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THE McKAY CORRESPONDENCE, THE COXETER
ELEMENT AND REPRESENTATION THEORY
BY

Bertram KOSTANT*

1.1. Introduction. — A fundamental question in harmonic analysis is :
given a locally compact group G, a closed subgroup H, and an irreducible
representation 7 of G, how does the restriction n|H decompose. Consider this
question in the following very basic situation : G = SU(2) and H =T is any
finite subgroup of SU(2). The classification of all finite subgroups I of SU(2)
is classical and well known. See e.g. [12] or [13]. Let S(C?) = @, S™(C?)
be the symmetric algebra over C2 and let 7, be the representation of SU(2)
on S™(C?) induced by its action on C2. One knows my, is irreducible for all
n and the set of equivalence classes {m,}, n = 0,..., defines the unitary
dual of SU(2). Now let I' C SU(2) be any finite group. The question then
in this case is : how does m,|I' decompose for any n € Z . The question
is particularly interesting in the light of the McKAY correspondence. The
latter sets up a bijection between f, the unitary dual of I', with the nodes of
the extended Dynkin diagram of a simple Lie algebra g, of type A, D or E.
Thus, the question becomes : what is the multiplicity of a particular node
forany n € Z,.

The problem above has arisen recently in connection with the resolution
of certain algebraic singularities. One way of dealing with it is by the use of
the theory of complex reflection groups. The latter enables one to decompose
polynomials into a sum of products of “invariants” and “harmonics”. This is
an old technique and its appropriateness in the present context was pointed
out by P. SLopowy. This approach has been carried out by G. GONZALEz-
SPRINBERG and J.-L. VERDIER in (2] and H. KNORRER in [5]. An effective
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method for computing these multiplicities is achieved and consequently
one obtains an explanation of the McKAY correspondence. However the
multiplicities are not significantly related to g itself.

In this paper the whole matter is viewed in a completely different way. We
accept the McKAY correspondence; thereby setting up a bijection of all such
I' and all simple complex Lie algebras g = pu(I') of type A, D and E. The
question we ask is : in what way does I and the multiplicities in 7, |’ “see”
the structure of g and vice versa. What we show is that these multiplicities
come in a beautiful way from the root structure of g. More explicitly they
come from the orbit structure of the Coxeter element o on the set of roots
of g. In fact the “harmonics” come from intersecting the orbits of o with the
roots of a distinguished Heisenberg subalgebra n of g and the “invariants”
come from the scalar product of those roots in that orbit of o which contains
the highest root 9. (The degree of the minimal “invariant” appears then as
twice the coefficient of 1 at the branch point.) Besides making connection
with m,|T', new results in the orbit structure of o are obtained. We remark
that all the results are obtained using Lie theoretic principles and there is
no reliance on empirical observations. Also, the decomposition itself into
“invariants” times “harmonics” is seen in the root structure and there is no
need for recourse to reflection group theory.

1.2. — Let I' C SU(2) be a non-trivial finite subgroup of SU(2) and
let {vo,...,m} = T be the set of equivalence classes of irreducible finite
dimensional complex representations of I'. Then if v : ' — SU(2) is the
given 2-dimensional representation one defines an (I + 1) x (I + 1) matrix
A(T') with entries in Z4 by decomposing the tensor product

v @~ =X A(T)ijvi

into irreducible components. John McKAY has made the remarkable observa-
tion (see [6] and [7]) that there exists a complex simple Lie algebra g = u(T)
of rank ! such that

A) =2 - C(@),

where g is the affine Kac-Moody Lie algebra associated to g and C(g) is
a Cartan matrix of g§. Moreover the correspondence I' — pu(I') = g sets
up a bijection between the set of all isomorphism classes of such subgroups
I' C SU(2) and the set of all isomorphism classes of complex Lie algebras of
type A, D and E.

The Cartan matrix C(g) is with respect to an ordered set of simple roots
a; €h’/,; 7 =0,...,l, where h C h are, respectively, Cartan subalgebras of
g C g. The indexing may be chosen so that 7, is the trivial representation
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of I" and ag € h’ is the added simple root corresponding to the negative of
the highest root ¢ € h' of g. Now if

I
T | T =) miyi,

1=0

we associate to m,|I' the element v, € h’ in the root lattice defined by

putting
l
Up = Z m,o,.
1=0

The problem we set for ourselves is then the determination of the generating
function Pr(t), with coefficients in h’, defined by putting

[e o]

Pr(t) =) vat™

n=0

We restrict our attention to the cases where the Coxeter number h = 2¢g
of g is even (so that g € Z). This excludes only the case where I is a cyclic
group of odd order. (The latter case is readily dealt with by considering
first the cyclic group I' X Z2 of even order where Z; = {£+I}.) We can now
speak of the special node 7, of the Dynkin diagram of g. If g 2 A; then 7,
is the branch point. If g = A3,,_1 (A2m has been excluded) then i, is the
midpoint. Our main results will be stated in the following sequence of six
theorems.

Remark. — In the light of Slodowy’s observation (see § 1.1) the following
result (THEOREM 1.3) is not new. However, the product decomposition in
THEOREM 1.3 arises not from reflection group theory but from a study of
the Coxeter element. As a consequence the numbers involved are directly
related to the root structure of g = p(I'). But then if one proceeds to make
the connection with the reflection group theory one obtains as a theorem
(not just an observation) that the numbers of reflecting hyperplanes is given
in terms of the Coxeter number and the lesser degree of the two fundamental
invariantsis given in terms of the highest coefficient of the maximal root of g.

THEOREM 1.3. — There emist z; € ﬁ’, 1=0,...,h, and even integers
2<a<b<h such that

h .
Z z;itt
=

(1.3.1) Polt) = T
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The integers a and b are determined by the next result. The table of these
values is given in THEOREM 5.17.

THEOREM 1.4. — One has a = 2d where d = d;, 1s the coefficient of
the highest root 1) corresponding to the special node i, (1 for Ay, 2 for Dy, 3
for Eg, 4 for E; and 6 for Eg). Furthermore b is given by

(1.4.1) b=h+2-a.
In addition one has

(1.4.2) ab=2|T).

If W is the (finite) Weyl group of (h,g) then one knows that there is
a Coxeter element 0 € W corresponding to II = {ay,...,o} such that
0 = 79711 where 79,77 € W have order at most 2 and correspond to a
decomposition IT = IT; U Il, into orthogonal sets. The order may be chosen
so that 29 = 4. Forn € Z, let 7, = 71 if n is odd and 7, = 73 if n is even.
Also let (") be the alternating decreasing product 7 = 1, 7p_1 - 71. Let
e = b/2. The vectors z; are determined in

THEOREM 1.5. — One has 20 = zp = ag. Forn =1,...,h—1, one
has z, € h' (not just h') and z, s given by

(1.5.1) 2 = (P — (Mg
where v 1s the highest root of (h,g). Furthermore
(1.5.2) zg = 20y,

and tn general one has the symmetry

(1.5.3) Zgtk = Zg—k

fork=1,...,9. Finallytfn=1,...,9—1 there exists distinct oy,,...,;, €
II;, 7 € {1,2}, where = n mod 2 such that

(1.5.4) 2n =04 + -t oy,

Moreover

(1.5.5.) 2 ifd<n<e—1;

1 f1<n<d-1;
rz{
3 fe<n<g-1;
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and in factr = 1,2, or 3 according as to whether (T(")zp, T("_l)zp) 18 positive,
zero, or negative. Forn = g+1,...,h— 1 the number r vs then given by the
symmetry (1.5.3).

Remark 1.6. — Instead of generating z, by the highest root ¢ the z,’s
can be generated in a manner similar to (1.5.1) using the simple root o;,
instead of 9. (See THEOREM 5.15).

1.7. — Now the Poincaré series Pr(t); for the individual representations
~; is obviously obtained by considering only the it" coefficient of the vectors
vy. Clearly by THEOREM 1.3, using the subscript ¢ for this coeflicient

_ z(t)i
O ey
where
h
2(t) = Z Znt™.

Thus to determine Pr(t); we have only to determine 2(t);. Consider first the
case 1 = 0. One notes that Pr(t)o is the Poincaré series for the algebra of
invariants S(C?)T'. The following is known although probably not expressed
in terms of the Coxeter number h of g and the largest coefficient d = a/2 of
the highest root ¢ of (h, g). It is an immediate consequence of THEOREM 1.5.

THEOREM 1.8. — One has z(t)o = 1 + t* so that

(1.8.1) Pe(t)o = (1_1“;—(3"_”)

Next consider the case where 7 = 7,.. One notes that ~;, is an irreducible
representation of maximal dimension of I' and is the unique such in case
p(T) = Es, E7 or Eg. Observe that the coefficient of ¢ is 2 in the following
result. This is the only occurrence of a coefficient greater than 1 for any

Z(t)i.

THEOREM 1.9. — Omne has
d—1 o d-1 '
(1.9.1) 2(t)i, =) 197 4y 19+,
7=0 7=0

In particular 2(1);, = a = 2d;, .
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1.10. — Now let ® be the set of roots ¢ of (h,g) such that (p,¢) > 0;
One has

(1.10.1) Card® = 2h -3
and one may refer to ® as a Heisenberg system since a set of corresponding
roots vectors span a Heisenberg Lie subalgebra of g, of dimension 2h — 3. By

intersecting ® with the [ orbits (naturally parametrized by IT) of the Coxeter
element o one obtains a partition

(1.10.2) o=|]Jo"

One proves

2d;, if 4,

(1.10.3) Card &' = {2d,- St it

where the d; are the coefficients of the highest root. That is

!
’(p = Z diai.
1=1

On the other hand there is a natural function ¢ +— n(p) € Z, on the set of
positive roots defined using the 7(™. Among other things it is injective on
each ®*. The case for the remaining nodes is settled by

THEOREM 1.11. — If7# 0 or 1, then
(1.11.1) 2(t)i= ) ")
pED:

so that in particular all the coefficients of z(t); are either 1 or 0. Furthermore
the coefficients of t9=% and t9t* are equal for k = 1,...,9 and vanish for
k = 0. Finally, (by (1.10.3)), 2(1); = 2d;.

