Astérisque

MARK A. PINSKY Brownian motion on a small geodesic ball

Astérisque, tome 132 (1985), p. 89-101

<http://www.numdam.org/item?id=AST_1985_132_89_0>

© Société mathématique de France, 1985, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ BROWNIAN MOTION ON A SMALL GEODESIC BALL

by

Mark A. Pinsky

Table of Contents

- 1. Introduction
- 2. Notations
- 3. Determination of g_0, g_2
- 4. Determination of $g_{\Lambda}(0)$
- 5. Converse theorems
- 6. Appendix

1. Introduction

Let $\{X_t,t\ge 0\}$ be the Brownian motion process of a Riemannian manifold (M,g). The exit time from the geodesic ball centered at $m\in M$ is defined by

$$T_{\varepsilon} = \inf\{t > 0: d(X_t, m) = \varepsilon\}$$

where $d(\cdot, \cdot)$ is the distance function defined by g.

In a previous paper [4] we studied the mean exit time $E_m(T_{\epsilon})$ and obtained three non-zero terms of the asymptotic expansion when $\epsilon \neq 0$. This was used to prove the following stochastic characterization of the Euclidean space (R^n, g_0) : If for each $m \in M$, $E_m(T_{\epsilon}) = \epsilon^2/2n + O(\epsilon^8)$ when $\epsilon \neq 0$, then (M,g) is locally isometric to (R^n, g_0) provided n < 6. In case n = 6, we provided an example of a non-flat symmetric Riemannian manifold whose asymptotic expansion is $\epsilon^2/2n + O(\epsilon^{10})$ when $\epsilon \neq 0$.

In this paper we shall extend our analysis to the second moment $E_m(T_\epsilon^2)$, $m\in M$, $\epsilon\neq 0$. By combining the previous techniques with the "stochastic Taylor formula" we obtain a three-term asymptotic expansion for the second moment, given at the end of section 4. As a

by-product we have the following characterization of Euclidean space (R^n, g_0) valid in any dimension $n < \infty$; If for each $m \in M$, $E_m(T_{\epsilon}) = \text{const.} \epsilon^2 + O(\epsilon^8)$ and $E_m(T_{\epsilon}^2) = \text{const.} \epsilon^4 + O(\epsilon^{10})$ when $\epsilon \neq 0$, then (M,g) is locally isometric to (R^n, g_0) . Similar characterizations are obtained for any space of constant curvature.

The present work, which could be formulated in non-stochastic terms, may be viewed as complementary to the general theory of semimartingales on manifolds as formulated by Laurent Schwartz [5]. In particular our stochastic Taylor formula (proposition 2.1 below) is a consequence of the martingale formulation of diffusion processes.

2. Notations and Definitions

Let (M,g) be an n-dimensional Riemannian manifold. We use the following notations.

$$\begin{split} & \overline{M}_{m} & \text{is the tangent space at } m \in M. \\ & B_{m}(\varepsilon) & \text{is the ball of radius } \varepsilon & \text{in } M \text{ with center at } m \in M. \\ & \overline{B}_{m}(\varepsilon) & \text{is the ball of radius } \varepsilon & \text{in } \overline{M}_{m} \text{ with center at } 0 \in \overline{M}_{m} \\ & \text{exp}_{m} & \text{is the exponential mapping (which is defined on all of } \overline{M}_{m} \\ & \text{ in case } M \text{ is complete; otherwise it is a mapping) from } \\ & \overline{B}_{m}(\varepsilon) \text{ to } B_{m}(\varepsilon) \text{ for sufficiently small } \varepsilon > 0. \\ & \Phi_{\varepsilon} & \text{ is the mapping on functions defined by } \end{split}$$

 $\begin{array}{l} (\Phi_{\varepsilon}f)\;(\exp_{m}\varepsilon x)\;=\;f(x)\;;\\ \Phi_{\varepsilon}\;\text{maps from }C^{^{\infty}}(\overline{B}_{m}^{^{}}(1))\;\text{to }C^{^{\infty}}(B_{m}^{^{}}(\varepsilon))\;\text{for sufficiently}\\ \text{small }\varepsilon>0. \end{array}$

△ is the Laplace-Beltrami operator of the Riemannian manifold:

$$\Delta f = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x_{i}} \left(\sqrt{g} g^{ij} \frac{\partial f}{\partial x_{j}} \right) \text{ where } g^{ij} = (g^{-1})^{ij}, g = \det(g_{ij}).$$

The following result, which will be used repeatedly, was proved in [4].

