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BROWNIAN MOTION ON A SMALL GEODESIC BALL 
by 

Mark A. Pinsky 
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1. Introduction 
Let {X t ,t>0} be the Brownian motion process of a Riemannian 

manifold (M,g). The exit time from the geodesic ball centered at 
m£M is defined by 

T£ = inf{t > 0: d(Xt,m) = e} 

where d(*, 9) is the distance function defined by g. 
In a previous paper [4] we studied the mean exit time E (T ) and 

obtained three non-zero terms of the asymptotic expansion when e +0. 
This was used to prove the following stochastic characterization of 
the Euclidean space (R ,gQ) : If for each m e M, Em(T£) = e /2n + 0(e ) 
when e 4- 0, then (M,g) is locally isometric to (Rn,g^) provided n<6. 
In case n = 6, we provided an example of a non-flat symmetric 
Riemannian manifold whose asymptotic expansion is e /2n + 0(e ) 
when e 4- 0. 

In this paper we shall extend our analysis to the second moment 
Em(T^) , meM, e I 0. By combining the previous techniques with the 
"stochastic Taylor formula" we obtain a three-term asymptotic ex­
pansion for the second moment, given at the end of section 4. As a 
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by-product we have the following characterization of Euclidean space 
(R n,g n) valid in any dimension n < °°; If for each m e M, E (T ) = 2 8 2 4 1 0 m e const, e +0(e ) and E (T ) = const, e + 0(e ) when e I 0, then (M,g) 
is locally isometric to (R n ,g Q ). Similar characterizations are ob­
tained for any space of constant curvature. 

The present work, which could be formulated in non-stochastic 
terms, may be viewed as complementary to the general theory of semi-
martingales on manifolds as formulated by Laurent Schwartz [5]. In 
particular our stochastic Taylor formula (proposition 2.1 below) is a 
consequence of the martingale formulation of diffusion processes. 

2. Notations and Definitions 
Let (M,g) be an n-dimensional Riemannian manifold. We use the 

following notations. 
M m is the tangent space at m e M. 

В (e) is the ball of radius e in M with center at me M. 
В (e) is the ball of radius e in M with center at 0 e M 

m tti exp is the exponential mapping (which is defined on al l of M m 
in case M is complete; otherwise i t is a mapping) from 
B (e) to B (e) for sufficiently small e > 0. 
m m ф 

(Г 
is the mapping on functions defined by 

(Of) (exp ex) = f (x) ; 
oo — oo $ maps from C (B (1)) to C (B (e)) for sufficiently e m m 

small e > 0. 
A is the Laplace-Beltrami operator of the Riemannian 

manifold: 
Af = 1 

Vg 
9 

3x. l 
/ ? g i j $f 

dx. 
where g"̂  = (g 1 ) , g = det (g . . ) . 

The following result, which will be used repeatedly, was proved in 
[4]. 
Proposition 2.0: There exist second order differential operators 
(A 2 , A Q / A 1 , . . . ) on C (M̂ ) such that for each N > 0 and each f g C (M̂ ) 

(2.1) S^AS f = e Zà 0 f + J eDA.f + 0(e ') 
c P —A . ^ _ "1 i = 0 

(e + 0) . 

Aj maps polynomials of degree k to polynomials of degree k + j . In  
any normal coordinate chart (x^, . . . ,x ) we have 
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(2.2) A - 2 f 
n 

i=1 

a2f 
3xZ 

AQf = (1/3) n 
i,a,j,b=1 

R. . ,xx , îajb a b 
32f 

3x. 3x . 1 1 - (2/3) 
n 

i,a=1 
p. x îa a 

3f 
3x. 

Here R. ., is the Riemann tensor and p. . = îajb 
n 

a=1 
R. . is the Ricci îaia 

tensor at m g M. 
Let (X t,Px) be the Brownian motion process with infinitesimal 

generator A. For each m6M let T£ be the exit time from the geodesic 
ball B

m ( e ) • To study the moments of T we invoke the following 
"stochastic Taylor formula." 