2.1. The McKay Correspondence. — Let I' C SU(2) be any finite

subgroup of SU(2). Let T be its representation dual (i.e., T is the set of
equivalence classes of complex, irreducible finite dimensional representations
of I'). Write [ + 1 for the cardinality of I' and order the elements of I' so that

f: {70’713"'/71}
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where ~g is the 1-dimensional trivial representation of I'. One now defines an
(I+1)x (I+1) matrix A(T") with non-negative integer entries as follows : The
group I is given as a subgroup of SU(2) so that the embedding I' — SU(2)
defines a distinguished 2-dimensional representation ~. (Note that « is not
necessarily irreducible.) If 1 < 4,57 <141 let a;; € Z; be defined by the
tensor product decomposition

I+1
vy 7= Z Ai57i-
1=1
Then A(T) is given by
(2.1.1) (A(T))iy = ay;-

2.2. — Now let g be a complex simple Lie algebra of rank [ and let h be
a Cartan subalgebra of g. Let h’ be the dual space to h and let o; € h',
1=1,...,0, be an ordered set of simple positive roots with respect to some
choice of a positive root system. The corresponding Cartan matrix C(g) is
the [ x [ matrix with integral entries defined by putting

2(0‘1"0‘]‘)

(aiy )’

(2.2.1) (C(e))is =

where, as usual, the bilinear form, B, on h’ is induced by the Killing form
on g. The Weyl group W of (h,g) will be regarded as operating on h’.

Now associated to g is the corresponding affine Kac-Moody Lie algebra g
considered here, however, modulo the central extension. See e.g. [3]. (We will
only use elementary facts about the root system of g.) We recall that the
Cartan subalgebra h of g has dimension [ + 1. Also, we can regard h' C h’
when h’ is the dual space to h and an ordered set of simple (positive) roots
e; €h’,i=0,1,...,1, of (E,g) includes the ordered set (v > 0) of simple
positive roots of (h,g). The a;, ¢« > 0, are a basis of h’ and one extends
the bilinear form B to a symmetric (but singular) bilinear form Bonh' by
putting

(2.2.2) (@0, @) = (=9, ),
t=1,...,l, where 1 is the highest positive root of (h,g), and putting
(2.2.3) (a0, 20) = (¥,9).

The Weyl group W of (E,g) — the so-called affine Weyl group — is the
group, operating linearly on h’, generated by the reflections corresponding
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to the simple positive roots a;, ¢ > 0. (Note that (a;, ;) > 0 for 7 > 0.)
In particular then we can regard W C W so that the action of W is now

extended from an action on h’ to an action on h’. The following well-known
fact is immediate from (2.2.2) and (2.2.3).

PROPOSITION 2.3. — The vector ap+% € b’ is B— orthogonal to every
vector in b’ and consequently ap + 1 s fized under the action ofW

2.4. — The Cartan matrix C(g) of g is the (I4+1) X (I4+1) matrix defined by
(2.2.1) for 7,5 =0,...,l, so that it contains C(g) as an ! X! principal minor.
It is explicitly determined by the extended Dynkin diagram — a graph where
the nodes correspond to the simple roots. We will only be concerned in this
paper with the case where g is simply laced. That is, the case where (a;, a;)
is independent of ¢ — the A, D, E family. Then (2.2.1), if not zero, is —1
and this is indicated by a line segment joining the ¢*" and s* nodes. We
write down the extended Dynkin diagrams of the A, D, E family and include
the coefficients of the W-fixed vector ag + 1, relative to the simple roots, as
superscripts above or to the side of the nodes. For clarity, the line segments
joined to the 0 node is made of dashes.

N 7 Al

\2 2 2 1
/. . . ) D,

(2.4.1) } 2 Eg
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Ey

Esg

John McKAY made a remarkable observation relating the finite subgroups
T of SU(2) with the complex simple Lie algebras of type A, D and E. See
[6] and [7]. The relation is established by an equality of matrices involving
A(T) on one hand and C(g) on the other.

THEOREM 2.5 (McKay correspondence). — Let I' be a non-trivial
(i.e., CardT' > 1) subgroup of SU(2) and let the notation be as above. In
particular, A(T') s the (I + 1) x (I + 1) matriz defined by (2.1.1). Then
there exists a complexr stmple Lie algebra g of rank l and of type A, D or
E, unique up to isomorphism, and an ordering of the simple positive roots
of the associated affine Kac-Moody Lie algebra g together with a bijection
{7} — {oj}, v — o (so that vo — ao) such that

A(T) = 2I - C(§).

Here I s the (I + 1) X (I + 1) identity matriz. Moreover, the correspondence
I' — g sets up a bijection between the set of isomorphism classes of non-
trivial finite subgroups of SU(2) and the isomorphism classes of complex
stmple Lie algebras of type A, D and E.

Since the finite subgroups of SU(2) and their representatives are well
known, THEOREM 2.5 may be proved simply by checking. Among other re-
sults, a classification-free proof of THEOREM 2.5 has been given by STEIN-
BERG in [11] and by ARTIN-VERDIER in [1]. See also SLopowY, [8], Appendix
IIT and [9].

2.6. — Let pu denote the McKay correspondence so that g = p(I') in the
notation of THEOREM 2.5. If ' C SU(2) is a finite subgroup and j is a node
in the extended Dynkin diagram D of u(T') let N(j) be the set of all nodes in
D which are joined to j by a line segment. Note that 5 ¢ N (7). A well-known
immediate consequence of THEOREM 2.5 is
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COROLLARY 2.7. — Let the notation be as in THEOREM 2.5. Then
(2.7.1) HOY= D Y
keN(7)

Now, recalling PRoOPOSITION 2.3, write
l
(2.7.2) ao+9p =) dioy
1=0

so that the d; are the integers appearing in the diagrams (2.4.1). Another
well-known easy consequence of THEOREM 2.5 is

COROLLARY 2.8. — Let the notation be as in THEOREM 2.5 and let
dim~; be the dimension of the representation ;. Then

(2.8.1) dim~y; = d,

forall 9 =0,...,1.

Proof. — A vector z = {z;} € Rt j =
A(T') with eigenvalue 2 if and only if for all 5

(2.8.2) 2z, = Y k.

keN(7)

0,...,l, is an eigenvector of

But d = {d,} satisfies this condition since oo + % is W invariant and e =
{dim ~;} satisfies this condition by Corollary (2.7.1). However, dg = eg = 1.
Thus d = e since 2 as an eigenvalue of A(T") has multiplicity at most 1. This
is clear because C(g) = 2/ — A(T') has the non-singular C(g) as a principal
! X | minor. |

2.9. — Now for any n = 2,3,..., let (1) Z,, be a cyclic group of order n,
(2) A, be a dihedral group of order 2n, (3) A4 be an alternating group on 4
letters so that |A4]| = 12 (vertical lines denotes order), (4) S4 be a symmetric
group on 4 letters so that |S4| = 24 and, finally, (5) A5 be an alternating
group on 5 letters so that |As| = 60.

The following is a well-known classical result. (See e.g., [12], § 2.6 or [13],
Chap. I, § 6.)

THEOREM 2.10. — A non-trivial finite group admits a faithful embed-
ding in SO(3) if and only if it is isomorphic to one of the groups above. In
particular, then, the list above breaks up the set of non-trivial finite subgroups
of SO(3) tnto 5 distinct types.
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Now let
(2.10.1) SU(2) — SO(3)

be the usual double covering. If F C SO(3) is a finite subgroup let F* C
SU(2) be its inverse image so that

(2.10.2) |F*| = 2|F).

Except for one special family all subgroups I' C SU(2) are of the form F*
for F C SO(3).

PROPOSITION 2.11. — LetT C SU(2) then T = F* for some (nec-
essarily unique) F C SO(3) +f and only if T' is not a cyclic group of odd
order.

Proof. — One notes that T is of the form F* for F C SO(3) if and only
if minus the identity is contained in I'. But clearly this is the case if and
only if |T'| is even. On the other hand, if |T'| is odd, I injects faithfully into
SO(3) under the map (2.10.1) but then I is cyclic of odd order by THEOREM
2.10. 1

2.12. — In this paper we are primarily interested in only those subgroups
of SU(2) which are of the form F* for F C SO(3).The groups Z,, A,
A4, S4 and Aj listed above will henceforth (THEOREM 2.10) be regarded
as subgroups of SO(3) and hence Z}, A}, A%, Si and A% are subgroups of
SU(2).

PROPOSITION 2.13. — With regard to the McKay correspondence one
has
(1) w(Zy) = Azn_1;
(2) w(A%) = Dnya;
(2.13.1) (3) n(A3) = Es;
(4) n(S§)=Er;
(5) w(A3) = Es.
Proof. — This is stated in the McKay correspondence. However granting

only THEOREM 2.5, the proof follows easily from the bijectivity in THEOREM
2.5 together with a comparison of (2.4.1) with the following well-known facts :
(1) the numbers, dim vy, where v € F, and F = Ay, S4 and As and (2) the

commutativity of Z; and the non-commutativity of A}, as well as Card F
in these two cases. |
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Remark 2.14. — It may also be noted that if I' C SU(2) is a cyclic group
of order m, then pu(I') = A,,—1. This then includes the case (m odd) not
considered in ProPosITION 2.13.