 Δ_j maps polynomials of degree k to polynomials of degree k+j. In any normal coordinate chart (x_1, \dots, x_n) we have

(2.2)
$$\Delta_{-2}f = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}$$

$$\Delta_0 f = (1/3) \sum_{i,a,j,b=1}^n R_{iajb} x_a x_b \frac{\partial^2 f}{\partial x_i \partial x_j} - (2/3) \sum_{i,a=1}^n \rho_{ia} x_a \frac{\partial f}{\partial x_i} .$$

Here R_{iajb} is the Riemann tensor and $\rho_{ij} = \sum_{a=1}^{n} R_{iaja}$ is the Ricci tensor at $m \in M$.

Let (X_t, P_x) be the Brownian motion process with infinitesimal generator Δ . For each $m \in M$ let T_{ϵ} be the exit time from the geodesic ball $B_m(\epsilon)$. To study the moments of T_{ϵ} we invoke the following "stochastic Taylor formula."

<u>Proposition 2.1 [1,2]</u>: Let (X_t, P_x) be a Feller-Markov process with infinitesimal generator A. Let T be a stopping time with $E_x(T^{N+1})$ finite and let f be a function in the domain of A^{N+1} . Then

$$f(x) - E_{x}f(x_{T}) = \sum_{k=1}^{N} \frac{(-1)^{k}}{k!} E_{x}\left\{T^{k}A^{k}f(x_{T})\right\} + \frac{(-1)^{N+1}}{N!} E_{x}\left\{\int_{0}^{T} u^{N}A^{N+1}f(x_{u}) du\right\}$$

(If N = 0 the sum is empty and we have the Dynkin formula $E_x f(X_T) - f(x) = E_x \left\{ \int_0^T Af(X_u) du \right\}$.)

<u>Proof</u>: Let $\overline{u}_0 = 1$ and let \overline{u}_k be the classical solution of the elliptic problem $\Delta \overline{u}_k = -\overline{u}_{k-1}$ with $\overline{u}_k = 0$ on the boundary of $B_m(\varepsilon)$. Taking $T = \min(R, T_{\varepsilon})$ and $f = \overline{u}_{N+1}$ in the proposition 2.1 we have

$$\vec{u}_{N+1}(x) - E_x \vec{u}_{N+1}(x_T) = \sum_{k=1}^{N} \frac{1}{k!} E_x \left\{ T^k \vec{u}_{N-k+1}(x_T) \right\} + \frac{1}{(N+1)!} E_x(T^{N+1})$$

Thus

$$\frac{1}{(N+1)!} \mathbb{E}_{\mathbf{X}}(\mathbf{T}^{N+1}) \leq 2 \left| \overline{\mathbf{u}}_{N+1} \right|_{\infty} + \sum_{k=1}^{N} \frac{\left| \overline{\mathbf{u}}_{N-k+1} \right|_{\infty}}{k!} \mathbb{E}_{\mathbf{X}}(\mathbf{T}^{k})$$

Letting $R \to \infty$ in this inequality and using induction we see that $E_x(T_{\epsilon}^{N+1})$ is finite. Taking $T = T_{\epsilon}$ above yields

$$\bar{u}_{N+1}(x) - 0 = \frac{1}{(N+1)!} E_x(T_{\varepsilon}^{N+1}) = u_{N+1}(x)$$

This completes the necessary identification.

