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GEOMETRICAL INEQUALITIES AND MIXED VOLUMES IN THE LOCAL THEORY OF BANACH SPACES

V.D. Milman

1. Introduction. 2. Background; Search for Euclidean sections of a con-
vex body. 3. Background; mixed volumes and geometrical inequalities.

4. Euclidean decomposition of an arbitrary normed (finite dimensional)
space. 5. Projections onto Euclidean sections. 6. Computation of mixed

volumes through a Levy mean approach. 7. Problems.

1. INTRODUCTION
In this paper we are studying finite dimensional linear normed space (so call-
ed Local Theory of Banach spaces). Since every such space is uniquely defined by
some central symmetric compact convex body, that is its unit ball, our investiga-
tion is actually about this geometrical object. Therefore, in this paper we advo-
cate to combine known analytical and combinatorial approaches in Local Theory with
a pure geometrical classical study of convex bodies and the deep theory of geomet-

rical inequalities. This is the main purpose of the paper.

However we must remember that a unit ball as a geometrical object is defined
only up to affine transforms and that questions which arise are related to a 1i-
near structure of a space. These problems usually involve a description of some
standard simple subspaces and projections on them. In this short introduction I

will recall some known results especially those related to the main stream of our

discussion.
1.1 Let X and Y be n-dimensional normed linear spaces. The distance
(Banach-Mazur distance) d(X,Y) = inf{[[T||~||T_l|| over all linear isomorphism

T : X ~>Y}. Obviously d(X,Y) 2 1 while d(X,Y) € 1 +¢ means that X and Y
are isometrically close (we say (l+e)-isomorphic). In the geometrical language
this means that two unit balls K(X) = {x € X:||x|| £ 1} and K(Y) may be put by
an affine transform (say ¢:Y - X) in the same linear space (say X) in a posi-
tion

K(X) = o(K(Y)) € d(X,V)K(X) = (1+e)K(X).

So after such an affine transform - two geometrical bodies K(X) and K(Y)

become close in a geometrical sense.
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We introduce the family of n-dimensional spaces which plays a special role in

Local Theory, the so called Qp—spaces (for 1 < p g ).

lg is a linear n-dimensional space X with the norm for p<w:]|(ai)2_l||p =

- (igllailp)l/p ((ai)T =x € X) and for p = oo:[[(ai)TH°° = max lai|.
I<ign
1.2 It is well known (F.John, 1948) that d(X,lg) < V/n and if d(X,2D) s
close to that extremal case, that is d(X,lg) % ¢/n  (for some fixed constant c>0
and n large enough) then ([M.-W.]; see also [L] ) X contains a subspace E,
dimE = k, such that i) d(E,lT) ¢ 1re and i1) k » (an m*(®) here

a(c;e) > 0 is some number depending only on ¢ and e > 0.

1.3 DVORETZKY THEOREM (real case [D]; a new proof which covers also the complex
case [M]).

a) For any € > 0 and integer k there exists N(k;e) such that for each inte-
ger n 3 N(k;e) every n-dimensional normed space Xn contains a subspace

Ek(dim Ek=k),(1+e) ~tgomorphic to an Euclidean space.

b) [M] The above number N(k;e) <s bounded by the number exp{c(e)k} where

c(e) > 0 depends only on € >0 and this estimate is exact: for the space 22

the above number N (k;e€) » exp(ckin 1/e) for some absolute constant c.

(We advise to pay attention to a geometrical interpretation of both results 1.2
and 1.3, which states an existence of special central symmetric sections of a sym-

metric compact body).

The logarithmic estimate in 1.3. being precise in a general case can be im-
proved significantly in most cases. We give a few examples of such an improvement.
Let X be an n-dimensional normed space and X* be its dual. We denote
d(X,Qg) = dn’ k = k(X;e) being the largest integer such thit X contains an
(1+e)-isomorphic copy of a k-dimensional Euclidean space £,. Standardly, by the

2
same letter ¢ we will denote different absolute constants.

2 2
1.4 THEOREM [M]: a) k(X ,e) » c(e) n/dj where c(e) > ce™/p /.-

b) Important remark : If a family of spaces {Xn} has a uniformly bounded dis-

tance from zg(dn < K), then k(Xn,e) ig proportional to mn; by this reason we

shall estimate only k(Xn,l) which will simply be defined as k(X)) -
*
1.5 THEOREM [FLM]: a) k(Xn)-k(Xn) > C n2/d22c'n (because, by 1.2, dn < /ﬁj_
n
In comparison with 1.4 it means that
eilther k(Xn) or k(XZ) 1s at least cn/dn,

b) There exists a function k = k(n;a) where k and n are integers and o> 0

and k(n;a) >« if n >« and o+ 0 such that for every Xp - n-dimensional
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MIXED VOLUMES IN THE LOCAL THEORY OF BANACH SPACES

normed space either k(xn) z en® or X, contains a 2-isomorphic copy of li
for k = k(nj;a).

Note that a function k(n;a) may be precisely estimated using [Al.-M.],
1.6 & -Spaces a) for < p<2: k(lg) > cn  [FLM]
B S—

1
b) moreover, the space 2? contains for every 1 <p <2 (l+e)-isomorphic copy
of 2; for k 2 c(e)n where c(e) depends only on € > 0([J.—Sch];[Pl]).

c) Krivine Theorem [K] (the special case). Fixed p, 1 < p s*. For every T>1

e >0 and an integer k there exists an integer N(T;k;e) such that for every

n > N and n-dimensional normed space X, with d(Xn,zg) < T contains (1+e)-iso-
morphic copy of ﬂ; (Of course, the special cases p = 1;2; were known previous-
ly).

It is known that for p # 2 the inverse function k(T;n;e) g Clnczs/T (forp
some absolute constants ¢ and cz) and it is proved that k 3 cl(e;T)nCZ'(s/T)
[A.-MZ].

Previous examples 1.2. - 1.5. could lead to the conclusion that power-type

estimates on dimensions of subspaces which we are looking for are typical while a
proportional type (which we had at 1.4, b and 1.5. a and b) i8S an exceptional one.
(There is no mention here of the Figiel-Johnson [F.-J.] result, although strongly
related to the matter, because it uses special operator norms which are not intro-
duced here). However we show in this paper, that there exists a non-trivial possi-

bility to develop a proportional theory and this will be our second purpose.

2. BACKGROUND; SEARCH FOR EUCLIDEAN SECTIONS OF A CONVEX BODY.

We will describe briefly in that section two methods for extracting an almost
Euclidean subspace from a finite dimensional normed space. The first approach is
based on the so called measure concentration phenomena (for more information we re-
fer to the original papers [M],[FLM], [A-Ml], [G-M] or to the book ([M-Sch]]).
One new application of this method is also given (see 2.4-2.5). The second app-
roach involves a volume computation and was applied up to now to a few special but

important examples (see [Ka]-[Sz] or the Lectures [Pel]).

