat. 

For any BQ-inodule M, we have the maps BQ-> Bq and M -*M, where we 
are completing with the ideal (z^,...,z^). These maps induce the 
B -module homomorphism o ^ 

B<®PM - > B < 2 > M + B & > c M=M o B o B o B o o o 
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Tensoring the stalk over 0 of the sequence (8) with g over 8 , 
using right exactness of the tensor product and the above maps to the 
stalk 0 of (9) we obtain the commutative exact diagram 

8 
o 

0 8 
o 

B So o 
B«m® 
O 

B«m 
O 

v 8 8 o o o B o 

2o 

0 

the left two vertical arrows are isomorphism. A diagram chase shows 
then that 0 = 0 & B . 

o o B o 
Now we will use that the ring extension B -> B is faithfully 

flat (Atiyah-MacDonald [2 ]p.H4). Let 

o_>T_>M_>N_>O 

be a sequence of 0^ ^-modules. Tensor ing with Q_Q / using that it is 
0 Q-flat and the associativity of tensor products gives the exact 
sequence 

0 (L ft 0 0 
W,0 c ®8 Bo o V o ° 

®R * L 
D O 
o 

: M 0 2G 
w,o 

®„ 8 8 o o 
0 

Using faithful flatness we can cancel 8 , proving that Q is 0r, -^ o ^ ^ ^o W, 0 
flat. 

In case S is not smooth, embed S in an open subset of Cn anc 
extend the local functions X to a neighbourhood. The hypothesis that 
X does not vanish for a fiber identically i s valid in some neighbour­
hood. Then one uses that flatness is preserved under base extensions 
(see Hartshorne tlO] p.254) to reduce the result from CR back to S.I 

Corollary 6.- Let i be a corank one sheaf at every point of S x M 
and let X: L -> 6^ be an infective sheaf mapping. Suppose that S is 
reduced and that, for each s G S, the map X(s): Lis) = L/m • L^ 0^ 
is infective. Then X induces a family of foliation parametrized 
by S. 

Proof: As mentioned, for reduced spaces corank one is equivalent to 
invertible, so the theorem applies. II 

3. Structure of the Universal Parameters 

This section is devoted to give a more detailed description of 
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the structure of the parameter spaces of the universal family of fo­
liations by curves in a fixed compact complex manifold. We begin by 
pointing out that the Chern class of the line bundle tangent to the 
foliation is a discrete numerical invariant. 
Theorem 7: Let V be the universal parameter space of foliations by 
curves of M, then to each connected component of V we may associate 
a cohomology class in H (M,Z) such that the line bundle of any folia­
tion represented in this component has this cohomology class as Chern 
class. 
Proof: Let T be the kernel sheaf of the universal family (3), and 
let 0 be the reduction sheaf of 0^ (i.e. obtained by modding out 
all nilpotent elements), and V the analytic space with the same 
topological space as V but with the structure sheaf 0^ . Let red be 
the sheaf L<$> n 0 red , where L is the universal kernel of (3). 

i RED is a corank one sheaf over V xM, but since this space is redu­
ced, it is actually an invertible sheaf. Now, there is a one to one 
correspondence between invertible sheaves and line bundles (see Grif­

fiths-Harris [9 ]p.698), so we obtain that there is a line bundle L 
on V xM such that its restriction to each fibre sxM is the line 
bundle associated to L(s) in (2)g. Topologically, L may be obtained 
as the pull back bundle to a classifying space and any curve in the 
parameter space provides a homotopy between the classifying maps at 
the two extremes. Since the Chern class is just the pull back of a 
cohomology class in the classifying space, we obtain the result in 
the statement of the theorem since the induced maps on cohomology is 
a homotopy invariant.|| 

The next result gives us a procedure to construct a family con­
sisting of all the foliations by curves with given line bundle as 
tangent bundle. 
Proposition 8: Let L be a holomorphic line bundle on the compact ma­
nifold M, and let PT be the complex projective space formed by lines 
through 0 in the finite dimensional vector space of holomorphic maps 
from L to the tangent bundle of M, PT=ProjH (M Horn(L TM)). There is 
a family of foliations on M parametrized by PL such that at Mx {X} 
we have the foliation specified by XEPL. 
Proof: Consider the family of foliations on Mx(H°(M,Horn(L,TM))-{0}) 
given by a map from n*L-*II|TM given by associating at (p,X) the map 
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X(p):L -> T M. If we consider the map associated at the point (p ,Ax), 

where X is a scalar, we obtain the map AX(p), so we can incorporate 
this linear variation of the scalar into the hyperplane line bundle 
H of the projective space P to obtain a tautological map on MxP 

n*L<S.n*H-i + n*TM 

By construction it is not identically equal to zero on any fiber,so 
theorem 5 applies to show that it is parametrizing a family of folia­
tions by curves, and by construction there is a one to one correspon­
dence with the foliations it is parametrizing and foliations having 
L as a tangent bundle .|| 