2.15. — Let g be a complex simple Lie algebra and let h = h(g) be
its Coxeter number. By definition h is the order of the Coxeter element in
a Weyl group of g. If | = rankg, we recall (see [4] THEOREM 8.4), that [
divides dim g and, in fact.

(2.15.1) dimg = (h+ 1)I.

For the cases that concern us, we record

PROPOSITION 2.16.
(1) h(Ap)=m+1,
so that in particular h(Azn—1) = 2n;

(2) h(Dn+2) =2n + 2 3
(3) h(Ee) =12;
(4) h(E7) =18;
(5) h(Es) = 30.

With regard to the McKay correspondence one has

PROPOSITION 2.17. — LetT C SU(2) be any non-trivial subgroup. Put
h = h(u(T)) then
(2.17.1) h=Ydim~.

~eT

Proof. — It is a well-known fact that h(g) is the sum of the coefficients
(relative to the simple roots) of the highest root plus 1. (See [4], THEOREM
8.4.) The result then follows from (2.8.1). I

The reason for restricting ourselves to I' of the form F* for FF C SO(3)
has to do with the parity of h. The significance of this will be apparent later
on. The following proposition could be proved by comparing PROPOSITIONS
2.13 and 2.16. However a proof follows from general representation theoretic
considerations.

PROPOSITION 2.18. — Let the notation be as in PROPOSITION 2.17.
Then h is even if and only if T is of the form F* where F C SO(3).
Proof. — For any finite group E one knows that quﬁ dim v is even if

and only if |E| is even (because (dim~)? = dim~ mod 2). The result then
follows from ProrosiTiON 2.17 and the proof of PrRoPosiTION 2.11. §
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3.1. The vectors v, and the affine Coxeter element. — Now let
S(C?) be the symmetric algebra over C? and, for any n € Z, let S*(C?) C
S(C?) be the subspace of homogeneous elements of degree n. The action of
SU(2) on C? extends naturally to an action of SU(2) on S™(C?) defining
an irreducible representation m, of SU(2). Clearly dim 7, = n + 1 and one
knows that the unitary dual, 5[7(2), of SU(2) may be described by

SU(@2) = {m}, n=0,1,...

Now let ' C SU(2) be a non-trivial finite group and let the notation
be as in § 2. The main problem we wish to consider in the paper is the
determination of the restriction representation m,|I" for any n € Z4. This
means determining the non-negative integers m;(n), s = 0,1,...,l, so that

!
ol = ij(n)'ﬁ-
Jj=0

We can clearly deal with this question by considering instead the correspond-
ing vector v, (I') = vy, in the dual h’ of the Cartan subalgebra h of the affine
Kac-Moody Lie algebra g. The vector v, is defined by putting

(3.1.1) Vp = ij(n)aj.

Note that if A C ﬁ’, is the Z-span of the roots — that is, the root lattice —
then v, € A. Introducing a generating function Pr(t) our problem then is
the determination of the power series

(o]

(3.1.2) Pr(t) =) vat"
n=0
with elements of A as coefficients.
Remark 3.2. — One notes that in considering only the ¢** component,

(vn)i, of v, one obtains the Poincaré series Pr(t); for the representation
vi € I’ with respect to the action of I on S(C?). In particular for « = 0 this

is just the Poincaré series for the algebra of invariants S(C2)F.
3.3. — Now if V denotes the C-vector space of all formal power series

oo

x= Z Tpt™,

n=0
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where z, € h’ then we may regard B € EndV where B is a formal power

series
(o o]
E B,t"
t=0

with B,, € End ﬂ’; one obtains Bz just as in the multiplication of scalar
power series except that B;zx € h' replaces what would normally be a
product of scalars.

Now let A € Endh’ be the operator whose matrix with respect to the
simple roots a;, 1 = 0,...,1, is just A(T). One notes that

(331) A’Un = VUn+1 + VUn—-1

for all n € Z; where v_; = 0. This is clear from the definition of A(T') (see
2.1.1) since by the Clebsch-Gordon formula for SU(2) one has

Tpn @My = Mpp1 + Tn_1

where m_; is the zero representation.

LEMMA 3.4. — For anyn € Z, one has

(3.4.1) on = [[nf](—nf <” - j) A"—%]ao.

7=0 J

Proof. — For convenience put z = Pr(t) € V. Then by (3.3.1) one has
tAz = (1+ 1)z — vo.

Thus (1 — (tA —t%))z = vo. But since t factors out of tA — 2 it is clear that
1 — (tA —t?) is invertible in End V' and that

(o)
T = E Bk’vo,
k=0

where B =tA — t? =t(A — t). Thus
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Putting k47 = n we collect the coefficient of t" in >, B*. One hask =n—j
k=0
and k — j =n — 27. Thus

n=0 5=0

The result then follows since vg = ag. |

3.5. — Now let P be the set of integers 0,1,...,l, and let P be the
subset with 0 deleted. Then as one knows (see e.g. [10] for details) we
may partition P (in fact uniquely) as a disjoint union Py U P; so that for
7 =1,2 the set II; = {o ’ © € P;} consists of mutually orthogonal roots. If
P; = {i1,72,...,1k} let 7; € W be defined by putting

(3.5.1) Tj = 8iy Siy =" Siy,

where s; € W fori = 0,...,l, is the reflection corresponding to the simple
root ;. The order in (3.5.1) is immaterial since the reflections in the product
(3.5.1) commute with one another. In particular, one has

(3.5.2) r1? = 1% = e (the identity of W).

Now assume that I' is of the form F* where F C SO(3). By ProPosITION
2.13 one notes that the extended Dynkin diagram contains no cycle of odd
length. (This is also deducible from the parity of h.) In particular og is
orthogonal to all the elements in II; or Il,. Since we haven’t fixed the
labelling we now fix it so that ag is orthogonal to all the elements of Il;. Let
I, = IT, U {ao} and let II; = IIy. Also let P, = P, U {0} and P, = P;.

Now —1 € F* where 1 here is the identity element in SU(2). Given any
i € P one has ~i(—1) = &I where I is the identity operator on the module of
¥i. If 4:(—1) = I we may regard ~; as a representation of F'. The following
proposition determines the sign and gives preliminary information on the
non-zero components of v,.

PROPOSITION 3.6. —  Let the notation be as above. Then ~;(—1) =
(—=1)7I where 5 € {1,2} is such that € P;. In particular
(3.6.1) F={y|jeh).
Furthermore if we write for anyn € Z4,

l

Vp = Z mi(n)oy
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then m;(n) = 0 for alli € P; where j — 1 =n mod 2.

Proof. — If j € {1,2} let 7 € {1,2} be such that set-wise {7,7} = {1,2}.
Also let Q; C P be defined by

Qj = {i € Plu(-1) = (-1)'I}.
Now recalling (2.7.1) one has
(3.6.2) N() € Q5

for any ¢ where 7 is such that 7« € Q;. (We are identifying P with the set of
nodes of the extended Dynkin diagram.) This is clear since y(—1) = —1. But
(3.6.2) implies that the set of roots {ax|k € Q;} are mutually orthogonal.

However 0 € Q.. By uniqueness one has Q; = P;. This proves the first
statement. The second follows immediately since m,(—1) = (-1)"I. 1

3.7. — Now let ro = sg79 = 7250 and let r; = 7. One clearly has
(3.7.1) ri2=ry2=e.

The statement in the next lemma is implicit in [10] and even more so
in [11].

LEMMA 3.8. — One has

(381) A =r +T2.

Proof. — Let 1 € P.Thens € 1’5J for some j € {1,2}. Clearly rja; = —a,.
But, using the notation in the proof of ProPosITION 3.6,

_ 2(ak, i)
ooy = Qi — Z Qg

(oK, k)

where the sum is over k € }37 But then since the sum for k& € ﬁj of the

(2(cuk, i)/ (g, k) ek is equal to 2¢;, and Pj U ]33\ ={0,...,l}, one has

l
2(ak)ai)
= 2q — E AT )
(rl + r2)a1 a‘l —~ (ak,ak) ak

Thus (ry + r2)a; = Aa; since A(I') = 2] — C(g) by THEOREM 2.5. I



THE McKAY CORRESPONDENCE 225

3.9. — Let ¢ = ryoryso that ¢ is a Coxeter element of W. It is not a Coxeter
element of W. By (3.7.1) and (3.8.1) one has

(3.9.1) Al=c+c 1421

where I here is the identity operator on h'.

LEMMA 3.10. — For any m € Z one has
2m om
3.10.1 AP = < )c’“—"‘.
(3.10.1) kZ::O L

Proof. — Let a =c+ I and b=c~'+ I so that A2 = a+ b by (3.9.1).
But clearly a + b = ab and a and b commute. Thus

A2m — ambm
But b = ac™!. Thus A?™ = a?™c¢~™. However,
2m om
a,2m = ’;) ( k >Ck. I

We can now make an improvement on Lemma 3.4. We first need some
relations involving binomial coefficients.

LEMMA 3.11. — Letj,n € Z,, where 5 < n. Then
d (n—21\ [n—1
(3.11.1) Z(—1) <j_z_)( : ) =1
1=0
and
J . . o
ifr— 2\ (n+1-2) _[1 47 iseven,
(3:11.2) ._0( 1 <j —1 > ( 7 |0 ¢ 7isodd.
Proof. — Because of the cancellation of (n — 27)! the ! term on the

left side of (3.11.1) may be written (’) ("J_’) Therefore to prove (3.11.1) it
suffices to establish

(3.11.3) i(—n‘ (Z) (" B i) =1
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But as one knows
£ ()
1 =ty+t — : ’
so that the left side of (3.11.3) is just the computation of the coefficient of
t"=7 in the product (1 —1t)7/(1 —¢)7*+1. But this product is just £ t*. This
proves (3.11.1).