We start with a few definitions which are used throughout the paper. We con-
sider an n-dimensional linear space ®" with an inner product (x,y) which indu-
ces the Euclidean norm |x| (x €R™, y € R™). Denote D = {x € R":|x|g 1} and
S(E) = {x € E: |x| = 1} for every subspace E GR".

Let: s"! - (x €er": |x| = 1} be the Euclidean unit sphere in R”, O(n) be the
othogonatl group, and Gn,k(l ¢ k < n) be the homogeneous spaces of k-dimen-
sional subspaces of R" (so called Grassmann manifolds).

We denote by the same letter M the normalized Haar measure on each of the above
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manifolds,

We consider also another norm ||*|| in the same underlying linear space R" and

let for every x € Rr"

2.1 Hxl < xl] < bl

The norm ||.|| and the Euclidean norm |1 standardly define the dual norm
*

x| = Sup{‘fT;l:' :y e R\ 10}}. It is clear that

slxl < Hxl|™ < alx].

. -1
Define Ag = {x € s"

1 - exp(—ez(n—Z)/Z).

2.1 LEMMA (P. Levy [L]). Let AcsS™! and u(A)
distance (x,A) < €} for a fized € > 0. Then U(Ae)

REMARK: It is clear that for each x € Sn'1

u{TEO(n) : Tx € Ae} = u(Ae)

and therefore for every set N = {xi}gl=1 [ Sn_]

u{TEO(n) : TN c Ae} >1-N exp(—ez(n—Z)/z)‘

So, if N < exp(ez(n-Z)/4) then there exists a subset of 0O(n) with measure ex-
ponentially close to 1 such that TN < A€ for any T from this subset. Choose
now a &-net (6>0) of a fixed k-dimensional subspace (for k =[€2n/10£n1/6]) as
the special set N = {xi}T. The above Remark and an estimate on the cardinality
N of the d&-net prove the following lemma:

1

2.2 LEMMA ([M]). Fix e >0 and k <[82n/ f Acs™ and u(A)a%

then

102n1/6] '

WE €6 :S(E) A} % 1-2 exp(-e°n/a)

e+§

Below, in sections 2.3-2.5, we take § = €,

n-1

2.3 Forevery AcCS we define
BA,k = {E € Gn,k: ENA# @8},

and
IA,k = {E € Gn,k: S(E) < A}.

. 2 2

LEMMA: Fix € > 0 and k < [e “/1ozn1/a]‘ If “(BA,k) > 2 exp(-e'n/4) then

e ) 31 -2 exp(-e’n/a).
A4€,k

PROOF: First we show that U(AZE)Z%u Indeed, if not, then u(Azec) > %» and by
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MIXED VOLUMES IN THE LOCAL THEORY OF BANACH SPACES

Lemma 2.2
WE € G ,:SE) < (A, S < A%} 2 1 - 2 exp(-€2n/4)
n,k’ 2e’ 2¢e - )

However this contradicts the estimate on u(B Therefore “(Aze) > %— and

A,k)'
again using Lemma 2.2 we conclude the proof.

2.4, We return to study the normed linear space GR?||°||) which is denoted by X.
We also denote X* = (Rn,||~‘|*). For E € Gn we write E G X to indicate that
we consider E as having the norm |]|-]]. Siﬁilarly, Eg X* or ESR" mean
that E has the norm ||~l|* or || respectively. It is clear that

d(X,%5) < d = a.b,

. 1 2 .
THEOREM. Fix 7€ 0 and k g [e n/10£n1/€]. For each decomposition

d = al-bl(a1>0) there exists a subset E < Gn X of a large measure

w@E =21 -2 exp(-ezn/4) such that
either for each E € E

1
a

d * n
EsX, EGRY < 1= a,

or for each EE€E

d(Ec X; EcRM < b,

It is sufficient, of course, to prove the theorem with the original a; =a

and b1 = b, We prove first the following lemma:

LEMMA, If x € s (eli. |x] = 1) and lell* < (1 - 4€) then for every
z € s such that |z - x| < 4e we have ||z|| = 1.

PROOF  is obvious: ||z)](1-4e)>]Ix[{"|]z]|2 t(x,2)| = | (%) + (x,2-x)] > 1-4c. m
n-1

*
Return to the proof of the theorem, Let A, = {x € S" :||x|]| % 1 - 4e}. Then
by the preceding Lemma (A:)46 cA-= {z € Sn‘I:]|Z|| 2 1}. Using the notation of
2.3 we have

G 21 -2 exp(—ezn/4)

either wu(I n,k) >

A,k ©

2>

2
Af,k) > 2 exp (-e'n/4)

or u(B

(these two sets are just complemented in Gn k). In the first case we have found

the large subset such that (i—4e)|x| < ||x||* < a|x| for every

Ta,,x < Cnx

E € IA K and every x € E. It means that we may choose E = IA K In the
* %
o
second case, by Lemma 2.3 we gave the set I(A*)4€,k c IA,k such that
u(IA K € Gn k) 21 - 2 exp(-e'n/4) and for every E € I and x € E
5 3

Ak

x| < [Ix]] <blx| =

377



V. D. MILMAN

We will mostly use this theorem with ¢ = %- and k = [Aon] for AO = 1/1300.

2.5 COROLLARIES: a) Let d(X,%g) = d. Then for k = [Aon](lo = 1/1300)

either X contains a k-dimensional subspace E, d(E,ﬁg) < vd

*
or X contains a k-dimensional subspace F, d(F,lg) < 2/4.
(This corollary shows that 1.5.a follows from 1.4 ; Moreover, it gives an inter-
pretation of 1.5.a. in terms of a '"proportional' theory : k in 2.5.a is propor-

tional to n).

b) Let d(X, L) = dn' If there exists o > 0 such that every subspace E S X,

*
dim E = k 2 xOn, satzsfies d(E, 12) > od_, then there exists a subspace F S X ,
k = dim F 3 An, such that d(F,gg)s 2/a.

(It is the case, for example, for 22, © > g> 2, and it gives again 1.6.a),

c)  STATEMENT: For each o > 0 there exists X > 0 such that every n-dimengional
normed space X with d(Xx, zz) d contains a subspace Eci X and E contains
a subspace F o E such that k = dim F 2 An and d(F,2 ) 2d* (¢2n /2 ).

To prove the statement, we apply Theorem 2.4 (or 2.5.a) repeatedly a number of

times. (A much stronger result is proved in Section 4).

2.6 Let f(x) be a real valued function on Snul:f(x) € C(Sn_l), and wg(e) =
= sup{|£(x) - £(y)]:|x-y] s €} be the modulus continuity of f(x). For any * €R
define A;: =tx€ s"hiE) 3 2}, A = {x€ SMThiEG0) € 23, and A - {x€ g™
f(x) = We say that Lf is the Levy mean of f(x) if u(A ) 5 and

(A ) %v Applying 2.1-2.2 to the intersection of the e€- nelghbourhoods of

ALf and ALf we have:
2

LEMMA: Fix € >0 and 8 > 0. For each k < 3257373 n there exists a k-dimensio-
n

nal subspace E SR such that

(2.2) [£0x) - Lg| < wele)

for x in some 6-net of S(E). It means, in particular, that |f(x)—Lfl<wf(e+6)
for every x € S(E).