The next result tells us that the above two results are already 
enough to give a clear picture for a class of complex manifolds. 
Theorem 9: Let M be a compact Kahler manifold with vanishing first 
Betti number. Then the space of foliations by curves has a structure 
of a disjoint union of complex projective spaces. 
Proof: By the Hodge decomposition theorem of cohomology (see Grif­
fiths-Harris [9]), the hypothesis imply that (M,0 ̂ ) = 0. The expo­
nential sequence of sheaves on M 

O Z OM OM O (10) 

gives at the level of cohomology the injective map 

0=H1(M,0M) + H1(M,0*) + H2(M,Z) 

which may be interpreted as saying that holomorphic line bundles in 
M are completely determined by its topological class, (i.e. its Chern 
class in H2 (M,Z ) ) . 

For every holomorphic line bundle L in H (M,G>*) construct the 
projective space P =ProjH°(M,Horn(L,TM)) as in Proposition 8, and let 
fT:PT ~* Q be the holomorphic map obtained from the universal proper-
ties of V. To see that the universal space V is equal to the dis­
joint union of P , it suffices to show that at every point X in PT 
the derivative of f is an isomorphism. 

Douady in [4] p.77 shows that the tangent space to V at X may 
be canonically identified with H°(M,Horn{L,0 /X{L)) . Applying the 
functor Horn (1-, ) to the sequence 
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0 + L X 9 M + V X ( L ) * 0 

and then considering the long exact sequence of cohomology gives the 
short exact sequence 

0 - H°(M,0M) X H°(M,Hom(L,QM) H°(M,HomU,QM/X(M ) ) - 0 

This exact sequence tells us that the dimension of every tangent 
space of f (P ) is the same as the dimension of P . By construction 
fT:P_ V is injective and by Proposition 8 and the above observation 
on the holomorphic structures in the same topological bundle, f (P ) 
is a connected component of V. Its topological dimension is the same 
as the one of PT, hence it is actually a smooth complex manifold. 
Any bijective map between smooth complex manifolds is a biholomorphism 
(see Griffiths-Harris [ 9 ] p.19), so the theorem is proved.|| 
Corollary 10: The universal family of foliations of CPn form a coun­
table union of projective spaces indexed by the Chern class of the 
tangent bundle to the foliation. 
Proof : Projective spaces satisfy the conditions of Theorem 9 .|| 

One can be very explicit in constructing the universal families 
in projective spaces Cpn. The following facts are proved in [5J : 

1) For d>0 there is a one to one correspondance between: 
a) Holomorphic maps from the line bundle L-j.^ with Chern class 

1-d into the tanaent bundle of Cpn 
b) Homogeneous vector fields 

n 
1 = 0 P . 1 

7) 
9z . l in CN+^ of degree d, modu­

lo additions h£z 3 . 3Z . 1 1 where h is a homogeneous polynomial of degree 
d-1 . 

c) Polynomial vector fields in affine coordinates (ŵ  ,.,w^) 

n 
9 i |Wi 

3 
9w. 1 

d 
k=o Xk (11) 

where the are homogeneous vector fields of degree k and g is a ho­
mogeneous polynomial of degree d; where we recquire that if g=0 then 
X, is not a multiple of the radial vector field w. 1 9 w. 1 with a po­
lynomial of degree d-1. 

2) In the expression (11), if (w^:..:w^) are homogeneous coordi­
nates for the hyperplane at infinity Cpn ^=CPn~Cn then the set of 
points where g vanishes describes the set of tangencies of the folia-
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tion with CPn \ In particular g is identically equal to zero if and 
only if the hyperplane at infinity is saturated by the leaves of the 
foliation. 

3) The set of foliations of CPn with Chern class 1-d may be pa­
rametrized in a natural way by a projective space of dimension 
ld-1+n 

d (d+n+1)-1 For n=2 it is d2+4d+2 The set of such foliations 
that contain a hyperplane saturated by the foliation is of codimen-
sion d+n-1 d -n; for n=2 it is of codimension d-1. 