We will prove (3.11.2) by induction on j. It is clearly true if j = 0. Hence
assume 7 > 0 and the result is true for smaller values. Clearly the result is
true for n = 5. Assume n > 7. We may write

(3.11.4) <n+3 B i) = (nl_'L) + (?:;)

so that the left side of (3.11.2) decomposes into two sums. But one of the
sums is just the left side of (3.11.1) and hence by (3.11.1) we have to show
that

J ; ;
ifn—20\(n-7\ [0 if 7 is even,
(3.11.5) Z(—l) (j —q ) <i - 1) - { —1 if 5 is odd.

=1

But putting ¢ — 1 = k and n — 2 = m the left side of (3.11.5) is just

B Ji(_”k <3‘W—LI ikk) (m L k)'

k=0

But this is just the negative of the left side of (3.11.2) where m replaces n and
7—1 < mreplaces 7. The result then follows by the induction assumption. 1

If n = 2m is even, the following result expresses v, as a partial sum of the
elem,g/nts in the orbit of ag under the action of the extended Coxeter element
¢ € W. Since, among other things, ¢ does not have finite order the result is
still not yet clarifying.

If n = 2m + 1 is odd, we must replace ag = vg by v;. Note that in this
case the partial sum involves every other power of ¢ rather than consecutive
powers.

PROPOSITION 3.12. — Ifn = 2m 1s even then

2m

(3.12.1) vy = [Z cf-'"] o

7=0
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and if n =2m + 1 s odd then
m .
(3.12.2) Uy = [Z 027-"‘] vy
=0
Proof. — 1If n = 2m, then by (3.4.1)

:i (““’)Mm Y.

But then substituting m — 7 for m in Lemma 3.10 we have, by (3.10.1),
i n -1\ X [n—2%

3.12.3 n= 1) - kpi-m,

(3.123) ;u();(k) %

Writing 7 = k + ¢ and substituting 7 — ¢ for & in (3.12.3) it is clear that j
takes all values from 0 to n and that we can regard ¢ as taking all values
from O to j. Thus

n= S () (e

The result (3.12.1) then follows from (3.11.1). Now assume n = 2m + 1. Put
no = 2m. Clearly Aag = vy by (3.3.1). Thus by (3.4.1)

o S (1) e,
=0

and hence by (3.10.1)
n+1-i L ¥ -
Uy = Z ( 0 > Z ( Ok )ck+’—mv1.
1=0 k=0

Again putting 5 = k + ¢+ we may take 7 and j arbitrary such that 0 <7 <
7 < ng and, hence, we may write

e S () (g

The result then follows from (3.11.2). R
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4.1. The Coxeter element c €W and the product formula for Pr(t).
We now consider the element ¢ = r,7; € W. Clearly o is a Coxeter element
in W. One thus has o® = e where h as in § 2.15, is the Coxeter number of
g. Since sgry = ro and 7 = r; we note also that

(4.1.1) ¢ = so0.
Recalling the bilinear form Bonh'let ao = 1 and put, for positivek € Z,

(akao,ao)

(4.1.2) 0 = 250

k

o0
Then ax € Z since c*aq is in the root lattice. Since ) axt® is invertible

in the ring of all such power series, we can define a_sequence by, € Z,

k=0,1,..., by inversion. That is, the sequence is defined, so that
oo oo )
(4.1.3) D arttd bit) =1.
k=0 7=0
We may thus define by inductively so that for positive &
k—1
(4.1.4) be=—) bjak_;
Jj=0
and bo =1.

We proceed now to convert from ¢ to ¢ in ProposiTION (3.12). We first
observe

LEMMA 4.2. — For any k € Z one has
k
(4.2.1) c*ag = ijak_Jao.
J=0

Proof. — The proof will be by induction on k. It is clearly true for k = 0.
Hence, assume k£ > 0 and that the result is true for smaller values. Since it
is then true for k£ — 1 we have upon applying ¢ to both sides of (4.2.1), where
k — 1 replaces k,

k—1
oy = E b; so c* Iag
J=0
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because ¢ = soo. But sgo* " Tag = o¥ oy — ak—joo. Thus

k—1 k—1
c*ap = E bjo* T ag — [ E by ak_j] ap.
7=0 7=0

But then the result follows from (4.1.4). 1
Now note that for any k € Z and + = 1,2 that

(4.2.2) ckry = rick.

We also note that

(4.2.3) c*ry = cF 1y
and
(4.2.4) rock = rick1.
LEMMA 4.3. — For any positive k € Z one has
k—1
c ko = — Z by r0 10 .
=0

Proof. — Clearly (see § 3.5)
(4.3.1) ToQg = Qg

so that, since ro = sqre = 7950,

(432) rop = —Qp.
But then ¢ %*ap = —c*rqap = —rac*ap by (4.2.2) and hence c~*ap =
—rick~lag by (4.2.4). But ry = 73. Thus ¢ ¥ay = —r1¢ " Yap. The result

then follows from (4.2.1). 1

4.4. — Now for any n € Z let

(4.4.1) ; ={71 if n is odd,

79 if m is even.
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Also put 7(®) = ¢ and for n positive let
(4.4.2) S o P Y e

so that 7(™ is an alternating product of v, and r; with n factors. In particular
if n = 2m is even then

(4.4.3) (M) = gm
and if n = 2m + 1 is odd then

(4.4.4) (™ = r0™.

Now let u, € h' be defined by putting

(4.4.5) un, = 1M ap.

Remark 4.5. — If D(0) C W is the subgroup generated by r; and 72 note
that D(o) is isomorphic to the dihedral group of order 2k having the cyclic
group D, (o) generated by o as a normal subgroup of order h. Thus we have
that

D(o)ag = {un | n=0,1,...}.

Also, since ag is a root of (ﬁ,g), note that u, is a root of (ﬁ,g) for all
n € Z+.
Now let wg = ug = ag and for n € Z positive let

(4.5.1) Wy = Up — Up_1.-

Also for any n € Z let

(4.5.2) fo=) bi.

1=0
LEMMA 4.6. — For anyn € Z one has
[n/2]
(4.6.1) Un= Y fiwn_a;.
J=0
Proof. — First assume that n = 2m is even. Then by Lemmas 4.2 and

4.3 one has

k—1
Fag + ¢ *ag = brag + Z b,-(ak_Jao - Tlak""'lao)
=0
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for any positive k € Z,.. But Up(k—g) = ok—Jaqy and Ug(k—j)—1 = rok-i-1

by (4.4.3) and (4.4.4). Thus

(&)

k
Ckao + C_kOto = Z bj Wok—2y-
Jj=0
Summing for £k = 1,...,m and adding oo = bowp one has

m k
(4.6.2) Vn = Z ij W2k—25

k=037=0

by (3.12.1). Now putting ¢ = m — k+ j so that 2k — 25 = n — 21 then, in the
sum (4.6.2), ¢ ranges from 0 to m and j, fixing ¢, ranges from 0 to 7. Thus

we may rewrite
m 1
o= 3 [ty

1=0 ~3=0

The result then follows for n = 2m by (4.5.2).

Now assume n = 2m + 1 is odd. Recall that vy = Avg = Aag by
(3.3.1). But A = r; + ry by (3.8.1). Let k € Z, be positive. Then ckv; =
ckriag + cfraag = ¥~ 1raap + c*raap by (4.2.3). But then by (4.3.2)

(4.6.3) kv = —c*1ag — c*ap.

k k

But now ¢ *v; = ¢ *rja0+c*ry00 = rickag +rycfap by (4.2.2). However

rock =rick=1 by (4.2.4). Since r; = 71 we have
(4.6.4) ¢ kv = 1 tag + ek ap.

Thus adding (4.6.3) and (4.6.4) and recalling (4.2.1)

k k

cvy +c vy = k=1 _ " Nag + (r16F = X

—~

T1

>
|
=0

k
bj('rlak_l_j - ok_l_’.)ao + Z bj(rlak'j — % N ayg

J=0

x> .
[l
- O

k
bjwy(k—1-5)+1 + Z bjwa(k—j)+1

0 7=0

S,
Il

by (4.4.3), (4.4.4) and (4.5.1).



232 B. KOSTANT

Now summing over the values kK = 1,3,...,m, in case m is odd and
k = 2,4,...,m, in case m is even and adding, in the latter case, v; =
riao + rop = 110 — a9 = wy = bow; one has, by (3.12.2),

m k
S D) IR

k=05=0

Now, as before, put © = m — k + 7 so that 2(k — j) + 1 = n — 2¢. Then ¢
ranges from 0 to m = [n/2] and j from 0 to 7 and we may write

S

i=0 "j=0
and hence the result follows from (4.5.2). 11

We may express Lemma 4.6 in a more convenient form. Let
oo
F(8) = ft%
Jj=0

and let
w .
w(t) = Z w;tt.
1=0

We recall also the definition of the generating function Pr(t) (see § 3.1).
Then the following factorization of Pr(t) is a restatement of LEMMA 4.6.
The “product” is well defined since the coefficients of f(t) are scalars and
the coefficients of w(t) are vectors in h'.

LEMMA 4.7. — One has

4.8. — Now let kK € W be the long element of the Weyl group W so that,
in particular, k2 = e. The element k takes the positive roots of (h,g) to the
negative roots and hence in particular.

(4.8.1) kY = —1,

where, we recall, ¥ is the highest root.

