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THE LAW OF LARGE NUMBERS FOR NON-MEASURABLE 

AND NON-SEPARABLE RANDOM ELEMENTS 

J. Hoffmann-Jorgensen 

1, Introduction. The law of large numbers has been in the 

center of probability ever since it was discovered by James Bernoulli 

around 1695 (published in 1713 in "Ars Conjectandi"). Lately it has 

been generalized to random variables taking values in a Banach 

space, see [1], [4], [5] and [6]. However in these papers it is 

assumed, that the random variables are measurable and separably 

valued, two conditions which, weird as it may sound, are not ful­

filled in the first and most natural example of an infinitely 

dimensional law of large number, viz. the Glivenko-Cantelli theorem, 

see [8, p.20] or [2, p.261]. 

Let ^^,^2'-«- ^e a sequence of independent identically 
distributed real random variable with distribution function 
F(t) =P(£n<t). Let Fn be the empirical distribution function 
based on f^,...,^, i.e. 

(1.1) F (t) n 
1 
n 

n 

j-1 
swnn;:<<= 

Then the Glivenko-Cantelli theorem states that 

(1.2) suplF (t) - F (t) I -» 0 a.s. 
t n->oo 
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J. HOFFMA NN-J0R GENSEN 

Let B(IR) be the set of all bounded real valued function on 1R 

with its usual sup-norm: 

Il ̂  II oo = SUP |f (t) I 
t 

Then (B(3R), | | * | L ) is a Banach space, and if 

X (a>,t) =1{ <t}(w) and X (a)) = X (a,-) 

Then X is a random variable with values in B(]R) , and the n ' 
Glivenko-Cantelli theorem just states, that the sequence "̂ xn-̂  
satisfies the law of large numbers in B(3R), i.e. that we have 

1 
n. 

n 

) = 1 
X -* F n a.s. in (B(3R) , || • ||J 

However X is neither measurable with respect to the Borel n 
a-algebra on B(IR), nor is it separably valued. 

This example shows, that the general Banach space versions of 
the strong law of large number are too special and too poor to 
cover the first and most natural example of an infinite dimensional 
strong law of large numbers. In this paper I shall prove an infinite 

dimensional version of the strong law of large numbers, which 
neither assumes measurability nor separability of the random vectors, 
and which covers the Glivenko-Cantelli theorem as well as many other 
uniform laws of large numbers for stochastic processes. 

2. The general case. 
In all of this section we let (S,S,y) denote a probability 

space and (B, || • || ) a Banach space with dual space (B ' , 11 • 11 ) 
and second dual (B",||-||). As usual we shall consider B as a 
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THE LA W OF LARGE NUMBERS 

closed subspace of B". 
Let f:S-»B be a function. Then we say, that f is y-measurable, 

if f is y-measurable when B has its Borel a-algebra. We say 
that f is weakly y-measurable (respectively weakly y-integrable), 
if x' (f(•)) is y-measurable (respectively y-integrable) for all 
x1 €B'. If f is weakly y-integrable then we define its mean: 

Ef = 
S 
fdy 

to be the linear functional on B' defined by 

(Ef)(x1) = 
S 
x* (f(s))y(ds) V x' £ B' 

It is wellknown that Ef EB". If f is weakly y-integrable and 
Ef € B, then we say that f is Gelfand y-integrable. We say that 
f is Bochner y-measurable, if f is y-measurable and f(S\N) is 
separable in (B,||-||) for some y-nullset N eS. Finally we say 
that f is Bochner y-integrable, if f is Bochner y-measurable 
and ||f(*)|| is y-integrable. And we shall consider the following 
four function spaces 

Lw(y,B) ={f:S->B|f is weakly y-integrable} 

L/l(y,B) ={f:S-*B|f is Gelfand y-integrable} 

I? (y,B) ={f:S-*B|f is Bochner y-integrable} 

Ll(y,B) = {f :S ->B|j*||f (s) ||y (ds) <«,} 

It is wellknown that L1(y,B) cL/l(y,B) cL1 (y,B) and that the 
— b — W 

integral above coincides with the usual Bochner integral on L (y,B) 
(see [3] p. 112 and p. 149). 
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J. HOFFMA NN-J0R G EN SEN 

As we shall work with non-measurable functions we shall use a 

few concepts concerning non-measurable sets and functions. Let 

(fi, F,P) be a probability space, then P* and denotes the 

f * r 

outer and inner P-measure and j fdP and J *fdP denotes the  

upper and lower P-integrals of f, whenever f is an arbitrary 

map from Q, into IR = [-<»,«>]. And if f is an arbitrary map from 

Q in 3R, then and f* denotes the lower and upper P-envelopes 
of f, i.e. 

