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DISCRETE SUBGROUPS OF LIE GROUPS
BY

G. D. MoSTOW

1. Introduction

Ever since Felix KLEIN’s Erlanger program, it has been natural to wonder
on which spaces a Lie group can act transitively i.e., which spaces have the
form G/C with G a Lie group and C a closed subgroup. In point of fact, the
structure theory of a Lie group remained largely a question of the algebraic
structure of its Lie algebra, until Herman WEYL’s trilogy on the structure of
semi-simple Lie groups, [32]. WEYL generalized HURWITZ’s use of integration
on the classical orthogonal and unitary groups to arbitrary compact Lie
groups and his global viewpoint led to the first essential appearance of the
one dimensional Betti number of a Lie group. WEYL’s effective use of his
theorem that a compact semi-simple group is covered only a finite number
of times by its simply connected covering group led E. CARTAN to investigate
the higher Betti numbers of semi-simple Lie groups, and to suggest to his
student DERHAM that he prove in his doctoral dissertation the now-famous
DeRham Theorems.

The topological structure of spaces G/C falls into two distinct types
according as C has a finite or infinite number of connected components.

The finite case : Suppose that G and C each have a finite number of
connected components. Then there is a “covariant” fibration 7 : G/C —
KC/C ~ K/K N C with euclidean fiber and with K a maximal compact
subgroup of G such that the fibers are permuted transitively by the actions
of K. In particular, G/C and K/K N C have the same homotopy type and
the topology of such spaces reduces to the study of factor spaces of compact
Lie groups. There is much detailed information available about such spaces

(cf. (1], [4], [5]).
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The wnfinite case : Suppose that C has an infinite number of connected
components. We consider the case that G is the set of real points of a linear
algebraic group.

Let C° denote the connected component of the identity in C' and let H
denote the normalizer of C° in G. Then H has a finite number of connected
components and C C H. Thus we get the topological fibering

1-H/C—-G/C—-H|G—1

and in addition

H/C = H[C [C/C®.

That is, G/C is the total space of a fiber bundle whose base space has a
covariant fibering as in Case 1 and whose fiber is the factor space of the
group H/C® divided by the discrete subgroup C'/C°. Thus spaces G/C with
C having an infinite number of connected components are related to orbit
spaces of discrete subgroups of Lie groups.

E. CARTAN in (6] lists the two dimensional manifolds on which a connected
Lie group acts transitively as the sphere, projective plane, Mdbius strip,
plane, cylinder, and torus. Actually, the Klein bottle should be added to
make the list complete (cf. [14]).

The general question of describing all quotients G/C is largely a question
of how discrete subgroups of Lie groups operate on spaces G/C with C
connected.

In this paper, I shall not attempt to survey all the work since CARTAN’s
time on discrete subgroups of Lie groups. Rather I shall restrict myself to
some recent developments on lattice subgroups, i.e., discrete subgroups I" of
a Lie group G with G/T having finite Haar measure.

2. Arithmetic subgroups

Let A be a connected algebraic matrix group defined over the field Q
of rational numbers. By a Q-character ¥ of A we mean a 1-dimensional
representation A — GL(1) defined over Q. Let 1A denote the intersection
of the kernels of all Q-characters of A and let

(1A)(Z) = 'ANSL(n,Z).

By a theorem of Borel-Harish Chandra, (*A)(Z) is a lattice in *A(R)
(¢f. [3]). The subgroup 'A(Z) is an example of an arithmetic lattice.

Suppose in addition, that A is an algebraic group defined over Q and
IA(R)O-‘—‘GI XGz X "'XG,- XGT+1 X "‘XGS,
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where G; is non-compact for ¢ = 1,...,r, and compact for e =r +1,...,s.
Set

G=G1 X - xXGrxGy x--- %G, (r+1<4d3<ig--- <17 <s)
K:HiGi (T+1§’L_<_S,Z¢{’ll,,7,t})

Then G is non-compact, K is compact, and
(2.1) "TAR)°=Gx K

Let m denote the projection of A(R)® into G with respect to K. Since K
is compact, 7 is a proper map. Set

[ =n(A(Z) N 'AR)°).

Definition. — Any subgroup I of G commensurable with " (i.e., T NI’
has finite index in both I and I") is called an arithmetic lattice (or arithmetic
subgroup) of the Lie group G.

We shall be concerned below with proving arithmeticity of a lattice in
an adjoint group G. That will require finding a compact group K, and
an algebraic group A with a prescribed Q-structure such that the above
situation is reproduced.

