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FAMILIES OF D I R A C O P E R A T O R S WITH 

A P P L I C A T I O N S T O P H Y S I C S 

BY 

I.M. S I N G E R * 

1. Introduction 

This celebration of Elie C A R T A N ' S work attests to the pervasiveness of his 
ideas in modern geometry, Lie groups, infinite groups, and systems of par­
tial differential equations. In physics, geometric ideas are an integral part 
of mechanics, electromagnetism, and relativity. And symmetry groups have 
illuminated much of quantum mechanics and elementary particle physics. 
Currently, the set of connections on a principal bundle (vector potentials or 
Yang-Mills fields) is a fruitful unifying principal in physics. The quantiza­
tion of such fields, particularly when the group of the bundle is non-abelian, 
presents serious difficulties and is not well understood. Some aspects of these 
problems, however, do lend themselves to a mathematical treatment, and in 
this talk I will try to give an exposition, for mathematicians, of one such 
topic-chiral anomalies. My remarks are based on joint work with several 
authors [ 1 , 2 , 4 ] and I am indebted to many physicists for illuminating discus­
sions on the problems of quantizing gauge fields, particularly D. F R I E D A N , 
R . J A C K I W and E. W I T T E N . 

* This work was supported in part by NSF Grant MCS 80-23356. 
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2. The Space of Connections 

Let P denote a principal G bundle with base M , a connected compact 
oriented Riemannian spin manifold. We assume G is a compact Lie group. 
The special cases of M — Sn and G = SU(N) are of particular interest. Let 
A denote the set of all connections on P. An element A E A is a 1-form on 
P with values in the Lie algebre g of G, equivariant under the action of G 
on P and g. Let F(A) denote the curvature 2-form of A and let S(A) be the 
L 2 -norm square of F(A) : 

S(A) FIA) 2 
M 

F(A) 2 

with |F(A)| I the norm of F[A) considered as an element of g 0 ( A 2 ) , which 
has an inner product inherited from g and the metric on M. We have chosen 
an G-invariant metric on g (unique up to a scale factor if G is simple). 

Let X denote the group of automorphisms of P , i.e., the subgroup of diffeo-
morphisms commuting with the action of G. Since M preserves fibers, there 
is a homorphism <p —> Ip of M into Diff(M), the group of diffeomorphisms 
on M . The kernel of this homomorphism is called the group of gauge trans­
formation and is denoted by Q. It is the set of automorphisms of P leaving 
each fiber fixed. When P = M X G, the product bundle, Q can be identified 
with [ip : M —• G] . If G acts on the right on P, p —+ pg~x then (p —• Q acts 
on the left : 

V {m, g) £(p) {m,<p(m)g) 

where <p is the automorphism induced by the function (p : M —» G. Since 
vector fields on M can be lifted to P, the image of )( in Diff(M) contains 
the identity component Diffo(M). 

A is an affine space, since the convex combination of two connections is 
a connection. Choosing a fixed connection B makes A into a linear space, 
i.e. A — B + A 1 ® g where A 1 ® g is the set of 1-forms on P with values in 
g, equivariant under G and zero on the fibers of P . When P is the product 
bundle explicitly displayed as a product M X G, it is natural to choose B as 
the flat connection of the product decomposition. 

The action of M on P induces an action of # on A which we denote by 
(p - A, It has the following property. If 7 is a smooth curve in M from mi to 
rrt2 and if P^(A) denotes parallel transport from mi to mi (as a map from 
the fiber Fmi of P to Fm2). Then P^. 7(<^ · A) = <pP1(A)(p~1, Here Ip · 7 is 
the transform of 7 under the diffeomorphism Ip induced by (p. We conclude : 

If V £ 9 wtih V?(p) = P for some p G P and <p · A = A for some A E A, 
then (p = / E 5. 
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For, under the hypothesis, each curve beginning at m gives P^{A) = 

cpP1(A); thus <p is the identity on the fiber over the end point of 7. Since M 

is arcwise connected, <p = I everywhere. Let £ m denote the subgroup of Q 

whose restriction to F m is the identity. Our remark proves that £ m acts on A 

without fixed points. One can show that A is a principal bundle with group 
Qm over the orbit space A/ Qm. One can also show that when M = Sr or 
when d i m M < 4, that Qm is weakly homotopic to [<p : M —• G; <p{m) = 1]. 

More generally, this holds when the obstruction to P being a product bundle 
can be localized to a point [22]. We have the exact sequence 1 —• Qm —* 

Q —• G —• 1, where Q —» G is restriction of £ to ,F m and G is identified 
with the automorphisms of Fm. Finally, note that F((pA) = (p~1F(A)<p and 
S(<p - A) = S{A). 