(2.1) f* and f* are measurable: (ft,F) -* 3R 

•'.2.2) f^(w) < f (w) < f *(a)) Vooeft 

(2.3) P*(f*<g<f) =P*(f<g<f*) =0 VP-measurable functions q-M->TR 

If £ is a map from Q into a measurable space (M,B) we say 

that £ is P-perfect if £ is P-measurable and 

(2.4) (Pç)*(A) = P*(Ç 1 (A) ) V A c M 

where P^ is the distribution law of £ on (M,B). It is easily 

checked that (2.4) is equivalent to either of the following three 

conditions 

(2.5) V F € F 3 B G B:B cz Ç (F) and P (F^£ 1 (B) ) =0 

(2.6) P(FK=x) = 0 for P^-a.a.x G M\£ (F) , V F G F 

(2.7) I foÇdP = fdPç V f :M-> TR 

Moreover the composition of perfect maps are perfect, i.e. 
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THE LA W OF LARGE NUMBERS 

(2.8) If ^:fi-»(M,B) is P-perfect and n:M->(L,A) is 
P^-perfect, then r\oí3 is P-perfect. 

Let LLN (y , B) denote the set of all function f:S-+B, which 
satisfies the following version of the strong law of large numbers: 

(2.9) 3 a C B: 
n->°° 
lim || a-2 

n 
n 

j=1 
, . oo oo 

f (s . ) || = 0 for y -a.a. (s . ) G S 
oo oo oo 

where (S ,S ,y ) is the countable product of (S,S,y) with itself 
Notice, that we do not assume any measurability or separability of 
f, but of course a.s. convergence makes good sense no matter whether 
the functions are measurable or not. 

Let f G LLN(y , B) , then the vector a G B occuring in (2.9) is 
of course uniquely determined, and we shall call it the mean of f and it is denoted 

a = Ef = 
1 S 
fdy 

Note that if f G LLN(y, B) and f is Gelfand integrable, then by 
the real valued law of large number we have that the vector a in 
(2.9) equals the Gelfand integral of f. So there is no ambiguity 
in our notation. Actually we shall see below that every function i 
in LLN(y,B) is Gelfand integrable. 

Clearly we have the following simple properties of LLN(y,B) : 

(2.10) LLN(y ,B) is a linear space 
(2.11) E: LLN (y , B) -* B is a linear map 

And if cp is a bounded linear map from (B, || • || ) into a Banach 
space (A, ||* | | ) , then we have 
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J. HOFFMA NN-J0R GEN SEN 

(2.12) cp(f(*)) £ LLN (y , A) V f € LLN ( y , B) 
(2.13) cp(Ef) = Etp(f) V f e LLN(y , B) 

Let (ft, F,P) be a probability space, and let {£nJ ^e a 
sequence of independent identically distributed random variables 
with values in (S,S) and distribution law y. Then evidently we 

have 

(2.14) ||Ef h 
j 
n 

n 
i = 1 

f (?.) 
n->o° 

0 P-a.s., V f € LLN(y , B) 

However, even if B = 3R, we may have functions f, such that the 
averages n (f(£^) + . . . + f (CR) ) converges P-a.s., but f£LLN(y,B). 
However if the sequence {£ } is P-perfect, i.e. if the product 
map 

<wxv, = (5n(o,))^ 

OO OO 

is P-perfect from ft into (S ,S ), then we shall see in Theorem 2.3 
below, that this cannot occur. 

Note that we have not assumed any measurability or separability 
of functions in LLN(y,B). However it turns out (see Theorem 2.4) 
that any function f in LLN(y,B) is weakly measurable and Gelfand 
integrable. To see this we need a couple of lemmas. 

Lemma 2.1. Let SficS so that y*(S )=1 for all n > 1 . 