The exact solution u_2 is not available for a general Riemannian manifold. Therefore, following [4] we shall construct an approximate solution v_2 in the form

(2.3)
$$v_2 = \Phi_{\varepsilon} (\varepsilon^4 g_0 + \varepsilon^6 g_2 + \varepsilon^7 g_3 + \varepsilon^8 g_4)$$

where $g_0^{}$, $g_2^{}$, $g_3^{}$, $g_4^{}$ are functions on $\overline{B}_m^{}(1)$ satisfying

(2.4)
$$\Delta_{-2}g_0 = -f_0$$
 $g_0 | \partial \overline{B}_m(1) = 0$

(2.5)
$$\Delta_{-2}g_2 + \Delta_0g_0 = -f_2$$
 $g_2 \mid \partial \bar{B}_m(1) = 0$

(2.6)
$$\Delta_{-2}g_3 + \Delta_1g_0 = -f_3$$
 $g_3 |\partial \bar{B}_m(1) = 0$

(2.7)
$$\Delta_{-2}g_4 + \Delta_0g_2 + \Delta_2g_0 = -f_4 \qquad g_4 |\partial \bar{B}_m(1) = 0$$

The functions f_0 , f_2 , f_3 , f_4 are solutions of the following set of equations:

(2.8) $\Delta_{-2}f_0 = -1$ $f_0 | \partial \bar{B}_m(1) = 0$

(2.9)
$$\triangle_{-2}f_2 + \triangle_0f_0 = 0$$
 $f_2 | \partial \overline{B}_m(1) = 0$

 $(2.10) \qquad \triangle_{-2}f_3 + \triangle_1f_0 = 0 \qquad f_3 |\partial \overline{B}_m(1) = 0$

$$(2.11) \qquad \triangle_{-2}f_4 + \triangle_{0}f_2 + \triangle_{2}f_0 = 0 \qquad f_4 |\partial \bar{B}_m(1) = 0$$

Letting $v_1 = \Phi_{\varepsilon}(\varepsilon^2 f_0 + \varepsilon^4 f_2 + \varepsilon^5 f_3 + \varepsilon^6 f_4)$ we have $\Delta v_2 = -v_1 + O(\varepsilon^8)$, $\Delta^2 v_2 = 1 + O(\varepsilon^6)$. Applying proposition 2.1 with N = 1, $f = v_2$ we have $v_2(p) = (\frac{1}{2}) E_p(T^2(1 + O(\varepsilon^6)) = (\frac{1}{2}) E_p(T^2) + O(\varepsilon^{10})$. To summarize, we have the following:

 $\begin{array}{l} \begin{array}{l} \underline{\text{Proposition 2.3:}} \\ \hline v_2 \big|_{\partial B_m(\varepsilon)} = 0 = \Delta v_2 \big|_{\partial B_m(\varepsilon)}, \quad \Delta v_2 = -v_1 + O(\varepsilon^8), \quad \Delta^2 v_2 = 1 + O(\varepsilon^6), \quad \underline{\text{and}} \\ \hline v_2(m) = \frac{1}{2} E_m(T_{\varepsilon}^2) + O(\varepsilon^{10}), \quad \underline{\text{when }} \\ \varepsilon \neq 0. \end{array}$

Proposition 3.1. We have

τ

$$g_{0} = (1/2n)^{2} (1 - r^{2}) - (1/8n(n+2))(1 - r^{4})$$

$$g_{2} = \left(\rho - \frac{\tau r^{2}}{n}\right) \left[\frac{n+2}{6n^{2}(n+4)^{2}} (1 - r^{2}) - \frac{n+3}{12n(n+2)(n+4)(n+6)} (1 - r^{4}) \right]$$

$$+ \tau \left[\frac{1 - r^{2}}{24n^{3}(n+2)} + \frac{1 - r^{4}}{24n^{3}(n+2)} - \frac{1 - r^{6}}{24n^{2}(n+2)(n+4)} \right]$$
where $\rho = \sum_{i,j=1}^{n} \rho_{ij} x_{i} x_{j}$ is the Ricci tensor, $r^{2} = \sum_{i=1}^{n} x_{i}^{2}$ and $\tau = \sum_{i=1}^{n} \rho_{ii}$ is the scalar curvature.

