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GEOMETRICAL INEQUALITIES AND MIXED VOLUMES IN THE LOCAL THEORY OF BANACH SPACES 

V.D. Milman 

1. Introduction. 2. Background; Search for Euclidean sections of a con-

vex body. 3. Background; mixed volumes and geometrical inequalities. 

4. Euclidean décomposition of an arbitrary normed (finite dimensional) 

space. 5. Projections onto Euclidean sections. 6. Computation of mixed 

volumes through a Levy mean approach. 7. Problems. 

1. INTRODUCTION 

In this paper we are studying finite dimensional linear normed space (so call 

ed Local Theory of Banach spaces). Since every such space is uniquely defined by 

some central symmetric compact convex body, that is its unit bail, our investiga­

tion is actually about this geometrical object. Therefore, in this paper we advo-

cate to combine known analytical and combinatorial approaches in Local Theory with 

a pure geometrical classical study of convex bodies and the deep theory of geomet­

rical inequalities. This is the main purpose of the paper. 

However we must remember that a unit bail as a geometrical object is defined 

only up to affine transforms and that questions which arise are related to a li­

near structure of a space. Thèse problems usually involve a description of some 

standard simple subspaces and projections on them. In this short introduction I 

will recall some known results especially those related to the main stream of our 

discussion. 

1.1 Let X and Y be n-dimensional normed linear spaces. The distance 

(Banach-Mazur distance) d(X,Y) = inf{||T||•||T-1|| over ail linear isomorphism 

T : X -> Y}. Obviously d(X,Y) * 1 while d(X,Y) s 1 +e means that X and Y 

are isometrically close (we say (1+e)-isomorphic). In the geometrical language 

this means that two unit balls K(X) = {x € X:||x|| $ 1} and K(Y) may be put by 

an affine transform [say tp:Y -> X) in the same linear space (say X) in a posi­

tion 

K(X) czcp(K(Y)) c d(X,Y)K(X) c (l+e)K(X). 

So after such an affine transform - two geometrical bodies K(X) and K(Y) 

become close in a geometrical sensé. 
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We introduce the family of n-dimensional spaces which plays a spécial rôle in 

Local Theory, the so called £^-spaces (for 1 £ p £ °°) . 

£n is a linear n-dimensional space X with the norm for p<°° : I I (a. )T} ,11 = 
p r 11 î i=l11p 

- (.Sja . lP )17? ((a^lj = x € X) and for p = »: | | (a )̂ |\œ = max | a. | . 
l<i^n 

1.2 It is well known (F.John, 1948) that dCX,^) * ^ and if d(X,^) is 

close to that extremal case, that is dCX,^) > c/n (for some fixed constant c>0 

and n large enough) then ([M.-W.]; see also [X] ) X contains a subspace E, 

dimE = k, such that i) d(E,^1) $ 1 + e and ii) k ^ (An n) ^ ' J where 

a(c;e) > 0 is some number depending only on c and e > 0. 

1.3 DVORETZKY THEOREM (real case [D]; a new proof which covers also the complex 

case [M]). 

a) For any e > 0 and integer k there exists N(k;e) such that for each inte-

ger n ^ N(k;e) every n-dimensional normed space X^ contains a subspace 

E^Cdim E^.=k),(l+e) -isomorphic to an Euclidean space. 

h) [M] The above number N(k;e) is bounded by the number exp{c(e)k} where 

c(e) > 0 dépends only on e >0 and this estimate is exact: for the space £^ 

the above number N(k;e) ^ exp(ck£n 1/e) for some absolute constant c. 

(We advise to pay attention to a geometrical interprétation of both results 1.2 

and 1.3, which states an existence of spécial central symmetric sections of a sym-

metric compact body). 

The logarithmic estimate in 1.3. being précise in a gênerai case can be im-

proved significantly in most cases. We give a few examples of such an improvement. 

Let X be an n-dimensional normed space and X* be its dual. We dénote 

dCXjjL^) = d > k = k(X;e) being the largest integer such that X contains an 

(1+e)-isomorphic copy of a k-dimensional Euclidean space Standardly, by the 

same letter c we will dénote différent absolute constants. 

1.4 THEOREM [M]: a) k(Xn,e) c(e) n/d^ wheve c(e) >. ce2/^ 1/e. 

b) Important remark : JTf a family of spaees {X^} /zas a uniformly bounded dis­

tance from ^2^dn " K^ ~^en k^Xn,e^ ^s VvoVor>t^ona^ to NJ bX this reason we 

shall estimate only k(Xn,l) which will simply be defined as k(X ). 

1.5 THEOREM [FLM] : a) k(Xn)-k(Xn) * c n / ^ c n (because, by 1.2, dn £ /n^ 
n 

In comparison with 1.4 it means that 

either k(X^) or k(X^) is at least cn/dn. 

b) There exists a function k = k(n;a) where k and n are %ntegers and a> 0 

and k(n;a) ->• 00 if n -> 00 and a->- 0 such tha.t for every XN - n-dimensional 
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normed space either kCX^) ^ cna or X^ contains a 2-isomorphic copy. of £^ 

for k = k(n;a)• 

Note that a function k(n;a) may be precisely estimated using [Al.-M.]. 

1.6 &p-Spaces a) for 1 S p < 2: k(££) > en [FLM] 

b) moreover> the space ^ contains for every 1 <p ^2 (l+e)-isomorphic copy 

0 / for k £ c(e)n where c(e) dépends only on e > 0 ([J, -Sch] ; [P^] ) . 

c) Krivine Theorem [K] (the spécial case). Fixed U p For every T>1 

e > 0 and7 an integer k there exists an integer N(T;k;e) such that for every 

n > N and n-dimensional normed space X^ with d(X^,£p) ^ T contains (l+e)-£so-

morphic copy of £^ (Of course, the spécial cases p = 1;2;°° were known previous-

ly). 

It is known that for p £ 2 the inverse function k(T;n;e) ^ c,nC2e (for 
c?-fe/T)P 

some absolute constants ^ and c^) and it is proved that k > c^(e;T)n 

[A.-M2]. 
Previous examples 1.2. - 1.5. could lead to the conclusion that power-type 

estimâtes on dimensions of subspaces which we are looking for are typical while a 

proportional type (which we had at 1.4, b and 1.5. a and b) is an exceptional one. 

(There is no mention here of the Figiel-Johnson [F.-J.J resuit, although strongly 

related to the matter, because it uses spécial operator norms which are not intro-

duced here). However we show in this paper, that there exists a non-trivial possi-

bility to develop a proportional theory and this will be our second purpose. 

2. BACKGROUND; SEARCH FOR EUCLIDEAN SECTIONS OF A C O N V E X BODY. 

We will describe briefly in that section two methods for extracting an almost 

Euclidean subspace from a finite dimensional normed space. The first approach is 

based on the so called measure concentration phenomena (for more information we re-

fer to the original papers [M],[FLM], [A-M ] , [G-M] or to the book [M-Sch]]). 

One new application of this method is also given (see 2.4-2.5). The second app­

roach involves a volume computation and was applied up to now to a few spécial but 

important examples (see [Ka]-[Sz] or the Lectures [Pel]). 

We start with a few définitions which are used throughout the paper. We con-

sider an n-dimensional linear space lRn with an inner product (x,y) which indu­

ces the Euclidean norm |x| (x € Rn, y € IRn) . Dénote D = (x £ ÏRn:]x|s 1} and 

S(E) = {x e E: |x| = 1} for every subspace E Q lRn. 