2.7 However, € and & in 2.6, Lemma, differently influence an estimate on k
and it becomes important when we apply this Lemma to the function r(x) = lell.
In this case it follows from (2.1) that W, (e) ¢ be. Take € so small that

be € SO'Lr for some small but fixed €, (! remember that b/Lr usually depends
on n and may be very large). It is possible to show that there exist K(é;eo)

such that
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a) (2.2) implies |r(x) - Lg| < K(é;so\Lr for every x € S(E)
b) K(6;€O) >0 (8§ >0 and gy> 0),

By this reasoning we have proved the following statement.

STATEMENT ([M]; see also [FIM]). Let a norm ||'|| be given in R", and let it
be commected with the Euclidean norm |-| by the inequalities(2.1) (i.e. a_1|x|s
|1x]lsblx| for every xeR™). Let L, be the Levy mean of the function r(x) = x| ]

and let a number € > 0 be given. Then for each integer k < CEET7E . n(fﬁiz
(where c¢ 1is some absolute constant) there exists a k-dimensional subspace E of
R" such that

(2.3) (l—s)Lr|x| < x| ¢ (1+g)Lr[x|

for every x € E, Moreover, subspaces which don't satisfy the above inequalities

2
(2.3) have a measure at most exp [_€Z£ -(Lr/b)z].

To use this Statement in order to estimate the dimension k of an "almost'"
Euclidean section of X = (R",||*||) one has to estimate L /b from below. It is
much easier to deal with

M= [ x| [du (x)
T xESn'1

instead of Lr' The following remark is useful for this purpose.

REMARK [FLM]. If b < vn then there exists an absolute constant C such that
[L - M| <C.
T T

Results 1.3 - 1.6a were obtained by estimating Lr/b or Mr/b from below. In
[FLM] this estimate was connected with the so called "cotype" - condition. We pass

now to a different way of estimating this quantity through a volume ratio.

2.8 FINITE VOLUME RATIO . Let Voln be the usual (n-dimensional) Lebesgue measure

on Rn normalized (for example) so that the induced measure on Sn_1 coincides
with u(x). It means that Vol,D = %u(sn_l) = 1/n. Let K= {x€ Rn:||x[[ < 1}

denote the unit ball of X = GRn,||-|]). Assume that L. = 1. Then

Vol KNnD > %—Vol D (and, also, Vol[K n 3™

The following lemma is an easy consequence of this inequality.

D} < 2 Vol D)

LEMMA: et Vol K € C" Vol D. Then L_ > 1762y,

Therefore, the Statement 2.7 implies:
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Let ||x]| < |x| for every x € R" (i.e. b= 1) and Vol K ¢ ™ol D (we
say, following [Sz], that X has a finite volume ratio - f.v.r.). Then for each

e > 0 there exists A(e) > 0 depending on e only such that for each integer

k

5"

However in the case of f.v.r. a much stronger result is true: X contains a k-

k < A(s)n/C2 X contains an (1l+e) - isomorphic copy of &

dimensional  ©(C,A)-isomorphic copy of lg

equal to 2/3 (or any other number <1). The above function ©(C,\) depends only

even for k = Xnand X, say, is

on C and X < 1. It was first observed by Kashin [Ka] for R?(QT has a f.v.r.)

and later by Szarek [Sz] 1in a general case. We will sketch Szarek's proof with

some minor additional information as it will be used in Section 4. The proof of

the following three Lemmas may be found, e.g., in [Pel], Lecture 1.

2.9 Assume ||x|| < |x| for every x € R™ and that
K d%f. 1/n

v.r (Vol K/Vol D) < A.

gl

LEMMA 1.: Let Z, = {x € S x|| < p}. Then

uz) an™.

LEMMA 2.: For each integer k < n and a Borel set B c sn-t

we define

Ek = {¢ € Gn,k:uk-l(B n E%?l Tun_l(B)} (we write W to emphasize that we con-
sider measure on S(£) =S ). Then uft € G, & € Ek} >1-1/T and

(£ €6, 6 €E and €} >1-2/T (here &5 means the (n-k)-dimensional

subspace which is orthogonal to §&).

LEMMA 3: If E 1is a k-dimensional subspace of X and for some p, ©C <p <1,
and o > 0

n-1 k-1

{x €S nE:||x|| <o} <a

Hk-1
then for every x € E

- %) Ix] ¢ [lxl] < Ixl.

THEOREM ([Sz]): Let v.r.K g A.

1) Fix 0<x<1 and t > 1. Then for each k £ An there exists a subspace E,

dim E = k, such that

1 1

—é- '-‘(—t—me IX[ < ||XI| < |X|

where © = 1/(1-1). The normalized Haar measure W of such subspaces in Gn,k is
at least 1 - 1/t".
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2) There exists a subspace E, dim E=[n/2] , such that

1

—_—s | X X
el NI

A

||

for every x € E and every x € gL, The measure v of such subspaces in G (n/2]
n, [n/
18 at least 1 - 2/tn

PROOF of 1). Use Lemma 1 of this section for p = 1/(tﬂA)9. Then u(Zp) I3 (Ap]n.

By Lemma 2, for T = t" and k = [An]+1 there exists a k-dimensional subspace

E (and a large measure of such subspaces as described in Lemma 2) such that

(2, 0 E) g (tap)" = [t_A_ }(l/l)(k-l)

(tﬂA)e

Uy _ 11
207/ (tA)®

Define B = [tA/(tnA)e] Then, by Lemma 3

(- Z6)1x] < [IxI] ¢ Ix].

and, trivially L. 1 5
(tmwA)

™
$p- 378
PROOF of 2) is the same. We use only the suitable part of Lemma 2.

§3. BACKGROUND;MIXED VOLUMES AND GEOMETRIC INEQUALITIES.

In this Section we recall a few classical definitions and results which are
well known to experts in Geometric Inequalities but not yet known enough to ex-
perts in Local Theory of Banach Spaces. This is the reason why full proofs of the
results used later are given. To the number of the well known classical books on
this subject we will add two relatively recent ones: Santalo [Sl] and Burago and
Zalgaller [B-Z],

3,1 THEOREM (Minkowski, 1911) Let Ki’ i=1,...,m, be convex compacts in
R", Xi 20, and m 3z n. Then Vol(AKy +...+ Ame) = (a homogeneous polynom of
A

of degree < n written in the form:) V(Kil...Ki ) (and
n

. L DD W (D
1 léijsm 11 12.‘.A1n

such that the coefficients V(Kil""’Ki ) do not depend on the order il,...,in).
n
We say that V(K. ,...,K. ) 1is the mixed volume of K. ,...,K, (1Some or
i ip —_— i in
all of the indices 1i. may be repeated a number of times). By construction it is
not dependent on the order of sets {Ki}.
We will not deal with this general form of the theorem and therefore we will not

discuss it, but for a few remarks:
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The mixed volume V(K ...,Kn) is the Symmetric polylinear form with respect
to set addition (V(K' + K” K2,... ) = V(Kl, IRRRE Kn) + V(K”,Kz,...,Kn) where
A+ B={x+y:x € A and y € B}) and homothety V(q1 1’ 2,...Kn) =|a1|'V(K1,...,Kn);

Vol K = V(K,...,K); Therefore the mixed volume is, in a sense, the polylineariza-

tion of Vol K and Vol K s the diagonal of that ferm; the mixed volume is a mono-
. . . ; .

tone function: A1 c A2 implies \(Al,Kz,..,Kn) < V(A2,K2,..,Kn), Consequently

V(K LK) 3

3.2 Now we turn our attention to a special case of Minkowski's theorem which
was already considered in 1840 by Steiner. Let D be an Euclidean unit ball, and
K be a convex compact and p > 0. Define V(K . K, Q, p) Vm(K). Then

VO(K) = Vol D and Vn(K) = Vol K.