Proof: Recall from the previous work [4]

$$\begin{split} \mathbf{f}_{0} &= (1/2n) (1 - r^{2}) \\ \mathbf{f}_{2} &= \left(\rho - \frac{\tau r^{2}}{n} \right) \frac{1 - r^{2}}{6n (n+4)} + \tau \frac{1 - r^{4}}{12n^{2} (n+2)} \\ \Delta_{-2}(r^{2}) &= 2n, \ \Delta_{-2}(r^{4}) = 4 (n+2) r^{2}, \ \Delta_{-2}(r^{6}) = 6 (n+4) r^{4} \\ \Delta_{0}(r^{2}) &= -\frac{2}{3} \rho, \ \Delta_{0}(r^{4}) = -\frac{4}{3} \rho r^{2}, \ \Delta_{0}(r^{6}) = -2\rho r^{4} \\ \Delta_{-2}(\rho) &= 2\tau, \ \Delta_{-2}(r^{2}\rho) = 2\tau r^{2} + 2 (n+4) \rho, \ \Delta_{-2}(r^{4}\rho) = 2\tau r^{4} + 4 (n+6) \rho r^{2} \\ \Delta_{0}(\rho) &= \frac{2}{3} (\rho \# R - 2\rho \circ \rho), \ \Delta_{0}(r^{2}\rho) = \frac{2r^{2}}{3} (\rho \# R - 2\rho \circ \rho) - \frac{2}{3} \rho^{2}, \\ \Delta_{0}(r^{4}\rho) &= \frac{2r^{4}}{3} (\rho \# R - 2\rho \circ \rho) - \frac{4}{3} \rho^{2} r^{2}, \end{split}$$

where in the last two formulas we have used the fact that ${\rm A}_0\,({\rm fg})$ = $f \triangle_0 g + g \triangle_0 f$ if f = f(r) is a radial function and g is arbitrary. A lengthy but straightforward computation then shows that $\Delta_{-2}g_0 = -f_0$, $\Delta_{-2}g_2 = -f_2 - \Delta_0 g_0$, as required. Clearly both g_0, g_2 satisfy the required boundary conditions.

4. Determination of $g_4(0)$ We introduce the Green's operator:

P:
$$C^{\infty}(\overline{B}_{m}(1)) \longrightarrow C^{\infty}(\overline{B}_{m}(1))$$

defined uniquely by the properties that for all $f\in C^{^{\infty}}(\bar{B}_{_{I\!\!m}}(1))$

$$\Delta_{-2}(Pf) + f = 0 \qquad \text{in } \overline{B}_{m}(1)$$

$$Pf = 0 \qquad \text{on } \partial \overline{B}_{m}(1) .$$

With this notation we have from (2.8) - (2.11)

$$f_0 = P1$$

$$f_2 = P\Delta_0 f_0$$

$$f_3 = P\Delta_1 f_0$$

$$f_4 = P\Delta_0 f_2 + P\Delta_2 f_0$$

Similarly equations (2.4) - (2.7) can be written in the form

$$g_{0} = Pf_{0}$$

$$g_{2} = Pf_{2} + P\Delta_{0}g_{0}$$

$$g_{3} = Pf_{3} + P\Delta_{1}g_{0}$$

$$g_{4} = Pf_{4} + P\Delta_{0}g_{2} + P\Delta_{2}g_{0}$$

$$= P^{2}\Delta_{0}f_{2} + P^{2}\Delta_{2}f_{0} + P\Delta_{0}g_{2} + P\Delta_{2}g_{0} .$$

Therefore to compute g_4 we must first compute $\triangle_0 f_2$, $\triangle_2 f_0$, $\triangle_0 g_2$, $\triangle_2 g_0$. To handle the terms $P\triangle_0 g_2$ and $P\triangle_2 g_0$ we may use lemma 6.3 of [4]. To handle the terms $P^2 \triangle_0 f_2$ and $P^2 \triangle_2 f_0$ we invoke the following lemma, where the integrals are normalized so that $\int d\theta = 1$ s^{n-1}