Ezample. Let k be an algebraic number field with [k : Q] = n. Let A
denote the set of all invertible elements in A = k ®q C, operating on the
algebra A by left multiplications, and with k as the given Q-structure of the
underlying vector space of A. Then

AR)=k®qR=R" ®C"

where ry is the number of real places of k, r2 is the number of complex places
of k, and ry + 2r; = n. [Recall a complex place is complex conjugate pair of
monomorphisms o : k — C]. The group A(R) of invertible elements in A(R)
is therefore

A(R) = (R¥)" x (CX)" = (R¥)" (R*)"> 1"

where ( )* indicates the set of non-zero elements in ( ),R* denotes the
multiplicative group of positive reals, and T denotes the multiplicative group
of complex numbers of modulus one. Furthermore, since all Q-characters of
A are powers of the norm, we get that ' A(R)°, the topologically connected
component of the identity element of 'A(R), is 'A(R)? ~ (R*)n1+7271 x
T72. Since 'A(Z) is a lattice subgroup of 'A(R), we find that the rank of
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the abelian group *A(Z) is ry + ro — 1 — the classical result of Dirichlet on
the rank of the group of units in the algebraic number field k.

In this example, the lattice 1 A(Z) is even co-compact in *A(R). In general,
if A(Z) is a lattice in A(R) with A an algebraic Q-group

(2.2) A(R)/A(Z) 1s compact if and only if A(Z) or equivalently, A(Q) has
no unipotent elements other than in the unipotent radical of A.

This criterion was conjectured by GODEMENT and proved independently in
(3] and [22].
This criterion is very useful in case the algebraic Q-group A is Q-simple.

For in that case, there is an absolutely simple group, B defined over a number
field k such that

(2.3) A=RestrB=|| B,
k|Q

[

A(Z) ~ B(0)  (imbedded diagonally in |[ B?),

where o ranges over all the distinct monomorphisms k& — C and 6 is the ring
of (algebraic) integers in k. The set of complex places occur in pairs {0,5}
and it is known that (B¢ x B?)(R) = B(C), a complex simple group which
is never compact. Hence, if any factor B’(R) occurring in (2.3) is compact,
the place o must be a real place. If B(R) is compact for all but one place
o, then all o are real, i.e., k is a totally real field.

(2.4) If B°(R) ts compact for some real place o, then A(R)/A(Z) is com-
pact.

For if w € A(Z) is a unipotent element, then the projection u° of w in the
factor B?(R) is unipotent. Since B?(R) is compact, it follows that “u = 1.
Hence u = 1. Now (2.4) follows from the Godement criterion.

In particular, if G is a simple real Lie group and T is an arithmetic lattice in
G, then a compact factor K may be required in (2.1) only if T is co-compact,
i.e., if G/T is compact.

3. Arithmeticity of lattices

Classically, lattices were constructed in SL(2,R) in a variety of ways. How-
ever, only the arithmetic construction seemed readily available for arbitrary
classical groups. A. SELBERG was the first to launch an investigation of this
question and conjectured : Apart from some exceptions, non co-compact lat-
tices in simple real Lie groups are arithmetic. Later I. PIATETSKY-SHAPIRO
modified the conjecture to :
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If the R-rank of a semi-simple real Lie group G is greater than 1, then any
irreducible lattice I" in G is arithmetic. An srreducible lattice T’ in a semi-
simple linear Lie group G is one such that for every proper normal subgroup
N of positive dimension, I' V is topologically dense in G. The R-rank of a Lie
group G is the maximum dimension of a subgroup D that is diagonalizable
over R;i.e., D is conjugate to a diagonal matrix group with real coefficients
only.

In 1973, the Selberg-Piatetsky-Shapiro conjecture was proved by G.A.
MARGULIS (cf. [13]) for non co-compact lattices and in 1974 for co-compact
lattices. The 1974 proof can in fact be extended to apply to arbitrary lattices.

We devote the remainder of this paper to results on construction of
lattices by methods other than the arithmetic definition. In view of Margulis’
remarkable theorem, one can hope to find non-arithmetic lattices only in
the simple R-rank 1 real Lie groups; these are, up to local isomorphisms,
S0O(n,1), SU(n,1), Sp(n,1), and a form of F4. They act by isometries on
the hyperbolic spaces

Rh™, Ch", Hh", OhZ

over the reals, complex numbers, quaternions, and octonions of dimension
n, 2n, 4n, 16 respectively.