Let: Sn_1 = (x 6 Rn : |x| = 1} be the Euclidean unit sphère in IR11, 0(n) be the 

othogonal group, and G , (1 £ k < n) be the homogeneous spaces of k-dimen-
n, K 

sional subspaces of Rn (so called Gmssmann manifolds). 

We dénote by the same letter V- the normalized Haar measure on each of the above 
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manifolds, 

We consider also another norm ||'|| in the same underlying linear space ÎRn and 

let for every x € |Rn 

(2.1) i|x| $ ||x|| $ b|x|. 

The norm | | • I j and the Euclidean norm | «| standardly define the dual norm 

| |x| |* = sup{ 1 1 : y € JRn \ (OH. It is clear that 

i|x| * ||x||* s a|x|. 

2.1 LEMMA (P. Levy [L] ) . Let A c s" 1 and y (A) ̂  i, Define Ae = {x € S11"1: 

distance (x,A) £ e} for a fixed e > 0. Then u(A ) 1 - exp(-e2(n-2)/2) . 

REMARK: It is clear that for each x € Sn_1 

y{T€0(n) : Tx G A£} = y(A ) 

and therefore for every set N = {X-ĵ -i 01 ̂  * 

y{T€0(n) : TW c A£} ̂  1 - N exp(-e (n-2)/2) . 

So, if N < exp Ce (n-2)/4) then there exists a subset of 0(n) with measure ex-
ponentially close to 1 such that TW c A for any T from this subset. Choose 

£ 2 
now a ô-net (ô>0) of a fixed k-dimensional subspace (for k =[e n/iojin1/ô̂  as 
the spécial set W = O^}^. The above Remark and an estimate on the cardinality 

N of the ô-net prove the following lemma: 

2.2 LEMMA QM] ) . Fix e > 0 and k <[E ̂ lOtnVfi1 
If A e s " " 1 and y (A) 4 

then 

y{E € G . :S(E' n,k ' 
AE+a} 

1-2 exp(-e2n/4) 

Below, in sections 2.3-2.5, we take ô = e, 

2. 3 For every A c S""1 we define 

BA,k {E £ G . : E n A f 0}. n, K 

and 

TA,k {E G G , n,k S(E) c A}. 

LEMMA: Fix e > 0 and k * t£ n/l(Hnl/e] 
If µ(BA,K) 2 

2 exp(-e n/4) 
then 

µ(IA4E,k) 1 - 2 exp(-e2n/4) . 

PROOF: First we show that µ(A2E)1/2 Indeed, if not, then "A2e > > 2 and by 
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Lemma 2 , 2 

y(E G GN k:S(E) C A 2 e 4 Ac}>1 2exp(-e2n/4). 

However this contradicts the estimate on µ(BA,K) ̂) • Therefore ^^ç) > j and 

agaîn using Lemma 2 . 2 we conclude the proof. 

2.4* We return to study the normed linear space (JR̂| | *| |) which is denoted by X. 

We also dénote X = (Rn,l|*|l*). Fo* E € G , we write E ^ x to indicate that 

we consider E as having the norm || *||. Similarly, E c* X or E Q Rn mean 

that E Kas the norm ||'|| or |•| respectively. It is clear that 

dCX,^3 S à = a.b. 

THEOREM. Fix j > e > 0 and k $ [e ^lo&nî/e-' ' For eac^ décomposition 
d = a •b1(a1>0) there exists a subset E c G^ ^ of a large measure 

y(E) 1 - 2 expC-e n/4) such that 
either for each E € E 

dCE G> X*, E QlRn) 1 
Î 4F ai 

or for each e e E 

d(E q; X; I^4F aiI^4F ai 

It is sufficient, of course, to prove the theorem with the original â  = a 

and b1 = b, We prove first the following lemma: 

LEMMA, If x £ S11"1 (e.i. |x| = 1) and ||x||* < (1 - 4e) then for every 

z G Sn_1 such that |z - x| < 4e we have llzll £ 1. 

PROOF is obvious: ||zi |(l-4e)>||x||•||z||£ |(x,z)| = |(x,x) + (x,z-x)| ̂  l-4e. • 

Return to the proof of the theorem. Let A* = {x G S :||x|| £ 1 - 4e}. Then 

by the preceding Lemma (Â ) ̂  c= A = {z G Sn r | | | | ̂  l}. Using the notation of 

2.3 we have 

either y(\,kCGn,k) 1 - 2 exp(-e n/4) 

or µ(BAc*,k) 2 
2 exp (-e n/4] 

(thèse two sets are just complemented in G , ). In the first case we have found 

the large subset I. , c G , such that (l-4e)|x| $ ||x|| $ a|x| for every Â ,K n,K 
E € I. , and every x € E. It means that we may choose E = I . In the 

second case, by Lemma 2.3 we have the set IfAcl „ n c I* i such that 
2 *J4e,k A,k 

u(I. c: Gn ̂ ) ̂  1 - 2 exp(-e n/4) and for every E £ I. , and x £ E 
| x | £ | | x | | <:b|x 
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We will mostly use this theorem with 1 
£ = 8 

and k = [AQn] for A = 1/1300. 

2.5 COROLLARIES: a) Let d(X,£^ d. Then for k = [^n](An = 1/1300) 

either X contains a k-dimensional subspace E_, d(E,£?) £ /d 

* k t— 
or X contains a k-dimensional subspace F, d(F,£2) < 2/d. 

(This corollary shows that 1.5.a follows from 1.4 ; Moreover, it gives an inter­

prétation of 1.5.a. in terms of a "proportional" theory : k in 2.5.a is propor-

tional to n), 

b) Let d(X ,A9) = d . If there exists a > 0 such that every subspace E X3 
.n . k * 

dim E = k ^ A^n, satisf%es d(E,&2) ^ ^ n * then there exists a subspace F X > 
k F dim F £ AQn4 such that d(F,£?p<: 2/a. 

(It is the case, for example, for 00 > q > 2, and it gives again 1.6.a), 

c) STATEMENT : For each a > 0 there exists A > 0 such that every n-dimensional 
n * 

normed space X with d(X,#2) = d contains a subspace E X and E contains 
a subspace F E such that k = dim F ̂  An and d(F,£2) $ 2da(*2na/2). 

To prove the statement, we apply Theorem 2.4 (or 2.5.a) repeatedly a number of 

times. (A much stronger resuit is proved in Section 4). 

2.6 Let f(x) be a real valued function on Sn *:f(x) £ C(Sn * ) , and w^(e) = 

= sup{|f(x) - f(y)| :|x-y| £ e} be the modulus continuity of f(x). For any % £ 1R 

define A* ={x € Sn_1:f(x) * £}, A~ = (x € Sn_1:f(x) £ £}, and A£ = (x £ Sn_1: 

f(x) = £} We say that L~ is the Levy mean of f(x) if y (A* ) * i and 
^ t Lf z 

y(A. ) ̂  T. Applying 2.1-2.2 to the intersection of the e-neighbourhoods of 
+ Lf Z _ 

AL£ and A L£ we have: 

LEMMA: Fix e > 0 and 6 > 0. For each k £ 
e 

iOAnl/6 
n there exists a k-dimensio­

nal subspace E ĉ lRn such that 

( 2 . 2 ) |f(x) - L£| < wf(e) 

for x in some 6-net of S(E). It means> in partieular, that | f(x)-Lf|<wf(e+ô) 

for every x G S(E). 

2.7 However, e and ô in 2.6» Lemma, differently influence an estimate on k 

and it becomes important when we apply this Lemma to the function r(x) = ||x||. 