It is interesting to point out how in affine coordinates the 
left term in (11) appears. Point 2) clarifies which family of folia­
tions by curves of projective space one obtains by "fixing the de­
gree" . 

In order to see the pattern for complex manifolds with non-vani­
shing first Betti number, one is faced to understand the different 
holomorphic structures that can be put in the same topological line 
bundle. This is a very well understood problem if M is a projective 
manifold (i.e. embeddable in some projective space), and hence we 
restrict to these. 

The long exact sequence of cohomology of the exponential sequen­
ce (10) gives the exact sequence 

0 H1 (M,0 ) 
H (M,Z) 

H1 (M,G> *) 5 H2(M,Z) 

H'' (M,G> * ) represents the holomorphic classes of line bundles in M, 
it is an abelian group under tensor product and for projective varie­
ties the kernel of c denoted by Pic (M), is formed of those line 
bundles with trivial Chern class. Artin proved in [1] that Pic^fM) 
is a compact group variety embeddable in some projective space, what 
is called an Abelian variety. Hence H (M,0 *) has a structure of a 
countable number of projective complex torus. Pic (M), indexed by the 
admissible Chern classes a in H (M,Z), each having the same dimension 
as Pic (M). Mumford then proved the existence of a Poincaré bundle 
(see Griffiths-Harris [9]p.328), that is the existence of a line 
bundle P on MxPic (M) such that its restriction to MxL is biholomor-
phic to the line bundle represented by L, satisfying a universal pro­
perty . 
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Consider in MxPic^ (M) the vector bundle Horn (Pa , I^TM) and let 
Ea be the coherent sheaf on Pic (M) obtained by direct image of its 
sheaf of sections, Ea:::H2 * (Horn (P^ ,n^M) ) . If for every line boundle L 
with Chern class a. the vector space H (M,Horn(L,TM)) has a fixed di­
mension, say r, then it follows from, a theorem of Grauert (see Hartshorne 
[ 10] , p.288) that is a locally free sheaf of rank r, and if 
p: E ^Pic (M) is the associated vector bundle the fibers of are 
the groups H (M,Hom(L,TM) ) . Let p: Proj(Ea) -> Pic^ (M) be the CPr 
blundle obtained by considering the lines in each fiber of Ea . 
Proj(Ea) carries a line bundle H that restricts to each fiber as the 
hyperplane bundle of the fiber (see Hartshorne [ 10] p. 162 or [ 5] ) . 
The generalization of theorem 9 is then 
Theorem 11: Let M be a projective manifold and let a e H (M,Z) be 
such that for any holomorphic line bundle L on M with Chern class a 
the vector space H°(M,Horn(L,TM)) has constant dimension r> 0, then 
Proj(Ea) is biholomorphic to the subvariety of V obtained by fixing 
the Chern class a. In particular this component of V is smooth, 
connected, compact and has dimension r-l+^b^, (b^first Betti number of 
M) . 
Proof; Similar considerations as in Proposition 8 gives a bundle map 
over MxProj(E ) 

X : P*Pa <2> I^fT1 - n*TM 

where H and H2 are the projection to the factors and p is the 
map KxProj(E^) -> MxPic^ (M) . X is tautological in the sense that if 
we restrict to Mxe, we obtain the foliation in M that e represents. 
By Theorem 5, X parametrizes a family of foliations by curves, and by 
the universality properties of V we obtain a map Proj(E ) V. By 
Theorem 7 and by construction the image is a connected component of V 
and the mapping is bijective with its image. As in Theorem 9, to show 
that it is a biholomorphism it is enough to check that the dimension 
of each tangent space of the image is less that or equal than the 
dimension of Proj(E ) (for its topological dimension is already the 
one of Proj(Ea), so this implies that it is smooth, and hence the 
map, being bijective, is a biholomorphism). Fix e e Proj(E ) 
representing X: L TM and apply the functor Horn (L, ) to the 
sequence 

0 L X E M e M / x ( D + o 
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and then consider the long exact sequence of cohomology to obtain 
0 -> H°(M,0M) H°(M,Hom(L ,0M) H°(M,HomU,0M/X(L,) ) H1(M,(?M) 

The third term by Douady is the tangent space to V at the image of 
e, and since dimH1( M, 0 )=dimPic (M) = -H Betti number of M) we obtain 
that the tangent space of V at the image of e is less than or equal 
to the dimension of Proj(Ea) , and hence we are done.|| 

Now the objective will be to give critériums for the hypothesis 
of the above lemma and to estimate r in terms of topological data. 

