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THE INTEGRAL GEOMETRY OF LINE COMPLEXES 

A N D A THEOREM OF GELFAND-GRAEV 

BY 

Victor GUILLEMIN 

1. Introduction 

Let P = CP3 be the complex three-dimensional projective space and let 
G = CG(2,4) be the Grassmannian of complex two-dimensional subspaces 
of C4. To each point p E G corresponds a complex line lp in P. Given a 
smooth function, / , on P we will show in § 2 how to define properly the line 
integral, 

(1.1) 
d 

f(\)d\ d\. = f(p). 

A complex hypersurface, 5 , in G is called admissible if there exists no smooth 
function, / , which is not identically zero but for which the line integrals, 
(1,1) are zero for all p G 5 . In other words if S is admissible, then, in 
principle, / can be determined by its integrals over the lines, Zp, p G 5 . In 
the 60's GELFAND and GRAEV settled the problem of characterizing which 
subvarieties, 5 , of G have this property. We will describe their result (and, 
in fact, sketch a rough proof of it) in § 3. At first glance their result is rather 
puzzling : Admissibility turns out not to be a generic property of varieties. 
In fact very few S"s posses this property. 

The purpose of this paper is to describe how this result can be used as 
the rationale for a method of constructing multi-branched analytic solutions 
of the wave equation on compactified Minkowski space with prescribed 
singularities. We will describe this method in § 4 and illustrate it with 
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examples in §§ 5-6. Finally in § 7 we will describe an analogue of the Gelfand-
Graev theorem for compactified Minkowski space. 

2. The Gelfand line transform 

Let / : f(z,z) be a smooth function on C2 — 0 which is bihomogeneous of 
bidegree (—2,-2); i.e. 

(2.1) f(Xz,Xz) = \X\-4f(z,z) 

for all À G C*. Let dz = dzi A dz2> Since / is not in C1 the integral 

(2.2) f{z, z) dz dz 

diverges; however, one can still make sense of (2,2) as follows. Let 

5 = z1 d 
dzi 

d 
Z<1 dz2 

and let u be the form of type 1-1: 

(2.3) (jj — f dz A dz. 

This form has nice properties with respect to the principle fibration : C2 — 
0 CP1. Namely it vanishes when restricted to fibers; and, by (2,1), it is 
invariant under the action of the structure group, C*. Thus there exists a 
form, of type 1-1 on CPi such that 

+d = u +dr 

We define (2.2) to be the integral 

(2.4) 
CP1 

It is clear that we can formulate the definition, (2.4), in a coordinate-
free way. If F is a complex vector space of dimension 2, / a smooth 
bihomogeneous function on V — 0 of bidegree (—2,-2) and fi an element 
of A2'2(y*) then the integral 

(2.5) 
lv 

vr 



INTEGRAL GEOMETRY 137 

is well-defined (independent of coordinates). 
Consider now a bihomogeneous function, / , on C4 —0 of bidegree (—2, —2). 

Given a point p G G, let V be the complex 2-dimensional subspaces of C4 
represented by p. We will define the line transform, f, of f at p as follows. 
By definition it will be an element of the space 

(2.6) A2'2(V*)*. 

Notice that an element of (2,6) is defined by describing how it pairs with an 
element, fi, of A2'2(V*). For /(p) the answer is given by the integral (2,5); 
i.e. by definition : 

(2.7) </(p),n> = 
V 

fil. 

Functions on C4 — 0 which are bihomogeneous of bidegree (—2, —2) can 
be regarded as sections of a line bundle, L —* P . We will denote by M the 
line bundle on G whose fiber at p is (2.6). With this notation we can regard 
the line transform described above as an integral operator 

(2.8) R:T{C)^T{M), Rf=f. 

It is not hard to show that R is injective and to describe its range using the 
representation theory of SL(4, C). We prefer here to give a more elementary 
description of its range. Let UQ be the open subset of G consisting of all 
points p G G for which the restriction of dz\ A dz2 to V is non-zero. (As 
above V is the 2-dimensional subspace of C4 represented by p). Then, V can 
be described by linear equations of the form 

z3 = azi + bz2, 
z± = cz\ + dz2) 

where a, 6, c and d depend on V. In fact a, 6, c and d are coordinate functions 
on {To, and dz\ A dz2 provides one with a trivialization of M over Uo] so for 
peu0 

(2.9) f{p) = b> c>d) 

/ /(^ij azi + bz2, czi + dz2) dzx dz2 dz\ dz2. 

