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CONFORMAL INVARIANTS 

BY 

Charles FEFFERMAN (*) and C. Robin GRAHAM (**) 

ABSTRACT. — This paper presents a construction of local invariants of a conformai 
structure on a Riemannian manifold. The method is to associate to the given conformai 
manifold M a Ricci flat Riemannian manifold G of two higher dimensions in such a way 
that invariants of the Riemannian metric on G give rise to conformai invariants on M. 
The questions of existence and uniqueness of the metric on G reduce to a characteristic 
initial value problem for Einstein's equations. 

Let g = Ylij Çij(z)dxldx3 be a metric defined on a coordinate patch in Rn. 
We want to write down all conformally invariant expressions in the gij{x) 
and their derivatives of all orders. To start with, we ask for scalar conformai 
invariants. Thus, a conformai invariant P(g) is a polynomial in (det^y)-1 
and the derivatives dag{j, satisfying two invariance properties : 

(a) If g and g' are isometric, then P(g) — P(g'). 
(b) If g — \(x)gf for a positive smooth function A(-), then P(g) — 

\Pov,eiP{g'). 
Many authors have given examples of conformai invariants. We believe we 

have found the complete list of conformai invariants in odd dimensions. Our 
construction is rooted in the attempt to generalize to arbitrary conformai 
metrics the following elementary discussion of the sphere. 

Recall that 0(n + 1,1) acts conformally on Sn C Rn+1 by linear frac­
tional transformations. In order to see this, introduce projective coordinates 
(£OJ £I> • • • ? £n+i) so that the sphere d+r 

1 W— 1 = 0 goes over to 

G = 
n+l 

1 
ek-eQ = o 
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under — £k/£o (1 < k < n + 1). When restricted to G, the flat Lorentz 
metric 

= 
ra+1 

1 

dW drlm 

takes the form g\G =W dlr+ 1 ^xk- Hence any linear transformation of the 
£'s preserving lj will induce a conformai linear-fractional self-map of the 
unit sphere. Alternatively, the conformai self-maps of the sphere arise from 
isometries of the ball with its hyperbolic Poincaré metric 

9+ = (1 - I*!2] -1 «fc? + ( i - M a ) 
-2 / 

X{ dx{ 
2 

\ 

by restriction to the boundary. 
We seek to associate to any conformai metric g a Lorentz metric and 

a Poincaré metric analogous to g~^~. The resulting partial differential 
equations have essentially unique formal power series solutions, and from 
these we read off our conformai invariants. Proving that our procedure 
generates all possible conformai invariants is an unsolved problem of algebra, 
to which we hope to return. We have some reason to expect a positive answer, 
by analogy with [12]. 

I. Background 

This work originated in an attempt to continue the program of [12] ex­
pressing the Bergman kernel of a strictly pseudoconvex domain in Cn asymp­
totically near the boundary in terms of local invariants of the biholomorphic 
geometry of the boundary of the domain. This geometry is closely related 
to conformai geometry; on the one hand it can be considered a complex 
analogue of conformai geometry as the unitary group is a complex analogue 
of the orthogonal group. But the relation is deeper than mere analogy : on a 
circle bundle over the boundary of a strictly pseudoconvex domain (or more 
generally, over a non-degenerate CR manifold) there is a conformai structure 
invariantly determined by the biholomorphic, or CR, structure of the base 
[11]. Moreover, all local CR-invariant data (i.e., curvature) of the base can 
be recovered from conformally invariant data on the circle bundle [5]. Hence 
one can hope to better understand CR geometry such as is needed for the 
Bergman kernel by studying conformai geometry. As the Bergman kernel is 
a scalar object, our primary interest is in constructing and understanding 
scalar CR and conformai invariants. Unfortunately, the geometric problem of 
interest for application to the asymptotic expansion of the Bergman kernel, 
that of constructing all scalar CR invariants, remains unsolved at present. 
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However our researches have led to some new ideas in conformai geometry 
which will be outlined here. 

First we discuss scalar Riemannian invariants and define the scalar confor­
mai invariants of interest. As the conformai structures on the circle bundles 
mentioned above are Lorentzian and it is also of interest to consider other sig­
natures, metrics of general fixed signature (p, q), are allowed where p + q = n 
is the dimension of the space, and such metrics are called Riemannian. A 
Riemannian metric g of signature (p, q) may be expressed in a local coordi­
nate system as g = gijdxldx3. By a scalar Riemannian invariant is meant a 
polynomial P in the variables 

9ij,ot — d 
OX 

oc 
9ij> N > o , 

and (detgr)-1, which is coordinate free in the sense that the value of P is 
independent of the coordinate system used to express and differentiate g. 
Analogously one speaks of tensor-valued or differential form-valued Rieman-
nian invariants if each component of the tensor or form in a given coordinate 
system is a polynomial in the above variables and if under a change of co­
ordinates the invariant transforms as a tensor or form. See [1] for a careful 
elaboration of this definition. Of course the most basic Riemannian invariant 
is the Riemannian curvature tensor R, with components 

Rijkl = ~ [Qikjl + 9jltik ~ 9jk,il ~ Çiljk] + 9pq pP pÇ _ pP pÇ 1 LikLil LilLjk\i 

where V*- = ^gkl(guj + <7yz,i — 9ij,l) ls the Christoffel symbol and g%3 = 
{9ij)~1The simplest scalar Riemannian invariant is the scalar curvature S = 
gdgjkRijkh Other scalar Riemannian invariants can be easily constructed out 
of R and its iterated covariant derivatives VlR by taking tensor products and 
contracting : tr(VZli2 ® • • • <g) VlrR) is a scalar Riemannian invariant, called 
a Weyl invariant, for any choice of Zt > 0 and any pairing of the indices with 
respect to which the trace is taken. By utilizing a geodesic normal coordinate 
system one sees that any scalar Riemannian invariant may be expressed as a 
polynomial in the components of R and its covariant derivatives, and classical 
invariant theory identifies all such invariant polynomials. This leads to the 
conclusion that every scalar Riemannian invariant is a linear combination of 
Weyl invariants. 