4. Constructions on O(n,1)

In Rh2, there is the classical construction of the group I' generated by
reflection in the sides of a geodesic triangle A whose angles are 7, =, -
with I, m,n non-negative integers; the orientation preserving subgroup of

index 2 in I is called a triangle group and is denoted [[, m,n].

If we delete from the hyperbolic plane Rh? the fixed point sets of all the
reflections in the group generated by the reflections in the faces of A, it can
be proved that A is a connected component of the remaining space R and
all the connected components of R are permuted transitively by I". Thus A
is a fundamental domain for I'. The group I is a discrete subgroup of the
isometry group of Rh?, the latter being PO(2,1) = O(2,1)/(%1).

A similar construction works in real hyperbolic n-space Rh™.

(4.1) If A @s a closed convez polyhedron bounded by (n — 1)-faces lying on
geodesic subspaces, and if the dihedral angles of A are m/integer, then
the group T' generated by reflections in the faces of A has A as a
fundamental domain and is discrete in PO(n,1).

For n = 3, such polyhedra were studied by Makarov (cf. [10]), who
showed that for some A, the resulting group I' is a non-arithmetic lattice
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in PO(3,1). Later E.B. VINBERG undertook a systematic study of such
reflection groups, determining all geodesic n-simplices A in Rh™ of finite
volume. In 1967 (cf. [29]) he determined all such simplices A for n < 5
and proved that there is no such compact simplex for n > 5. He found no
non-arithmetic lattice generated by reflections in the faces of a simplex for
n > 5.

Recently, Vinberg has proved the striking result.

If n > 30, there vs no compact simplez satisfying the condition in (4,1);
alternatively, there 1s no group I' generated by reflections of real hyperbolic
n-space having a compact fundamental domain.

5. Groups generated by complex reflections in Ch"

Coxeter diagrams for groups generated by reflections in real vector spaces
are well-known (¢f. N. BourBAKI, Chapter V). Given a vector space V over
the field C of complex numbers, a linear map T : V — V is called a pseudo-
reflection if T—identity has a one-dimensional image. If in addition T is
diagonalizable, we call T a C-reflection. COXETER has introduced diagrams
for finite groups generated by C-reflections but they serve equally well for
infinite groups. To each graph

q..
i
A ; (P

with positive integer p; assigned to node ¢, and positive integer g;; assigned
to a line segment joining nodes 7,7, we associate a complex vector space
V =@, Ce;, and on V we define a hermitian form via

(ei,e;) =1 for all 7,
0 if ¢, is not joined by a line,

o 2r \ 1/2
|(€i,€j)| = (COS(E Pi) + cos 9ij ) otherwise.

2sin = - sin X~
P P;

The hermitian form is still not specified until we give the argument of
(ei,€;), but the resulting hermitian forms will all be equivalent if the graph
has no loops; if there are loops, the values of arg(e;, e;) are also specified.
The hermitian form need not be definite.

Given V and the hermitian form as above, for each node 7, define R; by :

v v (2P 1) (v, e))e;.
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It is easy to see that R; preserves the hermitian form and is a C-reflection
of order p;. Let I denote the group generated by {R; ; all 7}.

Assume that arg(e;, e;) 1s so chosen that the hermitian form has signature
(n plus signs, 1 minus sign) where n + 1 us the number of nodes. Then
I cU(n,1).

As a model for complex hyperbolic n-space Ch"™, we may take the image
in complex projective n-space CP™ of the cone

Vo ={veV;(v,v) <0}

under the mapping 7 : V — 0 — CP™, distance being defined by

coshd(m(v), m(w)) = ((v,v!)<z)1)uq,u121|))1/2 forv,we V™.

Equivalently, the Riemannian metric is

1 (dv,dv) (dv,v)

45" = o | (v, dv) (o, 0)

The connected component of the identity of the group of isometries of Ch™ is
PU(n,1), and the action of a C-reflection of V' whose fixed point set in Ch™
is a subspace of complex codimension one in Ch™ is called a C-reflection of
Ch™. The image of the group I' above in PU(n,1) is a group generated by
C-reflections of Ch™.

In case n = 1, Ch! ~ Rh? and the groups obtained in this way include
the triangle groups of § 4. The lattice of the Coxeter diagram

is the triangle group of PU(1,1) corresponding to the geodesic triangle

/p1 n/pz

with py, p2, ¢ positive integers satisfying 1/p; + 1/p2 + 2/q < 1. Moreover,
(R1R2)? = (RyR,)¥?(= RiRz--- Ry if ¢ is odd) and (R1R;)? = 1 in
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PU(1,1). It follows that Ry and R, are conjugate if ¢ is odd, so that p; = ps
if ¢ is odd.