It is deceptively simple to state the main problem in the quantization of 
gauge theories. Let / be a function on A invariant under gauge transforma­
tions. Evaluate 

1 

n 
f(A) exp F(A) DA where n exp F(A) 2 DA.\ 

If such integrals can be understood, i.e., evaluated, then there are standard 
procedure for deducing the physical consequences of the theory : the scat­
tering matrix, masses, etc. for them. The problem is to make sense of the 
integral. There are two hidden parameters in the integral, the scale factor a 
in the invariant inner product on the Lie algebra g, and the volume of the 
Riemannian manifold M. One interpretation of the integral is a perturbative 
one. Replace yi^A))! 2 in the integral by ^rl l^^)!! 2 and expand formally in 
a. The coefficients in the expansion can be infinite and these "infinities" are 
successfully removed by the renormalization program. 

3. The Dirac Operator Coupled to Vector Potentials 

Let S denote the complex spin bundle over M and let ^ denote the Dirac 

operator on G°° sections of 5 . If { e y } " = 1 is a local orthonormal frame field, 

then ^ = Y^7j=1ljDej where is Clifford multiplication by tj and Dej 

is the Riemannian covariant differential in the tj direction. If n = d i m M 

is even, then 5 = S+ 0 5_ where S± are the ± 1 (or ± i ) eigenvalues of 

71 · 72 · · · In' j the spinors of positive and negative chirality respectively. Now 

£ = # ( + ) * where 

Ø (+) G ° ° ( 5 + ) G ° ° ( S _ ) 

t See for example L.D. FADEEV and A.A. SLAVNOV, Introduction to Quantum Field 
Theory, Benjamin/Cummings (1980) or C. ITZYKSON end J. ZUBER, Quantum Field 
Theory, McGraw Hill (1980). 
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Suppose r is a unitary representation of G on CN(usually the identity 

representation when G = SU(N)). Let E — PxCN be the associated vector 

bundle; for each A G we have the covariant differential 

DIA) C°°{E) C°°(E ® A 1 ) 

Now define the Dirac operator coupled to A,@A, mapping 

C°°(S ® E) C°°{S®E) 

as the covariant differential 

D ® I - I®DA C°°{S®E) C°°{S®Ex A 1 ) 

followed by Clifford multiplication. In a local frame, 

Ø A 
(Yj O I) [Dej ®I + I®D3{A)) 

It is not hard to show that 

^A l 4 _( l_í )A 0 WA1 
(l-t)BA0 

for A0, AI e A and t a real number. If r G C ° ° ( A 1 ® g ) , then $A+T = $A + f 
where 

+ n 

i=l 

~13®dr(T3) 

for an orthonormal frame { e y } ^ _ 1 . Also, (ftp.A — P-1 A& where (p — I®rotp 
acting only on the second factor in S ® E, and (p G Q. Put another way, 
sections of E are equivariant functions from P to C ^ , and Q transforms the 
class to itself. 

Because the Dirac operator depends on the metric p of M , it is not 

covariant under <p E M, for the diffeomorphism Tp need not be an isometry. 

Let (p · p be the metric p transformed by Ip and let $PJA indicate the 

dependence of the Dirac operator on p as well as A. Suppose Tp G Diff(M) can 

be covered by a transformation (pf of the spin bundle relative to /9, mapping 

S(p) to S(lp - p). Then $<p.p,<p.A — ?~1^p,A? where now (p = <p' (8) r o ip. 

When gauge fields are coupled to gravity, one is led to the study of 

the automorphism group of P and to the family of operators Øp,A . One can 

either vary metrics, vector potentials or both [2]. We focus mainly on a fixed 

metric and variable A in this paper. 

One of the functions / whose integral one wants to evaluate — in the sense 

of the previous section — is the determinant of ^ , d e t ^ . Shortly, we will 

ftp://ftp.a
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discuss determinants of elliptic operators. For the moment, let us assume 
it is well defined. What is needed is gauge invariance, to be expected since 
$<P-A — &~1$A?)' When ^A operates on all spinors, invariance is indeed the 
case. However, in some physical theories, the relevant operator is 

Ы+) C°°{S+ ®E) C°°{S- ®E) 

Since ØA (+) maps one space to another, the meaning of the determinant 
is unclear. It turns out one cannot in general define a gauge invariant 
determinant when G is non-abelian; the obstruction to doing so is called 
a chiral anomaly. We will interpret it as an element of H1(§rn, Z). 

4. Determinants 

We use the zeta function method to define determinants [13, 19]. If L is a 
positive definite self-adjoint elliptic operator on sections of a vector bundle 
over a compact manifold, then L has pure point spectrum { A y } . One notes 
that purely formally 

d 

ds s = 0 

Ay

-s 

log Ay. 