Lemma 4.1. Let j be the solution of the biharmonic Poisson equation $\Delta_{-2}^2 j = r^k g(\theta)$ in the unit ball $\overline{B}_m(1)$ and satisfying the boundary conditions j = 0 and $\Delta_{-2} j = 0$ on the boundary $\partial \overline{B}_m(1) = s^{n-1}$. Then

$$j(0) = \frac{n+k+4}{2(k+4)n(n+k)(n+k+2)} \int_{S^{n-1}} g(\theta) d\theta$$

<u>Proof</u>. Let G(x, y) be the Green's function for the biharmonic equation $\Delta^2_{-2}G = \delta$ with the same boundary conditions. Then $j(x) = \int G(x, y) |y|^k g(y/|y|) dy$. Let $\overline{g} = \int g(\theta) d\theta$ be the mean value $\overline{B}_m(1)$ S^{n-1}

of g on the unit sphere. Then

$$j(0) = \int_{\bar{B}_{m}(1)} G(0,y) |y|^{k} [g(y/|y|) - \bar{g}] + \int_{\bar{B}_{m}(1)} G(0,y) |y|^{k} dy .$$

The first integral is zero, since G(0,y) = G(|y|), a radial function. The second integral is the solution of the problem $\triangle_{-2}^2 j = r^k \overline{g}$, which is directly computed as

$$j(r) = \frac{\overline{g}}{(k+2)(n+k)} \left[\frac{1-r^2}{2n} - \frac{1-r^{k+4}}{(k+4)(n+k+2)} \right] .$$

Thus

$$j(0) = \frac{\overline{g}}{(k+2)(n+k)} \left[\frac{1}{2n} - \frac{1}{(k+4)(n+k+2)} \right]$$

which is of the required form.

For small values of k, we have for example

$$k = 0: \quad j(0) = \frac{(n+4)}{8n^2(n+2)} \overline{g}$$

$$k = 2: \quad j(0) = \frac{(n+6)}{12n(n+2)(n+4)} \overline{g}$$

$$k = 4: \quad j(0) = \frac{(n+8)}{16n(n+4)(n+6)} \overline{g}$$

We also recall the following integral formulas which were used in [4] where integration is with respect to the normalized uniform surface measure on s^{n-1} .

Lemma 4.2

$$\int \left(\rho - \frac{\tau r^2}{n}\right) = \frac{2}{n(n+2)} \left(\|\rho\|^2 - \frac{\tau^2}{n}\right)$$

$$\int \rho \#R = \frac{\|\rho\|^2}{n}$$

$$\int_{S^{n-1}} \rho \circ \rho = \frac{\|\rho\|^2}{n}$$

$$\int_{S^{n-1}} R \# R = \frac{1}{n(n+2)} \left(\|\rho\|^2 + \frac{3}{2} \|R\|^2 \right)$$

$$\int_{S^{n-1}} \nabla^2 \rho = \frac{2}{n(n+2)} \Delta \tau$$

It is easily checked that this implies that $\int_{S} \Delta_0 \left(\rho - \frac{\tau r^2}{n} \right)$ = $-(2/3n) \left(\|\rho\|^2 - \frac{\tau^2}{n} \right)$. Computation of $P^2 \Delta_2 f_0$: We have

$$\Delta_2 f_0 = (1/90n) (9\nabla^2 \rho + 2R\#R)$$

Both of these terms are homogeneous with k = 4. Applying the above lemmas 4.1 and 4.2 we have

$$(P^{2} \triangle_{2} f_{0}) (0) = \frac{n+8}{90 \cdot 16n^{2} (n+4) (n+6)} \left[\frac{18}{n (n+2)} \triangle_{T} + \frac{2}{n (n+2)} \left(\|\rho\|^{2} + \frac{3}{2} \|R\|^{2} \right) \right]$$

<u>Computation of PA_2g_0 </u>: We have

$$\Delta_2 g_0 = \frac{1}{90} (9\nabla^2 \rho + 2R\#R) \left(\frac{1}{2n^2} - \frac{r^2}{2n(n+2)}\right)$$

which is a combination of terms with k = 4 and k = 6. Applying lemma 6.3 of [4] and lemma 4.2 above, we have

$$(P\Delta_2 g_0)(0) = \frac{n^2 + 20n + 48}{90 \cdot 48n^2(n+2)(n+4)(n+6)} \left[\frac{18}{n(n+2)} \Delta \tau + \frac{2}{n(n+2)} \left(\|\rho\|^2 + \frac{3}{2} \|R\|^2 \right) \right]$$