6. Non-arithmetic lattices in PU(2,1)

The first construction of non-arithmetic lattices in PU(2, 1) were obtained
as groups generated by C-reflections Ch? with Coxeter diagram, for special
values of p and ¢ :

(6.1)

Here V = Ce; + Cez + Ces, (e5,€i) =1,
1

2sin X
P

(ei,e2) = (ea,e3) = (e3,e1) = —

where |p| = 1. (¢f. [18]).
Set t = largy®, and denote the image of the group I' in PU(2,1) by
T(p,t).

LEMMA 6.2. — The hermaitian form of the diagram above has signature
(2+,1-) for |t| < 3(%— %) if3<p<5 and for |t| < %—}—%forpz 6.
The group generated by the two distinct reflections { R;, R;} ts finite if and

only +of p < 5.

The problem of proving that the subgroup I'(p,t) is discrete in PU(2,1)
raises the general question : How can one prove that a group is discrete?
That question will occupy us is this section and the next.

One method of proving I'(p, t) discrete is to produce a fundamental domain
forit. If A is a group acting by isometries on connected complete metric space
X, and if Py is a point in X, we set for any g € A

(6.3) gt ={z € X;d(z,po) < d(gz,p0)}
9= {z € X;d(z,po) = d(g9z,po)}
then F' = [ ca gt is a fundamental domain for A on X mod A if and

only if A has a fundamental domain, and this occurs if and only if F has a
non-empty interior, here Ap denotes {g € A, gF = F}.
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Choose now X = Ch?, Py = 7w(e; + ez + e3), and choose A to be the
subgroup T';; if I'(p,t) generated by two reflections {R;, R;} (1 <7 # 7 < 3).
For p < 5, the resulting group T';; is finite and has a fundamental domain
Fi; = ﬂgel‘.-j gt. Set F'= Fi3 N Fa3 N F3y. The proof that T'(p,t) is discrete
involves proving that the region F satisfies two conditions, the first for all
(p,t) and the second only when I'(p,t) is discrete.

LEMMA 6.4. —  For each (p,t) with 3 < p < 5, |t| < 3(

- %), the
following condition holds : '

1
2
(CD1) The 3-dimensional faces of F occur in pairs and for each pair

(F*,F~) of 3-faces, there is a unique element g of I'(p,t) with gF+ = F~;
g lies in P12 U F23 U F31.

Notation. — 1If (F*,F~) is a pair of 3-faces of F with gFt = F~ for
geTij,weset F* =g, F~ =g~ We have (cf. (6.3)) gCcgand g~ Ccg~1.
Remark. — Unlike the case of spaces of constant curvature, the subset

g7 equidistant from pg and g~ lpy is not a geodesic subspace since Ch? has
no 3-dimensional geodesic subspaces.

Whenever condition (CD1) holds, one can form for any codimension 2-face
eo of F', a circuit of images : F, g1 F, g192F, g19293F, . . ., in the following way.

1

eo =goNg " for unique gp,g1 € T'12 UT23 UTs;.

Then
e0Cd '=gg1 and g;leo=§1NG;"

for a unique g; € I'12 UT'23 UT'3;. Repeating the argument,

97970 =92N35", 9597 97 0o = Fa NG Y, etc.

o0

Definition. — F satisfies condition (CD2) if and only if : For all k, interior
g192 - geF N F # 0 implies gyg2 -+ - gxF = F.
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LEMMA 6.5. — If condition (CD2) holds, then F is a fundamental
domain for T'(p,t) modulo I'p.

Proofs. — The proof of LEMMA 6.4 entails explicit determination of the
3-dimensional faces of F', including the precise location of all the vertices.

One begins by determining the 3-faces of Fi5. In case p = 5 for example,
Fi5 is the intersection of 600 half-spaces. A computer was used to determine
that in actuality, the only faces of F'i5 lie on ﬁiﬂ, ﬁfl, (R?T%z)il, (R;T%l)il,
(Rlﬁ;Rl)il. Although the computations involve solving systems of non-
linear equations, it turned out to be possible to verify condition (CD1) for
all stated (p,t) by hand calculations in closed form (cf. [18]), albeit lengthy.
The proof of LEMMA 6.5 is topological (cf. [18]).

LEMMA 6.6. — For each (p,t) with 3 < p <5, |t| < 3(3 — %), F has
finite volume.