Let SL(s) = tr(L~s). One can show [20] that $L{S) (i) l s holomorphic in a 
half plane 3fs > d imM/order of L (ii) has a meromorphic extension to the 
entire s-plane, and (iii) s = 0 is not a pole. It is natural, then, to define 

detL exp 
d 

ds 5 = 0 

SL (s) 

where $L{S) denotes the meromorphic extensions as well. 

Since 

(L (S) 
1 

R(s) 

oo 

0 
t , _ 1 t r e~tL dt 

h(s) 

. V « . g(S) 

sh(s) 

1 + sg{s) 

d 

ds s = 0 

Ssl (s) d 

ds s = 0 
sh(s) sh(s) 

s = 0 
9(0) 

h(s) a ( o ) / s 

s = 0 
a ( o ) s ( o ) 

where ^(0) is Euler's constant and 

h(s) 
OO 

0 
ί3~Ητ e~tL dt 
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So 

- log det L " = " 
oo 

0 
t r ( e - i L ) dt/t ? l ( 0 ) / « 

s = 0 
- ? £ ( 0 ) f f ( 0 ) . 

One can interpret this as meaning that — log det L equals oo 
E 0 

tr e-tL dt/t, 
where one has to subtract a pole as e —» 0. 

A more heuristic approach is : 

log det L tr log L 
d 

ds s = 0 
tr(L"*) 

since logL d 
ds 

S=QL 9 It is not hard to show that if L = Lu is a smooth 
function of a parameter u then 

(I) 

d det(Lu) 
du 

det Lu 

d 
du 

d 
ds s = 0 

t r ( L - ) 

d 
ds s = 0 

s tr L 
dL 
du 

d 
ds 3 = 0 

s tr 
dL 
du 

L 

tr 
dL 
du 

L 
s = 0 

when the latter expression has no pole at the origin. Again, heuristically, 

d 
du 

log det L 
d 

du 
tr log L tr L-1 

dL 
du 

The determinant can be extended to the case when L has a positive 
definite symbol, is invertible, but is not necessarily positive. Now all but 
a finite number of eigenvalues say Ai . . . lie in any positive cone about the 
positive axis [20]. For j > k,\Js = e ~ s l o g A J is well defined using the cut 

along the negative real axes. One can define det L = Ai . . . A& det L where 

log det L 
d 

ds s = 0 3>K 
X7S-

It is easy to verify that det L is well defined, i.e. independent of the choice 
of fc, and is smooth in u, if L = Lu is. It is also easy to check that (I) holds 
in this case as well. 



DIRAC OPERATORS 3 2 9 

We are now able to discuss the determinant for the operators ØA (+): 

C°°(S+, ®E) —» C°°(S- ® jB). In the finite dimensional case, a linear 

transformation T : V W gives de tT : A*(V) A / c(VF) where d imV = 

d imW = fc, so that Ak(V) and Afc(VK) are one-dimensional spaces. If T 

depends on some parameter space X , and V, W are vector bundles over X , 

then de tT gives a map from one line bundle Ak(V) over X to a second line 

bundle A f c (W) over X. If T is always nonsingular, the two line bundles over 

X are isomorphic via detT. Otherwise, the ratio of these line bundles will 

be determined by the kernels and cokernels of T. This point of view will be 

exploited in section 7.* 

The more prosaic approach in defining the determinant is to identify 

C°°(S- ® E) with C ° ° ( S + 0 E) via a fixed operator $ % { + ) . Since we are 

interested in the determinant as a function on a fixed orbit, we choose a 

point A on the orbit and let B = A. We investigate the operators 

Ø*A (+)ØP.A(+) Ø A (-)ØP.A (+) 

which we denote by L^. The operators Lv are elliptic with symbol f —>| f | 2 

so that our previous discussion holds, providing ØA (+): and therefore ^ . ^ ( - h ) 

is an isomorphism. In particular we must assume that index $A{+) — 0. As 
a consequence, for M = S ' 2 n , P is a trivial bundle, and for generic A £ A,$A 

is an isomorphism. (There is no serious difficulty in the more general case. 
Suppose index $A{+) > 0· For generic A € A, k e r ^ ( — ) = 0. Then on a fixed 
orbit ker$(P.A{+) = v 5 ( k e r ^ ( + ) ) , a finite dimensional vector bundle on the 
orbit. Lip is non-singular on the orthogonal compliment of k e r ^ . ^ ( + ) , and 
a nonvanishing determinant is obtained.). 

Consider then the function DET : £ m —> C — 0 given by 

DET(<p) det L(p d e t ^ A ( - ) ^ A ( + ) d e t 0 A ( - ) £ - V A ( + ) £ ) . 