STEINER'S FORMULA:
st Vol(K + D) = .2 (V. . (K)ot
(st.) ol(K + pD) = .Z5()V, _;(K)p

We will prove this formula along with the following well known and important inter-

pretation of the mixed volume Vm(K):

STATEMENT:Let G be the Grassmann manifold as in Section 2 and let u(t) be the
normalized Haar measure on G, m Let PE be an orthogonal projection onto &, D,

be the unit m-dimensional Euclzdean ball, and VoZ be m-dimensional Volume.
n
) V(K) = oo J Vol (P K)du(e).
m VolmD EEGn,m m- g

(St.) and (V, ) will be proved by induction on dimension n. At first, we

define functions Vm(K) by the formula (V) and we prove (St.) with these numbers.

a) For n=1, (St) is trivial: 1length (K+pD) = length(K) + 2p =
=V (K) + Vo(K)p.  (Vy(K) = V(D) = 2).

b) If we will prove (St) + (Vm) with some coefficients a g instead of

>

(?) then immediately a ;= (?) (take K = D). So, in our inductive
bl

proof we disregard coefficients independent of K and o.

c) The special case of (V )t Cauchz formula (1841)
© area of K 9&F sx) - VoK)

(Recall: definition of Vn-l(K) see at (Vm) for m = n-1).
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PROOF; We prove the above formula first for K being any convex compact polytop
(with, say, faces fi and Area fi = Voln_lfi = Si) and subsequently we obtain

a general case by an approximation argument. Let & be an arbitrary (n-1)-dimen-

sional subspace and 6i be an angle between &£ and a face f.. Then
Voln_ngfi = Si[cos 9i| and fVoln_ngfidv(E) = Siflcos 6i|dv(§) =asS; (where
= : = z d =
a depends only on n). Therefore anS(K) a, 2.51 g ( VOln-lpifi) v(g)
i €€6n,n-1
= < =
2 ngoln_IPgK dv and we have proved that &(K) chn_l(K). To compute the

number Ch take K = D.

d) Assume that (St) + (Vm) is proved for n-1. Let & € Gn ne1’ Then

E)

_ i
Vol (P, (KrpD) = ) Vg3 (PeKIP

n

(and Vn—l-i(pEK) is defined by (V) in (n-1)-dimensional space). Averaging over

£ € Gn n-1 gives (using (C) and definition (Vm) but now in the n-dimensional space)
s

_ nsl i
S(K+pD) = 3 ay ;Vnopg (e
for some numbers a g depending on n and i only. Integrating by p from 0
to r gives

a_ . .
n,i i+l

_ ngl
Vol (K+rD) - Vol(K) = % Tl Vn_(i+1)(K)r

Change i+l > i and pay attention that Vn(K) = Vol K. This ends our proof of (St)
(use b) to define coefficients (2)) and the description of vn—i(K) given by

(Vy)-

3.3 BRUNN-MINKOWSKI INEQUALITIES

The following family of inequalities generalizes the isoperimetric inequality

for Rn:

For each m, n > m 3 1, and every compact sets A and B (not necessarily

convex)

1/m 1/m 1/m
(Br. -M) Vm(A+B) > Vm(A) + Vm(B)
For m=n we have

/n /n 1/n

Vol(A+B)1 > Vol A1 + Vol B
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which implies the isoperimetric property of the Euclidean ball. Indeed, if we take
B = pD, then

/n 1/n

(o) Vol (A+oD) /™ 5 vo1 AY™ & 5 (vo1 py /™
Now, if Vol A = Vol D then Vol(A+pD) 3 (1+o)n Vol D and <nf for Vol (A+pD) 1is

attained at A = Dg

o 1
Divide (p) by (Vol D /n’ take a power n from both sides and use (st):

VoL (A) . - 1/n n n " E;£ .
n, n-i p1 ) '[ Vol Al +p] _ 5 (n)[Vol A ] T 1’

) Vol D}

n
E (i Vol D

i=0
for every p 2 0. Because O-term and n-term are equal on both sides of the inequa-

lity, we obtain inequalities for l-and (n-1)-terms:

n-1
Vo1V N [Vol A]_ﬁ"

Vol D Vol D and

V. (A) 1/n
1 Vol A)
O VoI D (Vol Dj

The second inequality is Urysohn inequality [U] and the first one brings us back
to the isoperimetric one. Note here that both inequalities are the partial cases
of the more general Alexandrov inequalities [A]

Vm(K)]l/m [V.(K)
A) > |2
( Vol D Vol D

1/j
) for each 1 $m< j £ n.

(A1l of them may be similarly obtained from the general case of (Br.-M.) using a
. . M m i . .
generalization of (St.) for Vm(K): Vm(K+pD) = igo(i)vm_i(K)p which is an easy

formal consequence of (St) - see [Sl])‘

To complete a proof of Urysohn inequality (U), intensively used in this paper,

we are now going to sketch a proof of (Br.-M.) for the case m=n.

By an approximation argument it is enough to show (Br.-M.) for such A and B
which are finite unions of parallelograms with non-zero volumes with faces which
are parallel to coordinate (pair-wise orthogonal) planes. We shall refer to this
parallelograms further as ''particles'". The proof is by induction on a number k
of particles in A and B together. Let k =2 (i.e. A and B are just para-
llelograms with edges of the lengths (ai)2=1 and (bi)2=1)' It is worthwhile to
apply parallel shifts of A and B such that each will have a corner at the
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origin; such shifts do not change the volumes of the bodies. Then the inequality
which has to be proved is the following one
a 1/n 1/n 1/n
igl (ai+bi) > (l'[ai) + (T[bi) .
This last inequality is the consequence of the inequality between geometrical and
arithmetical means:
a. 1/n n a. b. 1/n n b.
[n——3;—1 <21 and rn - } cly d
ny n

a.+b. a.+b. a.+b. a.+b.
i i i i i i

By induction, we may assume now that A contains at least 2 particles. Then there
exist a parallel shift of A and a coordinate plane P which devides A (after
the shift) to two sets A' and A" each of themhaving a strictly smaller number
of particles than A. Tet Vol A' = AVol A and therefore Vol A" = (1-A)Vol A. We
shift also B to such a position that the plane P devides B to the parts B'
and B" with the same volume proportion (Vol B' = AVol B and Vol B'" =

