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§ 0 Introduction 
Let M be a complete noncompact Riemannian manifold without 

boundary. The trace of the Hessian operator defined on C 
functions on M is known as the Laplacian and is denoted by A. 
Our purpose is to discuss uniqueness of solutions to the Laplace 
equation and the heat equation restricted to suitable function 
spaces. Typically, and in this case, our function spaces to be 
considered are the spaces of LP functions defined on M, denoted 
by LP(M) for p £ Í0,«>] . 

§1 The Laplace Equation 
The Laplace equation is the equation for harmonic functions 

given by 

(1) Af(x) = 0, for al l x £ M. 

We will insist upon the function f be in LP(M), ie. the p— power 
of the absolute value of f is integrable with respect to the 
Riemannian measure induced by the given Riemannian metric. We should 
point out that al l constant functions are harmonic, moreover they are 
in L (M) . For p < oo, the situation divides into two cases. The 
f i rs t case is when M has finite volume, then all constant functions 
are in Lp (M) for any p £ (0,°°). The second case is when M has 
infinite volume, then al l of the constant functions, but zero, are 
not in LP(M) for any p e (0,°°). 

* 
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For the sake of simplicity, we say M satisfies property ffi 
if al l harmonic functions on M are constants (in the 
appropriate sense described above). We also say M satisfies 
property e>̂  if al l nonnegative Lp subharmonic functions on M 
are constants. Since the absolute value of a harmonic function is 
subharmonic, we observe that M satisfying implies i t also 
satisfies ffi m 

The f i rs t result towards finding when does a complete manifold 
satisfy e)P or was due to Greene-Wu [5] in 197 4. They 
established that if the sectional curvature of M is nonnegative, 
then M satisfies for p £ [1,°°). 

Later in 1976 , Yau [12] showed that when p £ (1,°°), 
completeness of M automatically implies property without any 
extra geometric condition. He also proved that there does not exist 
any nonconstant nonnegative harmonic function on a complete 
manifold for p £ (0,1). 

For the case when p = °°, in another art icle of Yau [11] , he 
showed that if the Ricci curvature, Ric^, of M is nonnegative, 
then M satisfies property %°°. This hypothesis on the Ricci 
curvature is sharp, since on a simply connected manifold with -1 
curvature there exists abundance of bounded harmonic functions. 

As i t turned out, in an unpublished paper of Chung [2], he gave 
an example of a complete manifold which does not satisfy % .̂ 
Recently, Sullivan also produced examples of manifolds which do not 
satisfy for p sufficiently small (p < 1). These examples 
showed that unlike those cases when p £ (1,°°), extra geometric 
assumption must be imposed on M to ensure property for 
P € (0,1]. 

Last year, in Garnett's thesis [4], she proved that if M has 
bounded geometry, then M satisfies % . However, up to that point, 
i t is almost certain that both theorems of Greene-Wu and Garnett for 
the case p = 1 are not optimal. 

In recent work of R. Schoen and the author [8], optimal 
curvature assumptions on M was derived to ensure property for 
any p 6 (0,1]. To summarize the situation, we separate the cases 
when p = 1 and p < 1 into the following theorems. 

Theorem 1: Let M be a complete Riemannian manifold. Suppose 
r^ (x) is the distance function from x^ . If there exists 
positive constants C and a such that 
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RicM(x) 1 -C(l+rQ(x)2)[log(l+r0(x))2] 
for al l x £ M, then M satisfies property e)\ 

Theorem 2 : Let M be a complete Riemannian manifold of dimension n. 
There exists a constant 6(n) depending on n, such that if 

RicM(x) > -C rQ(x)""2 
for some C <̂  6 (n) , then M satisfies for al l p £ (0,1). 

We remark that Theorem 2 is best possible. In fact, in [8] we 
followed Sullivan's construction to produced examples of manifolds 
with sectional curvature behave like 

K(x) ~ -3 [(l-3)rQ(x)J"2, 
for 3 < 1 as r^ (x) •> °°, which does not satisfy property for 
p < 23 - 1. 