An element of H1Qrn^Z) is obtained by pulling back the generator of 
H1{Q — 0,Z) via DET. In terms of differential forms, the generator of 
Í P Í C - 0,Z) is 1 

27TI 
dz 
z 

so its image in H1(§rn,Z) can be represented by 

the differential form 

w 
1 

2NI 

dgBET 

DET 

If one naively assumes that the determinant is multiplicative, then (p and (p~x 

will cancel and DET would be a constant. That doesn't happen; however, it 

is important to know whether the cohomology class is nontrivial. In terms 

* See QuiLLEN [17] for a discussion of determinant line bundles. He computes det d, 
where d is the Cauchy-Riemann operator on a Riemann surface M coupled to holomorphic 
structures of a vector bundle E over M. 
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of forms, is UJ exact, i.e., is log DET well defined? For physics one needs not 

only exactness of UJ, but also that log DET should be a 'local' function of 

(p - A (See Section 9.) 

If / is an infinitesimal gauge transformation, i.e., an element of Lie algebra 

9 of 9m thought of as a left invariant vector field on £ m , then uj(f) at (p 

equals 

d 

du u = 0 
l o g d e t ^ A ( - ) ^ e t i / ^ A ( + ) tr T-s T - 1 

d 

du u = 0 
Leuf.P 

s = 0 

But 

d 

du u = 0 

Leuf.p 
Ø A (-) d 

du u = 0 

e-uf ØP A (+) euf 

^ ( - ) [ ^ A ( + ) , / ] 

where / = I ® r ( / ) - Hence 

« ( / ) t r ( L ; ' ( ^ ( + ) ) - 1 [ ^ A ( + ) , / ] ) 
s = 0 

A short computation gives ØPA(+),f Dp Af so that 

<*(/) t r ( L - s ^ ( + ) - 1 D ^ f ) 
s = 0 

Formally, 

« ( / ) tr KAÌ+Г1 

6 (ØpA (+)) 

5 / 
tr ^ A ( + ) - 1

J D J ^ / ) 

with the factor L^3 regulating the operators not of trace class. 

By definition, the one-form UJ is closed. Associated to UJ is another one-form 

which is not closed. For any B E A with $B nonsingular, let 

2 B ( / ) 
d 

dt t = 0 
d e t 0 B ( - ) # e . , . B ( + ) ) d e t 0 B ( - ) ? e . , . B ( + ) 

The restriction of UJ to an orbit and hence to Q gives a 1-form on Q. It is 

not closed; however, it is easy to compute and agrees with UJ at the identity 

of Q. Also UJ is invariant under left translation whereas, as we shall see, UJ in 

general is not invariant. 

While on the topic of determinants, it is perhaps worth pointing out that 

one can extend the definition to elliptic operators which are self-adjoint but 
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whose symbols are not positive, like <j) A- The eigenvalues of such an operator 
T can be positive { A ^ } or negative — fij. Again log det A should equal 

d 
ds s = 0 

A 7 S ( - i ) - V 7 * 

making a choice ( - i ) - s e'™. If 

? |T | (s ) 
A7S 

> 7 " and VT(S) A 7 3 

A7S 

then 

log det T 
d 
ds s = 0 

f + V 
2 

eiII s ? - V 

2 ?'(0) 
t7T 

2 
S(0) -n(0) 

Hence we define de tT = det \T\ · exp(i7r/2 (77^(0) — ? |T | (0 ) ) ) - Note that 
^ T 2 ( 0 ) = ? |T|(0)- If T1 is a self adjoint differential operator on an odd 
dimensional manifold, then f r 2 (0 ) = 0 [20] and in that case we have de tT = 
d e t | r | e , > / 2 f o r ( ° ) ) . 

For geometric operators which are nonsingular, TJT{0)/2 is a secondary 
characteristic class a associated to the operator, modulo integers [3]. Our 
formula becomes de tT = det |T| · e

i n K e i 7 r o c = ± d e t \T\ei7ra. The secondary 
characteristic classes a have appeared in the action for various physical 
theories. See [10, 14a]. The previous paragraph explaining how they arise 
from (j)A is my interpretation of a lecture of R . J A C K I W . See [14b]. 