We recall (see PROPOSITION 2.18) that the Coxeter number h is even. Let
h/2 = g € Z4. The following is well known and due to STEINBERG.
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LEMMA 4.9. — One has o9 = k.

Proof. — This is in fact implicit in [10]. Using the notation of THEO-
REM 6.3 in [10] one has that 09 = (R;---R,)"/2. But then THEOREM 6.3
in [10] asserts that o9 carries all the positive roots into negative roots. Thus
cd=«x. 1

We note, by LEMMA 4.9 and (4.8.1), that

(4.9.1) o9 = —.

4.10. — Now forz=0,1,...,h—1, let

(4.10.1) 2 = w;

but we put

(4.10.2) 20 = ag

so that 2z, is defined for n = 0,..., h. The following observation will later be

important for us. It asserts in effect that the ag-component of z, vanishes
for1<n<h-1.

LEMMA 4.11. — Onehaszg=2zpb=0og but z, €h’ for1 <n<h-1.

Proof. — By definition 2o = 2 = ag. But now since 7; € W for j = 1,2
it follows that

Up —ag €'

for any n € Z. (See (4.4.5).) Thus w, € h’ foralln > 1. |

Let

h

(4.11.1) 2(t) =) at'.

1=0

The next lemma is a key point. It asserts that we can reduce w(t) to a finite
sum.

LEMMA 4.12. — One has

Proof. — Let u(t) = 3372 u;t’. By definition of w; one clearly has

(4.12.1) w(t) = (1 - t)u(t).
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But now obviously

up = o9ag.
Write ap = (o + %) — 9. But then by PrRoPosITION 2.3 and (4.9.1) one has
(4.12.2) up = oo + 2¢ = 200 + ¢) — a0

and hence ug+up = 2(ap+1). But then by PROPOSITION 2.3 this element is
invariant under W and hence, upon applying 7; and 7, alternately, we have

(4.12.3) uj + ujpn = 2(ao0 + )

for any j € Z. Thus if %(t) is the finite sum Y/~ u;t' then
¢k

1—t

(4.12.4) u(t)(1 +t7) = T(t) + 2(a0 + ¥)

Now let @w(t) be the finite sum 3" w;t*. Then clearly

(4.12.5) (1 —t)a(t) = w(t) — up—1t".
But now

by (4.3.1), since ¢ = (o + %) — oo (recalling PRoPOSITION 2.3). But since
up = ag + 29 by (4.12.2) it follows from both (4.3.1) and (4.12.6) that u)
is fixed by 1. However up = moup_1 since h is even and hence up_1 = moup.
Thus we also have

(4127) Up—1 = g + 2’t,b

Now multiplying (4.12.4) by 1 — ¢ it then follows from (4.12.1), (4.12.5)
and (4.12.7) that

w(t)(1+th) = B(t) — (co + 29)t" + 2(c0 + P)t*
W(t) + oot™.

But w(t) + aot" = 2(t) by definition of 2(t). This proves the lemma. I

4.13. — We now proceed to express f(t) in terms of polynomials. Let
a(t) = 3 a;t¥ and b(t) = 3 b;t* so that, by (4.1.3), b(t) = 1/a(t). But
7=0 =0

)

now, by definition, clearly f(¢) = b(t)/(1 —t*) and hence

1

(4.13.1) £t (E=Erok

~—
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Now if g > 1 put,forc=1,...,9 — 1,

2(c0*,9)
4.13.2 C; = —————=
1) (5.9)
and in any case put
(4.13.3) co=1and ¢g = —1.

Thus in any case we can define a polynomial c(t) of degree h by putting
c(t) = 29 _oest™.

LEMMA 4.14. — One has
(1+th)a(t) = c(t).
Proof. — We note first that for any 7 > 1

(4.14.1). o = 3%&%})

Indeed we may write ag = (o + %) — %. But since ag + 9 is B orthogonal

to h’ one obtains (4.14.1) by substituting (o + ) — 9 for ap in (4.1.2). But

now by (4.9.1) one has

(4.14.2) Gy4g+a; =0

for all positive 5 and a4 + ag = —1. Thus if a(t) = Z‘J’;(l) a;t%7 one has
(1+th)a(t) = a(t) - t".

But a(t) — t" is just c(¢) by (4.13.2) and (4.13.3). 1

4.15. — What is significant is the “jumps” in the numbers ¢;. Let ¢o =
gg+1=1andfor y=1,...,¢, let

(4.15.1) gy = Cf — Cij—1.
One then defines a polynomial g(t) of degree h + 2 by putting

g+1

(4.15.2) q(t) =) gt
1=0
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It will later be seen that ¢(t) has a particularly simple form.

LEMMA 4.16. — One has
q(t) = (1 —t*)c(t).

Proof. — This is obvious from the definition. One has only to notice that
the coefficient of t"*2 equals 1 in the product since ¢, = —1. 1

The following lemma summarizes much of the above. It reduces the gen-
erating function Pr(t) to a quotient of explicit finite sums.

LEMMA 4.17. — One has
2(t)
Pr(t) = —.
P8 =20
Proof. — By LEMMA 4.7 one has Pr(t) = f(t)w(t). But then by LEMMa
4.12 one has o
t)z(t
Pr(t) =
r(t) = T th
and hence by (4.13.1)
Pp(t) = z(t)

(1+¢th)(1—t2)a(t)

But (1 + t*)a(t) = c(t) by LEMMaA 4.14 and hence the result follows from
LEMMA 4.16. §

5.1. The root structure of g and the simplification of the product
formula for Pr(t). — We now wish to be much more explicit about the
polynomial ¢(t) and the vectors z; € h' forv=1,...,h — 1.

Let A C h' be the set of roots of (h,g) and let A, C A be that set of
positive roots such that II C A,. We recall (see THEOREM 8.4 in [4]) that
dimg = (h + 1)! or that Card A = hl and hence

(5.1.1) Card A} = gl.

Let 7(") for n € Z be as in (4.4.2). Also let
LW —1Z,

be the length function with respect to II.
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LEMMA 5.2. — Ifh>n >k >0 then in the Bruhat ordering of W one
has (™) > (k)

Proof. — Clearly 7(® = ¢9 = k by LEmma 4.9. Thus L(T(h)) = gl by
(5.1.1). However upon substituting the product (3.5.1) for (7;), for j = 1,2, in
(4.4.2) it is clear that (4.4.2) for m = h becomes a product of gl elementary
reflections (since 7o7; involves [ such reflections). Thus (4.4.2) becomes a
minimal way of writing k as a product of elementary reflections. It follows
therefore that if s € W is obtained from this product by deleting p left-
most such reflections then the remaining product is minimal also for s
and L(s) = gl — p. The lemma then follows immediately from well-known
properties of the Bruhat ordering. 1

The proof of Lemma 5.2 and (4.4.3) and (4.4.1) clearly implies that if
h > n > 0 one has

(n)y _ J Im, if n = 2m is even,
(5:2.1) L) = { CardIl; +Im, ifn=2m+1is odd.

Recall that ¢ € A is the highest root.

LEMMA 5.3. — Forn=1,...,h—1, one has

(5.3.1) 2y = 7= gy — p(m)y.

Proof. — By definition (see (4.5.1), (4.10.1) and (4.4.5)) one has z, =
Up = Un_1 = 1Mag — r(*"Nag. But, by PRoPOsITION 2.3, 70) (ap + 9) =
ao + 9. Thus 70)(ap) — ap = ¥ — 704 and hence 7(™ (ag) — (Vg =
r(n=Dy — (Mg, g

5.4. — It is obvious from the definition of the vectors v, € h’ that the
entries of v, are non-negative. However this is not obvious for 2z, since, in
fact, the polynomial ¢(t) does not have positive coefficients (see LEMMA 5.7).
The following result establishes that not only are the coefficients of the 2,
non-negative they are, in fact, of a very special type. Also there is symmetry
around the middle (n = g) and the middle one, z4, which is different from
the others can be completely described isolating a particular node (later seen
as the branch point or the middle point, in the case of Az,,_1, of the Dynkin
diagram) in P.

LEMMA 5.5. — One has z, # 0 and

(5.5.1) 2= 2hn
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for n = 1,...,h — 1. Furthermore there exists 1, € P;, 7 = 1,2, with j
congruent to g mod 2 such that

(5.5.2) 2g = 204, .

If however n # g then all the coefficients of z, are either 1 or 0. In fact
if 7 € {1,2} is congruent to n mod 2 there emists distinct iy,12,...,1, € P}
such that

(553) Zn = ai] + aiz + -4 ai.,;

where r = 1, 2 or 3 and these three cases occur, respectively, according as
(M op, 7(n=1)ap) s positive, zero, or negative.

Proof. — Consider the partial ordering in h’ defined so that =z > y if
z — y is in the Z -cone spanned by the positive roots. In case u € h’ is a
dominant element of the weight lattice and s, t € W, where s > t in the
Bruhat ordering, then one knows that tu > su in the partial ordering of h'.
Thus 7(»= 1 > 7(")y) by LEMMA 5.2 and hence all the coefficients of z,, by
(5.3.1), are in Z.

Now clearly 2z; # 0 by definition (see § 3.5) of the sets P; and P,. Assume
2pn = 0 where 2 < n < h—1. Then 7(Myp = 7(*=1)4). Applying 7,11 we clearly
have ("t = r(*=2)4) (since 7,4y = Tn_1). But 7(n=2)gp > 7(n=1)y, >
(M) > r(n+1)y) Therefore equalities hold. But 714 = r(n+1)4) implies
that this non-zero element is fixed by o. Since 1 is not an eigenvalue of
o we have a contradiction so that z, # 0. In particular the (M), for
n=20,...,h — 1, are distinct and simply ordered.