(1-)) Vol B). Then

Vol(A+B) % Vol(A'+B') + Vol(A"+B'")> (by induction)

1/ 1/n.n / 1/n

(ol ANY™ 4 vo1 Y™™ 4 [wol AnY™ & (vo1 B /M Moal(vo1 A/ ™

vvol BYY MM 1oy [vol MY M wor BYY ™M = [vo1 &)Y ™M vo1 B/ u

3.4 Urysohn and Santalo Inequalities.

a) Let K be a unit ball of an n-dimensional normed space X and D be the Eucli-
dean ball. We consider also in the same affine underlying space the dual norm

[|x|]* with respect to the duality defined by D. Let K* be the unit ball in

this dual norm . The geometrical interpretation of the dual norm implies immediate-
ly that
* def.
Vi(K)/Vol D = f []x]]Tdutx) = M,
n-1
S
where Sn_1 = 3D is the Fuclidean sphere and n(x) is the normalized Haar mea-

-1 . . . . .
sure on S' . So Urysohn inequality (U) may be rewritten in the following form:

U (Vol K/Vol D)V/™ ¢ M, -

b)  Santalo Inequality

([52]; for a new and very nice proof see [R]):
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(s) Vol K - Vol K* € (Vol D)°

Note that Urysohn inequality is an easy consequence from (S) (I learned this from
Y. Gorden). Indeed:

1/n _ n 1/n

Vol K* = 1 d *

(vgfqu [ f [TTETT7] “(X)} > A o
Sn—l Sn-l

On the other side

Vol D ]1/“

Moo= f HxITaueo = 17 f A aueo » [VST“?T
n-1

r*
Sn-1 S

Use now (S) to obtain (U).

4. EUCLIDEAN DECOMPOSITION OF AN ARBITRARY NORMED (FINITE DIMENSIONAL) SPACE.
The following Problems are investigated in this Section.
PROBLEM 1. Is <t true that for every € > 0 there exists Ale) >0
such that every n-dimensional normed space X contains an m-dimensional subspace
Ec X such that E* contains a k-dimensional subspace F E* such that
k > A(e)n and d(F,lg) < l+g?

PROBLEM 2. Is 1t true that there exists an absolute constant C such that
every n-dimensional normed space X may be decomposed in a direct sum of four
subspaces X = E; + E, + E; + E, such that dim E, =n, 2 [n/4] for each

4
i=1,2,3,4 and for every i1 # iz

These problems have positive solutions for a large family of spaces and, in the
general case, we will prove these results up to a logarithmic factor. Some va-

riations of the problems will be discussed.

117

* *
K and K are the unit balls of X and X respectively, D is the Eucliaean

We use the same notations as in 2,,2.8, and 3.4. So, e.g., X = ( Rn,l

unit ball of ( Rn,l°|) and the orthogonality is understood with respect to the

-] in RT.

Euclidean norm

4.1 THEOREM. [et
Vol (Conv K 'J D) < VT Vol D and

*
Vol(Conv K U D) ¢ v; Vol D.
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Then

i) For each o, 0 < o < 1, there exist c(a) > 0 and A(a) > 0 such that X
contains an wm-dimensional subspace E o X and E* contains an k-dimensional

subspace F o E* such that

k 2 A(a)n and d(F,z‘z‘) < C(a)[v1~v2]a

In particular this means (using 1.4), that for every € > 0 and every o > 0
there exists A(a;e)> 0 such that E* contains a  (l+e) <somorphic copy of Eg

n
for k > A(a;e)fvfjvgjd .

ii) Fer ecach 0 < X <1 and 0 < n <1 there exists C(A;u) depending on A <1
and w <1 only such that for every m = [An] and k = [um] there exists an

m-dimesnional subspace E g X and a k-dimensional subspace F o E* such that

a2 < coppy VAN LA,

Moreover,

iii) there exists an orthonormal (in the sense of GRn,I'I)) basis

e = {ei}2=1 < X and a constant C(A,n) depending on X <1 and u <1 only such
that for every A < [1,...,n], m=|A|= [\n] and every subset B < A, k= |B| =[um]
we have

d(span{ei}ieA/span{ei}iEA\B,lg) < C(x;u)vi/(l'x)(I_U)vé/x(l_u)

In other words

d(span{eiF§ [span{ei}cax]*; 2;) < C(x;u)vi/(l'x)(I_U)V;/A(I_U)

ieB i€A

(recall, that, as in 2.4, we use the notation E &Y to indicate that the subspace

E 1is considered in the Y-norm

iv) DECOMPOSITION: there exists an orthogonal decomposition of X=E @E.@E.®E, and

1772773774
dim E;=mn; > [n/4]  for every i =1,2,3,4, such that for every i1 # i2
Mg 4 4
d(Ei 2] Ei /Ei L) < eV ot v,

1 2 1’ 2

for some absolute constant c. (Of course, 1iv) is just a partial case of iii))

We prove first ii). Step a). Define K1 = Conv KU D and consider the norm
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||~lll such that K1 is the unit ball in this norm. Then for every x € R

Hxlly < Hxll and [ix]l) < [x].

Using Theorem 2.9 for ]]-]]1, t and X we find (for m=[An]) an m-dimensional

subspace E g R" such that for every X € E

1 1
4.1 5 - T{;;Ije Ix| < [[x[|1( < |Ixlh

where 6 = 1/(1-A). Moreover, one has a large measure of such subspaces. Note
that to prove ii) it is enough to take t=2. However we will keep t because it

will be important in a proof of iii).

Step b). Consider E* = X*/El. It is clear that the unit ball K(E*) of E* is
the orthogonal projection of K* onto E g R, By (4.1), for every x € E*

]]x[lg < 2(tﬂvl)e|x].(||'||; denotes the dual norm to the norm on E).

One has to use now the second volume condition. Then

Vol (K*+pD) n Vol (Conv (K*UD)) n n
(4.2) Vel D < (1+p) Vol D g v, (1+p)

From the other side, using Steiner formula (St) from 3.2 we obtain

* *
(4.3) Vol (K*+pD) _ 2 (n) Vn—i(K ) i N (n) Vm(K ) n-m
: Vol D~ 2 M’ VoI D P % 'm) VoI DP
V_(K*) y1/m
Define [ng—ﬁ— ] = B. It follows from (4.2) and (4.3)

Bxpl—x €V, (1+p)

Take p = 1; we have proved

1/ Vl/k

LEMMA: 2

2

Vol D

A

L [Vm(K*)]l/m

. - "
Step ¢). Recall now the formula (Vm) from 3.2 and define f(g) Vo%éPEK )/VolmDm
where ¢ € Gn n and PE is the orthogonal projection onto §&. It is trivial that
LEMMA: If  [f(g)du(g) < a then

e = uig € Gn’m: f(£) < Ta} =1 - 1/T.
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So, taking T = ¢"  and using Step b) and the previous Lemma, we obtain the

/m 1/x

, ~ ) 1
STATEMENT.  Let E = {£ €G :(Vol (P.K*)/Vol D) € (2tv,) "1, Then

WEY 31 - 1/t" .