5. The Cohomology of 9m 

In the previous section, H1(9m, Z) as represented by D E R H A M coho­
mology became of interest. We now study H*(9m, Z) and for simplicity, 
we consider only the case M = Sn ; 9m is then weakly homotopic to 
[tp : Sn - * G, <p{m) = Id] = £ T ( G ) . Hence nk{Qm)=nn+k(G). In partic­
ular, Ko{9m) — Kn{G) and 7Ti(£m) = 7rn_j_i(G). First consider the rational 
homotopy type of Qm. Since torsion is killed, the rational homotopy of G is 
isomorphic (n even) to the rational homotopy of a product of odd spheres 
of appropriate dimensions, which are themselves rational Eilenberg-Maclane 
spaces. Therefore 9m is rationally homotopic to a product of spheres when n 
is even. The rational cohomology of 9m is a Grassman algebra with primitive 
generators in dimensions given by the spheres for n even, and a polynomial 
algebra when n is odd. In particular, for G = SU{N), i J * ( ^ m , R ) has prim­
itive generators in dimensions 1 ,3 , . . . , 2k — 1 for k < N — ^ when n is 
even and in dimensions 0, 2 , . . . , 2fc, for k < N — {{n + l ) / 2 ) when n is odd. 
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(Two exceptions occur because G / U(N); for n = 0, H1 = 0 and for 
n = 1,H° = 0) . Later we shall also need that H1(grn,Ii) / 0 for n = 41 + 2 
and G= SO{n). 

Consider the map /3 : M x £ m —» G given by <£>) = B(x,<£>(z). Cohomology 
elements of £ m can be obtained by pulling back cohomology of G and 
integrating over cycles in M. In particular, the previous discussion yields. 

THEOREM. — For M — Sn and G = SU(N), primitive generators 
o /jH"*(£ m ,R) are obtained as fM(3*{wj) where Uj are primitive generators 
of H* (G, R) of degree j = n + 1, n + 3 , . . . , 2N — 1 for n even and j — 
n, n + 2 , . . . , 2N — 1 for n odd. 

Since ujj can be represented explicitly as two sided invariant differential 
forms on SU(N), the theorem gives an explicit formula for the primitive 
generators of j f f* (£ m ,R) . That is, 

T(M X am, {*,*>)) T{M,x)+T(gm,v) t{m,X) E G . 

Then d/3(v, /) = <p 1d<p(v) + f(x) and 

/ 5 * K ) ( K , / i ) , . . . , K , / r ) ) 
ojj((p 1d(p(v1) + / i(x), . . . ,<£> 1d(p(vj) + fj(x)) 

±Wj{<p 1d(p{vil),...,<p 1d(p(vin) fl1 (x), …,flj-n (x) 

Since tp^dip : T(M) -* su(N), let (<p~1d<p)n : \nT(M) -* gl(N) be its 
skew extension. That is, 

(<£> 1d(p)n(v1,...,vn) 
1 

n! 
IIESn 

- 1 *(p 1d(p(v7rW)(p 1d(p(v7r(2)) ...ip 1d(p(v7V(n))-

For consistency, let g ldg denote the identification of T(SU(N),e) with 
su(N) and let [g~ldgY be the map of AP(su[N)) -> gl{N). Then the 
primitive integral generator CJ2/-1 equals 

1 
2m 

i 
I - I \ 2 t r 9 l d 9 

2/-1 

So, for example, the generator for H1(Qrn, Z) is the 1-form 

f 

£2n 
tr (p xd<p 2n f 2tt2 n+1 n! 2 

n < TV — 1, n even. 
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The formulas above for the primitive generators are a special case, the flat 
connection case, of a more general formula for the same generators involving 
any connection. See section 8. 

We can now derive the Wess-Zumino Lagrangian from our description 
of H1(9rn, Z). Let UJ be the integral generator. G iven (p G Qm choose a 
smooth curve 7 from the identity of 9m to (p. (Such a curve exists, for 9m 
is connected when n is even, n < N - 1.) Let L((p) = / UJ. The functional 
£(<£>) is well defined up to an integer — another choice of 7 1 gives 

1 
UJ 

Y1 

UJ 

c 
UJ 

with c a closed curve. But 7 defines a homotopy of <p : Sn(N) to the identity 
and 

1 
UJ 

1 Sn 

wn+1 

DN+1 
wn+1 

where uJn+i is the primitive n + 1 generator in Hn+1(SU(N)) and D n + 1 is 
the image of [0,1] X Sn under 7 : (i, x) -> "f{t){x)9 so that < 9 D n + 1 = ^ ( 5 n ) . 
Thus we obtain the usual description of the Wess-Zumino Lagrangian : For 
each <p G £ m , <p(Sn) is homotopically trivial and hence is the boundary of 
a set Dn+X; let £(<p) = J D n + 1 w n + 1 . The function <p -> e 2 7 r ^ ( ^ ) is now well 
defined and its logarithmic differential represents the generator of H1(§rn, A) 
[24,25]. 

6. A Family of Dirac Operators 

In this section, we use the families index theorem to show that the DET 
function of section 4 represents the integral generator of H1{Qrn, Z). 