The argument above would fail for n = h. In fact 1M = kyp = —1p.
But 7, = 72 and 799 = % by (4.12.6). Thus 7(F)yp = 7(h=1)) = —4). From
the latter it is clear there exists 1 < k < h — 1 such that 75— € Ay
but 7y € —A,. Put 8 = r(*~ 1) and v = 7(F)4). One thus has 08 =7
when 7 € {1,2} and j has the same parity as k. But the only positive roots
which change sign under 7; are clearly the elements of II;. Thus g € II; and
~ = —p. That is, there exists a node 7, € P; such that

(5.5.4) =1y = a;,
and
(5.5.5) By = —a, .

Clearly then

(5.5.6) 2k = 204, .
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Now if 2 < k < h — 2 then applying 7441 to both (5.5.4) and (5.5.5) we
have that 7(k=2)¢) = —7(k+1)4_Tterating this way it is clear, since the ("))
are distinct for n = 0,...,h — 1, that (5.5.4) and (5.5.5) can only happen if
k = g. Also the iteration yields

(5.5.7) r(0=9)y = —r(a+i=1)y,

for 7 =1,...,g. But (5.5.7) clearly implies (5.5.1).
Now since the entries of z, are non-negative for n = 1,...,h — 1 it

follows for j € {1,2}, where j has the same parity as n, that (since
T(n)¢ = TJ‘T(n—I)’(p)

(5.5.8) (r(=Y,0) >0

for any a € II;. Note that, even though 7("=1)4 might be negative simple,
(5.5.8) implies 7("~ V¢ ¢ I1;. But then if 7(n=1)¢ ¢ TI; one must have

2(T(""1)1[),a)

(@, @)

(5.5.9) =0,1

for any o € II;. Since the ()4 are simply ordered it follows from (5.5.4)
that r(n=1)q) ¢ I1; if n # k = g. Thus in this case the coefficients of 2, are
either 0 or 1. That is, if n # g, there exists distinct 2q,22,...,%, € P; such
that

(5.5.10) r Y — oy, — gy, = oy, = 1My

and one has K(T("_l)x,b,a,-j) =1, where K = tﬁ, for 7 =1,...,r. Taking
the inner product of both sides of (5.5.10) with Kr(*~14) it follows that
K(r(*=1¢ 7(")ep) = 2 — r. This proves the lemma since the distinctness of
the 7()¢ implies that 2 — r = 1,0, —1 or —2. However —2 cannot occur by

(5.5.7) sincen # g. 1

For later use we record in the next proposition some facts established in
the proof above. We recall that ¢ is the highest root, 7(*) is defined by
(4.4.2), and h = 2g is the Coxeter number which is assumed to be even.

PROPOSITION 5.6. — Forn=0,...,h—1 the roots r(M are distinct
and simply ordered with respect to the Z 4 -cone spanned by Ay with Oy =
v highest and

(5.6.1) r(h=Dy =
lowest. Moreover if j € {1,2} has the same parity as g

(5.6.2) 00y = a;, €Tl
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where i, € P is the node picked out in LEMMA 5.5. Thus 7™ € AL if
n=20,...,9— 1. Finally

0=y = —7(g+5-1)y,

forg=1,...,9.

We can now pretty much pin down the polynomial ¢(t). The following
result together with LEMMA 4.17 completes the proof of THEOREM 1.3.

LEMMA 5.7. — There exists even integers a and b with2 < a <b< h
such thata+b=h+2 and

(5.7.1) a(t) = (1 - t9)(1 - t?).

Proof. — Now q(t) = E?iéqitZi with go = gg41 = 1, recalling § 4.15.
Also ¢ = 1 and ¢; = —1. Thus if g = 1 then one has go = g2 = 1 and
g1 = ¢g — ¢co = —2 and hence ¢(t) = (1 — t2)?. That is @ = b = 2. Assume
g > 1. Then since 09~ = 6~ 'k one has 09719 = —o 14 so that, by (4.15.1),
(4.13.2) and (4.13.3),

2(ap, )
But since 04 # % one has ¢; = ¢4 < 0. But also ¢; <0fort=2,...,9—1,
by PROPOSITION 5.6 since % is dominant and for these values

oo 2o =)
’ (%, %)

by (4.13.2) and (4.15.1).
On the other hand (o*%,%) = —(0'4,09%¢) and hence

(0", %) = =(097"9,9).
Thus (0% — o'~ 14, 9) = (a9t ) — 09 %p,9) for i = 2,...,9 — 1, so that

(5.7.2) 9i = dg+1-i

for i =1,...,g. But now, by (4.13.3) and (4.15.1), £J_,¢; = ¢y — co = —2.
Thus, since the g; are non-positive integers, there exists by (5.7.2) a unique
positive integer d where 1 < d < (g + 1)/2 such that ¢4 < 0. Also
gi = ¢ where ¢ = g+ 1 — d. We can also conclude that ¢4 = —1
if d < (9g+1)/2 and ¢4 = —2 if d = (g + 1)/2. That is in any case
q(t) =1—1¢t* —tb +th*+2 = (1 — ¢2)(1 — t*) where a = 2d and b = 2¢. 1
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Let d and e be as in the proof above so that a = 2d and b = 2e and

(5.7.3)

d+e=g+1.

As an immediate corollary, recalling (4.13.2) and (4.15.1), one obtains the
values of 22 %:%) for < n < g¢. In the following result one is to ignore

(¥,9)
those intervals (e.g., if d — 1 = 0) which do not make sense.
THEOREM 5.8. — One has

2 ifn=0,
. 1 fl<n<d-1,
(5.8.1) 2"¥) _ )y fd<n<e—1,
(¥, 9) -1 fes<n<g—1,

-2 ifn=g.

We now observe

LEMMA 5.9. — One has for any positive n € Z

(5:9.1) (rv D9, e () = (™9, ).

Proof. — Let 7(=™) denote (r(™)~1. Clearly 7(-™)r(n=1) = 7(2n=1) Thus

(FP= Dy, 2 00g) = (=D, ).

But r,r(27=1) = 7(27) = 4" On the other hand 7% = ¢ by (4.12.6).
Thus one obtains (5.9.1) by applying 72 to both terms on the right side of
(5.9.2). 1

We can now determine, in terms of d and e, the integer r in LEMMA 5.5.
We recall that r is the number of non-zero entries in z, where n # g. Write
r = r(n). Again in the following lemma an interval is to be ignored if it
makes no sense.

(5.9.2)

LEMMA 5.10. — Omne has
1 f1<n<d-1,
(5.10.1) r(n):{2 ifd<n<e-—-1,
3 ife<n<g-1,

and (by symmetry)

(5.10.2) 2 fh—etl1<n<h-—d,

{3 fg+1<n<h-—e,
1 fh—d+1<n<h-1.
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Proof. — This follows immediately from LEMMA 5.9, THEOREM 5.8 and
the final statement of LEMMA 5.5. |

Remark. — 1t should be noted that z, is a root only if r(n) = 1.

Now let A\; € h',; 2 = 1,...,l, be the highest weights of the fundamental
representations of g. That is, the \; are defined so that %2%:]’)1 = 6;;. Also
if n € Z then as in the proof of LEMMA 5.9 let r(=n) = (T(”))‘l.

LEMMA 5.11. — Let1 <7 <! andlet j € {1,2} be such thats € P;.
Letn € Z,. Then, if 7 and n have opposite parity,

(5.11.1) r==1) . (=), = 0,
whereas if j and n have the same parity

(5.11.2) r==0) ) — (=) = 7 (0= D)y,

Proof. — By definition 7(") = r,7("=1) 5o that r(=" = 7(=(r=1)7
Hence the left side of (5.11.1) or (5.11.2) is just 7(=(*=1)(X\; — 7, X,). But,
clearly, if y and n have opposite parity then 7,A; = A; whereas if they have
the same parity T,A\; = A; — ;. 1

Let v; € W', v = 1,...,], be the basis of h’ which is dual to the simple
roots. Clearly

2

(O‘i’ai)

(5.11.3) v = A

The following lemma will enable us to determine d and e (and hence a
and b).

LEMMA 5.12. — Letk € Zy be such that0 < k < (g —1)/2. Then
2(o%k4, 9
(5.12.1) L(W/J)_) = (Vi., 2g-2k),

where, we recall, 1, € P 1s the special node picked out in LEMMA 5.5 or
ProPosITION 5.6.

Proof. — 1If 2k < g — 1 we can clearly write as an increasing product
1‘(2":) = 72k+1 oo Tg—lT(g_l)'

However, since 2k + 1 is odd, we note that ok - i Tgo1 = r(=(9=2k=-1))
Thus in any case we have

(5.12.2) £(26) = (=(9-2k=1)) (9=1)
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But now 7(2¥) = ¢*. On the other hand 7(9~1¢ = a;, by (5.6.2). Thus
applying both sides of (5.12.2) to ¢ we have

(5.12.3) ok = p(-la=2k=1)) g,

However if j € {1,2} is such that ¢, € P} then, by PRoOPOSITION 5.6 7 has
the same parity as g or ¢ — 2k. Thus LEMMA 5.11 applies and we can write

ok = r(=le=2k=1)) N, p(=(9=2K) ),

But then taking the inner product with 1 and moving the Weyl group
elements to the other side we have

(5.12.4) (0%p, ) = (Ni,, 70— 2K= 1)y — r0-2k) ).