Proposition 2.1 [1,2]: Let (X ,P ) be a Peller-Markov process with 
N+1 

infinitesimal generator A, Let T be a stopping time with E (̂T ) 
finite and let f be a function in the domain of AN +^. Then 

f(x) - Ef(X_) = 
N 

k=1 
(-1)k 

k! E 
x 

TkAkf(XT) (-1)N + 1 

N! E 
> 

T 

0 
u A f (X )du 

(If N = 0 the sum is empty and we have the Dynkin formula E f (Xm) -
f(x) = E T 

0 
Af(X )du 

Corollary 2.2: Let T be the exit time from the geodesic ball B (e)  •• e ^ : m 
and let u n = 1, u (x) = (1/k!)E (T ) for k > 1 . Then in the interior ——————— u k . x £ — — • 
of B (e) we have Au, = -u, 1 (k = 1,2,...) and on the boundary we have — m ————— .k k. ~ i , . 
u k » 0 (k = 1 , 2 , . . .) . In particular AKuN = (-1) u N_ R , 0 < k <N, N > 1 . 

Proof: Let uQ = 1 and let û . be the classical solution of the el l ip­
t ic problem Au, = -u, 1 with u = 0 on the boundary of B (e) . Taking 
T = min(R,T ) and f = u in the proposition 2.1 we have 

^ + 1 ( x ) -E x U N + 1 (X T ) = N 

k=1 
1 

k! 
E 
x 

T l V k + i ( v 1 
(N+1)! E (T N + 1) 

Thus 

1 
(N+1)! 

E <т и т ' ) < 2|{î J + 
N 

k=1 
IUN-k+1 I » 

k! 
E (TKl 

x 

Letting R -> co i n this inequality and using induction we see that 
N+1 

E (T ) is finite. Taking T = T above yields 
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V i ( x ) " 0 = 
1 

(N+1)! V T e > = U N + 1 ( X ) 

This completes the necessary identification. 
The exact solution u 2 is not available for a general Riemannian 

manifold. Therefore, following [4] we shall construct an approximate 
solution v~ in the form 

(2.3) ^ / 4 ^ б , 7 8 ч v9 = M £ % + £ 9̂ + £ ^ + £ Ял) 

where g~, g 2 , g4 are functions on B (1) satisfying 

(2.4) A -2 g 0 = ~ f0 g 0 |8Bm (1) » 0 

(2.5) A-2 g2 + A0 g0 = " f 2 g 2 |35 f f i(i) = o 

(2.6) A -2 g 3 + A1 g0 = " f 3 g 3 |aBm(D - o 

(2.7) A-2 g4 + A0 g2 + A2 g0 = " f 4 g 4 |3Bm (1) « 0 

The functions f̂ , f̂ , f̂ , are solutions of the following set of 
equations : 

(2.8) A -2 f 0 = ~1 f0|3Bm(1) = 0 

(2.9) A -2 f 2 + A 0 f 0 = 0 f j 3B (1) = 0 Z ' m 

(2.10) A -2 f 3 + A 1 f 0 = 0 fj3B (1) = 0 J ' m 

(2.11) A -2 f 4 + A 0 f 2 + A 2 f 0 = 0 f 4 | 3 B m (1) = 0 

Letting v 1 = <3>£(e
2f0 + e 4f 2 + e 5f 3 + e 6 f 4 ) we have Av2 = -v^+0(e ), 

9 ft 
A v 2 = 1 +0(e ) . Applying proposition 2.1 with N=1, f = v 2 we have 
v 9(p) = (è)E (T 2(1+0(e 6)) = (i)E (T 2 )+0(e 1 °) . To summarize, we A p p 
have the following: 

Proposition 2.3: The function v 2 defined by (2.3) - (2.7) satisfies 
V

2 I 3 B (e) = 0 = A v

2 l3B m (c) ' Av2 = -v 1 + 0 ( £

8 ) , A2v2 = 1 + 0 ( e f a ) , and 
m <j 

v 2 (m) = iEm(T £) + 0(e'°) when e + 0. 
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3. Determination of g^, ĝ  
In this section we shall prove 

Proposition 3.1. We have 

g = (1/2nr(1 - r ) - (1/8n(n + 2)) (1 - r ) 

*7 = P - 2 
i r n 

n+2 
6n (n+4) 

(1 - r ) - n + 3 
12n(n+2) (n+4) (n+6) 

(1 - r 4 ) 

+ t 1 - r Z 

24n (n+2) 
1 - r 4 

24n (n+2) 
1- r f 

24n (n+2)(n+4) 

where p = n p. . x.x.' is the Ricci tensor, r = ID l j 
n 

i=1 
x. and 

t = 
n 

i=1 
p.. is the scalar curvature. ~ii . 