In this case it follows from (2.1) that w (e) £ be. Take e so small that 

be S so'Lr for SOme sma11 but fixed eo ^ remember that b/Lr usually dépends 

on n and may be very large). It is possible to show that there exist K(<S;CQ) 

such that 
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a) (2.2) implies |r(x) - LR| < I C C Ô ^ I L for every x € S(E) 

b) K(6;eQ) -> 0 (<5 -> 0 and eQ-> 0). 

By this reasoning we have proved the following statement. 

STATEMENT ([M]; see also [FLM]). Let a norm \\'\\ be given in »Rn, and let it 

be connected with the Euclidean norm |* | by the inequalities(2.1) (i.e. a * |x|^ 

I |x| |^b|xj /or every x£Rn) . Let L t/ze Levy mean of the function r(xï = | |x | | 
r . e2 Lr 2 

and let a number e > 0 be given. Then for each integer k $ c £n 1 / c ' n̂ ~17̂  

(where c is some absolute constant) there exists a k-dimensional subspace E 0/ 
Rn Such that 

(2.3) Cl-e}Lr|x| $ | |x| | ̂  Cl + elLr|x| 

for every x € E, Moreover, subspaces which don't satisfy the above inequalities 

(2.3) have a measure at most exp [-̂ p- 'O^/b)2]. 

To use this Statement in order to estimate the dimension k of an "almost" 

Euclidean section of X = (Rn, | | * | |) one has to estimate L_̂ /b from below. It is 

much easier to deal with 

M 
r xés"-1 

I |x| |dpCx) 

instead of L^. The following remark is useful for this purpose. 

REMARK [FLM]. If b ^ then there exists an absolute constant C such that 

|L - M I <C. 
1 r r 1 

Results 1.3 - 1.6a were obtained by estimating L^/b or M^/b from below. In 

[FLM] this estimate was connected with the so called "cotype" - condition. We pass 

now to a différent way of estimating this quantity through a volume ratio. 

2.8 FINITE VOLUME RATIO . Let Voln be the usual (n-dimensional) Lebesgue measure 

on |Rn normalized (for example) so that the induced measure on Sn * coincides 

with y(x). It means that VolnD = iy(Sn_1) = 1/n. Let K = {x E IRn:||x|| ̂  1} 

dénote the unit bail of X = QRn,II•I h. Assume that L„ = 1. Then 

Vol K n D 
1 

? 
Vol D (and, also, Vol[K fl 31/nD] 2 Vol D) 

The following lemma is an easy conséquence of this inequality. 

LEMMA: Let Vol K £ Cn Vol D. Then Lr >, l / ^ ^ C ) . 

Therefore, the Statement 2.7 implies: 
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Let | |x| | < |x| for every x G IRn (i.e. b = 1) and Vol K CnVol D (we 

say, following [Sz], that X has a finite volume ratio - f.v.r.). Then for each 

z > 0 there exists A Ce) > 0 depending on e only such that for each integer 
2 

k < A(e)n/C X contains an (1+e) - isomorphic copy of £^• 

However in the case of f.v.r. a much stronger resuit is true: X contains a k-

dimensional cp(C,A)-isomorphic copy of even for k « An and A say3 is 

equal to 2/3 (or any other number <1). The above function tp(C,A) dépends only 

on C and A < 1. It was first observed by Kashin [Ka] for £^(£^ has a f.v.r.) 

and later by Szarek [Sz] in a gênerai case. We will sketch Szarek's proof with 

some minor additional information as it will be used in Section 4. The proof of 

the following three Lemmas may be found, e.g., in [Pel], Lecture 1. 

2.9 Assume ||x|| £ |x| for every x G IRn and that 

v.r. K dif,(Vol K/Vol D)1/n < A. 

LEMMA 1.: Let Zp = {x G S :|[x|| < p}. Then 

y(Z ) < (Ap)n. 
P 

LEMMA 2.: For each integer k < n and a Borel set R c Sn * we define 

E, = {Ç € G , :y (B D 0 < CB) ) (we write y, to emphasize that we con-
K n,k k -1 , -. n -1 k -1 

sider measure on S(Ç) = S " ) . T/zé?n yf£ G G v: Ç G E } > 1 - 1/T and 
n,K K 

G G v : Ç G E, arzd £ GE , } > 1 - 2/T (here K means the (n-k) -dimensional 
n, K K n—k 

subspace which is orthogonal to Ç ) . 

LEMMA 3: If E is a k-dimensional subspace of X and for some ç>, C < p < 1, 

and a > 0 

yk_x{x G S11"1 n E: I |x I | < p ) < a 

then for every x G E 

(P- ~2 ) 1 * 1 $ | | x | | <? |x| . 

THEOREM ([Sz]): Let v.r.K ^ A. 

1) Fix 0 < A < 1 and t > 1. Then for each k < An there exists a subspace E, 

dim E = kj, such that 

2 
1 

'(tTTA)6 
| x | $ | | x | | £ I x l 

where 6 = 1/(1-A). The normalized Haar measure y of such subspaces in Gn^ ^s 

at least 1 - l/tn. 
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2) There exists a subspace E, dim E=[n/2] such that 

1 

2[rfrA)2 l x l ^ l l x M < l x l 

for every x € E and every x € E"̂~. The measure y of such subspaces in G 
n n,[n/2] 

^s at least 1 - 2/t 

PROOF of 1). Use Lemma 1 of this section for p = l/(twA)e. Then y(Zp) * (Ap)n. 

By Lemma 2, for T = tn and k = [Xn] + 1 there exists a k-dimensional subspace 

E (and a large measure of such subspaces as described in Lemma 2) such that 

yk-l(ZP 0 E ) * ( T A P ) 
tA 

,(tTTA)9 

|(l/X)(k-l) 

Define 3 = [tA/(tirA)6 ]1/A 
1_ 

,0/X 

1 

(tA)G 
Then, by Lemma 3 

( P - fe)|x| « ||x|| i |x|. 

and, trivially 1_ 
2 

1 

(tTTA)6 

ïï 
p- j 3-

PROOF of 2) is the same. We use only the suitable part of Lemma 2. 

§3. BACKGROUND;MIXED VOLUMES AND GEOMETRIC INEQUALITIES. 

In this Section we recall a few classical définitions and results which are 

well known to experts in Géométrie Inequalities but not yet known enough to ex­

perts in Local Theory of Banach Spaces. This is the reason why full proofs of the 

results used later are given. To the number of the well known classical books on 

this subject we will add two relatively récent ones: Santalo [S^] and Burago and 

Zalgaller [B-Z], 

3,1 THEOREM (Minkowski, 1911) Let IC, i = l,...,m, be convex compacts in 

lRn, X^ >. 0, and m ^ n. Then Vol(A-^K1 + . . . + ^MKM) = [a homogeneous polynom of 

X. of deqree £ n written in the form:] , ? X. -X. -X. V ( K . . . . K . ) (and 
i J y J Uijtm il 12-. • in il in 

such that the coefficients V ( K ^ , . . . , K ^ ) do not dépend on the order i^,..., i^). 

We say that V(K. ,...,K. ) is the mixed volume of K. ,...,K. (ÎSome or 
il in xl !n 

ail of the indices i_. may be repeated a number of times) . By construction it is 

not dépendent on the order of sets (K^l. 