Differentiating under the integral sign one obtains 

(2.10)o A0/ = 
a d 

<da dd 
d+dr 
dbdc. l / = 0. 
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Similarly 

(2.11)0 A0/ = 
d d d d 

dâdd dbdc f = 0. 

More generally given a decomposible element z/, of A2(C4)* let JJV be the 
open subset of G consisting of all points, p, for which the restriction of v 
to V is non-zero. Then v defines a trivialization of M over Uu ; and, with 
respect to this trivialization, there exists second order differential operators, 

and A^, analogous to (2.10)o and (2.11)o, such that 

(2.10), A „ / = 0 

and 

(2.11), A„ / = 0 

on Uv. Let M\ be the line bundle over G whose fiber at p is A2,2(V*) ® 
A2(y*)* ® A2(C4/y)*, and let Mi be its complex conjugate. Patching 
together the A^'s and A^'s one gets intrinsically defined second order 
differential operators 

(2.12) A :T{M) - • r ( M i ) 

and 

(2.13) A : T{M) r(Mi) 

such that A / = Af = 0. This proves one half of the following proposition. 

PROPOSITION. — A section g Grin) satisfies the equations 

(2.14) Ag = Ag = 0 

if and only if g = f for some section, f, of L. 

We recall next that if p G G the cotangent space to G at p can be identified 
with 

(2.15) Hom (c4/y ,y) . 

Let Sp be the set of rank one elements in this space. Since C4/V and V are 
two-dimensional the set, Ep, is a quadratic cone inside T*. This shows that 
G is equipped with an intrinsic (complex) conformai structure such that Sp 
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is the cone of "light-like" rays at p. We will say more about this conformai 
structure in § 4. 

Let E be the fiber bundle over G whose fiber at p is Ep. We claim that 
E is the characteristic variety of the system of partial differential equations 
(2.14). In fact let a,6,c and d be the coordinate functions on UQ described 
above and let a,/3,7 and 6 be the dual cotangent coordinates. Then for 
peU0 

Sp = { ( a , / ? , 7 , £ W - / ? 7 = 0}, 

whereas 
<7(A0)(a,/?,7,«) = a6 - /37 

by (2.10). 

3. Admissibility 

Let S be a complex hypersurface in G. One calls S admissible if the integral 
transform 

r(£) - r ( - M i s ) , / - / i s 

is injective. In [2], Gelfand et al. show that the following S's are admissible : 

Example 1. — Let W be a non-singular curve in P and let S be the set 
of all points p G G such that W and Zp intersect. 

Example 2. — Let VF be a non-singular surface in P and let S be the set 
of all points p G G such that lp has at least one point of tangency with W. 

Their main result is the following converse statement : 

THEOREM. — If S is admissible then near a generic point S is locally 
as in example one or as in example two. 

We will sketch a proof of this below. We first claim : 

LEMMA. — For S to be admissible it has to be characteristic with respect 
to the differential operator, A. 

"Proof". — If S were non-characteristic then the Cauchy problem 

(2.1) Ag = Âg = 0, g = 0 on 5 

would be well-posed. But if g is a non-trivial solution of (2.1) then, by the 
proposition in § 2, g = / and / I S = 0. Contradiction. 

Unfortunately, if S is non-characteristic at a point, p, the Cauchy problem 
(3.1) is well-posed only in a small neighborhood of p; whereas, to get a 
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contradiction, we need to find a non-trivial global solution of (3.1). Therefore, 
this "proof" is not completely convincing. There is a convincing proof 
involving (3.1) ; but we won't attempt to describe it here. 

We next require some facts about the characteristic variety, E, of the 
differential operator, A. Since E is a co-isotropic subvariety of T*G, it is 
equipped with a canonical null-foliation. We will show that this null-foliation 
is fibrating with CPl5s as fibers and T*P — 0 as base. 