Now a conformai structure on a manifold is an equivalence class of Rie­
mannian metrics, where two metrics are identified if one is a smooth positive 
multiple of the other, and a diffeomorphism between two Riemannian mani­
folds is conformai if it maps one metric to a smooth positive multiple of the 
other. Consequently we define a scalar conformai invariant of weight k to be 
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a scalar Riemannian invariant P(g) as above with the additional property 
that P(Xg) — \~kP(g) for all smooth functions À > 0. (This normalization 
is chosen so that scalar conformai invariants have positive integral weight.) 
Of course most Riemannian invariants, for instance i?, are not conformally 
invariant, as P(^g) depends on derivatives of the conformai factor À and not 
just A itself. However a part of the curvature tensor is conformally invariant. 
Let Rjk — gtlRijki be the Ricci tensor so that S — gjkRjk, and define 

Rjk - s 1 
n — 2 

Rjk -
S 

2 n - 1 9jk • 

(As all metrics in two dimensions are conformally flat, there are no nontrivial 
conformai invariants if the dimension n is 2. Hence we always assume n > 3.) 
Then the Weyl conformai curvature tensor W is defined by 

Wijki = Rijki — [Ajkgu + MiQjk — Ajigik — Aikgji], 

and one has W{\g) — \W[g). Thus W is a conformally invariant tensor of 
weight —1. W is of fundamental importance, e.g. its vanishing characterizes 
conformally flat spaces if n > 4. See [13], for example. As in the Riemannian 
case, once one has conformally invariant tensors, scalar invariants can be 
obtained by taking tensor products and contracting. All traces of W itself 
vanish, but ||M |̂|2 = WljklWtJki is, f°r instance, a scalar conformai invariant. 

If n — 3 the Weyl tensor W always vanishes, but there is a substitute 
tensor first introduced by COTTON [7], herein referred to as the Cotton 
tensor, defined by 

Cjki = V/Ayfc - VkAji. 

When n = 3, C is a conformally invariant tensor of weight 0 whose vanishing 
characterizes conformally flat spaces. If n > 4 we still define C by this 
formula, but C is no longer conformally invariant. 

It seems that the only other conformally invariant tensor known classically 
is the Bach tensor [2]. We define B in any dimension by 

Bjk = VlCjkl + AilWijkl. 

It turns out that B is symmetric and trace-free. If n = 4, B is conformally 
invariant of weight 1, but it is not conformally invariant in any other 
dimension. Some of its importance in dimension 4 stems from the fact that 
B = 0 for a space which is conformally Einstein, i.e. which is conformally 
equivalent to a space of constant Ricci curvature. 

Our goal is to find all scalar conformai invariants, in the sense that 
one knows all scalar Riemannian invariants as previously described. Unlike 
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the Riemannian case, it is a nontrivial matter even to write down some 
more examples, never mind proving that you have them all; covariant 
differentiation not being a conformally invariant process, one can't simply 
differentiate the Weyl tensor. We have a conjectured solution to this problem 
in the odd dimensional case, and in the even dimensional case can construct 
scalar invariants involving derivatives of the metric of order up to n. 

Before describing our construction we mention some alternate approaches 
to the problem. The method of E. CARTAN associates to a manifold with a 
conformai structure a principal bundle with connection over that manifold 
whose fiber is a parabolic subgroup of 0{p-\- 1,<7 + 1)- (See [15]). All confor­
mally invariant information is carried in the curvature of the connection and 
derivatives of the curvature with respect to the parallelism on the principal 
bundle. Thus the problem of finding scalar conformai invariants reduces to 
a problem in the representation theory of the fiber group. However the req­
uisite representation theory is little understood so that, at least at present, 
this approach does not help much, even in writing down new examples of 
scalar conformai invariants. 

An approach in four dimensions for metrics of Lorentz signature which 
seems more fruitful is the method of local twistor transport, of PENROSE 
and DIGHTON [18], [9]. Local twistor transport is a conformally invariant 
calculus of covariant differentiation and as such can be used to differentiate 
the Weyl and Cotton tensors viewed together as a curvature twistor, to come 
up with further conformally invariant twistors, spinors and tensors; hence 
scalars too. SPARLING [21] has extended portions of this program to general 
signature and dimension. The relationship between this approach and our 
method is not clear. 

Finally some other examples, constructions, and analysis of conformally 
invariant tensors are given in [10], [22]. 

II. Riemannian Structures Associated to a Conformai Structure 

The method to be employed to construct conformai invariants is to in-
variantly associate to a manifold with a conformai structure another man­
ifold with a Riemannian structure, so that Riemannian invariants, which 
are plentiful, give rise to conformai invariants. Two problems defining such 
Riemannian structures will be discussed, the meat of the matter reducing 
to proving existence and uniqueness for these problems. As previously dis­
cussed, the choice of these particular problems is motivated by the model 
case of the sphere. The first metric we call the ambient metric, which has 
signature (p + l,q + 1) on a space of dimension n + 2 and generalizes the 
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Lorentz metric 

9 = 
n+l 

1 
d& - de0 

The second is related to the first and is a singular metric g+ of signature 
(p + 1, q) on a space of dimension n + l , generalizing the Poincaré metric 

g+=ddl-\x\2Y -1 G = {d(dddx,t2g(x)) G = {d sj\2 

on the ball Bn+1. Recall that g+ may also be writt( 

d+re5d 4' dd 

s+s5e+sdy e 

upon making the change of radial parameter |x| = 2 |y | / ( l + \y\2). It is 
actually this latter representation of g+ that we use as the model for the 
general Poincaré metric. 

Let M be a manifold with conformai structure [g], g being some repre­
sentative of the conformai class. We begin by constructing invariantly the 
ambient space, in which the ambient metric will live, g is of course, not de­
termined by the conformai structure, but rather at each point x G M the 
conformai structure determines a ray {t2g(x) : t > 0} of quadratic forms. 
Taken together these rays form a ray subbundle 

G = {(x,t2g(x)) : x <E M, t > 0} 

of the bundle of symmetric 2-tensors on M, 52T*M, and one has the natural 
projection n : G —» M. G is called the metric bundle and a section of G is 
just a representative of the conformai structure. The conformai structure 
itself lives invariantly as a tautological symmetric 2-tensor #o on G, defined 
for (x,g) e G and X, Y e T{x^G by 

g0{X,Y) = g{7r*X,n*Y). 