Then we have 

(2.1.1) 
OO 

(u°°)*( n S ) = 1 n=1 n 

Moreover if fn:S-»B are maps, so that fn(sn' ~* 0 f or V -a.a. 
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THE LA W OF LARGE NUMBERS 

(s.) E S, then there exist a sequence {q- } of measurable maps 

from (S,S) into 1R, so tha-

(2.1 .2) || fn(s) || < gn(s) V S G S 
(2.1.3) g (s ) ̂ 0 for oo 

y -a.a. (s) es 

Actually we may take gn to be the upper y-envelope of ||fn(«) || 

Proof. Let S = {F D S |F£S} and y (F) = y*(F) for FES . 
= = n n1 n n 

Then Sn is a a-algebra on and yn is a probability measure 
on (sn'5n)• BY Tulcea's theorem (see [2] p. 183), we know that 
the product probability space: 

OO OO CO 
<S„'S=O'HJ = < n S ,® S , ® y ) j=1 3 j=1 3 j=1 3 

is welldefined, and since 

oo oo oo oo 
y ( n F. n S.) = n y . (F. fl S.) = II y (F.) = y°°( II F.) 

j=1 3 3 j=1 3 3 3 j=1 D j=1 D 

for all {F . 1 cz S , we conclude that 

oo oo 
y^ (F PI S^) = y (F) V F € S 

oo oo 
Hence if F^S^ and F£S , then y (F) = 1 . Thus (2.1.1) follows. 

Let g^ be the upper y-envelope of l l fn l l (see (2.1)-(2.3)) 
and let 

Sn = {s e S|gn(s) < 2||fn(s) || or 11 f n (s) || > 1} 

Then I claim that y*(s ) =1 for all n > 1 . So let n>1 and put 

hn = min{1, ign) 
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J. HOFFMA NN-J0R GENSEN 

then h is measurable and S\S <={||f II < h <g }. Hence by (2.3) n n - 11 n11 - n i * ' 
we have that y* (S ) =1. Now let L G so that fn(sn) -» 0 for 

oo 
all (s ) GL and y (L) =1. Then by (2.1.1) we have that 

(i) (y°°) * (Ln) =1 where Ln = L n n S 
n=1 

Now let (s ) GLn, then f (s ) -» 0 so for some p > 1 we have n U n n -
that II f (s ) || < 1 for all n > p. and since s £ S we find that " n n " - ̂  n n 
gn (s ) < 2 || f (sn) || for all n>p. Hence gn^sn)^° for all 
(s ) GL~, and since g is measurable for all n > 1 we conclude n 0 ^n 
from (i) that 9n^sn^ ~* 0 for y°°-a.a. (sn) G S°°. I.e. the sequence 
{g } satisfies (2.1.2) and (2.1.3). • 

Lemma 2.2. Let (ft,F,P) be a probability space and £ a 
P-perfect map from ft into a measurable space (M,B). Let f be 
a P-measurable map from Q into a measurable space (L,A)/ and g 
an arbitrary map from M into L, such that 

(2.2.1) f (a)) = g (? (w) ) V oo G ftQ 

where ft^ is a subset of ft. Then there exist a set G B such 

that 

(2.2.2) BQcUft0) and P*(ftQ^ (BQ)) =0 

(2.2.3) - 1 
g (A) D BQ _is P-measurable V A G A 

i.e. gfB0 is Pr-measurable, and Pr(Bn) >P+(ftn) 
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Proof. It is no loss of generality to assume that P is 
complete. Let F G F be chosen so that F c= fiQ and P(F) =P^(fiQ). 
And let P(FK=x) be a conditional expectation of 1„ given £. 
Then by (2.6) we may assume that P(F|£=x) =0 for all x C £ (F) . 
Now let 

BQ = {x|P(FU=x) > 0} 

Then BQ £ B, and 

(i) P(F n ? (B) ) = 
BflBn 

P(Fl£=x) P (dx) V B G B 

And since P(F|£=x) =0 for x C U F ) we have 

(ii) B 0 ^ ( F ) E^^c 

_ i 
From (i) we find that P(F^£ (BQ)) =0, and since P#(fiQVF) =0, 
we see that B^ satisfies (2.2.2). 