We will not deal with this gênerai form of the theorem and therefore we will not 

discuss it, but for a few remarks: 
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The mixed volume V(K^,...,Kn) is the Symmetric polylinear form with respect 

to set addition (V(Kj + K̂ ', K2,...,Kn) = V(KJ, K2, . . . , K ) + V^', K2, . . . , Kn) where 

A + B = {x+y:x G A and y G B}) and homothety V(q l^,!^,.. .K ) = | ax | ' VfKj ,. . ., Kn) ; 

Vol K - V(K, ...,K); Therefore the mixed volume is, in a sensé, the polylinéarisa­ 

tion of Vol K and Vol K is the diagonal of that f&rm;- the mixed volume is a mono­ 

tone function: A1 c A2 implies V(A^ , K2, . . , K^) <: V(A2, , . . >Kn) ; Consequently 

VÇ^,...,^) >, 0. 

3.2 Now we turn our attention to a spécial case of Minkowski1 s theorem which 

was already considered in 1840 by Steiner. Let D be an Euclidean unit bail, and 

K be a convex compact and p ^ 0. Define V(K, ...](, fij^^JJ) = vm(K) • Then 

Vn(K) = Vol D and V (K) = Vol K. m n~m 
0 n 

STEINER'S FORMULA: 

(St.) Vol(K + pD) 
n n i 
.En( )V . [K)p . 

We will prove this formula along with the following well known and important inter­

prétation of the mixed volume V (K): 

STATEMENT'Let G be the Grassmann manifold as in Section 2 and let yfU t>e the 
n,m 

novmalized Haar measure on Gn m- ^et P^ be an orthogonal projection onto Dm 

be the unit m-dimensional Euclidean bail, and Vol be m-dimensional Volume. 
m 

Vn V (K) 
nr J 

Vol D 
n 

Vol D 
m m ^Gn,m 

Volm(P,K)dy(0. 

(St.) and (Vm ) will be proved by induction on dimension n. At first, we 

define functions V^K) by the formula (Vm) and we prove (St.) with thèse numbers. 

a) For n=l, (St) is trivial: length (K+pD) = length(K) + 2p = 

= VX(K) + VQ(K)p. (VQ(K) = V(DX) = 2). 

b) If we will prove (St) + (Vm) with some coefficients an i instead of 

(?) then immediately aR i = (?) (take K = D) . So, in our inductive 

proof we disregard coefficients independent of K and p. 

c) The spécial case of (V ): Cauchy formula (1841) 

(C) Area of K = S(K) = n-V (K) 

(Recall: définition of V (K) see at (V ) for m = n-1). 
n-1 ^ nr J 
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PROOF; We prove the above formula first for K being any convex compact polytop 

(with, say, faces f. and Area f. = Vol .f. = S.) and subsequently we obtain y i i n-1 i î  
a gênerai case by an approximation argument. Let Ç be an arbitrary (n-1)-dimen­

sional subspace and 0̂  be an angle between £ and a face f̂ . Then 
Vol _P._f. = S.|cos e.| and /vol _Prf.dv(0 = S.flcos e.|dv(£) = a S. (where n-1 £ i i1 i1 J n-1 Ç i iJ i1 ni 
a dépends only on n). Therefore a S(K) = a S S. = J (Z Vol Prf.)dv(0 = n n n .c i _ n - J. s x 

M £GGn,n-l 
= 2 Ĵ Vol^ ̂ PçK dv an̂  we have proved that S(K) = ĉ V̂  ^(K). To compute the 
number c , take K = D. n 

d) Assume that (St) + (V ) is proved for n-1. Let £ 6 G .. Then v J v nr r n,n-l 

Vol(P (K+pD) ^C1:1) V . .(P.IOp1 i=Cr i J n-l-iv £ J 

(and Vn_1 i(PçK) is defined by (VJ in (n-1)-dimensional space). Averaging over 

Ç G Ĝ  n ̂  gives (using (C) and définition (V̂ ) but now in the n-dimensional space) 

S(K+pD) nZl a .V . . (K)p1 Q n,i n-l-î  Jy 

for some numbers a . depending on n and i only. Integrating by p from 0 n, i 
to r gives 

Vol(K+rD) - Vol(K) n^ ^ 4 v r. ̂ (K)ri+1 
0 î+l n-(i+l)' 

Change i+1 -> i and pay attention that ^(K) = Vol K. This ends our proof of (St) 

(use b) to define coefficients (*?)) and the description of vn_iTO given by 

(V ). 
v mJ 

3.3 BRUNN-MINKOWSKI INEQUALITIES 

The following family of inequalities generalizes the isoperimetric inequality 

for lRn: 

For each m, n :> m :> 1, and every compact sets A and B (not necessarily 

convex) 

(Br.-M) V (A+B)1/m * V (A)Vm + V (B)1/m mv J mv J mv J 

For m=n we have 

Vol(A+B)1/n >. Vol A1/n . Vol B1/n 
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which implies the isoperimetric property of the Euclidean bail. Indeed, if we take 

B = pD, then 

(p) Vol(A+pD)1/n * Vol A1/n + p(Vol D)1/n 

Now, if Vol A = Vol D then Vol(A+pD) > (l+p)n Vol D and inf for Vol (A+pD) is 

attained at A = Dm 

Divide (p) by (Vol D) /n, take a power n from both sides and use (St) : 

n V . (A) . 
.Vi} Vol D p i=0 

"f Vol Al1/n ln 
j voT-ïïj + p. 

n - -i n-i 
riu Vol A -fT" i 

. ^ f i H v S T D J P ' 
1=0 L J 

for every p ̂  0. Because 0-term and n-term are equal on both sides of the inequa­
lity, we obtain inequalities for 1-and (n-l)-terms: 

Vn-1(A) 

Vol D 

n-1 
(Vol a] n 
(Vol 

and 

(U) 

VX(A) 

Vol D 
[Vol A]1/n 
Vol DJ 

The second inequality is Urysohn inequality [U] and the first one brings us back 

to the isoperimetric one. Note here that both inequalities are the partial cases 

of the more gênerai Alexandrov inequalities [A] 

(A) 
m J 
Vol D 

[V.(K)]1/J 
J 
Vol D 

for each 1 3 m < j S n. 

(Ail of them may be similarly obtained from the gênerai case of (Br.-M.) using a 

generalization of (St.) for Vm(K) : Vm(K+pD) = i|Q(^V^(K)p which is an easy 

formai conséquence of (St) - see [Ŝ ]). 

To complète a proof of Urysohn inequality (U), intensively used in this paper, 

we are now going to sketch a proof of (Br.-M.) for the case m=n. 

By an approximation argument it is enough to show (Br.-M.) for such A and B 

which are finite unions of parailelograms with non-zero volumes with faces which 

are parallel to coordinate (pair-wise orthogonal) planes. We shall refer to this 

parallelograms further as "particles". The proof is by induction on a number k 

of particles in A and B together. Let k = 2 (i.e. A and B are just para­

llelograms with edges of the lengths C a i ^ - i anc* ^i^i-l^ ' t̂ worthwniie t0 

apply parallel shifts of A and B such that each will have a corner at the 
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origin; such shifts do not change the volumes of the bodies. Then the inequality 

which has to be proved is the following one 

n 

i S i ( a ^ ) 1 7 " >. ( n a i )
1 / n

+ a i b . ) 1 / n . 