THEOREM 6.7. — Assume3 <p<5,0<t<3(5- %)
(i) Condition (CD2) holds for only 17 values of (p,t).
(ii) The lattice T'(p,t) is non arithmetic for the seven values :

(p,t) = (3,5/42), (3,1/12), (3,1/30), (4,3/20), (4,1/12),
(5,1/5), (5,11/30).

(cf. [18], Theorem 17.3).

7. Construction of lattices in PU(n,1) via monodromy, n < 5

The results in this section are a summary of forthcoming paper with P.
DELIGNE (cf. [7]).

Let P denote a complex line, let P"+3 denote the set of all (n + 3)-tuples
of points of P, and let M denote the subset of elements in p"*3 having n+3
distinct coordinates (zo,1,...,%ny2). For any m € M, let P, denote the
punctured line with punctures at the n 4+ 3 coordinates of m. Set

Py = {(z,m) € Px M;z € P,}.

We shall consider a flat one dimensional vector bundle L on Pps charac-
terized as follows :

Fix an n + 3-tuple of complex o = (@, a1, ..., @n42) such that

a; #1forallz 0<i<n+2,
n+2

H Q; = 1.
1=0



DISCRETE SUBGROUPS 299

(7.1) L has monodromy a along each Pp,.

In other words, if we denote by L,, the restriction of L to P,,, and if we
choose a base point 0 € P, and denote by P,, the simply connected cover of
P,,, then L,, = Cx,, (pm’o)j:\)m, that is, an element in 7 (P, 0) represented
by a positive loop around the ¢** puncture of P,, effects multiplication by
o; on L,,. This determines the isomorphism class of L,, uniquely, but L,,
is not determined up to a unique isomorphism. A similar remark holds for
L. One can construct such flat bundles on Pps.

The projection Py — M is locally on M a topological direct product.
Hence {H'(Pp,Ly);m € M} forms a flat vector bundle over M. To obtain a
bundle canonically determined by the data «, we pass to the projective space
PHY(P,,, Ly,) (of 1-dimensional subspaces of H!(P,,, Ly,)) and consider the

bundle of projective spaces over M
B(a)y = {PHY(Ppm,Ly);m € M};

it is flat and hence B(a)p = PH(Po, Lo) X, (M,O)Iso where 0 is a base point
in M. Let 6 : 7;(M;,0) — PGL(H'(Po, Lo)) denote the action of m;(M,0)
resulting from horizontal transport over M.

The group Aut P, the fractional linear group, operates diagonally on P"*3,
hence on M and Ppr. Set Q = Aut P\ M. The effect of Aut P on the
fibers of B(a)a commutes with horizontal transport. Hence 8 descends to a
homomorphism, also denoted 6.

9 :7(Q,0) - PGL(H(Py, Lo))

and the flat fiber bundle B(a)as descends to a flat bundle B(a)qg over Q of
projective spaces.

(7.2) Definition. — Ty, = Image 0= the o-hypergeometric monodromy
group.

The relation of the group I', to hypergeometric functions requires looking
at H'(Poy, Lo) from the point of view of de Rham theory.

For each 7, choose p; so that

(7.3) 2V =i oy, Z“‘ =2 (0<:<n+2).

Take P = CU {oo}. Set Mo = {m € M; mo =0, m; =1, mgy2 = 0o}.
Then Aut P X My = M and My 5 Q via the quotient map. Let z denote
the projection P x My to P composed with the identity coordinate of P.
z is then a coordinate on Ppy,, the pullback of Py via My — M. For any
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m € My, let e denote a multivalued section of L,, i.e., a constant section of
the product C bundle on the simply connected cover P,,. Set

wu(m) = H (z —m;) Hedz.
1#En+2

This defines a 1-form on P,, with coefficients in L,, and therefore a coho-
mology class in H!(Py,, Ly,). In [7] we prove

(7.4) HY(Ppm, L) = HY Py, Lyn) (compact supports) for all m € M.

(7.5) dim HY(Pp, L) = n + 1.

(7.6) The cohomology class of w,(m) in H'(P,,, L,,) is non-zero.

(7.7) The map m — wy(m), m € My, defines a holomorphic section w,, of
Q in the flat projective space fiber bundle B(a)q.

Choose a base point O € @ and above it = @, the simply connected
cover of Q. Then the flat bundle section w, of (7.7) defines a multivalued
map, also denoted w,, of Q@ to the fiber PH'(P,, Lo), that is a m{(Q,0)-
equivariant map &, of Q to PH(Py, Lo).

Let L denote the dual bundle of L. Then there is a perfect pairing (If
denoting locally finite)

(7.8) H*'(Po, Lo) x Hy! (Po, Lo) — C.