Proof: Recall from the previous work [4] 

fn = (1/2n) (1 - r ) 

f 7 = P " 2 
t r n 

1 2 
1 - r 6n(n+4) + t 1 - . 4 

12n (n+2) 

A ~(r ) =2n, A_9(r ) =4(n+2)r , A 9 ( r ) =6(n+4)r 

An(r ) = -4-P , A n(r 4) = - i p r , A n(r b) = -2pr 4 

A_9 (p) = 2t, A_9 (r p) = 2xr + 2(n+4)p, A -(r p) = 2xr + 4(n+6)pr . 

A_(p) = \(p#R- 2p°p) , A n(r 2p) =^£-(p#R- 2p°p) - | p 2 , 

An (r p) = -̂r— (p#R-2p°p) - T p r , 

where in the last two formulas we have used the fact that AQ(fg) = 
fAQg+ gAQf if f= f(r) is a radial function and g is arbitrary. A 
lengthy but straightforward computation then shows that A_2

go = " f n ' 
A_2g2 = - f 2 - A Q g 0 , as required. Clearly both g Q /g 2 satisfy the re­
quired boundary conditions. 

4. Determination of g^(0) 
We introduce the Green's operator: 
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P: C°°(B (1)) m C°°(B ( 1 ) ) m 

CO — 
defined uniquely by the properties that for all feC (B (1)) 

A (Pf) + f = 0 in B (1) 
m 

Pf = 0 on 3B (1) . 

With this notation we have from (2.8) - (2.11) 

fn = pi 

f 2 = P A 0 f 0 

f 3 = P A 1 f 0 

f 4 = P A 0 f 2 + P A 2 f 0 

Similarly equations (2.4) - (2.7) can be written in the form 

% = p f o 

<?2 = P f 2 + P A 0 g 0 

9 3

 = P f 3 + P A 1 g 0 

g 4 = P f 4 + P A0^2 + P A

2 5 0 

= P 2 A f + P 2 A f + PA n g . + PA ? g n . 

Therefore to compute ĝ  we must f i rs t compute AQ f2' A 2 f 0 ' A 0 g 2 ' ^2^0* 
To handle the terms PAQg2 and PA2gQ we may use lemma 6.3 of [4]. To 
handle the terms P2AQf2 and P2A2fQ we invoke the following lemma, 
where the inteqrals are normalized so that / do = 1 

Lemma 4.1. Let j be the solution of the blharmonic Poisson equation — — _ ~ ' A 0 j = r g(0) in the unit ball B (1) and satisfying the boundary con-A m n~~ 1 ditions j = 0 and A_2j = 0 on the boundary 3B̂  ( 1 ) = S ~ . Then 
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j(0) = n + k + 4 
2 (k+4)n(n+k) (n+k+2) Sn-1 

g(6)d6 

Proof. Let G(x,y) be the Green's function for the biharmonic equa-
2 

tion A_2G=6 with the same boundary conditions. Then 
j(x)= / G(x,y)|y| kg(y/|y|)dy„ Let g = / g(0)d9 be the mean value 

B ( 1 ) Sn-1 

of g on the unit sphere. Then 

j (0) = 
m 

/ G(0,y)|y| k [g(y/ |y|)-g] + 
m 

G(0,y)|y| kdy . 