Proof. — A typical element of T*P—0 is of the form, with x G C4—0, 
£ G (C4)* — 0, 2Lnd = 0. Given a point, p, in G let V be the two-
dimensional subspace of C4 represented by p. We will say that p belongs to 
7*,£ if 

(3.2) x G V a n d £ G V°. 

The set, 7x,£? defined by (3.2) is a complex line in G\ and it is easy to see 
that the 7Xjf's are exactly the light rays on G associated with the canonical 
conformai structure. Q.E.D. 

We will denote by 

(3.3) 7T : E —> T*P - 0 

the null-fibration. Now let S be a hypersurface in G which is characteristic 
with respect to A. Then its conormal vector at each point is "light-like" ; so 
the conormal bundle 

A = N*S -0 

is contained in E. Since A is Lagrangian this implies that for every point in À 
the leaf of the null-foliation passing through this point is also in A. Therefore 
A has to be of the form 7r-1(Ai) where Ai is a Lagrangian submanifold of 
T*P — 0. At "generic" points Ai is locally of the form 

Ax = N*W -0, 

where W, the projection of Ai into P , is a submanifold of P. Therefore we 
have proved that 

(3.4) N*S = n~1(N*W) 

at "generic" points of N*S. From (3.4) it is easy to deduce Gelfand's theorem 
in the following form 

THEOREM. — The hypersurface, S, consists of all points, p G G, such 
that lp intersects W non-transversally. 
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4. The Penrose transform 

The Penrose transform is the holomorphic analogue of line transform 
described in § 2. It was used by PENROSE and his collaborators to construct 
solutions of the wave equation on compactified Minkowski space. (See [3] 
and [4].) Before describing it we will review some facts about the geometry 
of compactified Minkowski space. A good reference for the material below is 
the survey article of WELLS, [5]. 

We have already observed that G is equipped with a canonical (complex) 
conformai structure. It has three real forms, on which the induced (real) 
conformai structures are of type (++++) , (+H ) and (++H—) respec­
tively, and these are S4, RG(2,4) and compactified Minkowski space, which 
we will denote by M. A good way to view M as a submanifold of G is as 
follows. Consider on C4 the Hermitian form 

(4.1) H{z) = \z1\2 + \z2\2-\z3\2-\z4\2. 

For each p G G let Vp be the two-dimensional subspace of C4 represented 
by p. Then 

(4.2) M = {p G G, H = 0 on Vp}. 

From this description of M one sees easily that the group SU(2,2) acts as 
conformality transformations on M. 

We will now show how one can take a holomorphic function defined on an 
appropriate open subset of P and convert it via the Penrose transform into a 
solution of the conformai wave equation on M. Incidentally the version of the 
Penrose transform which we will describe below is very close to the version 
which one finds in PENROSE'S earlier papers. (See [4].) Later EASTWOOD, 
PENROSE and WELLS found a more elegant and general definition, involving 
sheaf cohomology, which we won't attempt to describe here. (See [1].) 

To start with, let / be a meromorphic function on C2 — 0 which is 
homogeneous of degree —2, i.e. satisfies 

f(Xz) = X-2f(z) 

for all À G C*. Let H be the vector field, z\ dj(dzi) + z2 d/dz2), and let w 
be the one form, i(E)fdzi A dz2. As in § 2 u is of the form uo — 7r*/x, where /x 
is a meromorphic one-form on CP1 and n : C2 — 0 —• CP1 is the canonical 
projection. Given a contour, 7, on CP1 not intersecting the poles of /x, we 
will denote by Res7 fdz\dz2 the integral 

(4.3) Res- f dz\ dzo = /x. 
7 
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It is clear that this definition is independent of the choice of coordinates, i.e. if 
y is a two-dimensional complex vector space, / a homogeneous meromorphic 
function on V — 0 of degree —2 and fi an element of A2'°(V*), then for an 
appropriate contour, 7, on the projective space PV, the residue 