Let K denote the group of all invertible bounded operators on a Hilbert 
space, of the form I + compact. We remind the reader that K is a closed sub­
group of all bounded invertibles in the norm topology. Also, since compact 
operators can be approximated uniformly by ones with finite dimensional 
range, K is homotopically equivalent to U(oo). In particular, 

IIj (K) 0, j even; 
Z, j odd, 

and H*(K,Z) is a Grassman algebra with one primitive generator in each 
odd dimension. 

Let h be the map of 9m —• K : h(<p) = ^ 1 ( + ) ^ < P A ( + ) . Since the symbols 
of tytpA and QA are the same, h(<p) is indeed in K; in fact h((p) = I + T 
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where T is an operator of order —1. Let Tp be the element in A 1 0 g equal 

to p · A - A. Since $<PA{+) - $A{+) $<PA{+) - $A{+)TP. 

We now state a consequence of the families index theorem for the family 

{ ^ • A ( + ) } y ? G 5 m - I n ^ n e next section our use of the family index will be 

discussed further. 

THEOREM. — The map h induces an isomorphism in homotopy groups 

7Tj, for M — S n , n even, G = SU(N) and j < 2N — 1 — n. Consequently, 

the primitive cohomology generators in H*(K,Z) pull back to the primitive 

generators in H*(§rn, Z), for degree < 2N — 1 — n. 

Let Kt = [I + T G K;T of trace class]. Then the Lie algebra fc*, of Kt is 

the set of trace class operators and has an invariant linear functional, the 

trace. The cohomology of Kt (which is the same as H*(K)) can be obtained 

as invariant skew forms on kt, using the trace on products as in the finite 

dimensional case. 

Let h~xdh be the mapping of T ( £ m , p) —> k, the Lie algebra of X", induced 

by h. Note that k the set of compact operators is closed under multiplication, 

and hence we can extend the map to a map (h~1dh)r : A r (£ m ,<£>) —* k 
as before. Since h is of order 0 and dh is of order —1, [h~1dh)r is of 

order —r, i.e. maps A r(£m ,<£>) into operators of order —r. When r > n, 

(h~1dh)r(Ar(£m, p)) is of trace class. 

THEOREM [ 1 ] . — For 21 — 1 > n, the primitive generator of degree 21 —1 

has representative h*L02i-i, the pull back of the invariant 21 — 1 skew form 

on kt. Moreover, h*uo2i-i is invariant under left translation in £ m . f 

Ith{<p) h(^)(p)y then 

h~ldh i)-lh~ldh^ and (h-^hy ^-1{h-1dh)r^ 

taking traces shows /i*c^2/-i is left invariant. 

When 21 — 1 < n, then in fact one cannot represent the cohomology by 

invariant forms. For example, when / = 1, a closed left invariant 1-form is 

equivalent to the existence of a nonzero linear functional /¿1, on g such that 

/¿1 ([/>#]) — 0 f ° r a ^ f>9 £ S- We leave the reader to prove that no such 

linear functional exists for any M and G = SU(N). 

In the range 21 — 1 < n, the continuous cohomology of £ m cannot be 

represented by the Lie algebra cohomology. However, as has been pointed 

out to me by A. C O N N E S and D. QUILLEN, there is a long exact sequence 

T Since these forms are left invariant, they can be represented by the cohomology of gr, 
the Lie algebra of £ m . When G = Gl(iV), g is a full matrix algebra and its cohomology 
is isomorphic to the cyclic cohomology of A. CONNES [9, 15]. The theorem above also 
follows from this identification. 
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relating these two cohornologies with the cohomology of the discrete group 

Qm. In particular, one has Hk{g) H k 
top 9 II fc+l 

discrete 9 
For the generator of the first cohomology, one can write formally h*u>i = 

tv{h~ldh). So at <p € 9m, (h*w1)(f) is supposed to equal 

tr 6pA (+) 
6ØpA (+) 

6f 
tr 6ØpA (+)-1 (6ØpA (+), f) 

Note that this is precisely the formula obtained in section 4 for the variation 

of log DET. 

Since the trace does not exist, we have to regulate, i.e. smooth out h so 
its range lies in Kt. Let hs(<p) = 1+(ØpA (-)(ØpA (+)+)/*>· N o w d h s 

is of order —(2s + 1) so that (h~1dhs)
r is of order — r(2s + 1). 

THEOREM [ 1 ] . — The maps h3, Rls > (n — l ) / 2 are homotopic to h. 

The forms h*(u>2i-i) are well defined and represent the primitive generators 

of H*{§rn, Z) for 1 < / < 2N — 1 — n. In particular the 1-form tr{h~1dhs) 

can be analytically continued to s — 0 and represents the same class as 

to = l/(27ri)rf^DET/DET of section 4. The DET function represents a 

generator of H1{9m^Z). 

We remark that the theorem above identifies DET as a 1-cohomology gen­
erator without computation for M — S 2 n . A somewhat different argument 
can be found in [14]. 