Step d)  An intersection of E with the subspaces obtained in the Step a) gives

a set EO c Gn ( and of a large measure) such that every ¢ € EO has the pro-

,M
perties
* -

I]xiig < 2(tw1)1/1 A]x] for every x € &

and
* .1/m . 1/X
(VolmK(E) /VolmDm) < (2tv2)
. . . 1/1-x

After introducing the new Euclidean norm |-|1 = Z(tﬂvl) l-[ we may apply

*
Theorem 2.9 for a space E (for EE€ EO) (i.e. for m = [An] instead of n

and u instead of A). Again, it is enough in this part of the theorem to take
t = 2, but for further purposes it will be necessary to use instead of t the

1/x
t .

*
number t. = By that Theorem, there exists a subspace F G E  such that

1
k = dim F = [p[An]] and for a constant C(t;X;u) depending on X < 1, u < 1 and
t > 1 only

(4.4) d(F,15) ¢ crenpuyl/ A0

Take t = 2 to finish the proof.

PROOF i). Take in the preceeding proof X= u = %; then, apply Statement 2.5.c

to the space F.

PROOF iii). 1is a manipulation with large measures of subspaces obtained in the
proof of ii). Fix integers m <n and k <m. In the part ii) of the Theorem
we were looking for a pair (F;E) of subspaces of R"  such that dim E = m,F G E
and dimF = k and such that this pair has the described in ii) properties: if E
is considered as the subspace of X (i.e. with the norm ||-||) and F CQE*(i.e.
with the norm of E*) then d(F,lg) < a formula as described in (4.4); it will
become clear later that now we have to put t = 6 in the C(t;X;u). All of such

pairs form a subset Sm'k of the manifold V which we describe below.

Let ¢ € Gn n (i.e. & 1is an m-dimensional subspace of Rn). Denote

Gy, k(&) be the Grassmann manifold Gy,x ©f all k-dimensional subspaces of .
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We consider the following manifold of pairs V = {(n;&), where ¢ € G, m and
ne Gm k(g)}. It is clear that V is a homogeneous space under the action of
0 (n). Therefore, if uy, denotes the normalized Haar measure on V then for every

Borel set S < V and for each fixed (nO;EO) [SEAY
uv(S) =p{T € 0(n): T(nO;EO) € S}.
Further duv = duG - dy
n,m m, k

We have to estimate a measure “v(sm'k)‘ For this purpose we have to go once more
3

through the proof of 1ii). At the step d) of that proof we built a set

EO c Gn o s an intersection of the sets from a) and c¢). So, its measure

>

WE > 1 - 2/t
For every E € E we found (by Theorem 2.9) a set F < Gm k(E) of subspaces
{F G;E }  which satisfy the desired inequality (4.4). The measure of this set may

be estimated again by Theorem 2.9.

m _ n
uwifF < Gm’k(E)} 31 - 1/t1 =1 -1/t .

Therefore
(4.5) u (S, ) 2 (- /4™ - 1/t™ 2 1 - 3/¢"
Fix now any orthonormal basis e {elo =1 in GRn,]'I) and define
E, = span{el 0}1€A for every A c [1,...,n]. For every pair (B< Ac [1,...,n]),
|B] = k and |A|] = m, denote OsA = {T € O(n) : (TER,TE,) € sm,k}. Then
u(OSA_B) = uv(Sm k) where |A] =m and |B] = k. 1t is clear that the cardinal-
3 s
lity N of all pairs (B,A) such that Bc Ac [1,...,n] is equal to
n nm n

= i 4.5):
L -0 k 0 @ )( ) =L 02 ( ) < 4", Therefore, using (4.5)
pl N OSA_B < 0(n): for every A c [1,...,n] and every B c A} >
B;A B

1-3.4"¢" >0 for, say, t =6 and n > 3.

(The case n< 3 is trivial). It means that there exists an orthogonal operator

*
T, such that for every B c Ac [1,...,n] the space Ty E, o (T,E A,||‘||) , i.e.
*
ToEg considered in the norm of (TOEA,I|’|l) , satisfies (4.4) with t =6,
. n e
[Al/n and u = |B| /|A]. So, the basis {TO 1,0 ° ei}i=1 satisfies the con-

ditions of iii).

4.2 Define
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M_ = jsn_1||x||du(x) and M, = fsn_lllxll*du(x).

LEMMA : Vol(Conv K U D) g (1+Mr*)nVol D and similarly,
Vol (Conv K* U D) < (1+Mr)nV01 D.

PROOF: As in the Step a) of the proof of Theorem 4.1, we introduce the new norm
* *
ll~|ll with its unit ball K1 = Conv K UD. Clearly K1 = K N D. Therefore
1] 11
Mri = jgn_l x| jdueo = [ max(] x|, Ddux) < M, o+ 1

By Urysohn inequality 3.4, (U'),

(Vol K,/Vol /M ¢ M, 1

The second inequality is proved similarly.

COROLLARY. If M ‘M_, T then one may choose an Euclidean norm (R™,|-|) such
that in Theorem 4.1 vy = 2 and vo = T + 1 (normalize the original Euclidean
norm such that Mr*=1)'

4.3 A few well known facts:

a) It was proved by [F.-T.] that the Euclidean norm GRn,|'|) may be choosen

in a such way that

MM, 5 CpllRady]]

where an absolute constant C,< 27 and ||Rad is the norm of the so called

1€ x! !
Rademacher projection of X (definition and properties see, e.g., [P2])

b) This quantity ||RadX|| is very important in Local Theory and was investi ~

gated by Pisier [PZ]. He has proved that

i)  for every n-dimensional normed space X
[|Radx| | < Czﬂ,n(n+1)

for some absolute constant Cys and

for each integer k there exists a constant Cz(k) such that for every

normed space X:
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||rRad, || 2 C(X) <Implies that X contains a@ 2-isomorphic copy of lk.
X 3 1

We bring together all these facts in order to estimate vy and v, in Theorem
4.1.
4.4 COROLLARY 1.: For every n-dimensional normed space X one may always assume

that in Theorem 4.1 v1=2 and v, € Cen (n+l) for some absolute constant C.
COROLLARY 2:  For each integer k there exists a constant C(k) depending on k
only, such that for every finite dimensional normed space X which does not con-
tain a 2-isomorphic copy of zk all conclusions of Theorem 4.1 are satisfied

1
for v.=2 and v, = C(k).

1 2

(Proofs of both Corollaries follow immediately from 4.2, Corollary and 4.3)

4.5 The previous Corollary 2 indicates a large family of spaces which admit an
exist nce of an Euclidean norm |:| such that the constants vy and v, defined by
Theorem 4.1 are uniformly bounded. It is curious to observe that the family of
Eg—spaces which is the worst one in the sense of the condition of Corollary 2 any
way has the uniformly bounded constant vy and v, Because of this, and Theorem

4.1, the following problem arises naturally.