Now let FQ = F fl (BQ) , then FQGF, and ^(F0)=BQ. Also 
since FncF c , it follows easily from (2.2.1) that we have 

(iii) g 1 (A) fl BQ = £ (FQ fl f 1 (A) ) V A c L 

Now let A t A, then FQ n l (A) and FQ nt (A ) belongs to 
F, so by (2.5) there exist B^,Bj GB so that 

(iv) B1 C B C B Q and B|cBQ\B 

(v) P(FQ fl f 1 ( A ) ^ 1 (B1 ) ) = P(FQ n f 1 (AC)\£ 1 (B̂  ) ) = 0 

-1 -1 
where B = g (A) fl BQ = £ (FQ fl f (A) ) . Now put B2 = BQ x B,j , then 
by (iv) we have that B. c B c B and from (i) and (v) we find 
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0 = P (FQ n g 1 (B2^B1 ) ) = P (F fl ? 1 (B2^B1 ) ) 

V B 1 
P(FU = x) P^(dx) 

since FQ = F n £ (BQ) and B ^ B Q . NOW B ^ B ^ B Q and so 

P(F|£=x) >0 for all x E B ^ B ^ hence we have that P^fB^B^) =0 
and B^ (EBEB2* Tnus B = g (A) n BQ is P ̂.-measurable and so 
(2.2.3) holds. • 

Theorem 2.3. Let (fi,F,P) be a probability space and let 
{̂ n> be a P-perfect sequence of independent, identically distributee^ 
(S, S)-valued random variables with y as their common distribution  
law. Let f be a map from S into the Banach space (B,||-||), 
and suppose that there exist a Bochner measurable function a:ft->B, 
and a set ftp € F, such that P(ftg) >0 and 

(2.3.1) lim 
n-*°° 

1 
n 

n 

j=1 
f U . (a)) ) = a(03) V 03 € ftn 

Then f € LLN (y , B) and a(o3) = Ef for P-a.a. 03eftQ. 

Proof. By removing a nullset from ftQ, we may assume that 

there exist a separable subspace BQ of B so that a (03) EBQ for 

all 03 € ftQ. Let £(03) = (w) ,C2(w) ,...) i then by assumption £ 
00 00 

is a P-perfect map from ft into (S ,S ) . Let us put 

r OO 
L = { (s . ) ES n->oo 

1 
n 

n 

j=1 
f (s .) exists in (B, || • || ) ) 

a (s) = 
f 

"lim 1 n n->oo 

n 

j = 1 
f (s.) 

00 
if (s.) ES nL 
if (s.) EL 
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Then by (2.3.1) we have that d<bncp^^L and a(co) = a(£(u))) for al 
go e QQ . So by Lemma 2 . 2 there exist LQ £ S°° so that LQ c £ ) <= L 
OO | oo oo 
y (Ln) >P(ftn) > 0, and a L is y -measurable (note that P =y ). 
Let 

Lk = {(s.) eSM|(sk+rsk+r..) €LQ} V k > 0 

L = 
oo 

oo 
k = 0 <wv,; 

Then L. € S 
k 

for all 0<k<«>, and U°°(Lk) =y°°(L0) >0 for all 
k > 0 . Hence 

y°°(L ) > y°° (lim sup Lv) > lim sup y°° (L, ) >0 
n->°° 

and so by the zero-one law we see that y°° (L ) = 1 . Moreover if t, is 

the translation map: 

tk(s) = (sk+1,sk+2,...) Vs=(s.) 

Then a(s) =a(xk(s)) for all s £ L, and so a | Lk is y°°-measurable 
oo oo 

for all 0 < k < oo and since y (L ) = 1 we see that a is y -
— ^ oo 

oo oo 

measurable on all of S , and that y (L) - 1. Moreover since 
a(£(a))) =a(ca) E BQ for w E we have that a(s) £ BQ for all 

oo oo oo 
sELm. Thus a is Bochner measurable from (S ,S ,y ) into 
( b . I I - I D -

Now let C be a countable subset of B^ which separates 
oo 

joints in BQ . Since a(s) =a(Tk(s)) for all sfcS and all 

k > 1 , it follows from the zero-one law that x^(a(-)) is constant 
oo 
y -a.s. for all XQ eC. And since C separates points in BQ and 

oo 
C is countable it follows that a is constant y -a.s., since 

oo oo 
a(s) € BQ for y -a. a. s E S . Thus there exist E B so that 
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a (s) = lim 
n->°° 