(4.4) Res7 /fî 

is well-defined. 
Now let / be a meromorphic function on C4 — 0 which is homogeneous 

of degree —2 and let W be the set of rays (in P) on which / is singular. W 
is an algebraic subvariety of P , but it need not be non-singular; so we will 
denote by Wo the non-singular points of W and by W\ the curve of singular 
points. Let S be the set of all points, P G G, such that the line, /p, either 
intersects W\ or has a common point of tangency with WQ. Let p be a point 
not on S and let V = Vp the subspace of C4 represented by p. We will define 
f(p) G A2>°(V*)* by the formula 

(4.5) (/(p),n) = R e s 7 / H 

for fi G A2'°(v*);i 7 being a contour on the line lp = PV avoiding points of 
W PI /p. Let M be the line bundle on G with fiber 

A2'°(V*)* = A2'°(y) 

at p. If one varies the contour, 7, continuously with respect to p, one gets 
from (4.5) a multi-branched holomorphic section of M over G — S which sat­
isfies the holomorphic analogue of the wave equation discussed in § 2. By the 
theorem of Gelfcind discussed in § 3, S is characteristic with respect to the 
wave equation; so the Penrose transform can be regarded as a tool for con­
structing multi-branched holomorphic solutions of the wave equation on G 
with singularities along a prescribed characteristic hypersurface. Restricted 
to M these solutions often become single-valued with singularities along a 
prescribed real characteristic hypersurface. (See § 7). We won't attempt here 
to give a systematic description of these solutions; but, in the next couple 
of sections, we will illustrate this method by means of examples. 
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5. Characteristic hypersurfaces of the first kind 

We saw in § 3 that there are two kinds of characteristic hypersurfaces in 
G. The first kind consists of all lines which pass through a fixed curve, and 
the second kind consists of all lines which have a common point of tangency 
with a fixed surface. In this section we will describe how to construct single-
valued holomorphic solutions of the wave equation with singularities along 
characteristic hypersurfaces of the first kind. 

Let W be the algebraic curve in CP3 defined by the equations 

<3i(*) = Q2(*) = o, 

where Qi and Q2 are homogeneous polynomials in (zi, z2, z$, Z4) with no 
common factor. Let the function, / , in (4.5) be of the form 

(5.1) f = Qs/Q?1Q?\ 

where degQ3 = raidegQi + ra2degQ2 — 2, and choose the contour, 7, 
in (4.5) so that it surrounds all the zeroes of Qi on the projective line, 
/ = P V , but none of the zeroes of Q2. Then the expression (4.5) is well-
defined providing no point on I is simultaneously a zero of Qi and Q2 ; i.e. 
providing the line, /, doesn't intersect the curve, W. In other words, let S 
be the characteristic hypersurface of the first kind consisting of all points, 
p G G , for which the line, Zp, intersects W. Then, to each function of the form 
(5.1), there corresponds a holomorphic solution of the wave equation with 
singularities on 5. Notice that this correspondence is not injective. If either 
mi or m2 were equal to zero in (5.1), then the contour, 7, would surround 
all zeroes of Q™1^}™2 ; so the expression (4.5) would be identically zero. The 
most satisfactory way to describe this correspondence is in sheaf-theoretic 
terms : Let £Can be the canonical line bundle of the projective space P and 
let L — -Ccan- Let Ui and U2 be the subsets of P on which Qi and Q2 are 
non-zero. Functions of the form (5.1) are identical with sections of t over 
U\ D U2 and functions of the form (5.1) with m2 = 0 (respectively, mi = 0) 
are just sections of L over U\ (respectively U2). By MAYER-VICTORIS : 

(5.2) T(UUL) e T{U2, Z) - T{U1 n U2, Z) - H1(U1 u u2, £) — 0, 

and the image of p is contained in the kernel of the Penrose transform; so 
the Penrose transform is actually a map of H1(P — W,L) into the space 
of holomorphic solutions of the wave equation with singularities on S. This 
is the way the Penrose transform is described in [1] (where it is shown, in 
addition, that it is bijective). 