PROBLEM: Is <t correct that there exist absolute constants vy and v, such that
for every finite dimensional space X = (Rn,||'||) there exists an Euclidean norm
(Rn,l'l) such that the conditions of Theorem 4.1 are satisfied ?

§5. PROJECTIONS ONTO EUCLIDEAN SECTIONS.

We use notations and definitions from the previous sections 1.1,2.,2.7,2.8
and 3.2. So, X = ORn,l|'||), 1/a lx| Sl|xl| < blxl, K = K(X), Pg is the ortho-
gonal projection onto a subspace ¢ € Gn o Throughout this section we assume nor-

malization of the Euclidean norm l-l such that Mr = 1.

5.1. Let, as in 3.2, Vm(K) be the m-th mixed volume of K. Define

1/m
(v, (K)/Vol D) = A

THEOREM. There exists an absolute constant c¢ > 0 such that for every integer
k < c-min{nﬂAkb)z, n(Ak/a)z} there exists a subspace EO € G, ¥ such that

1/2]x| < ||x|| < 2|x| for x€E; (i.e. d(EO,ILé) < 4) and HPESX* EOH < 4n
(!Remember the normalization Mr = 1 which implies, by the way, Am > 1 for every

nxm3 1).
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REMARK. The main application which we mean for this Theorem is for a case of a
uniformly (independent of n) bounded Ak < Const. for some k(n) satisfying the

condition of the Theorem.

Of course, the existence of a set A< Gn,k of a large measure (say u(A)>%J
of k-dimensional subspaces satisfying the above inequalities between the norms
[|*]| and |+] on them is a consequence of the statement from 2.7. The addition-
al information about ||PE0|| is obtained from the geometrical fact which is

proved below that P_ K< 2A, (D NE ),
Ey k o

5.2. A proof of this fact uses a concentration measure phenomena on the following

manifold of pairs

v={€€ G, x € S(&)}.

’k’

It is clear that V is a homogeneous space under the action of SO(n). It
means V = SO(n)/G for some subgroup G. We identify every element e € SO(n)
with an orthonormal basis e = (el,...,en). Then define i: SO(n) - V by the
formula ie = (¢ = span(el,...ek); el) eV. Introduce also a metric on

Vi, ((8:x)5 (n,y)) = inflogy )y (Ty5Tp): 0Ty = (8,x) and 0T, = (LY} (pgy ()
is the standard bi-invariant Riemannian metric on SO0(n); equivalently, pSO(n)
can be taken as the Hilbert-Schmidt operator metric, which is uniformly equivalent
to the other one). The normalized Haar measure u, on V may be defined by

uV(N:V) Ac=SO(n)}.

-1
=Hs0(n) 11

For every subset A of a metric space (M,p) let A€ = {x € M:p(x,A) < €}. It is
clear that i_lAe 5 (i-lA)e. Therefore if 1y (ASV) > 1/2 then u(i 'ASSO(n))31/2
and this implies

iy (A 3 ugo(y (AR 5 1 - exp(-e’n/§)

(fne last inequality for SO(n) 1is known - see [G], [G.-M.]). So, the following

lemma has been proved:
LEMMA. For every closed subset A<V with u(A) % 1/2 and for every e > 0
2
w(A) > 1 - exp(-e n/8).

5.3 STATEMENT, Let M be a Borel subset of V, A cC Gn 1 w(A)21/2 and let
s
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€>0, 8§>0. If for every £E€ACG there exists (g,x) € M and

k < czn/Slnl/d then there exists EO € Gn X such that M2(€+5) o (Eo,x) for every
0 E

x € 5(g7) .

PROOF. Use Lemma from 5.2 in a standard way. We will not repeat it because a simi-
lar reasoning has been used in 2.3. (Do not pay any attention to the numbers as

5 in this Statement or 10 in 2.3)

REMARK: Note that the proof of the Statement gives a large measure of such
go € Gn x as claimed in the Statement.

5.4 Return to the proof of Theorem 5.1. Define PEK = KE and let ||'||KE be the
norm in the subspace E with the unit ball K. Let
M= {(g,x) € V:3y € K and ng = Ax for A > t}.

It is clear that (E,x) € tM means that ||x||K < 1/t.
E

LEMMA. Fix «k > 0. There exists a constant C(x) > 0 depending on « only such
that ©f e < C(x)'min{1/tb;t/a}, then (tM)E C(J—K)tM'

PROOF: Let (E,x) € tM; it meansthat there exists vy, [ly‘l =1, and PEy=Z=Ax
for *» 2 t. We divide the proof into two steps

a) Let x' € S(E) and |x-x'| ¢ €. It is clear that |[x'||K - |[x[|KE <
< [Ix* = x|, < b|x'-x| ¢ be;. Therefore l|x']|KE < ||xl|KE +bey g 1/t + beg g
< (1+)/t for €] < x/tb. So we have proved

{(E,x) € M and |x-x'| < «/tb} <implies (E,x') € t/l+KM'

b) Take E' € Gn,k such that p(E,E') < €, (which means that ]PE—PE,l < 82).

There exists T € SO(n) such that : |T-Id| ¢ €, and T_1PF,T = Pg- We want to
compute |PE,y| (where y was defined above in terms of x; recall also that
Py =z and |[Tz] = |z] 3 t).

(s.1) [Pyl = 2| ¢ [Ppyy-TPoyl = [Pp =TI s Iy-Ty| < e,lyl < epa
(because [IyII = 1 implies |y| < a). Therefore IPE,yI 2 ]ZI T t—eza.

Take e, < «t/a and we obtain |PE,y[ > (1-)t. So

{(E,x) € M and o(E,E") < e, < «t/a} implies & ,Ppy/|PpyD) € g M
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(add also that, by (5.1) PE,y/IPE,yI - x| £ 2¢. The steps a) and b) imply

Lemma in a trivial way.

5.5 To prove now Theorem 5.1 we use Lemma 5.4 for t = 2Ak and k= 1/4.

We start from the set A c G ¥ from 5.1. If for each E € A there exists x€ES(E)
s

and (E,x) € to 3toﬁ4M‘

Statement 5.3, there ex1stsk E0 such that (Eo,x) € 3/4t0M for every x € S(EO)
K > (3/2 A,) +Vol,D,. Because of the Remark in 5.3, we may assume

k "Ep k kk

that there exists a set E < Gn X of large measure of subspaces, each having the

same property as E0 above, Therefore, the average of VoleE over Gn X has to

be larger than it is allowed by the formula (Vm) from 3.2 for the mixed Volume A

M then, by Lemma 5.4, (tOM)8 c On the other side, by

and so Vol

K
This contradiction shows that there exists E0 € A such that (Eo,x) ['4 t M for

every x € S(EO) It means precisely what we have to prove, i.e. PEOK c ZAk(DnEO)

5.6. Compare Theorem 5.1 with the following well known result (! remember, that

we assume Mr = 1)

THEOREM [FLM]. There exists an absolute constant ¢ such that X contains a

. . . 2 2
k-dimensional subspace E, d(E,Kg) <2, k 2 cmin(n/b",n/a”), and such that the or-
thogonal projection PpiX > E has the norm I!PF|1 < ZMr*' (It is worthwhile again

to recall section 4.3).