1 
n 

n 

j=1 
f(s.) =aQ 

for oo oo 
y -a.a. s = (s.) G S . Hence f G LLN(y,B) , and clearly we 

have a(oj) = = Ef P-a. e. in Q^. • 

Theorem 2.4. Let (S,S,y) be a probability space and 

(B,||«||) a Banach space. Then we have 

(2.4.1) L1 (y,B) c LLN ( y , B ) cL^(y,B) 0 L](y,B) 

(2.4.2) || f || dy < » v f G LLN (y ,B) 

Remark. The key point of the second inclusion in (2.4.1) is 
to prove that every f in LLN( y , B ) is weakly measurable. The 
proof below of this fact is due to M. Talagrand (private communica­
tion) , who has also proved a very nice and surprising characteriza­
tion of LLN(y,B) (handwritten manuscript). 

Proof. The first inclusion is a wellknown result due A. Beck 

(see [1] p. 26). 

Let f GLLN(y,B) and let x' GB' and g(s) =x'(f(s)). Then 

g is real valued, g G LLN (y, IR) and Eg=xf(Ef). Now let g^ and 

g* be the lower and upper y-envelopes of g. We shall then show 

(i) g* = g* y-a.s. 

To see this we choose two measurable functions hQ and h^ 

from S into IR, such that 

310 



THE LA W OF LARGE NUMBERS 

(ii) g*(s) =hQ(s) =h1(s) =g*(s) Vs£{g,=g*} 

(iii) g* (s) < hQ(s) < h1 (s) < g* (s) Vse{g,<g*} 

Note that nQ<s) =h1(s) =g(s) on tg*=g*l, so hQ and h^ are 
finite every where. Now by (2.3) we have 

y* (hQ < g) < y* (g* < hQ < g) = 0 
y* (g < h1) < y* (g < h1 < g*) = 0 

Hence if SQ = {g < hQ} and S1 = {h1 < g }, then y*(S_. ) = 1 for 
CO CO 

j = 0 , 1 . Now let L € S so that y (L) = 1 and 

1 
n 

cw 

i = 1 
g (s . ) - Eg V (s . ) € L 

If we put 

L. = L D (S. x s . x ...) 
J 3 J 

for j = 0, 1 

CO 

Then by Lemma 2.1 we have that (y )*(L^) = 1 for j = 0 , 1 . And by 
definition of SQ and we have 

Eg < lim inf : 
n_>oc 

1 n 

j=i 
h0(8 ) V (S.) € L 0 

Eg > lim sup 
n->°° 

w; 
n 

n 

j=1 
hl(s ) V (SJ) 6 L1 

Since hQ and h1 are measurable we consequently find that the 
CO 

two inequalities holds y -a.s., and since hQ <everywhere we 
have 

Eg w lim 
n->oo 

1 
n 
n 

1 = 1 
hn (s . ) = lim: 

^$ 

1 
n 

n 

j = 1 
hl(Sj) 
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oo oo 
for y -a.a. (s . ) E S . 

Now by the converse law of large numbers, we have that h^ 

and h. are y-integrable and 

(iv) hndy 
<ss 

^^ 
l:;^$ 
n,;mù 

dy = Eg 

(see [2] p. 122). But hQ < and hQ < h^ on the set (g*<g*>, 

hence by (iv) we have that y(g*<g*) - 0 , and so g* = g* y-a.s.. 

Thus g is y-measurable and y-integrable and we have 

S 
gdy = 

js 
x'(f(s))y(ds) =x'(Ef) 

for all x' E B'. Thus f is Gelfand integrable and Ef is th 

Gelfand integral of f. 
1 

Now let us show that f EL*(y,B). First we note that if 

f E LLN (y f B) , then 

(v) 1 
n 

oo oo 
f (sn) -> 0 for y -a. a. (s.) ES 

Let h be the upper y-envelope of ||f (•) ||. Then by Lemma 2.1 

— 1 oo oo 
we have that n h(s ) -*0 for y -a. a. (s ) ES , and so by Lemma 1.4 

n n -L 

(p.53) in [5] we have that h is y-integrable, and since 

|| f (s) || <h(s) for all s E S, we see that f E (y,B) . • 

Theorem 2.4 gives a necessary condition for f E LLN(y , B) and 

we shall now seek sufficient conditions. To do this we shall 
g 

introduce a topology on B (the set of all function from S into 

B) , and show that LLN(y, B) is closed in this topology. Since 

1 1 L (y,B) <= LLN (y,B) we will then know, that the closure of L (y,B) 