This last inequality is the conséquence of the inequality between geometrical and 

arithmetical means: 

r a. <il/n 

n — V -a.+b. 
i i 

i n a. 

n ,a.+b. 
1 i i 

and 
r b. ïl/n 

n — V -
a.+b. 
i i 

n ,a.+b. 
1 i i 

By induction, we may assume now that A contains at least 2 particles. Then there 

exist a parallel shift of A and a coordinate plane P which dévides A (after 

the shift) to two sets A' and A" each of theTO having a strictly smaller number 

of particles than A. Let Vol A' = AVol A and therefore Vol A" = (l-A)Vol A. We 

shift also B to such a position that the plane P dévides B to the parts B' 

and B" with the same volume proportion (Vol B' = AVol B and Vol B" = 

(1-A) Vol B). Then 

Vol(A+B) ï Vol(A'+B') + Vol(A"+B")* (by induction) 

[(Vol A')1/n + (Vol B<)1/n]n + [(Vol A")1/n + (Vol B»)1/n]n=X[(Vol A)1/n+ 

+ (Vol B)1/n]n+(l-AH(Vol A)1/n+(Vol B)1/n]n = [(Vol A)1/n+(Vol B)1/n]n . 

3.4 Urysohn and Santalo Inequalities. 

a) Let K be a unit bail of an n-dimensional normed space X and D be the Eucli­

dean bail. We consider also in the same affine underlying space the dual norm 

||x||* with respect to the duality defined by D. Let K* be the unit bail in 

this dual norm . The geometrical interprétation of the dual norm implies immediate-

ly that 

V1(K)/Vol D / ||x|fdy(x) dl=f- M . 

s " " 1 

where S? * = BD is the Euclidean sphère and y(x) is the normalized Haar mea­

sure on S? . So Urysohn inequality (U) may be rewritten in the following form: 

(U') (Vol K/Vol D)1/n < Mr*. 

b) Santalo Inequality 

([S2]; for a new and very nice proof see [R]): 
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r s ) Vol K • Vol K* S (Vol D)2 

Note that Urysohn inequality is an easy conséquence from (S) (I learned this from 

Y. Gordon). Indeed: 

[Vol K*)1/n 
Vol D ' ' ( l W f ) ' 

dy(x)l 1 / n 

* / (||x|r)-1dy(x) 
n-1 
S 

On the other side 

Mr.= / l | x | | V x ) * l / J C | | x | | ^ - W ) J ^ r ] 1 / n 
s n - l n-1 ^ > 

Use now ( s ) to obtain (U). 

4. EUCLIDEAN DECOMPOSITION OF AN ARBITRARY NORMED (FINITE DIMENSIONAL) SPACE. 

The following Problems are investigated in this Section. 

PROBLEM 1. Is it tvue that for every e > 0 there exists A (e) > 0 

such that every n-dimensional normed space X contains an m-dimensional subspace 

E c X such that E contains a Y-dimensional subspace F c E such that 

k * X(e)n and d(F,^) $ 1 + e? 

PROBLEM 2. Is it true that there exists an absolute constant C such that 

every n-dimensional normed space X may be decomposed in a direct sum of four 

subspaces X = E1 + E2 + + E4 sŵ /z t/zai dim Ei = ni ï [n/4] for each 

i = 1,2,3,4 and for every i ̂  fi i 2 

d(E ; E / E , V 2 ) « c ? 
1 2 i^ 

Thèse problems have positive solutions for a large family of spaces and, in the 

gênerai case, we will prove thèse results up to a logarithmic factor. Some va­

riations of the problems will be discussed. 

We use the same notations as in 2 . , 2.8, and 3.4. So, e.g. , X = ( [Rn,| | «| | ) , 

K and K are the unit balls of X and X respectively, D is the Euclidean 

unit bail of (lRn,|*|) and the orthogonality is understood with respect to the 

Euclidean norm [*l in ^ • 

4.1 THEOREM. Let 

Vol(Conv K 'J D) $ v^ Vol D and 

Vol(Conv K* U D) < v" Vol D. 
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Then 

i) For each a3 0 < a < there exist c(a) > 0 and A (a) > 0 such that X 

contains an m-dimensional subsipaee E c$ X and E* contains an k-dimensional 

subspace F c+ E* such that 

k ^ A(a)n and d(F,£2) S C(a) -v^01 

In particular this means (using 1.4), that for every e > 0 and every a > 0 

there exists A(a;e:)> 0 such that E* contains a (1+e) isomorphic copy of lk2 

for k ^ A(a;e)T—n .~ . 
J Oi *V2)a 

ii) For each 0 < A < 1 and 0 < y < 1 there exists C(A;y) depending on A <1 

and y < 1 only such that for every m = [An] and k = [ym] there exists an 

m-dimesnional subspace E c^X and a Y-dimensional subspace F ̂  E* such that 

d(F,£2) £ C(A;y) 
vl/(l-A)(l-y) . yl/A(l-y) ^ 

Moreover, 

iii) there exists an orthonormal (in the sensé of QRn_, |* |)) basis 

e = {e^}n=1 c X and a constant C(A,y) depending on A < 1 and y < 1 only such 

that for every A c [l,...,n], m= |A| = [An] and every subset B c Aj k= |b| =[ym] 

we have 

d(span{ei}ieA/span{ei}.eANB,^) * C C X ^ v . ^ - W l - ^ l / M l - u ) 

In other words 

d(span{e.}<* [Span{e.}^ X]" 
iGB 1 i€A 1 

; $ C(A;y)v^ (l-X)(l-y) l/A(l-y) V2 

(recall, that, as in 2.4, we use the notation E Y to indicate that the subspace 

E is considered in the Y-norm 

iv) DECOMPOSITION: there exists an orthogonal décomposition of X=E1@E2@E3@E4 and 

dim E^ = n^ :> [n/4] for every i = 1,2,3,4, such that for every ^ 

ni2 4 4 
d(E. © E. /E. i ) $ cv • v 

i1 i2 ir 2 l 

for some absolute constant c. (Of course, iv) is just a partial case of iii)) 

We prove first ii). Step a). Define = Conv K U D and consider the norm 
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||•|| such that K1 is the unit bail in this norm. Then for every x € Rn. 

| | x | | £ ll x l l anct I I x I I y ̂  I x I * 

Using Theorem 2.9 for ||.||1 t and X we find (for m=[Xn]) an m-dimensional 

subspace E cjRn such that for every x € E 

(4.1) 1_ 
2 

1 

(tTTV̂ 6 l X l * I l X l l X ( * I l X l I ) 

where 0 = 1/(1-X). Moreover, one has a large measure of such subspaces. Note 

that to prove ii) it is enough to take t=2. However we will keep t because it 

will be important in a proof of iii). 

Step b). Consider E* = X*/E . It is clear that the unit bail K(E*) of E* is 

the orthogonal projection of K* onto EqRn. By (4.1), for every x G E* 

||x||* * 2(tirv1)e|x|.(||.||* dénotes the dual norm to the norm on E). 

One has to use now the second volume condition. Then 

(4.2) 
Vol(K*+pD) 
Vol D 

ri .n Vol(Conv (K*UD)) 
(1 + p) VoT^ $ v2(l+p) . 

From the other side, using Steiner formula (St) from 3.2 we obtain 

(4.3) 
Vol(K*+pD) 

Vol D 
n 
E 
i=0 

V • (K*) n-iv J 
Vol D 

i 
P 0 

V (K*) mv n-m 
Vol D p 

Define f V * * ) ) 1 / 1 1 1 
Vol D 

B. It follows from (4.2) and (4.3) 

BV~X <c V2(l + p) 

Take p = 1; we have proved 

LEMMA: B 
V (K*)|l/m 

Vol D 
«1/X 1/X 

* V2 

Step c) . Recall now the formula (VJ from 3.2 and def ine f (0=Volj;P K*)/VolmDm 

where r 6 G and P is the orthogonal projection onto £. It is trivial that n,m E 

LEMMA: If /f(Ç)dy(Ç) £ a then 

yT = yU € G : f(C) * Ta} * 1 - 1/T. 
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So, taking T = t and using Step b) and the previous Lemma, we obtain the 

STATEMENT. Let E = £G : (Vol (PrK*)/Vol D )1/m < (2tv0)1//X}. Then 
n,mv mv E, Jl m nr vV 2J 

y(E) >. 1 - l/tn . 