<u>Computation of $P^2 \triangle_0 f_2$ </u>: We have

$$\Delta_0 f_2 = \left(\rho - \frac{\tau r^2}{n} \right) \frac{\rho}{9n(n+4)} + \frac{(1-r^2)}{6n(n+4)} \left[\frac{2}{3} (\rho \# R - 2\rho \circ \rho) + \frac{2\tau\rho}{3n} \right] + \frac{\tau \rho r^2}{9n^2(n+2)}$$

which is a combination of terms with k = 2 and k = 4. Applying lemmas 4.1 and 4.2 we have

$$(P^{2} \triangle_{0} f_{2})(0) = -\frac{n^{2} + 12n + 48}{432n^{3}(n+2)(n+4)^{2}(n+6)} \left(\|\rho\|^{2} - \frac{\tau^{2}}{n} \right) + \frac{n+8}{144n^{4}(n+2)(n+4)(n+6)} \tau^{2}$$

 $\begin{array}{l} \underline{\text{Computation of }} \ \mathbb{P} \Delta_0 \mathbb{q}_2 \colon \text{ We have} \\ \Delta_0 \mathbb{q}_2 &= \left(\rho - \frac{\tau r^2}{n}\right) \Delta_0 \bigg[\frac{n+2}{6n^2 (n+4)^2} (1-r^2) - \frac{n+3}{12n (n+2) (n+4) (n+6)} (1-r^4) \bigg] \\ &+ \bigg[\frac{n+2}{6n^2 (n+4)^2} (1-r^2) - \frac{n+3}{12n (n+2) (n+4) (n+6)} (1-r^4) \bigg] \Delta_0 \bigg(\rho - \frac{\tau r^2}{n} \bigg) \\ &+ \tau \Delta_0 \bigg[\frac{1-r^2}{24n^3 (n+2)} + \frac{1-r^4}{24n^3 (n+2)} - \frac{1-r^6}{24n^2 (n+2) (n+4)} \bigg] \\ &= \bigg(\rho - \frac{\tau r^2}{n} \bigg) \bigg[\frac{\rho (n+2)}{9n^2 (n+4)^2} - \frac{\rho r^2 (n+3)}{9n (n+2) (n+4) (n+6)} \bigg] \\ &+ \bigg[\frac{n+2}{6n^2 (n+4)^2} (1-r^2) - \frac{n+3}{12n (n+2) (n+4) (n+6)} (1-r^4) \bigg] \bigg[\frac{2}{3} (\rho \# R - 2\rho \cdot \rho) + \frac{2\tau \rho}{3n} \bigg] \\ &+ \tau \bigg[\frac{\rho}{36n^3 (n+2)} + \frac{\rho r^2}{18n^3 (n+2)} - \frac{\rho r^4}{12n^2 (n+2) (n+4)} \bigg] \end{array}$

which is a combination of terms with k = 4 and k = 6. Applying lemma 4.2 above and lemma 6.3 of [4] we have after some lengthy algebra

$$(P\Delta_{0}g_{2})(0) = -\frac{n^{5} + 27n^{4} + 290n^{3} + 1312n^{2} + 2784n + 2304}{432n^{3}(n+2)^{2}(n+4)(n+6)} \left(\|\rho\|^{2} - \frac{\tau^{2}}{n}\right) + \frac{5n^{2} + 106n + 240}{864n^{4}(n+2)^{2}(n+4)(n+6)}\tau^{2}$$

These results are recorded in the table in the Appendix. We summarize the result in the following form.

Theorem 4.3. For small $\varepsilon > 0$

$$\frac{1}{2} \mathbf{E}_{m} \left(\mathbf{T}_{\varepsilon}^{2} \right) = \mathbf{c}_{0} \varepsilon^{4} + \mathbf{c}_{1} \varepsilon^{6} \mathbf{\tau}_{m} + \varepsilon^{8} \left[\mathbf{c}_{2} \Delta \tau + \mathbf{c}_{3} \tau^{2} + \mathbf{c}_{4} \| \boldsymbol{\rho} \|^{2} + \mathbf{c}_{5} \| \mathbf{R} \|^{2} \right]_{m} + O \left(\varepsilon^{10} \right)$$