In addition there is a notion of homogeneity on G : for s > 0, 6s(x,g) = 
(x, s2g) defines dilations 6S : G —» G; this action of R+, the multiplicative 
group of positive real numbers, gives G the structure of a R+- principal 
bundle over M. Also, g0 is homogeneous of degree 2 : 6*g0 = s2g0. Now the 
ambient metric will live in the space G = G X / , where / = (—1,1) C R. We 
identify G with its image under the inclusion t defined by G 3 p —^ (p, 0) G 
G, and the dilations 83 on G extend naturally to G. Our interest is solely 
local, so we work only over a coordinate patch in M and restrict attention 
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to a small neighborhood of G in G. Also all constructions will be determined 
only up to a homogeneous, or R+-equivariant, diffeomorphism of G fixing 
G, so in particular, the projection n : G —> M does not have an invariant 
extension to G. It is useful to keep in mind the sphere, for which G is the 
upper half of the light cone and G a suitable neighborhood thereof. 

There are three conditions to be imposed to determine the ambient metric 
of signature (p + 1, q + 1), on G. They are : 

1) 6^g = s2g, s > 0 ; 2) t*g = g0; 3) Ric(£) = 0. 
The first two conditions are quite natural, especially upon consideration 

of the model case.For the model case g is actually flat, but this is of course 
too much to expect in general. So we try instead only to require that g be 
Ricci flat, giving rise to 3). Notice that 2) already forces g to have signature 
[p + l,q+ 1). In fact, as a form on TG, go is degenerate, since the vertical 
vector is orthogonal to everything. So on TG, g must have signature (p, g, 1), 
and the conclusion follows by linear algebra. One cannot expect to have 
absolute uniqueness for the problem of finding a metric g satisfying 1) -
3). In fact, if $ : G —> G is any diffeomorphism which fixes G and which 
commutes with the dilations, then is a solution whenever g is. 

We study the problem of the existence and uniqueness of a solution g to 
l ) - 3 ) on the formal power series level as a Cauchy problem, 2) being the 
initial condition and 3) the equation to be satisfied. Curiously, it turns out 
that the results depend decisively on whether the dimension n of M is even 
or odd. Our main theorem is : 

THEOREM 2 . 1 . 

a) n odd. Up to a TH+-equivariant diffeomorphism fixing G, there is a 
unique formal power series solution g to l ) - 3 ) . If the conformai structure 
on M is real analytic [i.e. has a real analytic representative), then this formal 
power series converges so that g actually exists in a neighborhood of G. 

b) n even. There are conformai structures for which there is no formal 
power series solution o / l ) - 3 ) . However, if 3) is replaced by : 

3') Along G, all components ofRic(g) vanish to order (n — 4)/2 and the 
components tangential to G vanish to order [n — 2)/2, 

then there is a formal power series solution for g uniquely determined up 
to addition of terms vanishing to order n/2 and up to a ~R+-equivariant 
diffeomorphism fixing G. 

As with the complex Monge-Ampère equation [11], [6], [17], one can 
continue the solution to higher order when n is even by including log terms 
in the expansion for g. Working out the exact form and meaning of these 
higher asymptotics is of great interest. 

Next consider the problem for the general version of the Poincaré metric. 
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We begin by defining conformai infinity, essentially following the formulation 
of LEBRUN [16] of this concept extant for some time in the physics literature. 
Let TV be a manifold with boundary and suppose that a conformai structure 
[g] is given on bN. Let r G C°°(ÎV) satisfy r > 0 in TV, r = 0 and dr ^ 0 on 
bN. A Riemannian metric g+ on N ~ bN is said to have [g] as conformai 
infinity if for some number m > 0,rmg+ has a smooth extension to iV, and 
when restricted to TbN, r^g^ G [g]. This definition is independent of the 
choice of defining function r. If [g] has signature (p,g),#+ can possibly have 
signature either (p, q + 1) or (p + 1, q). 

Let now Mn be a manifold with conformai structure [g] of signature (p,g) 
and let M+ = M x [0,1]. Identify M with 6M+ = M X {0}. The problem 
to be solved by the Poincaré metric a metric of signature (p + l,g) on 
M+ — M, is : 

1) #+ has [g] as conformai infinity 
2) Ric(s+) = -n<7+. 
The choice of the particular constant n in 2) is an arbitrary convenient 

normalization. 
Like the problem for the ambient metric, this problem has a gauge invari­

ance : $*g~̂~ is a solution whenever g~*~ is,where $ is a diffeomorphism of 
fixing M. 

As a local Cauchy problem this problem is underdetermined. Another ini­
tial condition is needed in order to get a unique solution, the nonuniqueness 
imposed by the gauge invariance of the problem notwithstanding. When 
n = 3 such a condition was studied by LEBRUN [16], assuming that an ori­
entation on M is fixed, giving rise to an orientation on M+ inducing the 
given orientation on M. LEBRUN'S additional condition is that g+ should be 
self-dual, i.e. that the anti-self-dual part of the Weyl tensor of g+ should van­
ish. Using twistor methods, he showed when n = 3 that if [g] is real analytic, 
then in some neighborhood of M in M+ and up to diffeomorphism, there is 
an unique analytic self-dual solution g+ to 1), 2) . His work has influenced 
ours, especially by stimulating us to understand the relationship between his 
result and our ideas concerning Poincaré metrics. 

Our Poincaré metric is distinguished by another condition. As LEBRUN 
pointed out, for any metric g+ satisfying 1) and 2 ) , the order m of the 
singularity in the definition of conformai infinity must be 2. Some further 
computation shows that such a metric can in an appropriate coordinate 
system ( x 1 , . . . , a:n, r) be written as 

(2.2) 9+ = r"2 dr2 + 
n 

1 )= 1 
g/Ax,r)dxldx3 
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Here r is a defining function for M in M+ as above and (x1,..., xn) forms 
a coordinate system on M. Our additional condition for g+ is : 

3) When written in the form (2.2), gf^ is an even function of r, 1 < i,j < n. 
Although it is not obvious, it is nonetheless true that this condition is 

independent of the choice of coordinate system (x,r) used to write g+ in 
the form (2.2). It would be nice to have an invariant way of stating this 
condition, but we have not succeeded in finding one. 