As a base of Hif(Po,Lo), one can take {Cy,...,Cphy1} where C; is an
open-ended path in P from O] to O], ;, where O’ denotes the point in
My over 0. For convenience, we may choose O} = 4,0 < ¢ < n+1, and
select each C; as an interval. Then for any point @ in @ above ¢ € Q,
{(®.(3),Cs) ;1 =1,...,n+ 1} are the homogeneous coordinates of @,(q),
and we have

(7.9)  (@u(),C)

_ /A 2710 (5 — 1)1 (= m(2)) 74 ... (2 — m(n + 1)) ~F=+ dz
qC;

where m is the point of My above ¢, and qC; is the horizontal transport of

C; corresponding to the path in @ from O to g.

For n = 2, PICARD takes the integral in (7.9) as the definition of a hyper-
geometric function of two variables (c¢f. [25]). For n = 1, the integral over
the path g(Cy + C3) reduces to Euler’s integral formula for the hypergeo-
metric series, which he was the first to define in 1778 (c¢f. [18]). Upon setting

z=u"1

oo 1
/ 27H(z—1)TH(z—z) M2 dz = / w1 — w)e (1 — uz) "% du
1 0

_ DO =) g,
= o) F(a,b,c;2)
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where pgo =c—a, p1 =1+b—c, 2 =a,

> (a,k)(b, k) z¥
F(a,b,c;x)=z—(—(c?(7)-—)7g,
k=0

and (a, k) = [I"23(a +14)-

Assume
(7.10) |ai] =1 for all 3.

Then the dual I is isomorphic to the complex conjugate L and the pairing
(7.8) together with (7.4) yields a Hermitian form in H'(Po, Lo) invariant
under the action of the monodromy group I'y. The hermitian form ¥ is
unique up to a real scalar multiple. We can choose real multiple so as to
make (w,(g),w,(g)) < 0 for all ¢ € Q.

(7.11) The hermitian form ( , ) has signature (n plus, 1 minus) if and only
O0<pi<1,y,pi=2(0<i<n+2).

We assume hereafter that

(7.12) O<pi<l, > mi=2 (0<i<n+2)

and we denote 'y by I'y,, where p = (po, ..., tnt2).
We have therefore

(7.13) T, c PU(H'(P,,Lo); ¥) ~ PU(n,1).

(7.14) Definition. — A sequence g = (fo, ..., HUnt2) satisfies condition
INT if and only if it satisfies (7.12) and in addition for all 7,7 with 0 <7 #
J<n+2, u; + p; <1implies (1 — p; — p;)~ ! is an integer.

THEOREM 7.15. — If u satisfies INT, then T, is a lattice in PU(n,1).

The case n = 1 is proved by SCHWARZ in his seminal paper [28]. The
case n = 2 was stated by PICARD in 1885 under additional hypothesis that
pi+p; < 1forall¢# 5 (cf [25]) but his proof is incomplete (cf. [19]); later,
he weakened the hypothesis, without proof, to a condition equivalent to : for
all 7,7 with 0 <7 # 5 <n+2,(1— p; —p;)~ ! is an integer (cf. [25b]).

In terms of the definitions made above, the proofs of SCcHWARZ, PICARD,
and DELIGNE-MosTow all take as starting point the multivalued hypergeo-
metric map

w,: Q— PHY(Py, Ly).
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If n = 1, Schwarz’s case, @ = P — {0,1,00}, the complex projective line
with 0,1,00 deleted. ScHWARzZ proves that w, maps the upper half plane
into a triangle T bounded by circular arcs. Condition INT implies that the
angles of the triangle T' are of the form 7, =, =, with [,m,n integers. A
fundamental domain for I', in this case is the quadrilateral obtained from
combining T" with its reflection in one of its edges. The lattice I, is a triangle
subgroup of PU(1,1).

In the case n = 2, Q@ = P X P minus the seven lines

0 0
T = 1, Yy = 1, =Y.
oo (e ]

PicaArRD makes three dimensional slits in @) obtaining a simply connected
domain, Q' and he argues in [25] that the image w,(Q’) is a fundamental
domain in the complex 2-ball if, in effect, forall 0 < ¢ # 7 < 4, (1—pi—py) ™1
is a positive integer on zero. The gap in PICARD’s proof can be explained in
terms of LEMMA 6.5. The matching of the three-dimensional faces w,(Q'),
which arise in pairs from the slits in @, assures the condition (CD1).
Condition INT assures the condition (CD2) for all two dimensional faces
which are fixed point sets of the C-reflections arising from monodromy of
puncture z around puncture 7,0 <7 # 7 < 4. However, these two dimensional
faces are not all the two-faces. PICARD is entirely silent on (CD2) for the
remaining two-dimensional faces of w,(Q’).
The proof in DELIGNE-MosTOW [7] is based on a different strategy.