is contained in LLN(y, B) , and in sections 3 and 4 we shall see 
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THE LA W OF LARGE NUMBERS 

that this fact implies the law of large number for a large class of 

stochastic processes. 

Definition 2.5. (The Tr-topology) . Let (B,||-||) be a Banach 

space, then a finite partition of the norm || • || , is a finite set 

a of functions from B into IR + = [0,°o], such that 

(2.5.1) a (x+y) < a (x) + a (y) Vx,yGB and a(0)=0 V a G a 

(2.5.2) 11 x || < max a (x) 
a€7T 

v x e b 

I.e. a finite partition of ||-|| is a finite set of subadditive 

IR -valued functions on B whose maximum dominates the norm l|*||. 

We put 

IT ( 11 • || ) = {a | a is a finite partition of ||-||} 

If (S,S,y) is a probability space and (B, || • || ) is a Banach 

space we put: 

(2.5.3) o(f) = max 
aGaJ S 

*a(f(s))y(ds) V f G BS V o G n ( || • || ) 

Note that a(f) is subadditive on B , but not necessatily homo­
geneous nor symmetric. 

We can then define a convergence notion on B as follows. If 
c c 

{fjAGA} is a net in B and f GB , we shall say that {f } 
is TT-convergent to f, and we write f, 5 f, if 

A 

(2.5.4 Ve>03A0eA3aen(||-||):a(fx-f) <e vA>A0 

Let 0 be a subset of B , then we say that $ is Tr-closed, if 

313 



J. HOFFMA NN-J0R GENSEN 

for every 7T-convergent net {f,}c$ with f 3 f, we have that 
A — A 

f £ Since a subnet of a Tr-convergent net clearly is ir-convergent 
to the same limit, we have that the class of all TT-closed sets is closed 
under finite unions and arbitrary intersections. Thus there exists a 
topology on B , which we shall call the ir-topology, such that a 
set $ c= b is closed in the iT-topology, if and only if <f> is 
Tr-closed. Clearly we have 

(2.5.5) w<,;: 
^$xwx,; 

TT 
f => f ̂  -> f in the ir-topology. 

7T 

I do not know if the converse implication holds, i.e. if -> is a 
topological convergence notion, but I strongly suspect that this is 
not so in general. 

If $ c: B is TT-closed, and $ is a map from 0 into a topological space 
T, then it is easily checked, that cp is continuous in the 
restricted iT-topology, if and only if ep satisfies: 

(2.5.6) (p(f)-»cp(f) Vf e^v{f,}c$ so that f 1 f 

A function cp satisfying (2.5.6) is said to be TT-continuous on $. 
1 1 Finally we let L^(y,B) denote the TT-closure of L (y,B), 

1 1 i.e. L^(]J,B) is the smallest ir-closed set containing L (y,B). 

Lemma 2.6. Let (S,S,y) be a probability space, and (B,||*||) 
a Banach space. Then we have 

(2.6.1 If f I f and t <E JR, then tf I tf 

(2.6.2) If fA I f and g e BS, then fA + g 5 f+g 
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Moreover if<<<<$^ wwo<ui and x 1 G B* with 11 x 1 11 < 1 , then we have 

(2.6.3) -a(f) < X 1 ( f (s) )y(ds < *x' (f (s))y(ds) < a 

(2.6.4) *x' (f (s))y(ds) I < a(f) V f G BS 

(2.6.5) x' (f(s))y(ds) I < a(f) V f G BS 

(2.6.6) x' (f(s)) u(ds) < 20 if) 

(2.6.7) II Ef || < CJ (f ) V f G I¿ (y,B) 

V f G BS 

Proof. (2.6.1): If t = 0 then (2.6.1) is obvious. So 

suppose that t =)= 0 and let e > 0 be given. Then we choose \^ G A 

and a€II(||-||) such that a (f^-f) < e / 1 1 1 for A>AQ. If a G a 

we put 

a(x) = |t|a(t 1x) Vx G B 

Then a = {a|a £ a} belongs to II(||-||), and 

t|a(± -f) < e a(tf,-tf) = |t|a(f,-f) < 

for all ^>^0- Thus tfA 5 tf. 