The analogue of THEOREM 2.1 for the Poincaré metric is : 

THEOREM 2 .3 . 
a) n odd. Up to a diffeormorphism fixing M, there is a unique formal 

power series solution g+ to l ) - 3 ) . If [g] is real analytic, then the power 
series converges so that g+ exists and r2g+ is analytic up to the boundary. 

b) n even. There are conformai structures for which there is no formal 
power solution o / l ) - 3 ) . However, if 2) is replaced by : 

2') Along M, the components o/Ric(^+) + ng+ vanish to order n — 2, 
then there is a formal power series solution for g~*~ uniquely determined 

up to addition of terms vanishing to order n — 2 and up to a diffeomorphism 
fixing M. 

When n = 3, our Poincaré metric differs in general from that of LeBrun. 
However it is possible to analyze his problem from the point of view of 
formal power series and thus give a new non-twistorial proof of his theorem. 
A perplexing question is whether there is an analogue of his problem in 
higher dimensions. 

The problem of finding a Poincaré metric g~^ satisfying l) - 3) is actually 
equivalent to the problem of finding an ambient metric g satisfying the 
corresponding 1 ) - 3). The procedure of constructing g+ from g will be 
sketched here, and this process is easily seen to be reversible. Let T be the 
vector field on G given by infinitesimal dilation, so that 

Tfip) = ^ / ( M | f l = o f°r / € C°°(G), p EG. 

Now as has already been noted, g0{T,T) — 0, so the function ||T||2 = g{T,T) 
is a smooth function on G which vanishes on G. It is not too hard to see that 
llTll2 is homogeneous of degree 2 with respect to the dilations 6S and vanishes 
to first order on G. Hence the surface S = {||r||2 = —1} C G lies to one 
side of G, namely in G_ = { 2 < 0}, and each R_j_-orbit in G_ intersects 
5 exactly once, thus giving rise to an identification of G_/R+ with 5. But 
G_/R+ can also be identified with M+ ~ M, so we can identify 5 and 
M+ ~ M. Then g+ is simply i*sg under this identification, where is : S —» G 
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is inclusion. In fact it can be computed that i^g satisfies condition 2) for 
a Poincaré metric and in an appropriate coordinate system [x,p] for M+ 
induced from coordinates on G, takes the from 

(2.4) ts9 = 
dp2 
4p2 

1 

P 

n 

ij=l 
hij(x, p)dx% dx3 

Here ( z 1 , . . . , xn) is a coordinate system on M, p = 0 on M, and 

a 

i,j=l 
hij(x,0)dxldx3 G 

Thus introducing r = p1/2, one obtains 

•* ~ —2 
*<?0 = R dr2 + 

n 

df+d 
hij{x, r2)dxldx3]. 

It follows that igg has [g] as conformai infinity ans satisfies the evenness 
condition 3) as well, so must be the Poincaré metric g~*~. 

III. Applications to Conformai Invariants 

It is an easy matter to construct scalar conformai invariants using the am­
bient metric g. Since the Poincaré metric g+ contains the same information 
as in principle it should be possible to construct these invariants directly 
out of g+ too, but it is less clear how to do this since g+ is singular along 
M. In any case, let 

Pig) = tx{VhR®'-®VKR) 

be any Weyl invariant of the Riemannian metric g. Since g is homogeneous 
with respect to 6S, the function P(g) on G must also be homogeneous, the 
homogeneity degree depending upon the number of covariant differentiations 
and factors occuring in P(g). Let now g be a representative of the conformai 
structure; equivalently a section of the metric bundle G. Associated to the 
Weyl invariant P[g) and representative g, define a function P(g) on M by 
restricting P(g) to G and pulling back by g : P(g) = <7*(P(5)|G)- Then P(g) 
is a scalar conformai invariant. In fact, the Taylor expansion of along G is 
determined by thctt of a representative g and it turns out that the relationship 
is polynomial, so that P(g) is at least a scalar Riemannian invariant. However 
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the homogeneity of P(g) on G implies additionally that P(g) is conformally 
invariant, the weight of P being determined by the homogeneity degree of 
P. Hence, if n is odd, associated to every Weyl invariant on G, there is an 
induced scalar conformai invariant on M. We call these invariants on M 
conformai Weyl invariants. 

CONJECTURE 3 . 1 . — (n odd.) Every scalar conformai invariant is a 
linear combination of conformai Weyl invariants. 

When n is even this procedure still works except one is restricted by 
the ambiguity in g at order n/2. Consequently Weyl invariants on G make 
sense when restricted to G only if they do not involve too many covariant 
differentiations. In this case there is an analogous conjecture, applying only 
to scalar conformai invariants of sufficiently low weight. A proof of these 
conjectures will presumably involve doing invariant theory with respect to 
the parabolic subgroup of 0(p + 1, + 1) mentioned earlier in the discussion 
of CARTAN'S approach to conformai geometry. 

It is also possible to compute scalar conformai invariants by this method. 
In principle this is clear since the Taylor expansion of g is determined on a 
purely formal basis, recursively, by solving the equation Ric(g) — 0 to higher 
and higher order, and the Riemannian invariants P(g) are given by explicit 
formulae in the derivatives of g. The simplest possible choices for P{g) are 
the invariants tr(J?® • • -®R) involving only the curvature tensor R oîg. Now 
R can be computed by carrying out the calculations just indicated. In order 
to express the result, let g be a representative for the conformai structure on 
M. g determines a fiber variable t on G by the requirement that go = t2n*g. 
Letting ( z 1 , . . . , xn) denote a coordinate system in M, this is the same thing 
as calling (t, x1,..., xn) the coordinate of the point (x,t2g(x)) G G. Finally 
these coordinates are suitably extended to G and completed by appending 
an appropriate variable p with G = {p = 0}. Thus (i, z 1 , . . . , xn, p) is our 
coordinate system on G. Let t = x° and p = xn+1 = zm, where we introduce 
m = n + 1 so as to avoid writing n -f 1 as an index. 