For the case when p = 1, we constructed an example of a 
manifold whose curvature behaves like 

K(x) ~ -C rQ(x)2+£, 
for positive C and e, which does not satisfy property . This 
indicates that Theorem 1 is almost best possible, except when 
Ric^lx) behaves exactly like -C r^(x) , which falls outside the 
scoop of both the theorem and the example. However, al l evidence 
points toward the validity of property %̂  for this cr i t ical 
situation. We have also provided an example of a complete manifold 
which possesses a nonconstant nonnegative L harmonic function. 
This implies Yau1s theorem cannot be generalized to the cr i t ical case 
of p = 1. 

The method of proof for both Theorem 1 and 2 also gives the 
following: 

Theorem 3: Let M be a complete Riemannian manifold. M satisfies 
property e)P for p £ (0,1], provided that one of the following 
conditions is fulfilled: 
(i) M is simply connected with nonpositive sectional curvature. 
(ii) M has Ricci curvature bounded from below by a (possibly 
negative) constant and the volume of any unit geodesic ball is 
bounded from below by a positive constant independent of the center 
point. 
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Observing that if f is a function on M satisfying 
Af = Af, X > 0, 

then i t s absolute value, f , is a nonnegative subharmonic function. 
We have the next corollary. 

Corollary 1: If M satisfies either the hypothesis of Theorem 1 or 
Theorem 3, then there does not exist any nontrivial L1 function 
satisfying Af = Af for A > 0. 

§ 2 The Heat Equation 
We will now discuss the heat equation 

(2) (A-3/8t) F(x,t) = 0 
for al l x £ M and t £ (0,°°) , with in i t ia l condition 
(3) F(x,0) = FQ(x). 
One constructs a minimal fundamental solution for the heat equation 
on M as follows: 

Consider "̂Dn̂  be a compact exhaustion of M. Let Hn(x,y,t) 
be the fundamental solution for the heat equation on with 
Dirichlet boundary condition. One argues that the sequence of 
fundamental solutions Hn(x,y,t) must converge uniformly on any 
compact subdomain (see [3,10]), hence produces a fundamental solution 
on M defined by 

H(x,y,t) = lim Hn(x,y,t). 
n->°° 

Observing that since L Hn(x,y,t) dy < 1 for a l l x £ DR and 
J N N N 

t > 0, H(x,y,t) must satisfy 
H(x,y,t) dy < 1 

JM 
for a l l x € M and t > 0. Moreover, H(x,y,t) is the minimal 
positive fundamental solution for the heat equation on M. Using 
H(x,y,t), one defines a semi-group on L̂ (M) for all 
P 6 [ 1 , » ] . 

On the other hand, another semi-group can be defined abstractly 
in the sense of Strichartz [10]. We will outline the construction as 
follows: The domain 2 of the Laplacian A is defined to be the 
set of functions f such that each is a L2 limit of some sequence 
of functions in C (̂M), and also Af̂  converges to the 
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distribution Af in L . I t is known that A is essentially 
self-adjoint on ¿1. By the spectral theorem, we can form the 
operator e^t. Strichartz proved that ê fc is a strongly continuous 
contractive semi-group defined on LP(M), for 1 < p < °°, with A 
as i t s infinitesimal generator. Moreover, he showed that ê fc is 
the unique semi-group on LP(M) which is strongly continuous, 
contractive, and satisfying the heat equation, for p £ (0,°°). In 
particular, i t implied that P = e^t on LP(M) for p £ (0,°°). 

I t is our main purpose here to discuss the cases when p = °° 
and p = 1. In the f i rs t case, since C (M) is not dense in L (M) , 
the existence of L (M) semi-group with A as infinitesimal 
generator is impossible. However, one can s t i l l discuss, uniqueness 
of solutions for the heat equation in L (M) in the following 
setting. Assuming F(x,t) is a solution of (2), with in i t ia l data 

lim F(x,t) = F (x) 
t+0 U 

in L (M). In particular, we are assuming that F(x,t) 6 L (M) for 
all t £ [0,e). Then we ask if F(x,t) is determined by i t s in i t ia l 
condition FQ(X). 

In [7], L. Karp and the author succeeded in deriving sharp 
geometric conditions on M to ensure uniqueness of (2) in L (M) 
(as in the sense described above). 