But the difference term on the right side of (5.12.4) is just zy_ok. The result
then follows from (5.11.3) since ¢ and «;, are W-conjugate. (Of course in
the case at hand g is simply laced and the last argument is unnecessary.
However the argument applies more generally to any g where h is even.) |

Remark 5.13. — We note that
(5.13.1) (Vi.,29—5) =0

for any 0 < 7 < g — 1 where j is odd. Indeed it is clear from the definition
of z, that

(5.13.2) < Vi, 2p >=0

if + € P; where 7 and n have opposite parities. But 7, and g have the same
parity proving (5.13.1). Thus (5.12.1) and (5.13.1) determine the coefficients
of a;, for any z,.

Recall (see (2.7.2)) that d;,2 = 1,...,l, are the coefficients of the highest
root 3 relative to the simple roots a;. We can now prove

LEMMA 5.14. — One has
(5.14.1) d=di,

where d = a/2 and a 1s given by LEMMA 5.7.

Proof. — 1If g = 1, then d = a/2 = 1, as established in the proof of
LEMMA 5.7. This proves (5.14.1) in this case since g = A;. Now assume
g > 1. By definition of the z,, one has

g—1
(5.14.2) Y — 07Dy = Z Zn.
n=1
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But then by (5.6.2) one has

g—1

(5.14.3) Y=, =) Zn.

n=1

But then taking the inner product of both sides with v;, one has by LEMMA
5.12 and REMARK 5.13

[(9—1)/2] k
20", )
5.14.4 d;, —1= 88
(8144 2 T

But now recalling the proof of LEMMA 5.7 one has 1 < d < [(g + 1)/2]
and hence d — 1 < [(g — 1)/2]. On the other hand e = g + 1 — d so that
e—1=g—-d>g—[(9+1)/2] > [(g—1)/2]. But then by (5.8.1) the sum on
the right side of (5.14.4) is just d — 1. Thus d;, =d. 1

Now we have only to identify the node 7,. First, however, we observe
that the 2, can be generated in a simple way from the simple root «;,. Let
n € Zy. Put 7l = ¢ if n = 0 and for n positive let 7™ = 7,4, -+ 754 ;.
(One notes of course that ("] = 7(") in case g is even.)

THEOREM 5.15. — One has forn=1,...,9g—1

(5.15.1) Zg—n = Zg4n = Mo, — =g, .

Proof. — Note that for k=10,...,9 -1
(5.15.2) (k) — plo—k=1] (g-1)

Indeed if k = g — 1 this is obvious. But for k¥ < g — 1 one has 7(¥) =
Tkt1 Tg—179~ 1. However, clearly, mgq1 -+ 7g1 = rl9=k=1] and this es-

tablishes (5.15.2). Thus by (5.6.2)
(5.15.3) r®)y = 7lo=k=1lg, .
But z;_, = r(977=1)¢) — r(9-7)4). The result then follows from (5.15.3) and

the symmetry (5.5.1). 1
We now have
LEMMA 5.16. — If g s not isomorphic to Agm+1 (i.€., F* 1s not cyclic)

then v, s the branch point of the Dynkin diagram of g. If @ = Agmy1 then
1. 1S the midpoint of the Dynkin diagram of g.
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Proof. — 1If g is not isomorphic to Ag,_; then the extended Dynkin
diagram is a tree and hence, in the notation of § 2.6, N(0) consists of only
one point. Thus z; = 9 — 719 is a simple root (since again g ¥ A;). That
is, r(1) = 1 in the notation of LEMMA 5.10. But then d > 1 by (5.10.1) and
since d + e = g + 1 this implies e < g. But then

(5.16.1) r(g—1)=3
by (5.10.1). However, since 7(9=2)¢) = r,_;7(9= 1),

(5.16.2) 2Zgo1 = Tgo104, — Q4

*

by (5.6.2). But since r(g — 1) = 3 it follows that Card N (¢x) = 3. Thus 7, is
the branch point.

Now assume g = As,,_1. We also assume that the nodes are ordered in
the natural way given by the diagram. Clearly then

(5.16.3) T(k)’l,b = &k+1 +ak+2+ "'+052m—1—k

for 0 < k < g—1=m— 1. But then in particular 7974 = a,,. The result
then follows from (5.6.2). &

Since a = 2d and b = h + 2 — a we can now write down, using (2.4.1), the
table of @ and b values for the five types of subgroups F* C SU(2).

THEOREM 5.17. — One has

F* g a b &k

Z:L A2n—1 2 2n 2n
A Es 6 8 12
Sy E; 8 12 18
A Esg 12 20 30

The following result may be observed empirically from the table above.
However it is more interesting to derive it from the general theory.

THEOREM 5.18. — One has

(5.18.1) ab=2|F*|.

Proof. — Let x : h' — C be the linear map defined so that x(a;) = dim ;.
Thus, in the notation of (2.7.2), x(a;) = d; by (2.8.1).
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By operating on the coefficients we extend x so that it maps power series
with coefficients in h’ to ordinary power series with coefficients in C.

Now by LEMMAS 4.17 and 5.7
2(t) = (1= t2)(1 =) Pr(t),

where I' = F*. But clearly

(5.182)  x(Pr(t) = TidimS"(Cz)t" - nz_jo(n = _lt)2
Thus
O
(5.18.3) i E;:t]] [I)Z;é t‘]
Evaluating at ¢ = 1 one has
(5.18.4) (x(2(t))) (1) = ab.

On the other hand, by definition of z(t), one has

(x(z)) (1) = D x(za)
But
(5.18.5) Yz =2(a0 + ¢)

since zo = zp, = ap (see LEMMA 4.11) and the sum (5.18.5) taken from 1 to
h — 1 equals 2 by (5.3.1) and (5.6.1). But clearly

l

(5.18.6) X(eo +9) =D d;?

1=0

by (2.7.2) and (2.8.1). Thus ab = 2|F*| by (5.1.4). 1
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Now, recalling LEMMAS 5.7 and 5.14, the proof of THEOREM 1.4 is com-
plete. Furthermore, recalling (5.3.1) and LEMMAS 5.5 and 5.10, the proof of
THEOREM 1.5 is complete.

6.1. The Poincaré series Pr(t);, for the individual representations
~i. — We now consider the question of determining the Poincaré series
Pr(t); for the individual representations «; € T where T = F*. If z(t); is the
polynomial obtained from z(t) by considering only the 7** component then
it follows from (1.3.1) that

(6.1.1) Pr(t); = ﬁfiz—()%i?“)

Thus it suffices only to determine z(t);. We first observe

LEMMA 6.2. — The sum of the coefficients of z(t); is 2d; where d; 1s
the coefficient of ag + 9 corresponding to the simple root a;. Furthermore if
1 # 14 then all the non-zero coefficients of z(t); are equal to 1. This is also
the case for 1 = 1, except that the coefficient of t9 s 2. Finally, in any case
the coefficient of t91% 4s equal to the coefficient of t9=% for k=0,...,g and
1t vanishes if k = 0 when v # 1,.

Proof. — The first statement follows from (5.18.5). The next two state-
ments follow from LEMMA 5.5. |

More explicitly consider first the case where ¢ = 0. Note that Pr(t)o is
just the Poincaré series for the algebra of invariants S(C?)F. The next result
is a restatement of THEOREM 1.8.

THEOREM 6.3. — One has z(t)o = 1 + t" so that by THEOREM 1.3

1+th

= ==y

Proof. — This is an immediate consequence of LEMMA 4.11. 1

Remark 6.4. — The relation (5.18.1) is now subject to another interpre-
tation. One knows that the subgroup F C SO(3) may be embedded as a
normal subgroup of index 2 in a reflection group G C O(3). One then has

(6.4.1) IF*| = |G).

Indeed if F' = Z,, then G is the dihedral group operating in the same plane
as F but leaving the perpendicular vector fixed. If ' = A,, then F operates
in a plane but half the elements of ' map a perpendicular vector v # 0 into
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its negative. The group G is generated by F' and the reflection defined by v.
The groups A4, S4 and As may be regarded, respectively, as the groups of
proper rotations of the tetrahedron, cube and icosahedron. The group G is
then the corresponding group of improper rotations.

Now from the general theory of reflection groups one knows that the
algebra, S(C3)%, of G-invariants is generated by 3 algebraically independent
homogeneous polynomials. Since G leaves invariant a non-singular symmetric
bilinear form, one of these generators, I3, has degree 2. If § and €, with § <'e,
are the degrees of the other two, then the Poincaré series of S(C3) is clearly

o= [25][2] [

and from the general theory of reflection groups

(6.4.2) G| = 26e.

On the other hand if r is the number of reflecting hyperplanes then again
from this general theory ¢t"Q(t) is the Poincaré series for the sign represen-
tation of G. Since only the identity and the sign representations are trivial
on F it follows that (1 +¢7)Q(t) is the Poincaré series of S(C3)¥. However
if H= @52 oH™ is the space of harmonic polynomials on C? then as a
G-module

S(C?) = C[L;]® H.

Thus if P(t) is the Poincaré series of HY one has

1+t
PO=a=ma—m

since the Poincaré series of C[I3] is 1/(1 — t2).

But now, using the notation of § 3.1, 7,|F* has no non-trivial invariants
if n is odd since —1 € F*. On the other hand, my,, defines a representation
Tan of SO(3). This implies that (1.8.1) is just the Poincaré series defined by
the representations 72, |F. But one knows that the representation of SO(3)
on H™ is equivalent to 72,. Thus (1.8.1) is equal to P(¢?) or

14th 1427

(1—ta)(1 —tb) (1 —t26)(1 — t2¢)°

But then it is easy to see that r = g = h/2, 6 =d = a/2,and e = ¢ =
b/2. Indeed from the general theory of reflection groups one knows that
2-1)4+(@—-1)+(e—1)=rord+e=r+1.Thus 6§ <rand e < r. But
also @ < h and b < h. By clearing denominators and considering primitive
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2h and 4r roots of 1 it follows that A = 2r and then, similarly, § = d and
e = e. We have thus proved from general principles the following empirically
observed facts.