where the constants $c_0, c_1, c_2, c_3, c_4, c_5$ depend on the dimension n. In fact $c_0 = g_0(0)$ and $c_1 = g_2(0)$ given by proposition 3.1; c_2, c_3, c_4, c_5 are given in the appendix. Here $\tau = \sum_{i=1}^{n} \rho_{ii}$ is the scalar curvature and $\Delta \tau = \sum_{i=1}^{n} \nabla_{ii}^{2} \tau$ is the Laplacian of the scalar curvature. Also $\|R\| = \left\{ \sum_{ijk\ell}^{2} R_{ijk\ell}^{2} \right\}^{\frac{1}{2}}$ and $\|\rho\| = \left\{ \sum_{ij\ell}^{2} \rho_{ij\ell}^{2} \right\}^{\frac{1}{2}}$ are the lengths of the curvature tensor and the Ricci curvature.

5. Converse theorems

<u>Proof</u>. From the first hypothesis and theorem 1.1 of [4] we have that for all $m \in M$, $\tau_m = 0$ and $\|R\|_m = \|\rho\|_m$. From the second hypothesis and theorem 4.3 above we have in addition that $c_4 \|\rho\|_m^2 + c_5 \|R\|_m^2 = 0$. This is possible for $\|R\|_m \neq 0$ if and only if $c_4 + c_5 = 0$. From the table of values in the Appendix this entails the equality

$$18(n+4)^{2}(n+6)(2n^{2}+25n+48) = 33n^{5}+792n^{4}+8292n^{3}+38208n+69120$$

Multiplying out the left side it is seen that the left side is strictly greater than the right side for every $n \ge 1$. Therefore $c_4 + c_5 \ne 0$ and we must have $\|R\|_m = 0 = \|\rho\|_m$ and (M,g) is locally isometric to (R^n, g_0) .

<u>Proof</u>. From the first hypothesis and theorem 1.1 of [4] we have that for all $m \in M$

$$\begin{split} \tau_{m} &= \tau\left(\lambda\right) \\ \| R \|_{m}^{2} &- \| \rho \|_{m}^{2} &= \| R\left(\lambda\right) \|^{2} &- \| \rho\left(\lambda\right) \|^{2} \end{split}$$

where $\tau(\lambda)$, $R(\lambda)$, $\rho(\lambda)$ are the values for a space of constant sectional curvature. From the second hypothesis and theorem 4.3 above, we have further

$$\mathbf{c_{4}} \| \boldsymbol{\rho} \|_{m}^{2} + \mathbf{c_{5}} \| \mathbf{R} \|_{m}^{2} = \mathbf{c_{4}} \| \boldsymbol{\rho}(\lambda) \|^{2} + \mathbf{c_{5}} \| \mathbf{R}(\lambda) \|^{2}$$

The proof of theorem 5.1 above shows that $c_4 + c_5 \neq 0$. Therefore the above equations uniquely determine the values $\|R\|_m^2 = \|R(\lambda)\|^2$, $\|\rho\|_m^2 = \|\rho(\lambda)\|^2$. It is well known that this implies that (M,g) has constant sectional curvature.

M. A. PINSKY

References

- H. Airault and H. Follmer, Relative densities of semimartingales, Inventiones Mathematicae 27(1974), 299-327.
- K. B. Athreya and T. G. Kurtz, A generalization of Dynkin's identity, Annals of Probability 1(1973), 570-579.
- 3. E. B. Dynkin, Markov Processes, 2 volumes, Springer Verlag. 1965.
- 4. A. Gray and M. Pinsky, Mean exit time from a small geodesic ball in a Riemannian manifold, Bulletin des Sciences Mathématiques, 107 (1983), 345-370.
- 5. L. Schwartz, <u>Semi-Martingales sur des Varietes</u>, et <u>Martingales</u> <u>Conformes sur des Variétés Analytiques Complexes</u>, Springer Verlag Lecture Notes in Mathematics, vol. 780, 1980.

Mark A. PINSKY Department of Mathematics Northwestern University Evanston, Illinois 60201 U.S.A.