We construct for all p satisfying (7.12) a I',,-space Qs and a I'y-map @,
from @st to the complex n-ball, such that on the space @st the action of the
group I', is obviously discontinuous. Then we prove : under hypothesis INT,
the map &, is a homeomorphism. It follows immediately that I', is discrete
in PU(n,1).

The construction of stt is based on a certain compactification Q4¢; which
is analogous to D. MUMFORD’s “quotient variety” structure for the space
Aut P\ P**3® and depends on p [24]. In case n = 2 and p; + p; < 1 for
all 0 < 7 # 7 < 4, the space Qg is the blowup of P x P at the three
points (0,0), (1,1), (00,00). Here Qgs¢ has ten exceptional lines (i.e., of self
intersection —1) lying above each of the seven lines

0 0
93:{1 ) y=41, =Y,
oo (6.9]

and the three blown up points.

THEOREM 7.16. — If u= (po,..., tnt2) satisfies INT, then n < 5.
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8. Lattices generated by C-reflections : Part II, n <9

The groups constructed in § 7 via monodromy are in fact generated by
C-reflections : the monodromy of the #t* puncture in Py around the 7"
puncture is a pseudo-reflection if p; + p; < 1 and is a C-reflection if
t#7, pitp; <1(cf[7],89.1). It is natural to wonder about the relation,
in case n = 2, of the subgroups I'(p,t) and ', of PU(2,1). For p odd, the
['(p,t) are not commensurable with '), where u satisfies INT. However, the
family of p for which I', is a lattice can be enlarged in the following way.

(8.1) Definition. — A sequence g = (po,...,nt2) satisfies condition
YINT if and only if it satisfies (7.12) and in addition for some subset
Sy c{0,1,...,n+2}.

pi = p; foralli,j €8,
. . 1z if+,5,€ 8
i#7 and p;+p; <1 implies (1 —p; — p;)~' € 2 ! zd’? !
Z, otherwise.

In [20], one proves

THEOREM 8.2. — If p satisfies EINT, then T, is a lattice in PU(n,1).

THEOREM 8.3. — Let n = 2. Then there is a byjective correspondence
between sequences p satisfying LINT with po = py = po and pairs (p,t),
3<p, with[t|<3(%—%) ifp<5andlt| < %—F% if p>6.

The correspondence is :

1

( t)-——+ —(__ll__l..l__l_l__}_i_ltl_i__.{__t)
P = T e T e T a2 T T e
1 -1
p— (p,t) = ((5 — po) , pa — p3).
Moreover card(I', /T, NT(p,t)) =1 or 3
card(I'(p,t)/T, NT(p,t)) =1 or 6.
Note. — One can use this correspondence to obtain new presentations for

the lattices I',.

Thus, the lattices I'(p,t) defined in 1978 by the construction described in
§6 are commensurable with those arising from the monodromy groups I,
even though not quite for the parameters considered by PICARD.

Picard’s conditions and our condition INT are sufficient though not neces-
sary for ', to be discrete in PU(n,1). The sufficient condition SINT actually
turns out to be necessary if n > 1. Namely, I have proved
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THEOREM 8.4. — Assume n > 1 and p = (fo, f1,-- -, fnt2) with
0<pi<1,dY.p=2(0<v<n+2). Then the following three conditions
are equivalent

(i) T, s closed in PU(n,1).
(ii) T, is a lattice in PU(n,1).
(i) T, satisfies condition SINT.

See [21] for the proof.
THEOREM 8.5. — If u = (fo,- .-, pnt2) satisfies LINT, then n < 9.

9. Negatively curved surfaces not covered by the ball

We take up again the groups I'(p, ) of § 6. Even when I'(p, t) is not discrete
in PU(2,1), it is still of considerable interest from the point of view of
complex differential geometry.

In LEMMA 6.4 we have seen that the region F satisfies the condition
(CD1) of matching 3-faces for all (p,t) with 3 < p < 5. This enables one
to piece together abutting images of F under I'(p,t), ignoring overlapping
interiors, and so to arrive at a cell complex Y (p,t) on which I'(p,t) operates
by permuting the cells. If ¢ is a rational number, it is proved in [18] that
Y (p,t) is in fact a non-singular complex analytic manifold. Upon dividing
Y (p,t) by a torsion-free subgroup I'g of finite index in I'(p,t), one obtains
a compact complex analytic manifold which is indeed a Kaehler manifold
(cf. MosTow-81U [23]).