Step d) An intersection of E with the subspaces obtained in the Step a) gives 

a set EQ C ^ ( and of a large measure) such that every Ç € E^ has the pro-

perties 

||x||* < 2(t™i)1/1-X|x| for every x e £ 

and 
* 1/m 

(Vol KCO /Vol D )A/m v m mm (2tv2)1/X 

After introducing the new Euclidean norm | • | ̂  = 2 (tirv̂ ) l? we may apply 
Theorem 2.9 for a space E (for E € EQ) (i.e. for m = [An] instead of n 

and y instead of A). Again, it is enough in this part of the theorem to take 

t = 2, but for further purposes it will be necessary to use instead of t the 
1 /A * number t̂  = t . By that Theorem, there exists a subspace E such that 

k = dim F = [y[An]] and for a constant C(t;A;y) depending on A < 1, y < 1 and 

t > 1 only 

(+.4) d(F,l*) * CCtîAjy)^1-^1"^.^1-^ 

Take t = 2 to finish the proof. 

PROOF i) . Take in the preceeding proof A= y = then, apply Statement 2.5.c 

to the space F. 

PROOF iii) . is a manipulation with large measures of subspaces obtained in the 

proof of ii). Fix integers m < n and k < m. In the part ii) of the Theorem 

we were looking for a pair (F;E) of subspaces of !Rn such that dim E = m,F E 

and dimF = k and such that this pair has the described in ii) properties: if E 

is considered as the subspace of X (i.e. with the norm 11*11) and F <=* E (i.e. 
* k 

with the norm of E ) then d(F,&2) <: a formula as described in (4.4); it will 
become clear later that now we have to put t = 6 in the C(t;A;y). Ail of such 
pairs form a subset S , of the manifold V which we describe below. r m;k 

Let £ 6 Ĝ  m (i.e. E, is an m-dimensional subspace of lRn) . Dénote 

Gm,k^ be the Grassmann manifold Gm R of ail k-dimensional subspaces of Ç. 
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We consider the following manifold of pairs V = { ( n ; Ç ) , where E, € G and 

n £ G^ ^ ( O } . is clear that V is a homogeneous space under the action of 

0 (n). Therefore, if y^ dénotes the normalized Haar measure on V then for every 

Borel set S c V and for each fixed (n ;ÇQ) € V 

y (S) = y{T G 0 (n) : T(n0;Ç0) € S}. 

Further du = dy • dy 

11,111 III, IV 

We have to estimate a measure ^ y f ^ . ^ • F°r this purpose we have to go once more 

through the proof of ii). At the step d) of that proof we built a set 

E~ cz G as an intersection of the sets from a) and c) . So, its measure 
0 n,m J J 9 

y(EQ) >. 1 - 2/tn. 

For every E € En we found (by Theorem 2.9) a set F c G , (E) of subspaces 
* u m, K 

{F E } which satisfy the desired inequality (4.4). The measure of this set may 

be estimated again by Theorem 2.9. 

y(F c Gm K ( E ) } * 1 - l/t™ - 1 - l/tn. 

Therefore 

(4.5) y v ( s m k ) >. d - 2/tn)(i - i/tn) >. 1 - 3/t n. 

Fix now any orthonormal basis eQ = ^ei0^i-i in >I * i 3 and define 

EA = span{ei f°r every A c [1, . . . ,n] . For every pair ( B c A c [1, . . . ,n] ), 

| B | = k and | A | = m, dénote 0S. n = {T € 0(n) : (TED,TEA) £ S Then 
1 1 1 1 A ; B J B' AJ m,k 
y(OSA n) = y (S ,) where |A| = m and |B| = k. It is clear that the cardinal-

V A ; B ^ v m,k 11 11 

lity N of ail pairs ( B , A ) such that B c A c [l,...,n] is equal to 

t o t o O O = ^ 0 < ^ Therefore, using (4.S): 

y{ n 0S,.R c 0(n): 
B:A A>U 

for every A c [l,...,n] and every B cz A} ^ 

1 - 3-4n/t > 0 for, say, t = 6 and n ^ 3. 

{The case n< 3 is trivial). It means that there exists an orthogonal operator 

TQ such that for every B c A c [1,...,n] the space TQEB (TQEA, | | ' | | ) , i.e. 

TQEB considered in the norm of (TQEA,||'f|) , satisfies (4.4) with t = 6, 

X = |A|/n and y = |B| /|A|. SO, the basis {T0e.^0 = e . } ^ satisfies the con­

ditions of iii). 

4.2 Define 
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M 
r 

J ||x||dV(x) and Mr* = J n-J lXl l*d^M' 

LEMMA: Vol(Conv K U D) £ (1+M *) Vol D 

Vol(Conv K* U D) £ (l+Mr)nVol D. 

and similarly. 

PROOF: As in the Step a) of the proof of Theorem 4.1, we introduce the new norm 

||.||1 with its unit bail K = Conv K U D. Clearly K* = K* fl D. Therefore 

\ - ^n-lllx|lidy(x) / max(| |x| | ,l)dp(x) £ M ^ + 1 

By Urysohn inequality 3.4, (U'), 

(Vol Kj/Vol D)1/n $ M * + 1. 

The second inequality is proved similarly. 

COROLLARY, If M^/M^ < T then one may ohoose an Euclidean norm (Rn,|-[) such 
that in Theorem 4 . 1 v^ = 2 and V2 = T + 1 (normalize the original Euclidean 
norm such that M = 1 ) . 

r* J 
4.3 A few well known facts: 

a) It was proved by [F.-T.] that the Euclidean norm ([R ,|*|) may be choosen 

in a such way that 

Mr-Mr. f C1||Radxl| 

where an absolute constant 27 and ||Rad^|| is the norm of the so called 

Rademacher projection of X (définition and properties see, e.g., [P2D 

b) This quantity | |Rad^| | is very important in Local Theory and was investi -

gated by Pisier [PJ. He has proved that 

i) for every n-dimensional normed space X 

| | Radx | | <ç C2£n(n+1) 

for some absolute constant C2 and 

for each integer k there exists a constant C2(k) such that for every 

normed space X: 
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Radv|| ^ C(k) implies that X contains a 2-isomorphic copy of ft. 

We bring together ail thèse facts in order to estimate v^ and v2 in Theorem 

4.1. 

4.4 COROLLARY 1.: For every n-dimensional normed space X one may always assume 

that in Theorem 4.1 v^=2 and £ Cfcn(n+1) for some absolute constant C. 

COROLLARY 2: For each integer k there exists a constant C(k) depending on k 

only3 such that for every finite dimensional normed space X which does not con-

tain a 2-isomorphic copy of ^ ail conclusions of Theorem 4.1 are satisfied 

for v^=2 and = C(k). 

(Proofs of both Corollaries follow immediately from 4.2, Corollary and 4.3) 

4.5 The previous Corollary 2 indicates a large family of spaces which admit an 

exist nce of an Euclidean norm | • | such that the constants v-j_ and V2 defined by 

Theorem 4.1 are uniformly bounded. It is curious to observe that the family of 

J^-spaces which is the worst one in the sensé of the condition of Corollary 2 any 

way has the uniformly bounded constant and v2. Because of this, and Theorem 

4.1, the following problem arises naturally. 