Example. — Let Qi = zi,Q2 — z2 and / = (ziz2)~1. 
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In this example S is the characteristic cone consisting of all points, p G G, 
for which the line lp intersects the fixed line, /, defined by the equations 
Zl = z2 = 0. The apex of this cone is the point, p0, represented by the line, 
/, itself. 

Let U = G—S. Notice that U consists of all points p G G with the property 
that the two-form dz\l\dz2 doesn't vanish on the space V = Vp. Hence there 
is a natural trivialization of the line bundle, over U \ and, with respect to 
this trivialization, the solution of the wave equation associated with / takes 
at p the value 

(5 .3) 
7 

/x being the one form 

=d Z\ 
d 

dv + z2 
d 

dz2 
dz-i dzo 

Z\Z2 
dz 

5 
z 

where z — z2/z\ and 7 is a contour on the line, Zp, surrounding the point 
z — 0. However, it is clear that this integral is 2ixi for all p; i.e. the Penrose 
transform, / , of / is the constant function / = 27ri. 

Next let U1 be the set of points p G G for which the two-form dz3 A dz±, 
restricted to Vp, doesn't vanish. If p G U fl U1 the subspace, Vp, of C4 can 
be described by a pair of equations of the form 

21 = az3 + bz4, 
z2 = cz3 + dzA, 

and, restricted to Vp, 

(5.4) dz\ A — det a b 
c d 

dz3 A dz4. 

The fact that neither of these restrictions is zero says that 

det a b 
c d J # 0 . 

As in § 2, a, 6, c and d can be employed as coordinate functions on Ufl 
and with respect to these coordinates, the transition function relating the 
trivializations of M given by dz3 A dz4 and by dz\ A dz2 is just the function 

det a b 
c d 
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by (5.4). Therefore, in terms of the trivialization given by dz3 A dz4, f is 
equal to 

/ (a , 6, c, d) — 2ni/(ad — be) 

on JJ1 \ i.e. / is the so-called elementary solution of the wave equation : 

d d d d 
da 3d db dc 

6. Characteristic hypersurfaces of the second kind : an example 

Let Q be an arbitrary non-degenerate quadratic form on C4. After making 
an appropriate change of coordinates we can assume that 

(6.1) Q(z) = z1z2 + z3z4. 

Let W be the quadratic surface in P defined by Q = 0, and let S be the 
characteristic hypersurface in G associated with W. In other words p G S if 
and only if lp is tangent to W. Notice that for p G S either lp intersects W in 
a single point or lp is entirely contained in W. Let be the set of points for 
which the second alternative holds. It is easy to see that Si is the singular 
locus of S and is the disjoint union of two CP^s (corresponding to the two 
rulings of W). 

In this section we will compute the Penrose transform of the function 

(6.2) / = 1/Q. 

Before we do so, however, let's consider a somewhat simpler problem. Let 
q = q(z\,z<2) be a non-degenerate quadratic form on C2—0, and let's compute 
the residue 

Res7 (dzi dz2/q)i 

where 7 is a contour on CP1 surrounding one of the zeroes of q. We can 
make a linear change of coordinates 

(6.3) vr 
w2 

= B vr 
d+r 

so that q(zi,z2) = w\w2. Moreover, if 

q(z) = kxlz\ + 1̂2̂ 1̂ 2 + k21z2zi + k22z\, 
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with fci2 = &2i5 and J an(l ^ are the matrices 

J = '0 r 
1 0 

and X = 
k1 +d1r 
&21 &22 ) 

then 

(6.4) BJB1 = K. 

With this change of coordinates we get 

Res7 [dzi dz2/q) = (det B) 1Res7 (dw\ dw2/wiw2). 

In § 5 we showed that the residue on the right was just 2n\/—l ; so we get 
the formula 

(6.5) Res7 [dzx dz2/q) = 2?r(det K)~1/2. 

since - (detB)2 = det K by (6.4). 
Let's come back now to the problem of computing the Penrose transform 

of (6.2). Let U be the subset of G consisting of all points, p, for which the 
restriction of dz\ A dz2 to Vp is non-zero. If p E U the equations of Vp are 

z3 = azi + bz2, 
z4 = czi + dz2, 

and a, 6, c and d can be employed as coordinate functions on U. Let A be 
the matrix 

A = fa b 
c d j 

Then the quadratic form, Ziz2 + z3z4, restricted to Vp, is of the form 

{z1,z2){J + AJAt){z1,z2)\ 

and, therefore, by (6.5), the Penrose transform of (6.2) is the function 

(6.6) / = f{a,b,c,d) = 27rdet(J + AJA1)1/2. 