THEOREM 6.5. — One has
g=rand § =d.

That s, the number of reflecting hyperplanes for the reflection group G C
O(3) 1s equal to one half the Cozeter number of g. Also ezxcluding a quadratic
invariant the lesser degree of the two remaining fundamental symmetric in-
variants of G 1s equal to the coefficient of the highest root of g corresponding
to the branch point (or mid-point, in the case of Z,,) of the Dynkin diagram
of g.

After the case where ¢« = 0 another distinguished case is where © = 7,.. One
notes that ~;, is an irreducible representation of maximal dimension. For
the cases A}, S5 and Af it is the unique such representation. The following
result is a restatement of THEOREM 1.9.

THEOREM 6.6. — One has
d—1 o d-1 '
(6.6.1) 2(t)i, = Y _97H 4 Y g9t
1=0 1=0

In particular 2(1);, = 2d = a.
Proof. — This is immediate from (5.12.1) and (5.8.1). 1

6.7. — The expression (6.6.1) was derived basically by studying that orbit
of the Coxeter element o which contains ¢, . More generally we will see that
2(t); may be obtained from that orbit of ¢ which is “associated” with o;.

Let A_ = —A, and for any t € W let
(671) ‘I’t - t_lA_ N A+

so that ¥, is the set of positive roots which become negative upon applying
t. One knows that

(6.7.2) Card ¥, = L(t)

where, as in § 5.1, L is the length function on W.

The sets ¥ (n), n = 1,...,h, have a particularly nice form. For any
n € Z let Il, = Il if n is even and II; if n is odd. If n € Z recall
that (=) = (r())-1,
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PROPOSITION 6.8. — Forn =1,...,h, one has T(-(»=DII,, C A,
and
n .
(6.8.1) U, =001
Jj=1

18 a disjoint unton. In particular
h
(6.8.2) Ay = =01,
n=1

18 a disjoint unton. Also if h>n > m > 1 then

(6.8.3) U (m) SV (n).

Proof. — 1If s,t € W where L(st) = L(s) + L(t) then one knows that
(6.8.4) Uy, =t~ 10, U,

is a disjoint union. Indeed upon writing s™!A_ = ¥, U (sT1A_NA_) it
follows that the left side of (6.8.4) is contained in the right side for any
s,t € W. But then (6.8.4) follows from (6.7.2).

Now we may write 7(") = 7,7(»=1)_ Furthermore it is clear from (5.2.1)
that L(r(™) = L(r,) + L(r(®~1) when we note that L(r,) = CardI,,. But
then by (6.8.4)

(6.8.5) Uy =rCO=DY U, ooy

is a disjoint union. But clearly ¥, = II,. The result then follows by
induction since Il is empty. |1

6.9. — Now for any ¢ € A, let n(p) € Z4, where 1 < n(p) < h, be
defined by the condition that for n = n(p)

(6.9.1) p e (==,

This is well defined by (6.8.2).

Obviously, from (6.9.1), if n = n(p) then 7(*~p € II,,. Let i(p) € P be
defined so that

(6.9.2) (" Vo = ay(,) € T,
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Remark 6.10. — If o1, 2 € AL note that ¢y = ¢, if and only if
n(p1) = n(p2) and i(p1) = i(p2).

Now one knows (see COROLLARY 8.2 (COLEMAN) in [4]) that each orbit
of o, acting on A, has exactly h elements. Consequently, there are exactly {
orbits, A*,7=1,...,l, because Card A = hl.

Let AE*_ - Ai N A+.

PROPOSITION 6.10. — One has Card AY, =g, 1 = 1,...,1, and the
indexing may be chosen so that

(6.10.1) Ay ={pe A |i(p) =1}

Proof. — Let R* C A, be the subset defined by the right side of (6.10.1).
If 7 € {1,2} is such that ¢ € II;, then n(yp) has the same parity as 7 for all
¢ € R* by (6.9.2). It follows then easily from (6.9.2) that any two elements
of R* lie in the same o-orbit. On the other hand R* has exactly g elements by
(6.8.2). But, since Card A} = gl, to prove the proposition it suffices only to
observe that Afi_ is not empty. But this is clear since the sum of the elements
in A* is necessarily zero (because 1 is not an eigenvalue of o). |

Remark 6.11. — One notes from the argument above that the correspon-
dence ¢ — n(p) defines a bijection of A’ with the set of all integers from 1
to h which have the same parity as j € {1,2} where 7 € I1,.

Now let ® = {p € A | (p,9) > 0} where, we recall, ¢ € A is the highest
root. Clearly ¢ € ®. Let &, = & — {¢}.

The following proposition is true, as the proof clearly shows, for any simple
Lie algebra, simply laced or not.

PROPOSITION 6.12. — One has ® C A4 and
2(p, ¥)
6.12.1 =1
R (%, 9)

for all p € ®. Furthermore Card ®, us even and n fact there exists a fized
point free involution ¢ — p of , such that

(6.12.2) b=p+p

for any o € ®,. Finally if p; € ®,7=1,2, then o1 + 2 is not a root unless
P1,p2 € ®, and py = Py.
Proof. — Since v is the highest root it is of maximal length (this is

redundant in our case but it applies for a general g) and hence one has
(6.12.1). But also ® C A, since 9 is dominant. If ¢ € ®, then ¥y — p € A
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since (<p,¢) > 0. But (¢,9 — ¢) > 0 by (6.12.1) and hence ¥ — p € ®,. Put
¥ — ¢ = p. One has ¢ # @ since 2y is not a root. Finally, given 1, p2 € @,
then (¥, 01 + v2) > (¥,4) by (6.12.1) so that unless ¢ + p2 = 9 one has
©1+ @2 ¢ A again by (6.12.1). 1

We will refer to @ as the Heisenberg subsystem of A .

Remark 6.13. — If, for any ¢ € A, e, € g is a corresponding root vector,
it is clear from PROPOSITION 6.12 that the span n(®) of the e, for p € @,
is a Heisenberg Lie algebra having Cey, as its center. One notes that n(®)
is the nilradical of that parabolic subalgebra of g which, under the adjoint
representation, stabilizes Ce,.

Now put ® = ® N A' for + = 1,...,I. We note that ® C Afi_ by
ProposiITION 6.12.

The polynomial z(t); has already been given for 7 = 0 and 7 = 7. For the
remaining values one can prove

LEMMA 6.14. — Fori=1,...,l, where 1 # 1., one has
(6.14.1) 2(t)i = Yt
pED:

Proof. — Let b, here, for n = 0,...,h, be the coefficient of ¢t" in z(t);.
One has bg = by, = 0 by LEMMA 4.11. Assumen = 1,...,h — 1. Then in the
notation of (5.11.3) one has b,, = (z,,v;). Thus

bn = (T(n_l)’(/} - T(n)"/])’/i)a
= K(¢, 7~ (=15 — (M),

where K = 2/(a;, o), by (5.11.3).

But now if 7 € {1,2} is such that ¢ € I; then b, = 0 by (5.11.1) if 7 and
n have opposite parities and by (5.11.2)
(6.14.2) = K(y,r~ (" Vq,),

if 7 and n have the same parity. Assuming the latter

2(,¢)

R )

where p = 7= ("= q,; since g is simply laced. Clearly ¢ € Af,_ and n(p) =n
by (6.9.1) and ProposiTION 6.10. But then ¢ # ¥ since i(¢)) = 7. by
(5.6.2). Thus b, = 1 or 0 according as to whether ¢ € ®* or not. Recalling
REMARK 6.11 this proves (6.14.1). 1§
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Remark 6.15. — It follows immediately from (5.18.5) and (6.14.1) that
for 7 # 1,

(6.15.1) Card &' = 2d;.

The argument in the proof above would apply to ¢« = 7, except when n = g.
In that case ¢ =% and by = 2. Thus one has

(6.15.2) Card ®** = 2d;, — 1.
But then since ¥!_,d; = h — 1 by (2.7.2) one has
(6.15.3) Card @ = 2h — 3.

This together with (5.5.1) completes the proof of THEOREM 1.11.

6.16. — We compile a table of the polynomials z(t),, ¢ # 74, for the cases
A}, S5, and A%. To do this we have to label the nodes. We have found the
computation simplest by using (5.15.1).

2(t)y =t* +¢8
2(t)e =3 + 5 +¢7 +¢°
z(t)s =t> +t5+t7 +1°
2(t)y =t* +1°
2(t)s =t + 5 +¢7 + ¢!
1 2 3 4 5
Si . (E7)



254 B. KOSTANT

z(t); = t® + 12
t2:t5+t7+t11+t13
t3:t4+t6+t8+t10+t12+t14

(t)
2(t)
(t)
2(t)g = t2 418 + 5 4110 4 412 4 416
(t)
(t)

z

2(t)s =t +t7 + 1 +¢17
z(t)e = t* + % +¢1°0 4 ¢4

2(t)y =t + ¢11 4 419 4 420

2(t)g = 12 4+ 410 4 412 4 418 4 420 4 428

Z(t)g :t3+tg+tll+t13+t17+t19+t21 +t27
z(t)4:t4+t8+t10+t12+t14+t16+t18+t20+t22+t26
2(t)s = 18 + t8 + 12 4 ¢14 4 416 4 418 4 422 4 424

2(t)e = t7 + 13 4 17 4 423

Z(t)y = % + 10 4 1% 4 16 4 420 4424
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