PROBLEM: Is it correct that there exist absolute constants and v2 such that 

for every finite dimensional space X = (Rn,|| *| |) there exists an Euclidean norm 

(Rn,|-|) such that the conditions of Theorem 4.1 are satisfied ? 

§5. PROJECTIONS ONTO EUCLIDEAN SECTIONS. 

We use notations and définitions from the previous sections 1.1,2.,2.7,2.8 

and 3.2. So, X = (lRn,|| • | | ) , 1/a | x| <||x|| < b| x| , K = K(X), P̂  is the ortho­

gonal projection onto a subspace K £ G^ m« Throughout this section we assume nor-

malization of the Euclidean norm • such that M = 1 . 
r 

5.1. Let, as in 3.2, vm(K) be the m-th mixed volume of K. Define 

(V (K)/Vol D)1/m = A . 

THEOREM. There exists an absolute constant c > 0 such that for every integer 

k £ c-min{n/(A^b) , n(A^/a) } there exists a subspace EQ G G^ ^ such that 

l/2|x| s | |x| | * 2|x| for x G EQ (i.e. d(EQ,^2)^4) and f | P£ :X -> EQ| | * 4AR 

(iRemember the normalization = 1 which implies, by the way, A^ ^ 1 for every 

n ^ m ^ 1) . 
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REMARK. The main application which we mean for this Theorem is for a case of a 

uniformly (independent of n) bounded A^ < Const. for some k(n) satisfying the 

condition of the Theorem. 

Of course, the existence of a set A c Gn ^ of a large measure (say y(A)>y) 

of k-dimensional subspaces satisfying the above inequalities between the norms 

||-j | and |-| on them is a conséquence of the statement from 2.7. The addition-

al information about ||P || is obtained from the geometrical fact which is 

proved below that Pc K <= 2A, (D D E ) . 
EQ k o 

5.2. A proof of this fact uses a concentration measure phenomena on the following 

manifold of pairs 

V = {^ 6 Gn,k> x e s(£)}. 

It is clear that V is a homogeneous space under the action of S0(n). It 

means V = S0(n)/G for some subgroup G. We identify every élément e € S0(n) 

with an orthonormal basis e = ^ , . . . , e ^ ) . Then define i: S0(n) by the 

formula ie = (£ = span(e^,...e^); e^) € V. Introduce also a metric on 

V : Pv((Ç,x);(n,y)) = inf^PSo(n) (T1 ;T2} : iTl = (C'x) and iT2 = ^>^]> (pS0(n) 

is the standard bi-invariant Riemannian metric on S0(n); equivalently, psO(n) 

can be taken as the Hilbert-Schmidt operator metric, which is uniformly équivalent 

to the other one) . The norm'alized Haar measure y on V may be defined by 

yy(Ac=V) =ySOCn){i"1Ac=SO(n)}. 

For every subset A of a metric space (M,p) let A^ = {x € M:p(x,A) £ e). It is 

clear that i_1A => (i^A) . Therefore if yy(Ac:V) > 1/2 then y(i_1Ac=S0(n))>A/2 

and this implies 

-1 2 
yv(A£) > ViSO(nj((i A)£) ^ 1 - exp(-e n/8) 

(tne last inequality for S0(n) is known - see [G], [G.-M,]). So, the following 

lemma has been proved: 

LEMMA. For every olosed subset A c: V with y (A) ̂  1/2 and for every z > 0 

2 
y(A ) * 1 - exp(-e n/8). 

5.3 STATEMENT, Let u be a Borel subset of M, A c G vJ> y(A)*X/2 and let 
n, K 
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e > 0, S > 0. If for every £ G A <= G . there exists (£,x) G M anc? 
2 ' . 0 n 0 

k £ e n/5£nl/<5 t^zsn there exists £ € G , swc/z t/zat M9r => (£ ,x) /or every 
n n, K z îe + o j 

x e s ( ç u ) . 

PROOF. Use Lemma from 5.2 in a standard way. We will not repeat it because a simi-

lar reasoning has been used in 2.3. (Do not pay any attention to the numbers as 

5 in this Statement or 10 in 2.3) 

REMARK: Note that the proof of the Statement gives a large measure of such 

F® £ G i as claimed in the Statement. 
^ n, K 

5.4 Return to the proof of Theorem 5.1. Define PgK = K£ and let | | • | | be the 

norm in the subspace E with the unit bail K£. Let 

M = {(£,x) G V:3y G K and P y = Ax for A £ t}. 

It is clear that (E,x) G tM means that I |x| L s i / t . 
KE 

LEMMA. Fix K > 0. There exists a constant C(K) > G depending on K only such 

that if e < C(k) *min{ 1/tb; t/a}, then CtM)£ cQ_K-)tM-

PROOF: Let (E,x) G tM; it meansttiat there exists y, ||y|| = 1, and P£y=z=Ax 

for ^ £ t. We divide the proof into two steps 

a) Let x ' G S(E) and | x - x ' l £ e,. It is clear that | | x ' | | „ - | | x | L s 
l ^E E i 

< l l x ' - x | L <: b | x ' - x l <: be , . Therefore l l x ' I L S l l x I L + be , £ 1/t + be $ 
KE 1 KE KE 1 1 

£ (l+K)/t for E j < */tb. So we have proved 

{(E,x) G tM and | x - x ' | s ic/tb} implies (E , x ' ) G t/1+KM-

b) Take E' G Gn k such that p(E,E') $ e2 (which means that 1PE_PE 11 * ^ • 

There exists T G SOCn) such that : |T-Id| £ c2 and T_1PE,T = P£. We want to 

compute |P ty| (where y was defined above in terms of x; recall also that 

PEy = z and |Tz| = |z| * t). 

(5.1) |PE,X| - \A < I pE ,X-TP£x| = |PE, (y-Ty)| $ |y-Ty| <? e 2 | y | $ £2a 

(because ||y|| = 1 implies |y| $ a). Therefore | PR f y | |z| - e2a * t-e2a. 

Take e2 <: Kt/a and we obtain | P£ f y | * (l-K)t. So 

{(E,x) G M and p(E,E') $ e2 £ «t/a} implies (B',PE,y/|PE,y|) G (1_K)tM-
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(add also that, by (5.1) J P£ Ty/ | P£ ,y| - x| ^ 2 K). The steps a) and b) imply 

Lemma in a trivial way. 

5.5 To prove now Theorem 5.1 we use Lemma 5.4 for tQ= 2A^ and K = 1/4. 

We start from the set A c G n from 5.1. If for each E G A there exists xGS(E] 

and (E.x) G ^ M then, by Lemma 5.4, C. M) c= 7jU ,.M. On the other side, by 
t0 t0 e 3t0t4 

Statement 5.3, there exists EN such that (En,xl G ^ , ̂  M for every x G S(E„) 

and so Vol, K ^ (3/2 A, ) -Vol.D, . Because of the Remark in 5.3, we may assume 
K C Q K K K 

that there exists a set E c ^ of large measure of subspaces, each having the 
same property as EN above, Therefore, the average of Vol. K over G , has to 

u K t n, K 
be larger than it is allowed by the formula (Vffl) from 3.2 for the mixed Volume A^. 

This contradiction shows that there exists EN G A such that (En,x) t + M for 
0 U t0 

every x G S(EQ) It means precisely what we have to prove, i.e. PEQK C 2A^(DDEQ) 

5.6. Compare Theorem 5.1 with the following well known resuit (! remember, that 

we assume M = 1) 
r J 

THEOREM [FLM]. There exists an absolute constant c suoh that X contains a 

k-dimensional subspace Ej d(E,£2) £ 2 , k £ c min(n/b ,n/a ), and such that the or­

thogonal projection : X •> E has the norm I IPEI I £ . (It is worthwhile again 

to recall section 4.3). 