The f irst integral is zero, since G(0,y) =G(|y|) , a radial function. 
2 k-

The second integral is the solution of the problem A ̂ J = r 9/ which 
is directly computed as 

j (r) = cr 
(k+2)(n+k) 

1 - r 2 

2n 
1 - r K + 4 

(k+4) (n+k+2) 

Thus 

j(0) = rr 
(k+2)(n+k) 

1 
2n 

1 
(k+4)(n+k+2) 

which is of the required form. 
For small values of k, we have for example 

k = 0: j(0) = (n+4) 
8n (n+2) g 

k = 2: j(0) = (n+6) 
12n(n+2)(n+4) g 

k = 4: j(0) = (n+8) 
16n(n+4)(n+6) g 

We also recall the following integral formulas which were used in [4] 
where integration is with respect to the normalized uniform surface 

cn-1 measure on S 

Lemma 4.2 
Sn-1 

p - 2 
ir n 

2 
n(n+2) 

Il p II 2 
T n 

s n ~ 1 
P#R II oil2 

n 
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s n ~ 1 
p°p = II n II 

n 

Sn-1 
R#R = 1 

n(n+2) 
II D II 2 1 2 - jHRll 

s n " 1 

V p = 2 
n(n+2) At 

It is easily checked that this implies that 
s n " 1 

V P - 2 
xr n 

= -(2/3n) II p ir 2 
T n 
2 

Computation of P A2fg: We have 
A9fn = (1/90n) (9V p + 2R#R) 

Both of these terms are homogeneous with k=4. Applying the above 
lemmas 4.1 and 4.2 we have 

(P 2A 2f 0)(0) = n + 8 
90-16n (n+4)(n+6) 

18 
n(n+2) •At + 2 

n(n+2) llplr + yllRlr 

Computation of PA9gn: We have 

A9^n = on" (9V P + 2 R # R ) 1 
0 2 2n 

2 
2n(n+2) 

which is a combination of terms with k=4 and k=6. Applying lemma 
6.3 of [41 and lemma 4.2 above, we have 

(PA2gQ)(0) = n 2 + 20n + 48 
90*48n (n+2)(n+4)(n+6) 

18 
n(n+2) -At 4 2 

n(n+2) II p II +yllRll 

Computation of P AQf2: We have 

A 0 f 2 = P " 
2 

rr n 
0 

9n(n+4) 
(1 - r ) 
6n(n+4) 

7 
3 

(p#R- 2p° p) + 2'Tp 
3n 

Tpr 
9n (n+2) 

^hich is a combination of terms with k = 2 and k = 4. Applying lemmas 
4.1 and 4.2 we have 

(P2A f )(0)= » n 2 + 12n + 48 
432n (n+2)(n+4) (n+6) 

llpll2 2 
T n 

n + 8 
144n (n+2)(n+4)(n+6) 

2 
T 
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Computation of PA g.: We have 

A0 g2 = P - xr 
n 

Ao 
n+2 
2 2 6n (n+4) 

(1 - r ) n + 3 
12n(n+2) (n+4) (n+6) 

(1 - r ) 

n + 2 
6n (n+4) 

(1 - r 2 ) n + 3 
12n(n+2) (n+4) (n+6) 

( 1 - r 4 

p -
2 

xr n 

rA0 
1- r 2 

.2 4n (n+2) 
1- r 4 

24n3(n+2) 
1 - r6 

24n (n+2)(n+4) 

P - 2n 
ir n 

D(n+2) 
.9n (n+4) 2 

pr2(n+3) 
9n(n+2)(n+4)(n+6) 

n + ? 
2 2 6n (n+4) 

(1 - r 2 ) - n +3 
12n(n+2)(n+4)(n+6) 

•d - r ) 2 
3 
(p#R-2pop) H 2xp 

3n 

+ t 0 
36n3 (n+2) 

or 
18n (n+2) 

4 
pr 12n (n+2)(n+4) 

which is a combination of terms with k = 4 and k = 6. Applying lemma 
4.2 above and lemma 6.3 of [4] we have after some lengthy algebra 

(PAQg2)(0) 
n 5 + 2 7n4 + 2 90n3 + 1312n2 + 2 784n + 2 304 

432nJ(n+2)1(n+4)(n+6) 
Il p II 2 2 

T n 

5n2 + 106n + 240 
864n (n+2) (n+4)(n+6) 

2 
t 

These results are recorded in the table in the Appendix. We 
summarize the result in the following form. 