7. Dirac Operators Indexed by A/$m 

We remarked in section 4 that two fc-dimensional vector bundles V 

and W over a manifold and an element T G Hom(V, W) gives de tT G 
Hom(A f cV, AkW). The kernels and cokernels of T measure the extent to 
which the line bundle Ak(V)/kk(W) is nontrivial. This point of view is the 
one adopted in [4] to measure the obstruction to defining a gauge invariant 
determinant of $ A { + ) : C ° ° ( S ,

+ ® E) -> C ° ° ( S _ ® E) for all A G A). Our 
purpose in this section is to relate this viewpoint with the one in the previous 
section. 

As described in [4] where n is even, the covariance = ^ _ 1 ^ A ^ ( + ) 

gives a family of elliptic operators ^ indexed by A/§m. Its analytic index 

I and^ is an element of K{A/Qm)i
 a n d is formally the virtual vector bundle 

of the kernels of $ A { + ) minus the cokernels of $ A { — ) - The index theorem 

for families describes Ind^ topologically; in particular, it gives a formula for 

the Chern character of Ind^. 

The first Chern class, cx(Ind^), has the following interpretation. To each 

element of K(X) is associated a well defined line bundle, its determinant line 
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bundle : if V of dimension k and W of dimension I are vector bundles over X , 
then det(V-W) = Ak(V)/Al{W). In these terms, c i ( Ind^) = c i (det ( Ind#)) . 
In a way, det(Ind^) measures the obstruction to defining an analytic Q-
invariant d e t ^ . 

The cohomology class ch(Ind^) lies in Heven{A/£m,R) and can be anti-
transgressed as in the finite dimensional case to Hodd (9 m> · F ° r M — S 2 n , 
G — SU(N) and in the appropriate range, using the Chern classes, one gets 
the primitive generators for i J * ( £ m , R ) , as described in the previous section. 
In fact, using secondary characteristic classes, one obtains explicit formulas 
for the primitive generators as a function of the orbit. We remind the reader 
that to each invariant polynomial p, the characteristic differential form p(FA) 
is exact on P , equaling da^^p with a^yP given explicitly say as in [7]. For 
P = G x S , the primitive generator in H2k~1(Qrn, A) is then given by the 
differential form at 

<£> G 9m / l 5 · · · 5 /2fc-l 
S2n 

i(fl) · · ^{f2k-l)oilpA1p 

where p is the polynomial of degree k + n representing the (n + k)th Chern 
class. When A = 0, the present formula reduces to the previous one of 
section 5. For arbitrary P , a more general formula can be found in [4]. 

Let 'V denote the invertible operators on a Hilbert space (in our case, the 
L 2 completion of C°° (S+ (g)E)). It is well known that "V = "V /K is isomorphic 
to the space 7 of Fredholm operators of index 0 modulo compact operators. 
Also, V is the component of the identity of the invertible elements in the 
algebra of all bounded operators modulo the ideal of compact operators. 

We have two principal bundles with total spaces trivial. 

A V 

9m K 

Al Qm 
V 

The Dirac family ^ gives a map from A/9m to "V, a classifying space for 
if-theory (reduced). It induces a map ^ : Vt{A/9m) fi("V). But these loop 
spaces can be lifted to an orbit 9 m 'A and K respectively, giving a map from 
9m - A to K. The map h of section 6 gives a specific realization of this map. 
One consequence is the first theorem of that section. 
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8. The Odd Dimensional Case 

The spacetime formulation of quantum field theory was used at the end of 
section 2 to state the main problem; there d i m M is even. In the canonical 
formalism, M is space rather than space time and of odd dimension. Again 
assume M = 5 n , G = SU(N) and N > (n + 3 ) /2 . Since n is odd, £ m is 
not connected, except for n = 1; we restrict our attention to the component 
of the identity. The generator of H1(§rn,Z) in the even dimensional case 
becomes the generator of i J 2 ( £ m , Z) for n odd. We make several Observations 
that may be relevant for the representation theory for Qm,n = 3 as a 
generalization of the representation theory for loop groups (n = 1). These 
remarks are based on joint work with I. F R E N K E L . 

First, as in the previous section, the primitive operator in H2k(§rn, Z) is 
given by 

/ i? /2? · · · j ílk 
S2n+1 

i{fl) · · .*(/2fc)üV>A,p 

where p is the polynomial representing the k + n + 1 Chern class. 