By Alexandrov inequalities 3.3., (A), the séquence of mixed volumes 

{Am}m=l is decreasinS: An * Am * \ * \ = Mr* for every l«k«m«n and therefore 

the assumption Mr* $ Const. implies Ak < Const. (but not, generally, vice versa) 

§6. COMPUTATION OF MIXED VOLUMES THROUGH LEVY MEAN APPROACH. 

6,1. Let, as before, l/a|x| ^ ||x|| $ b|x| for x G IRn and K = {x:||x|| $ 1}, 
* 
K f M^ = M^, M ^ = M^^, ^m(K) have the same sensé as in the previous sections. 

Dénote also by D the m-dimensional Euclidean bail and by Vol D^ the m-dimei 
J m J m m 

sional volume of D . Let E G G , . It is clear that P„K is the unit bail of 
m n,k ^E 

the space X/E and this space is the dual one to E X (again, as before, it 
* _L k * k 

means that E inherits the norm of X ). Therefore d(X/E , l^) = d(E X ,£2). 

Let 

M(k;e) ={E G Gn k r-j^ | x | .< ||x||* <: M_(l + e) |x| , Vx G E}. 

Apply Statement 2.7 to the dual norm ||-|| . Then, for every e > 0 there 

exists C ( E ) > 0 such that for each k $ c(e)n(M^*/a) 
2 
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y(M(k;e)) :> 1 - exp 
2 fM * \l\ 

_ _L_ n K 
5 a 

Therefore by the monotone property of Vk and the formula (Vm) from 3.2 

(6.1) Vk(K)/VolD 
1 

v o l k D k 

k k k 
(1+e) M -VolkDk+a -exp 

2 n 

5 2 K* 
a 

VolkDk 

(we use the trivial fact that on the set M(k;e) which has an exponentialy small 

measure, as on every subspace E E k, c: a-DOE). On the other side 

(6.2) Vk(K)/VolD 
1 

(1+E) 

Mkk* 
1 - exp 

2 
£ 

"' 5 
n 
2 

a 

M 2 

K* 

The estimâtes (6.1) and (6.2) prove the following Statement. 

THEOREM, For every e > 0 there exists c(e) > 0 such that for each 
2 

k £ c (e)n/ (a/M^) • £n a/M^ Tzave 

1 7 7 MK* 
(Vk(K)/VolD)1/K $ O O M K * . 

Note, that a quantity a/M may be estimated using the cotype 2 constant of 
* n n 
X (see [FLM] ) . For example, if K = [1,1] is the cube (i.e. that X = Vja and 
* ru n n 2 r~ 

X = £,) and D = {x G 1R : î x. < 1} is the standard Euclidean bail, then a = /n 
1 1 i 

and M ^ = ĉ /rï" where c^ -> /2/Tr(n °°) . So a/M^ = 1/c^ -> /TT/2 (n -> °°) . 

6 .2 Directly generalizing Theorem 6.1, mixed volumes V(K^ ,K^, . . . Kt,D,_. . . ,D) for 

central symmetric bodies lO, 1 < i £ t, may be considered. Begin wiïh the 

following known fact. 

6.2. a. LEMMA [F.] Let r 6 G be an m-dimensional subspace of ÏRn and ^ 
n,m . n 

be the orthogonal complemented to £ (n-m)-dimensional subspace of R . Let 

cz IRn, i = 1, . . . ,m, be arbitrary convex sets and A., ci £ , j = m+1, . . . ,n be 

arbitrant (n-m)-dimensional convex sets. Then 

(6.3) (n)V(K1,...,K ,A AJ= V(PrK1,...,PrK )'V(A , ...,A ) 
nr 1 m m+1 ny Ç 1 K m m+1 n 

where V is the orthogonal projection onto £. 

6.2.b. COROLLARY: LE T K. cz jRn, l be as in Lemma 6.2.a and Vol D be the 
i ' m m 

m-dimensional volume of the m-dimensional Euclidean bail Dm. Then 
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(6.4: V C K . . . . . . K , (D,....,D) 
n-m 

Vol D 
: Vol D 

m m G 
n,m 

V(P K ^ . . . , ? K J d y C O 

PROOF. We argue by induction over n - m = k = 1,2,... . Dénote by D(£) the 

Euclidean bail of the subspace £. Because P̂ D = D(£), it is enough to prove the 

statement for every n >A 2 and m = n-1. So, we apply (6.3) for m = n-1 and 

= D(£). Because the mixed volume is a linear function of A^ (with respect to 

the set addition - see 3.1), integrating (6.3) over ££Gn n_-|_ with An= D(£) gives 

(6.4); (note that /DU)dy(Ç) = D and /v(K1, . . ., ,D(0 )dy (Ç) = 

= V(K1,...,Kn_1, J D ( O ) . 

6.2.c STATEMENT. Let K.cRn, i = l,...,m, be uni* halls of norms \ \ • \ | i and 

let-fov each a^ > 0 and b^ > 0-, l/a^|x| £ £ b^fxl for x € iRn and 

i = l,...,m. For every E > 0 there exists c(e) > 0 such that for each 
2 

t £ c(e) min {n/(a./M ) •£n a./M } we have 
, 1 R. 1 K. 
l^i^m i i 

(1 + e) i=l i 
•Vol D <: V(K1,...Kt, J ^ ^ J i ) £ (l+e)r n M -Vol D. 

n-t i=l i 

PROOF. Repeat the argument from 6.1 using Corollary 6.2.b instead of formula (V^) 

from 3.2. 

6.2.d. The next Statement is a generalization of 6.2.c. and has the same proof. 

We use the same notation, as in 6.2.c. 

STATEMENT. 2 
Let t < c(e) •n/(a1M^) £n a^M^. 

Then 

1 
1 + e 

<: V(Kr...,Kt, ̂ >, DJ /M • V ( K3, . . ., Kt, g ± . * 1 + e 
n~t 1 n-t+1 

§7.PROBLEMS. In addition to some problems which were discussed in Section 4 we 

would like to raise a few questions in the direction of a "proportional" theory. 

PROBLEM 1, Is it true that there exist absolute constants X > 0 and C > 0 such 

that every finite dimensional normed linear space X contains a subspace E such 

that dim E > Xdim X and E* has a cotype 2 with the cotype 2 constant 

C2(E*) <: C ? 

If this problem has the positive answer then a number of open problems in Local 

Theory would be solved (e.g. if X has a cotype q < °° with the cotype constant 
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C then, by Pisier's Theorem [P„], E has a type 2 with an upper bound on the 

type 2 constant T2(E) depending on X, C, q and C^ but not on the dimension 

of X) . 

PROBLEM 2, Is it correct that for every e > Q and C > 0 there exists 

A = A(e,C) > 0 such that for each n and every X = (Rn,||'||^) and 

X2 = (Rn,||*||2) with d(X1,X2) £ C there exists a k-dimensional subspace E c IRn 

such that k ^ An and d(E c^X^E X2) <: 1 + e? 

It seems reasonable to assume that the positive solution on this problem is 

connected with a cotype condition on X^ (i.e. A dépends also on q < 00 and 

cotype q constant C ( X ) ) . However, a counterexample is unknown to me even for 
n ^ 

the case of Xi = l . 
1 00 
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Added in proof. Since this paper was submitted, I have proved Problem 1, 
Section 4, in the affirmative. The proof will appear soon. 
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