PROPOSITION 3.2. — On G, the components of the curvature tensor R 
of g are given by : 

i) Rijko = 0 0 < i, j , k < n + 1 
ii) Rijki = t2Wijkl 1 < i, j , k,l<n 

iii) Rijkm — t2Ckij 1 < k <n 
iv) Rmijm = {t2/{n- 4))Bij l < i , y < n , n ^ 4, 

where W, C, B are the Weyl, Cotton, and Bach tensors for the representative 
g [see § I). Here R is evaluated atp— (t, x) E G and W, C, B at x = 7r(p) G 
M. 
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These relations and the usual symmetries of the curvature tensor deter­
mine all the components of R. Thus the curvature tensor R itself represents 
the classical Weyl, Cotton and Bach tensors in one invariant object. As fol­
lows from THEOREM 2.1b), when n — 4 the second derivatives of g transverse 
to G are not determined by the equation; hence the component i?mîym in 
iv) is undetermined as well. 

It is now possible to identify the conformai Weyl invariants arising from 
the invariants tr(R ® • • • ® R). Using PROPOSITION 3.2 and the fact that 
in the coordinates (t, x, p)g is given on G by g = 2tdt • dp + go, one obtains 
easily 

PROPOSITION 3 .3 . — The Weyl conformai invariant arising from the 
Riemannian invariant tv(R ® • • • ® R) is tr(W ® • • • ® W), with the same 
pairing of the indices. 

This is somewhat disappointing. We already knew about the scalar con-
formal invariants tv{W ® • • • ® W), so have obtained nothing new. Thus to 
get new scalar conformai invariants, Riemannian invariants involving Vi? 
must be considered. Note that when n = 3, tr(VK® • • always vanishes. 
Some lengthy calculations allow one to identify the Weyl conformai invariant 
arising from ||VJR||2. The result is 

PROPOSITION 3.4. — The Weyl conformai invariant arising from 
\\VR\\2 is 

||y||2 + 16(^,[/) + 16||(7||2, 

where W = Weyl tensor, C = Cotton tensor, 
Vsijki = VsWijki — gisCjki + gjsCiki — gksGuj + gisChij, 

and 
Usjki = ^sC3ki + gpqA3pWqjkl. 

When n — 3 this invariant reduces to a multiple of ||C||2, which we already 
knew. But when n > 4 this is a new scalar conformai invariant. 

As a component of the curvature tensor i?, the Bach tensor B enters 
only when n ^ 4, i.e. when B is not itself conformally invariant. However 
when n = 4, B enters naturally in the context of the ambient metric; 
namely as the obstruction to the existence of a formal power series solution 
for g. This sheds some light on the relation between the Bach tensor and 
conformally Einstein metrics when n — 4, for if a conformai structure has an 
Einstein representative, then the equation Ric(^) = 0 reduces to an ordinary 
differential equation which can be seen to have formal power series solutions. 
Hence the Bach tensor must vanish. It turns out that there is an obstruction 
of exactly the same nature in any even dimension. Precisely, 
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PROPOSITION 3.5. — (n even.) There is a nontrivial symmetric trace-
free 2-tensor which is conformally invariant of weight (n — 2)/2, and involves 
derivatives of the metric through order n. This tensor is the obstruction to 
the existence of a formal power series solution for the ambient metric g in 
the sense that there is an infinite order formal solution for g above an open 
set in M if and only if this tensor vanishes in that set. It always vanishes 
for metrics which are conformally Einstein and when n — 4 it is the Bach 
tensor. 

One can now play the game of choosing all kinds of Riemannian invari­
ant constructions on G and trying to interpret them suitably to make them 
pass to conformai invariants below. In this spirit, we indicate here how the 
conformally invariant Laplacian arises naturally from the Laplace-Beltrami 
operator for the ambient metric. Recall that the conformally invariant Lapla­
cian is the differential operator 

A -
n-2 

4 ( n - 1) 
d+r 

where A / = gl3V{Vjf is the usual Laplace-Beltrami operator for a Rie­
mannian metric g. This operator is conformally invariant in the sense that 
if g' — fig is a conformally related metric, then 

(3.6) A ' - n - 2 v 
4 ( n - 1) 

dr _ n-2 
M 4 / 

_ n + 2  
= f1 4 A -

n - 2 
4 ( n - 1) 

d+r 

This can be invariantly stated by letting G* be the ray bundle dual to G, 
with fiber 

G*x = {g* : Gx - R+ | g*(\g) = \g*(g),\ > 0}, 

and defining the G-valued a-densities by 

\G\« = {D : G* -» R I D(\g*) = \aD{g*), A > 0}, a G R. 

Then the transformation law (3.6) implies that if 

7 = 
n-2 

4 
and D = f\gVe\GV 

for some representative [g) of [g] and / G C°°(M), the definition 

G = {(x,t2g( A - n - 2 
4(n-l) • s ) f 
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is independent of the decomposition of D as D = f\g\^ so invariantly defines 
the conformally invariant Laplacian AC : |G|7 —> IGI7"1"1. Notice that by 
duality D G |G|a can also be thought of as a homogeneous function D* of 
degree —a on G : D*(g) — D(g*), where g* G G* is determined by the 
condition g*(g) -- 1. Thus in terms of the dilations <5S, densities D G \G\a 
are represented as homogeneous functions on G of degree —2a. 

Now the Laplace-Beltrami operator A for the ambient metric is invariantly 
defined on scalar functions on G, and to make conformally invariant sense of 
it the homogeneity must be respected, so one is led to compute Ah, where 
h is homogeneous on G of degree /? with respect to 6S. It turns out that 
for exactly one value of /?, namely (3 — — 27, A/ i |g depends only upon h\c-
Furthermore, in this case Ah is homogeneous with respect to 6S of degree 
—2(7+1), and under the identification above between homogeneous functions 
on G and G-valued densities, the induced operator is exactly AC. 

It is tempting to speculate that other conformally invariant differential 
operators can be generated by this method; for example that the Laplacian 
on forms for the ambient metric gives rise to the conformally invariant opera­
tors on form-densities discovered by BRANSON [4]. Perhaps new conformally 
invariant objects can be found this way as well. 

IV. Connection with Several Complex Variables 

When the conformai structure under study is that on the circle bundle over 
the boundary of a strictly pseudoconvex domain in Cn, the construction of 
the ambient metric was already carried out in [11], and in this case Einstein's 
equation Ric(^) = 0 reduces to a complex Monge-Ampère equation. In 
fact, knowledge of this special case was an important guide in guessing the 
existence of the ambient metric for a general conformai structure. 