When n > 3, the closed 2-form w representing the generator (as in 
section 5) cannot be chosen to be invariant under left translation, while 
for n = 1 it can. The reason is explained in section 6. Regulating traces, not 
necessary for n = 1, breaks invariance. If / t , i = 1,2,3 are elements of ^-left 
invariant vector fields on £ m . Then in general 

0 i M / 1 , / 2 , / 3 ) —w /15 /2 ,/3 - … / l ^ ( / 2 , / s ) 

When w is left invariant, one gets a closed 2-form in the ordinary Lie algebra 
cohomology and that gives a central 1-dimensional extension of g. However 
for n > 3, we need the actual De Rham cohomology, i.e., cohomology with 
coefficients in the ring of functions of £ m . Let this abelian algebra of real 
functions be denoted by J. One obtains a noncentral extension g(B J with g 
acting on J by left invariant fields and [ ( / i , 0 ) , (/2,0)] = ( [ /1 , / 2 ] , w(fu /2)). 

The extension arises in the following way. As usual, the 2-form w repre­
senting an integral cohomology class is the first Chern class of a line bundle 
L over §m. One would like to extend left translation on £ m to be covered 
by automorphisms of £ . The automorphisms of L covering the identity map 
of C m is the group of invertible unitary functions J' whose Lie algebra is J. 

The group Qm of left translations cannot be lifted to £ , but the semidirect 
product Qm x J with Lie algebra g + J above, can. For n = 1, the invariance 
of w implies that g + J can be reduced to the subalgebra g + constants which 
does act on £ . In fact £ m has a holomorphic structure, £ is a holomorphic 
line bundle and the group with Kac-Moody algebra g + R acts as holomor­
phic automorphisms of L [12, 21]. To us g + J seems the natural extension 
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to the S3 case of g + R for the S 1 case. Where J is a subring of J invariant 

under an appropriate subgroup of £ m . * 

For n odd, the cohomology classes are again obtainable from families of 
Dirac operators. The spin bundle does not split and ØA is self adjoint on 
C°° (S ® E). Again because of the covariance, one gets an elliptic self-adjoint 

family indexed by A/9m, thus a map $ from A/9m to Tl, the space of 
self-adjoint Fredholm operators. The space J 1 is classifying for X"1 and is 
homotopic to M(F) [5]. Then 

9m n(A/9m) 
Ì M(F1) M2(F) 

equaling 7 by Bott periodicity. The generator of H2(9mi Z) is obtained by 

pulling back the generator of H2(7,Z). 

9. Concluding Remarks 

We mentioned in section 6 that to date the successful approach to the 
quantization of gauge fields is the perturbative one. And in fact anomalies 
have their origin in triangle Feynman graphs, representing terms in the 
perturbative expansion. However, for Quantum Chromodynamics, the non-
abelian gauge theory which is supposed to express the strong force, the 
perturbation expansion is inadequate. The coupling constant is too large. 
In searching for a nonperturbative theory it makes sense, where possible, to 
redo results obtained perturbatively in a non-perturbative way, as we have 
now explained for the chiral anomaly. 

The discussion above — and [2, 4] as well — is motivated by the search 

for a non-perturbative geometric theory. We have not had time here to 

discuss other applications of the family {^A}> particularly the beautiful non-

perturbative results in [23, 26]. The application we have discussed implies 

that the anomaly cannot be removed, because it is topological in nature. 

However, the ordinary cohomology is inadequate for the purposes of 

physics. What is need is local cohomology [6]. Although we have concentrated 

on a given orbit, d d e t ^ ( + ) / d e t f i A { + ) l s a w e U defined closed 1-form 

wherever ^ A ( + ) is invertible. Because Lagrangians are local functionals of 

fields, the physical question is not whether the 1-form is exact, but whether 

* After this paper was written, we became aware of a preprint by L. FADEEV, now 
published [10]. He arrives at the same conclusion (clearly earlier than us) that for n = 3 
the extension will depend on functions of Qm. His cocycle differs from ours (p. 17) by an 
exact 1-form and he derives it from a physical point of view, rather than the mathematical 
one above. At the same time, we learned of the paper of T.R. RAM ADAS [15]. He constructs 
the line bundle above and observes that Qrn cannot be lifted to it. 
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it is the differential of a function / on A which is local in A, i.e., a polynomial 
in A and its derivatives integrated over M.{A — [A E A;$A is invertible]}. 

In the case we have discussed, the closed 1-form represents a generator of 
Hl{Qm, Z) 7^ 0· So naturally it is not exact in the more refined local sense. 
However, in the case of gravitational anomalies [2], for M = S , 4 f c"1"2, it is 
expected but not known whether H 1 ( D i f f o ( M ) , R ) = 0. On the other hand, 
there is indeed a local gravitational anomaly; i.e. the local H1 (D i f f 0 (M) ,R) 
is not zero. (Private communication from O. A L V A R E Z . ) It seems natural, 
then, to suggest that local cohomology in the above sense be given some 
serious attention by mathematicians. 
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