Theorem 4.3. For small e > 0 

ÌE Tz )= c ne + c,e t + e° mV e ' 0 1 m c?Ax + c t +c llpll +c IIRII m +
 0 e 1 0 ) 

where the constants c ^ c ^ c ^ c ^ c ^ c ^ depend on the dimension n. In  
fact cQ = gQ(0) and ĉ  = g2(0) given by proposition 3.1; c 2 ,c^,c^,c^ 

n 
are given in the appendix. Here t= ^ P•• is the scalar curvature 

i=1 1 1 
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n 2 and At = \ \j . . t is the Laplacian of the scalar curvature. Also 
i=1 1 1 "~ 

IIRII = ^ j ^ j * and HpII = P^jj*' are the lengths of the curvature  
tensor and the Ricci curvature. 

5. Converse theorems 
Theorem 5.1. Let (M,g) be a Riemannian manifold such that for al l 
meM we have Ê CT̂ ) = const^ £ 2 + 0(£8) and E^CT2) = const. £ 4 + 0(£ 1 Q) 
when £^0. Then (M,g) is locally isometric to (R n ,g Q). 

Proof. From the f i rs t hypothesis and theorem 1.1 of [4] we have that 
for al l meM, t =0 and IIRII = II p II . From the second hypothesis and 
theorem 4.3 above we have in addition that c - II p II +c_llRll =0. This 

4 K m 5 m is possible for IIRII / 0 if and only if c„ + c = 0 . From the table of 

values in the Appendix this entails the equality 

18(n+4)2(n+6) (2n2 + 25n + 48) = 33n5 + 792n4 + 8292n3 + 38208n + 69120 

Multiplying out the left side i t is seen that the left side is 
s t r ic t ly greater than the right side for every n >1. Therefore c, + c c ^ 0 and we must have llRll =0 = II p II and (M,g) is locally iso-4 5 m m 
metric to (R . 
Theorem 5.2. Let (M,g) be a Riemannian manifold such that for a l l 
meM we have E

( M ' g ) (T ) - E ^ ' 9 > (T ) = 0 (£8) and E

( M ' g ) (T2) -—r m £ m £ m £ 
\ ' ^ \ 2 10 E (T ) = 0 (e ) when £ 4-0 where (M, ,g, ) is a space of constant m £ a a 

sectional curvature X. Then (M,g) is locally isometric to (M^,g^). 

Proof. From the f i rs t hypothesis and theorem 1.1 of [4] we have that 
for a l l m £ M 

t = t(A) m 

IIRII2 - lip II2 = IIR(X) II2 - Hp (X) II2 

m m 

where t(A), R(A), p(X) are the values for a space of constant sec­
tional curvature. From the second hypothesis and theorem 4.3 above, 
we have further 
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c, lip II2 + cJlRll2 = c„ Up (A) II 2 + ccllR(A)ll2 

The proof of theorem 5.1 above shows that c. +c ^0 . Therefore the 
above equations uniquely determine the values llRll = llR(A)ll , 
llpllm= llp(A)ll . I t is well known that this implies that (M,g) has 
constant sectional curvature. 
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6. Appendix. Table of the coefficients of g4(0) = c ^ t + c^x2 + c4llpll2 + c s It RII2  

coefficient of 

in 
At Il p II 2 IIRII2 

P2AQf2 0 n 2 •+ 12 n + 48 
432nJ(n+2)(n+4)1(n+6) 

0 

l p V o n + 8 
80n3(n+2)(n+4)(n+6) 

n + 8 
720n (n+2) (n+4) (n+6) 

n + 8 
480n3(n+2)(n+4)(n+6) 

PAQg2 0 n 5 + 27n4 + 29 On3 + 1312n2 + 2 784n + 2 304 
4 32n3(n+2)2(n+4)3(n+6)2 0 

P A2^0 
n 2 + 2 On + 4 8 

240n3(n+2)2(n+4)(n+6) 
2 

n + 20n + 48 2160n3(n+2)2(n+4)(n+6) 
2 

n + 2 On + 4 8 1440n3(n+2)2(n+4)(n+6) 

TOTAL 

C2 = 

2n2 + 25n + 48 
120n3(n+2)2(n+4)(n+6) 

C4 = 

3 3 n 5 + 792n4 + 8292n3 + 38208n2 + 8352On +69120 
12960n3(n+2) (n+4)6 (n+6) 

C5 = 

2n2 + 25n + 48 
720n3(n+2) (n+4)(n+6) 
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