Actually, the conformai structure on the circle bundle was originally 
defined in [11] in terms of the ambient metric! Let (î CC Cn be smooth 
and strictly pseudoconvex (all considerations are local near a piece of 6fi) ; 
then the relevant complex Monge-Ampère problem is to find a function u > 0 
in fi satifsfying J(u) = 1 with UI^Q — 0, where 

J[u) = ( - l )nde t u u-
+dr+e+ 

and U{ = 
du 

d+r 
etc. 

Associated to a solution u of this problem is a Kâhler-Lorentz metric on 
C* x fi, namely 

ds2 = 
n 

d+r 

d2 
dzidzi 

{- \z° 2''u{z))dzxiz\ 
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where (z°, z) G C* X fi and C* = C — {0}. The minus sign is inserted so that 
this Hermitian metric has signature (n, 1). One checks that ds2 restricts to 

M = S1 x 6fi = {{z°,z) : |*°| = l,zebQ} 

to be non-degenerate with signature (2ra — 1,1), and this restriction is by 
definition a representative g of the conformai structure [g] on M. Clearly 
only the 2-jet of u along 6fi is of importance in the definition of \g\, and it 
can be shown that this 2-jet is independent of which solution of'the Monge-
Ampère problem was chosen and can even be computed by using not an exact 
solution to J(u) = 1 but only a solution to second order at 6fi. Additionally 
it is locally determined by 6fi. Thus [g] also has these properties. 

We next show that ds2 is the ambient metric for [g]. First, 

G = R+ x M = R+ x S1 x 6fi s C* x 6fi, 

and G can be identified with C* X fi, where fi is a collar neighborhood of 
6fi in Cn. Clearly ds2 is homogeneous of degree 2, and its restriction to 
G = C* X 6fi is go, by homogeneity and the fact that ds2 restricts to the 
distinguished representative g when \z°\ = 1. Finally, by an identity from 
Kâhler calculus, the components of the Ricci tensor R{- of ds2 are given by 

ri] = -(\og(det(-\z0\2u(z))kJ))t., 

and since 
det(-\z0\2u{z))kj = -\z°\2n J(u), 

it follows that Ric(ds2) = 0. Thus ds2 satisfies conditions 1) - 3) defining 
the ambient metric. 

In this setting our results about and applications of the ambient metric are 
already familiar. The circle bundles M = S1 X 6fi all have even dimension, 
and the failure of the construction of formal smooth solutions to the complex 
Monge-Ampère equation has been known for several years [11]. Also our 
construction of scalar invariants from the ambient metric is exactly the 
procedure used in [12] to construct CR invariants. The unfortunate side 
of this is that we have obtained no new information or results about CR 
invariants as a consequence of this work. 

There is a second interpretation of the complex Monge-Ampère equation 
which relates it to Poincaré metrics. Namely, a solution to J(u) = 1, u\bQ = 0 
has the property that the metric 

da2 = 
n 

j=1 

d2 
dz{dzi log 

1 
dz{dzj 
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on 0 is a Kâhler-Einstein metric of constant negative Ricci curvature (see 
[6]). We describe here the relationship of such a Cheng-Yau metric to the 
Poincaré metric for the conformai structure [g] on M = S1 X 6fi. 

Recall that the ambient space G for [g] can be identified with C* X fl— 
as we are interested now in the one-sided Poincaré metric and have access 
to the result of CHENG-YAU asserting the global existence of a solution of 
the complex Monge-Ampère equation, we focus attention on G_ = C* x fi. 
Using polar coordiantes z° = re%e, 

g = ds2 — 
n 

M=0 

d2 
dztdzi 

{-{z^uizfidz'dz3' 

can be written 

g = -u{dr2 + r2d92) - rdrdu - r2d9dcu - r2 
n 

d+r5d 

d2U 
d+d5r 

dz{dz3\ 

where d°u = i[6 — d)u. Now the conformai Poincaré metric g+ lives on 
G_/R.f = S1 X fî, and as described in §11, can be obtained by restricting 
g to the surface S = {\\T\\2 = —1}, where T is infinitesimal dilation. In 
our coordinates T — r (9/9r) , so S = {ur2 = 1}. Setting r = u-1/2 in g 
and simplifying one finds that in these coordinates the Poincaré metric g^ 
is given bv 

9+ = 
n 

i j = l 

d2 
dz{dz3 

log 
1 

UJ 
dzxdzJ — uj2, 

where 

uj = de-
l 
2 

: l o g - . 
u 

We view w a s a connection 1-form on the 51-principal bundle 51 x fi, hence 
defining horizontal lifts of vector fields on 0. Via this horizontal lifting, the 
Einstein metric g+ on S1 X 0 thus induces the Kâhler-Einstein metric da2 
on fi, the curvature of uj meanwhile being du — — idd log(l/w), a multiple 
of the Kâhler form of da2. 
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V. About the Proof of Theorem 2.1 

In this section some of the ingredients in the proof of THEOREM 2.1 are 
discussed. The first difficulty is to deal with the gauge invariance of the prob­
lem. This is a familiar matter in the study of problems involving Einstein's 
equations ; see [8] for an overview of results concerning noncharacteristic 
Cauchy problems for the Ricci curvature operator. We adopt the common 
technique of breaking the gauge invariance by introduction of special coor­
dinate systems. 

The special coordinate systems on G depend first on a representative 

9 = 
n 

i,3 = 1 
gij[x)dxl dx3 

for the conformai structure on M; {x} here is any coordinate system on M. 
As previously described, g determines a fiber variable t on G so that 

go = t2K*g = t2 , gij{x)dxldx3. 

If p is any function on G which is homogeneous of degree 0 and vanishes 
to first order on G, then by the defining conditions 1) and 2), any ambient 
metric g must at p = 0 have the form 

9 = t2 gij(x)dx'dx3 + Tj • dp, 

where r\ is a 1-form, homogeneous of degree 2, satisfying additionally 

V 
d 

dr ^ 0 

by the nondegeneracy of g. It is easily seen that the coordinates can be 
initially normalized so that rj = 2tdt. Now the coordinate system is extended 
off of G by following the geodesies of g in the direction of d/dp. Thus one 
sees that every ambient metric g gives rise to a special coordinate system 
(£, xp) in which 

g = 2tdtdp + t2 gijdxldx3 

at p = 0 and p —> (t,x,p) are geodesies for g. Hence THEOREM 2.1 reduces 
to an analysis of the following coordinate-dependent problem. 