Theorem 4: Let M be a complete Riemannian manifold. Suppose 
x 6 M and B (x ) is the geodesic ball of radius R centered 
at x in M. If 

Vol(BR(x0)) < eCR 

for some positive constant C, then for any L solution F(x,t) 
of (2) with 

lim F(x,t) = F (x) 
t->0 U 

in Lj_oc (M) t F(x,t) is uniquely determined by F^ (x) . 
In particular, (2) has unique solution in L°° (M) since 

L (M) c I^oc(M) . 
Our assumption of the volume growth of M is best possible due 

to an example of Azencott [1], which is a simply connected manifold 
with negative curvature but possesses nonunique solutions for (2) on 
L (M). Particularly, Azencott's example has sectional curvature 
behave like -C rQ(x)2+£ for some positive constants C and e. 
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Using a standard comparison theorem argument, one checks that 
Vol(BR(x0) ) > e 

hence confirm the sharpness of Theorem 4. 
We should point out that uniqueness on L°° (M) of (2) is 

equivalent to the equation 
H(x,y,t)dy = 1, 

M 
for al l x 6 M and al l t € [0,°°). In particular, since H(x,y,t) 
is the minimal positive heat kernel, we deduced the following 
corollary. 

Corollary 2: Let M be complete, and assume that for some xn £ M 
Vol(BR(xQ)) < eCR . 

If K(x,y,t) is a positive fundamental solution of (2) with 
K(x,y,t)dy < 1 for al l x £ M and t £ [0,°°), then 

M 
H(x,y,t) = K(x,y,t) and K(x,y,t)dy = 1. In particular, the 

JM 
kernel corresponding to the heat semi-group e ^ constructed by 
Strichartz is the same as H(x,y,t), hence eAt = Pt« 

We will now consider the case p = 1. Following Strichartz1s 
argument in [10], and applying Corollary 1 and Theorem 4, the 
following theorem was proved in [8]. 
Theorem 5: Let M be a complete Riemannian manifold satisfying the 
hypothesis of Theorem 1. Then eAt is a strongly continuous 
contractive semi-group on L (M) with A as infinitesimal generator. 
Moreover eAt is the unique such semi-group on L̂" (M) . 

Other than the LP spaces on M, another natural function 
space is CQ(M), the space of continuous functions on M which 
vanish at infinity. This space introduces the Dirichlet boundary 
condition on M. By the maximum principle, eAt = Pt is the unique 
solution on CQ(M). However, i t is desirable that e fc is a 
strongly continuous semi-group on Cn(M). It turns out that the 
only condition one needs to verify for e being a strongly 
continuous semi-group on CQ(M) is the preservation of CQ(M) by 
eAt, ie. eAt (CQ(M)) c CQ(M). In [7], Karp and the author also 
proved: 
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Theorem 6: Let M be a complete Riemannian manifold. Suppose 
RicM(x) > -C rQ(x) 

for some positive constant C, then eAt(CQ(M)) c_ (M). In 
particular e ^ is a strongly continuous semi-group on (M). 

In [7], we also gave examples of manifolds with curvature 
satisfying 

K(x) ~ -C r()(x)2 + £/ 
and eAt(CQ(M)) £ CQ(M). This implies the sharpness of Theorem 6. 

We remark that the above mentioned example is of finite volume, 
hence probabilistically complete. We also feel that may be one can 
strengthen Theorem 6 by imposing assumptions on the volume decay rate 
of geodesic annuli on M rather than on the Ricci curvature. A 
natural guess is that if VoltB^x^) - B_ , (xn) ) > e then 

At ~~ — e (CQ(M)) c CQ(M). However the authors of [7] were unsuccessful in 
proving this statement. 

We shall point out that recently Seeley [9] studied uniqueness 
type properties for the operator A + V + q-3/9t on a complete 
Riemannian manifold, where V is a vector field on M and q is a 
function defined on M. His results were derived under the 
assumptions of the existence of some exhaustion functions on M. 
Though the point of view he took was different than ours, but there 
are interesting overlaps in some cases. 

In [13] and [3], Yau and Dodziuk studied eAt and Pfc 
respectively under the assumption that M has Ricci curvature 
bounded from below. In [13], Yau proved that with the Ricci 
curvature assumption, e t" l E 1 and eAt(C (M)) c: Cn(M). While in 
[3], Dodziuk proved that e = P and uniqueness of solution of 

(2) on L (M) when Ricci curvature has lower bound. 
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