By hypothesis, we may embed our manifold M in some projective 
space Cpn, and by pulling back to M the hyperplane bundle of Cpn 
we obtain special line bundles that are called very ample. One says 
that a line bundle is ample if some power of it is very ample. One 
sees that the notion of ampleness depends only on the Chern class of 
the bundle, and not on the bundle itself. 

Theorem 12: Let M be a projective manifold, L any line bundle 
on M and 3 the Chern class of an ample bundle on M. There exists 
an N, such that for all n > N the hypothesis of Theorem 11 are 
satisfied for c(L)-N3 and r is equal to the Euler-Poincare charac­
teristic x(TM<S>L* <2>3N). 

Proof : Let a be the Chern class of L, and let ?a be the Poincaré 
bundle on MxPica(M), and H a line bundle with Chern class 3. On 
MxPic^ (M) consider the vector bundle Horn ( , L * TM) and the line bundle 
IiJH, that is relatively ample with respect to the projection • 
Applying a theorem of Serre (see Hartshorne [10] p.228) we find that 
there exists an N such that for all q > 0 and all n > N the higher 
direct image sheaves RQH2 *Hom ( Pa , IL^TM ® Hn) vanish identically and 
for q = 0 we obtain a vector bundle of rank x (TM ® L* ® 3 ) = 
= deg(eh(TM<& L* ® 3N)•td(TM))^ by the Hirzebruch-Riemann-Roch theorem 
(see Hartshorne [ 10] p.432 or Hirzebruch [ 11] ) .|| 

We will exploit now the above theorem by mapping certain subva-
rieties of Proj(E^) onto components of V, obtaining in this form the 
compactness of the components of V with fixed Chern class. 

Theorem 13: Let M be a projective manifold, a any class in H (M,Z) 
and denote by VA the components of V that have a as a Chern class. 
Then is a compact analytic space. 
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Proof : Let 3 be an ample class in M and N as in Theorem 1 2 applied 
to a. Let D be an irreducible divisor in M having Poincaré dual n$ 
with n>N (we can even assume D smooth since 3 is ample). Let f be 
the holomorphic section on M of the line bundle LD vanishing exactly 
on D, and denote by ®^ and #a+n(3 = Proj (E) the components of V having 
Chern class a and a+nB, as well as 

0 -> L 
a 

Xa 
0 •> W -> 0 
"ir A 

the defining sequence of the foliation in Mx#a and similarly for 
a+N3 • 

We have shown that V 0 is Proj(E) and that L is an inver-
tible sheaf on V , D . Denote by Z the set of points where X , Q va-
nishes (i.e. take local expressions of X a+ng and equate them to ze­
ro) . Consider the analytic subset ^:Z ̂ (DxProjE) -> Proj(E) as a sub-
variety of DxProj(E). If m is the dimension of M, the upper semicon-
tinuity behavior of dimension guarantees that there is a closed sub-
variety W of Proj (E) where the fibers of I\J have dimension m -1 , since 
that is the dimension of D, W represents those points of Proj(E) 
whose associated maps vanish on D. Put in W its reduced analytic 
structure and consider the restriction of the family X n to W. 
Consider the locally free sheaf mappings on MxW 

1 
f Xa+n3! L a+n3 w®ni LD 

1 
0 

7T 
It is holomorphic by construction, and since the domain is an inver­
tible sheaf we conclude by Theorem 5 that it is parametrizing a fami­
ly of foliations by curves. By the universality properties of V we 
obtain a holomorphic map W -> V . This mapping is surjective, since 
pointwise we may go in the opposite direction multiplying by f. Sin­
ce W is compact the image is also compact, hence is a compact ana­
lytic space. II 

Remark: 1 ) If G denotes the group of biholomorphisms of M, one ob­
tains from the universal properties of the space V a holomorphic ac­
tion Gx V . Small transversals to this G-action will produce ver-
sal spaces for the new equivalence relation: X^:L^~> TM are equiva­
lent if we can find a biholomorphism g of M such that Dg(X (L ))=X. 
(L1). 

2) One may use Chern's theorems [3j to obtain a precise idea of 
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how many singular points one expects for a foliation, 
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