PROBLEM 5 . 1 . 

Given a metric g = Yl?j=i gij{x)dxldx3 on Dopen C Rn, find a metric g 
near 

{(*, x, p) : t > 0, x E D, p = 0} C Rn+2 



112 Ch. FEFFERMAN and C. R. GRAHAM 

satisfying : 
a) g is homogeneous of degree 2 in t 
b) 9 = t2 E giJ{x)dxidxj + 2tdt - dp at p = 0 
c) p —•> (£, x, p) are geodesies for g 
d) Ric(30 = 0. 
By the reduction above, uniqueness for PROBLEM 5.1 implies uniqueness 

up to diffeomorphism in THEOREM 2.1. 
Condition c) immediately translates into something more concrete. The 

ordinary differential equations defining geodesies reduce, by c), to first order 
partial differential equations for the coefficients of g, which in conjunction 
with the initial condition b), can be integrated to give 

c') 9[ 
d d 
dt' dp) = t g 

d d 
.dxi'dp, = <7 

d d 
dp' dp 

= 0 ail p. 

Hence one concludes that 

9 = t2 
n 

d+r5d 
gij[x, p)dx%dx3 + (a(x,p)dt + 2t 

n 

3 = 1 
K bAx,p)dx3) • dt + 2tdtdp, 

and the unknowns are #2y,a,6y with initial conditions 

gij{x,0) = gij(x),a(x,0) = bj(x,0) = 0. 

Now a) - c) have been insured, leaving one with the dirty work of analyzing 
d). Since the restriction of g to the initial hypersurface p — 0 is degenerate, 
it follows that this Cauchy problem is characteristic; otherwise the Cauchy-
Kowalewski Theorem would complete the story. This is also the reason that 
one can get away with prescribing only one piece of Cauchy data for a second 
order problem. At this point things get somewhat gory — one must do an 
inductive perturbation calculation to extend a solution of order 5 to order 
s + and thus must calculate the Ricci curvature of a metric of the special 
form of g well enough to carry this out. A complication is the following : 
at this stage the problem seems to be overdetermined, since the unknowns 
are a,6y, amounting to a symmetric 2-tensor on a space of dimension 
n + 1, while the number of equations in Ric(g) = 0 is that of a symmetric 2-
tensor on Rn+2. The trick, again familiar from previous studies of Einstein's 
equations, is to recall that the Ricci curvature itself satisfies some partial 
differential equations — the contracted Bianchi identities. So one does not 
have to make all components of Ric(^) vanish, but only enough to solve for 
the unknowns ^y,a,6y. However, for particular s the equations degenerate 
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so that the components one chooses to make vanish as well as the role of the 
Bianchi identities depend on s. The conclusion of this analysis for n odd is 

THEOREM 5.2. — (n odd.) There is a unique formal power series 
solution to Problem 5.1. 

It turns out that the solution g takes an even more special form. Namely, 
a = 2p and bj = 0, so that 

g = £2£at-7 (x, p)dxidxj + 2pdt2 + 2tdtdp. 

Geometrically, this has the interpretation that the parameterized R_j_-orbits 
s —> (st,x,p) are geodesies. It would be a substantial simplification if one 
knew this ahead of time, but we know of no way to derive this condition 
without actually proving THEOREM 5.2. 

The equations being analyzed amount to a nonlinear Fuchsian system in 
several variables. In fact, in terms of the remaining unknowns gij(x,p) in 
our reduced form for g, the equation can be written 

kl kl 
P9ij,PP ~ P9 9ik,P9jl,p + 7> P9 9kl,p9i3,p 

2-n 
2 9ij,P 

d ^9kl9kiyp9ij + Ric,j (0) = 0, 

Here Ricij(g) refers to the Ricci curvature operator acting in the x-variables 
alone on the metric 

n 

d+rd 
Jij(x, p)dx%dx3 

with fixed p, and gtyjP = (d/dp)gij, etc. Letting r = (n(n + l)/2) be the 
number of unknowns, this Fuchsian system has as characteristic exponents 
0 with multiplicity r, n/2 with multiplicity r — 1, and n with multiplicity 1. 
The characteristic exponent n/2 gives rise to the difference in even and odd 
dimensions — it is irrelevant on the formal power series level for n odd, but 
causes log terms for n even. The trickiest part of the proof of THEOREM 5.2 
comes in showing that the characteristic exponent n does not give rise to 
log terms, and necessitates the previously mentioned interplay in the roles 
of the Bianchi identity and the Ricci curvature equation. 

BAOUENDI-GOULAOUIC [3] have proved convergence of formal solutions of 
certain Fuchsian systems in the case in which no log terms enter. Thus once 
THEOREM 5.2 has been established, convergence follows from their work after 
one Taylor expands the solution beyond the last characteristic exponent and 
makes a change of variables so as to cast the problem in the framework of [3]. 

Of course there is a finite-order analogue of THEOREM 5.2 when n is even, 
from which THEOREM 2.1 b) follows. More conformally invariant information 
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is carried in the log terms and higher asymptotics, although how to fully 
utilize this information is not yet evident. This is a good problem for future 
study. In particular, can all scalar conformai invariants (or even a conjecture 
for all) be constructed from an infinite order ambient metric g? For some 
results in this direction for the complex Monge-Ampère equation, see [14]. 
Another question is to prove convergence of the expansions with log terms in 
the analytic case. This is open even for the complex Monge-Ampère equation. 

Of course, an obvious problem is to do the invariant theory and thus prove 
Conjecture 3 .1 . Initial investigations indicate that the case of low weight 
invariants is on the same order of difficulty as the invariant theory in [12], 
and that the higher weight case is substantially more complicated. 

Then there is the original problem of constructing scalar CR invariants 
and analyzing the log term of the Bergman kernel. Our best guess here is, 
as above, to study the higher asymptotics of the ambient metric, although 
it is possible that other techniques could be used. Further insight into the 
relationship between conformai and CR geometry has been recently provided 
in the work of SPARLING [20] characterizing intrinsically those conformai 
structures which arise on circle bundles over CR manifolds. 