By Alexandrov inequalities 3.3., (A), the sequence of mixed volumes
n . .
{Am}m=1 is decreasing: A €A € A § A =My, for every l<k<men and therefore
the assumption M.x € Const. implies Ak < Const. (but not, generally, vice versa)

86. COMPUTATION OF MIXED VOLUMES THROUGH LEVY MEAN APPROACH.

6.1. Let, as before, 1/a|x| ¢ ||x|| < b|x| for x € R" and K = {x:||x|] < 1},
*

K, M, = Mo, My, = Mr*’ Vm(K) have the same sense as in the previous sections.

K K*
Denote also by Dm the m-dimensional Fuclidean ball and by VolmDm the m-dimen-

sional volume of Dm' Let E € Gn It is clear that P_K 1is the unit ball of

k* E

4 *

the space X/El and this space is the dual one to E o X (again, as before, it
* *

means that E inherits the norm of X ). Therefore d(X/El, 2;) = d(E a X ,2;).

Let

1 *
M(k;e) ={E € Gn,k:T:E'MK*|X| < x|l = MK*(1+€)|X|, vx € E}.
Apply Statement 2.7 to the dual norm |l~]|* Then, for every e > 0 there

exists c(e) > 0 such that for each k ¢ C(e)n(MK*/a)2
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[ 2 M, Y
n(M(k;e)) 2 1 - exp \--g— n | X

a
Therefore by the monotone property of Vi and the formula (Vm) from 3.2

2
£
5

1
VolkD

(6.1) vy (K)/VolD <
K

[(1+e)kM§*‘Vol D +ak'exp[—

n 2

K* kk

(we use the triyial fact that on the set M(k;e)C which has an exponentialy small

measure, as on every subspace E € Gn X KE < a*DNE). On the other side

>

1 K a2
(6.2) Vy (K)/VolD > k-Mw{l-emﬁ-%—Eier
(1+€) a

The estimates (6.1) and (6.2) prove the following Statement.

THEOREM, For every e > 0 there exists c(e) > 0 such that for each
k < c(e)n/(a/MK*)z-ln a/MK* we have

1
l+e

Mo € (Vk(K)/VolD)l/k < (LreMy, .

. Note, that a quantity a/MK* may be estimated using the cotype 2 constant of
X (see [FLM]). For example, if K = [1,1]n is the cube (i.e. that X =22 and

* n
X" =2]) and D = {x € R™: : x2

i< 1} is the standard Euclidean ball, then a = vn

and MK* = cn/E. where e, V2/m(n » «). So a/M = 1/cn > Vm/2(n > @),

K*

6.2 Directly generalizing Theorem 6.1,mixed volumes V(K.,K,,...K_,D,...,D) for
central symmetric bodies Ki’ 1 ¢<ig t, may be considered. Begin wi%h the

following known fact.

6.2.a. LEMMA [F.] Let ¢ € G n be an m-dimensional subspace of R® and &t
be the orthogonal complemented to § (n-m)-dimensional subspace of R". et
Ki can, i=1,...,m, be arbitrary convex sets and Aj c gl, j =m+l,...,n be

arbitrary (n-m)-dimensional convex sets. Then

(6.3) (E)V(Kl,...,K A cs A= V(PLK

S P V(A A )

1000 m+l? 0

where Pg is the orthogonal projection onto &.

6.2.b. COROLLARY: ILet Ki c Rn, £ be as in Lemma 6.2.a and VolmDm be the

m-dimensional volume of the m-dimensional Fuclidean ball  Dy. Then
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_ Vol D |
6.4) VKoK 0 D) = 5orp / V(PLKp, .., P K ) du(E)
n-m mm G
n,m
PROOF. We argue by induction over n - m = k = 1,2,... . Denote by D(§) the
Euclidean ball of the subspace £. Because PED = D(&), it is enough to prove the

statement for every n 2> 2 and m = n-1. So, we apply (6.3) for m = n-1 and

An = D(&). Because the mixed volume is a linear function of An (with respect to
o1 WIth AT D(E)  gives
(6.4); (note that [D(&)dj(E) = D and fV(Kl,...,Kn_l,D(E))du(E) =

= V(KooK s [DCE)).

the set addition - see 3.1), integrating (6.3) over &€G

6.2.c STATEMENT. Let K; < R, i=1,...,m, be uni* balls of norms I]‘I[i and
let-for each a, > 0 and b, > 0-, Vaglx| < [Ix[]; < bi[xl for x ER"Y and
i=1,...,m. For every e > 0 there exists c(e) > 0 such that for each

t ¢ c(e) min {n/(ai/MK*)2~2n ai/MK*} we have
l1gigm i i

t t

t
il MK% Vol D ¢ V(Kl,...Kt, @;4;2) < (1+¢€) 'H MK%'VOI D.
=1 i n-t i=1 i

1
(1+e) % i

PROOF. Repeat the argument from 6.1 using Corollary 6.2.b instead of formula (Vm)
from 3.2.

6.2.d. The next Statement is a generalization of 6.2.c. and has the same proof.

We use the same notation, as in 6.2.c.

2
STATEMENT. Let t < c(e)n/(aM)° an a,/M,. Then
1 1
L vk K., D,...00/M, -V
Te € VEpeo ke Lo DMy

(KZ,...,Kt,Z,...D) £1+ e

n-t+1

§7,PROBLEMS. In addition to some problems which were discussed in Section 4 we

would like to raise a few questions in the direction of a "proportional" theory.

PROBLEM 1, TIs <t true that there exist absolute constants X > 0 and C > 0 such
that every finite dimensional normed linear space X contains a subspace E such
that dim E > Adim X and E* has a cotype 2 with the cotype 2 constant
CZ(E*) <C?

If this problem has the positive answer then a number of open problems in Local

Theory would be solved (e.g. if X has a cotype q < » with the cotype constant
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Cq then, by Pisier's Theorem [PS]’ E has a type 2 with an upper bound on the
type 2 constant TZ(E) depending on X, C, q and Cq but not on the dimension

of X).

PROBLEM 2,  Is it correct that for every e > 0 and C > 0 there exists
A\ = 2(e,C) > 0 such that for each n and every X, = (Rn,||‘||1) and
X, = (Rn,ll'||2) with d(X;,X,) s C there exists a k-dimensional subspace E < R"

such that k 3 Aan and d(E o XI’E =1 X2) <1+ €?

It seems reasonable to assume that the positive solution on this problem is
connected with a cotype condition on X1 (i.e. A depends also on q < « and
cotype q constant Cq(X)). However, a counterexample is unknown to me even for

the case of X1 = Z:.
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Added in proof. Since this paper was submitted, I have proved Problem 1,
Section 4, in the affirmative. The proof will appear soon.
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