If the codimension-2 condition (CD2) fails it fails on one of six complex
geodesic lines in Ch? which schematically we may draw

These six lines may be taken as passing through two dimensional faces
of the region F, and the figure is invariant under the cyclic permutation of
axes e; — ez — ez in the complex vector space V of §6. Furthermore, all
the intersections are pictured, and are at right angles.
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For certain values of ¢ (an infinite number), one gets condition (CD2)
satisfied for the a! but not for the a;(¢: = 1,2,3). The orbit of the a; in
Y (p,t) are all disjoint. In joint work with S1u (cf. [23]) one could use this
fact to introduce a I'(p,¢)-invariant Kaehler-metric on Y (p,t) with strictly
negative sectional curvature. The resulting quotient R = Y (p,t)/To is thus
a compact Kaehler manifold of strictly negative sectional curvature.

One computes its characteristic classes and finds (cf. [23], p. 360)

0y G HE-griown G-ty
@ I R GoDGT IS

where m is the branching order of Y (p,t) — Ch? along a,,

p(l—l+t):2m, a(l—l—t>:
p 2

2
2
N=24(L)"
6-p

The ratio ¢/c; = 3 if and only if m = 1, in which case Y (p,t) ~ Ch?. For
m # 1, one gets a strict-negatively curved Kaehler manifold with ¢%/cy # 3;
thus its universal covering manifold is not biholomorphic to the ball -
contrary to what had been previously conjectured. This construction also
gave the first known example of negatively curved Riemannian fourfold not

diffeomorphic to a locally symmetric manifold.

In view of THEOREM 8.4, the spaces Y (p,t) constructed above are merely
special cases of the space @st of § 8, and it should be possible to construct
spaces such as R above as ramified covers of the compact space Q¢q of
§ 7. However, in 1981, even before THEOREM 8.4 was discovered, S1u and I
considered branched Galois covering R of the complex two manifold @., the
blow up of P x P at (0,0), (1,1), (00, 00), with R ramifying over each of the
ten exceptional lines.

The multivalued hypergeometric map w, of § 8 maps Q. to the ball with
each exceptional line of @, going to the I', orbit of the fixed point set X;;
of the monodromy moving puncture ¢ around puncture 7, 0 < 7 # 7 < 4;
we denote the exceptional line of @, that the multivalued map w, sends to
Xi; by E;j. We denote by area E;; the area in X;; of a slit domain in E;;;
inasmuch as the monodromy group I',, operates by isometries in the ball,
area E;; is well defined.
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Then, writing (¢7) for the unordered pair 0 < 7 # 7 < 4 and writing
1 — pi — py; = (lij/ki;) in lowest terms, we have

5+Z(1—Ti—_;)(4+£ﬁ+ 1 )(l_lij)

(47) kiy  kij/\2 ki
- RPN
(9.3) ci(R) _ (ij)X(;s) <1 kia') ( krls * krg)
. (R) R 1
2 T+ g (t-%) (i§s) (-2)

with <, 7, r, s distinct

Schematically, the family of 10 lines { E(;5);0 < ¢ # j < 4} can be pictured
as

This family can be obtained by fixing four points in complex projective 2-

space P?, taking the arrangement of all six lines through them, and blowing
up the four three-fold intersections, thereby getting

(9.5)

R

ten exceptional lines in the blowup. This fact has led F. HIRZEBRUCH to
consider more general line arrangements and the surfaces resulting from
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ramified covers (cf. [9]) and obtains in this way surfaces not covered by the
ball as well as covered by the ball.

10. Some open problems

We turn to the question : is the Margulis theorem on arithmeticity of
lattices sharp? SELBERG’s original conjecture was less definite than the
hypothesis that the group have-R-rank greater than one. All of the examples
so far suggest the :

CONJECTURE 1. —  FExcept in low dimensions, lattices in R-rank 1
groups are arithmetic

At present, the only known exceptions are PO(n,1) forn < 5 and PU(n,1)
for n < 3 (up to local isomorphism).

A related problem is

CONJECTURE 2. —  Ezcept in low dimensions, there are no lattices in
PU(n,1) generated by complez reflections

Conjecture 2 would imply that in higher dimensions, one cannot get the
ball as the universally branched cover of a simply connected compact variety
with prescribed ramification data along C-codimension 1 subvarieties. At
present, examples are known only for n < 9 (cf. [20]).
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