Affine Minkowski space sits inside of U as the set of matrices 

A = 
f \ 
u w U V 
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with w complex and u and v real; so the restriction of (6.6) to affine 
Minkowski space is 

(6.7; 27r[(detA+l)2 + 4H2]-1/2, 

or, in terms of the more familiar space-time coordinates, 

u = (l/v^)(a;o + xi), v=(l/y/2)(x0-x1), w = {l/V2){x2+ix3), 

(6.8) / = 27rMx)-1/2, 

where 

(6.9) h(x) = 
1 

L2 
•20-x\-xl-xl) + l] + 4(x2 + x2). 

Notice that (6.9) is non-negative, so / is single-valued on Minkowski space 
with singularities on the hyperbola 

XQ — x\ = 2, x2 = x3 = 0. 

Remark. — One gets a very similar formula for the Penrose transformation 
of the function 

P/Qk, 

P being a homogeneous polynomial in z of degree 2k — 2. 

7. Character is t ic hypersurfaces in compact Minkowski space 

There is an interesting analogue of the theorem proved in § 3 for compact 
Minkowski space. For p G M let Ep be the light cone in T* — 0 and let S be 
the fiber bundle over M whose fiber at p is Ep. Since E is of codimension 1 
as a submanifold of T*M — 0, it is co-isotropic and hence is equipped with 
a null-foliation. We will show that this null-foliation is fibrating with RP^s 
as fibers and an extremely interesting symplectic manifold as base. Recall 
that in § 4 we introduced the Hermitian form 

(7.1) H(z) - |zi|2 + |z2|2 ~ M 2 ~ M 2 

on C . Let P+ (respectively N) be the set of points in P where H is positive 
(respectively zero). It is not hard to show that P is a non-degenerate complex 
domain in the sense that at each point, p, on its boundary, N, the Levi form 
at p is non-degenerate. Moreover, at each point, p, of TV there is an "inward 
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pointing" real covector £ G T*N — 0 annihilated by the tangential Cauchy-
Riemann vectors at p. Let r be the fiber bundle over N whose fiber at p is 
the ray 

(7.2) tp = { X Ç , \ > 0 } . 

Since the Levi form is non-degenerate r is a symplectic submanifold of 
T*N - 0 . 

THEOREM. — The null-foliation of E is fibrating with RP1;5 as fibers 
and t as base. 

Proof. — Given x G N let 7X be the set of all points p G M such that the 
complex line, Zp, in TV, associated with p, contains the point x. It is fairly 
obvious that ^x is an RP1. On the other hand it is not hard to see that ^x 
is a light ray with respect to the conformai Lorentzian structure on M and 
that all light rays are of this form. (See for instance § 3 of [5].) Q.E.D. 

Let 7T : E —• r be the null-fibration. Given a characteristic hypersurface, 
5 , in M let A be its conormal bundle. To say that S is characteristic is 
equivalent to saying that A is contained in E ; so A must necessarily be of 
the form 

(7.3) A = 7r-1(A1), 

where Ax is a conic Lagrangian submanifold of r. Since the fiber, rp, of r 
above p G iV consists of the single ray (7.2), Ai is completely determined 
by its projection, W, on N. Moreover, since N is the projectivization of a 
conic symplectic manifold it has an intrinsic contact structure, and Ai is 
Lagrangian in r if and only if W is Legendrian in N. We leave for the reader 
to show that (7.3) translates into the following statement : 

THEOREM. — Let S be a characteristic [light-like) hypersurface in M. 
Then there exists a unique Legendrian submanifold, W, in N such that 

(7.4) S = {p G M, lp intersects W}. 

Conversely ifW is a Legendrian submanifold of N the set (7.4) is a charac­
teristic hypersurface in M. 
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