All of the considerations of this work have been purely local. We close 
by posing a global problem of interest both for its own sake as a boundary 
value problem for a nonlinear Fuchsian system, and for potential geometric 
application. The problem is just the global version of the existence and 
uniqueness of the Poincaré metric. Precisely, let N71^1 be a manifold with 
boundary and suppose given a positive definite conformai structure [g] on 
bN. Prove the existence, uniqueness up to diffeomorphism, and boundary 
regularity of a positive definite Riemannian metric g+ on N ~ bN having [g] 
as conformai infinity and satisfying Einstein's equations Ric(<7+) = — ng+. 
This problem is the analogue in conformai geometry of the Cheng-Yau [6] 
metric in biholomorphic geometry, whose higher boundary asymptotics were 
established by LEE-MELROSE [17]. One expects that for n odd, r2g+ G 
C°°(iV), where r is a defining function for bN, while for n even g+ will 
have a logarithmic asymptotic expansion at bN. 

Note. — Since the above was written, we have discovered that in 1936 
SCHOUTEN and HAANTJES [19] studied the problem of locally embedding 
a manifold Mn with conformai structure [g] into a (n + l)-dimensional 
space with a projective structure satisfying certain conditions, so that the 
projective structure induces the given conformai structure on M. As they 
formulate it, this problem is equivalent to the problem of finding the ambient 
metric g, and versions of our THEOREM 2.1 and PROPOSITION 3.5 are 
contained in their work. SCHOUTEN-HAANTJES were apparently interested 
in these results for their own sake and did not consider applications to 
conformai invariants. 
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The formulation of SCHOUTEN-HAANTJES is of course also motivated 
by the model case of Sn, whose conformai geometry is induced from the 
projective geometry of R™"̂ 1 as we previously described. More generally, an 
embedding of M into a space with a projective structure can be realized 
in terms of our construction as follows. Even though the Poincaré metric 
<7+ is singular at the boundary it can be shown that the projective structure 
which it determines extends smoothly up to the boundary in the coordinates 
(x,p) used in (2.4). Additionally, this projective structure induces the given 
conformai structure [g] on the boundary M, so that M has been embedded 
in the manner required. 

REFERENCES 

[1] ATIYAH (M.), BOTT (R.) and PATODI (V.K.). — On the heat equation and the 
index theorem, Inv. Math., t. 19, 1973, p. 279-330. 

[2] BACH (R.). — Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung 
des Krümmungstensorbegriffs, Math. Z., t. 9, 1921, p. 110-135. 

[3] BAOUENDI (M.S.) and GOULAOUIC (C). — Singular nonlinear Cauchy problems, 
J. Diff. Eq., t. 22, 1976, p. 268-291. 

[4] BRANSON (T.). — Conformally covariant equations on differential forms, Comm. 
in P.D.E., t. 7, 1982, p. 393-431. 

[5] BURNS (D.), DIEDERICH (K.) and SHNIDER (S.). — Distinguished curves in pseu­
doconvex boundaries, Duke Math. J., t. 44, 1977, p. 407-431. 

[6] CHENG (S.-Y.) and YAU (S.-T.). — On the existence of a complete Kähler metric 
on non-compact complex manifolds and the regularity of Fefferman's equation, 
Comm. Pure Appl. Math., t. 33, 1980, p. 507-544. 

[7] COTTON (E.). — Sur les variétés à trois dimensions, Ann. Fac. Sc. Toulouse, t. 1, 
1899, p. 385-438. 

[8] DETURCK (D.). — The Cauchy problem for Lorentz metrics with prescribed Ricci 
curvature, Comp. Math., t. 48, 1983, p. 327-349. 

[9] DIGHTON (K.). — An introduction to the theory of local twistors, Inf. J. Theoretical 
Physics, t. 11, 1974, p. 31-43. 

[10] DuPLESSis (J.C.). — Polynomial conformai tensors, Proc. Camb. Phil. Soc, t. 68, 
1970, p. 329-344. 

[11] FEFFERMAN (C). — Monge-Ampère equations, the Bergman kernel, and geometry 
of pseudoconvex domains, Ann. Math., t. 103, 1976, p. 395-416. 

[12] FEFFERMAN (C). — Parabolic invariant theory in complex analysis, Adv. Math., 
t. 31, 1979, p. 131-262. 

[13] GOLDBERG (S.). — Curvature and Homology. — New York, Academic Press, 1962. 
[14] GRAHAM (R.). — Higher asymptotics of the complex Monge-Ampère equation and 

scalar boundary invariants of strictly pseudoconvex domains, in preparation. 
[15] KOBAYASHI (S.). — Transformation Groups in Differential Geometry. — Berlin, 

Springer-Verlag, 1972. 
[16] LEBRUN (C). — H-Space with a cosmological constant, Proc. Roy. Soc. London 

Ser. A, t. 380, 1982, p. 171-185. 



116 Ch. FEFFERMAN and C. R. GRAHAM 

[17] LEE (J.) and MELROSE (R.)- — Boundary behaviour of the complex Monge-Ampère 
equation, Acta, Math., t. 148, 1982, p. 159-192. 

[18] PENROSE (R.) and MACCALLUM (M.A.H.). — Twistor theory : an approach to the 
quantisation of fields and space-time, Physics Reports, t. 6C, 1973, p. 241-316. 

[19] SCHOUTEN (J.A.) and HAANTJES (J.). — Beiträge zur allgemeinen (gekrümmten) 
konformen Differentialgeometrie I, II, Math. Ann., t. 112, 1936, p. 594-629, 
t. 113,1936, p. 568-583. 

[20] SPARLING (G.). — Twistor theory and the characterization of Fefferman's conformai 
structures, preprint. 

[21] SPARLING (G.).. — Personal communication. 
[22] SZEKERES (P.). — Conformai tensors, Proc. Roy. Soc. London Ser. A., t. 304, 1968, 

p. 113-122. 

Charles FEFFERMAN, 

Department of Mathematics, 
Princeton University, 
Princeton, N.J. 08544, U.S.A. 

C. Robin GRAHAM, 

Department of Mathematics, 
University of Washington, 
Seattle, WA. 98195, U.S.A. 