(2.6.2) : Evident.1 

(2.6.3): Let fGBS, aGlI(||-||) and x'GB' with ||x'|| <1. 

If a(f) =°° then (2.6.3) is obvious. So suppose that a(f) <°°. 

Then 

(i) f * | | f ||dy < 
aGa-

a(f)dy < ka(f) < «> 
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where k is the number of elements in a. 
Let g(s) = x'(f(s)) and let g^ and g* be the lower and 

upper y-envelopes of g. Also let f be the upper y-envelope of 
a(f(»)). Then by (i) we have that g*,g* and f^ are y-integrable 

and 

(ii) | fady =|*a(f(s))y(ds) 

(iii g*dy = *x' (f (s))y(ds) 
S 

(iv) 1 g*dy = x' (f (s))y(ds) 
S J * 

Now let m be any real number satisfying 

(v) 
S 
g*dy < m 

»s 
g*dy or m = 

S 
g*dy : g*dy 

S 

Then we can find a measurable function h, such that 

(vi) h(s) =g*(s) =g*(s) V s U g ^ g * } 

(vii) g^ (s) < h(s) < g* (s) v s G (g*<g*l 

(viii) hdy = m 

As in the proof of Theorem 2.4 we find that 

y* (g<h) = y* (g>h) = 1 

Hence by Lemma 2.1 we have that the two sets: 

CO . 
MQ = {(s.) es |g(Sj) <h(Sj) V j >1} 

CO . . 
y K s . j e s |g(Sj) >h(Sj) v j > 1} 
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OO 
have outer y -measure equal to 1. And by the real valued law of 

OO OO 
large numbers there exist M G S with y (M) = 1 and 

(ix) 1 
n 

n 

3 "I 
h (s . ) -> m 

I 3 V (Sj) € M 

(x) 1 
n 

n 
j = i 

w<x:=$ 
S 
f dy 
a 

V (s) G M 

(see (viii)). Now note that we have 

^,n max 
aGa 

1 
n 

n 
i = 1 

f (s .) < - max 
aGa 

1 
n 

n 

j = 1 
a(f (Sj) ) 

< - max 
aGa 

1 
n a 

n 

j = 1 
f (Sj)) < 1 

n 
n 

1 = 1 
H s . ) H 

< x' 1 r 
n 

j=1 
f (Sj) ) 1 n 

n 

D = 1 
g(Sj) 

< 1 
n 

n 

j=1 
f (Sj) < max 

aGa 
1 

. n a I 
n 

j = i 
f (s )) 

,; max 
aGa 

1 
n 

n 

D = 1 
a(f (s ) ) < max 

aGa 
1 
n 

n 

1 = 1 
f 
. a 

:s.» 

since each a in a is subadditive, f >a(f(-)) and ||x]| <maxa(x). 
Hence by (ii) and (x) we find 

-a(f ) < lim inf 
n-»oo 

1 
n 

n 

j = 1 
g(s ) 

< lim sup 
n->°° 

1 
n 

n 
i = 1 

g(s ) < o(f) 

for all (Sj) G M. Now since y°°(M) = (y°°)*(M0) =1 we have that 
M fi MQ f (J) and if (s . ) G M fi M , then 

m = lim 
n->°° 

1 
n 

n 

j=1 
h(Sj) lim inf 

vbn: 

1 
n 

n 
V1 

j=1 
g(s . ) > -o(f) 
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And similarly since M n \ § we have that m<a(f). I.e. we 
have shown that any real number m satisfying (v) also satisfies 

- a(f) < m < a(f) 

But then (2.6.3) follows from (iii) and (iv). 
(2.6.4): By (2.6.3) we have 

*x' (f (s) )y (ds) < a(f) 

_ I *x' (f (s) )y (ds) < - x' (f (s))y (ds) < o(f) 
* 

and so (2.6.4) holds. 
(2.6.5) follows from (2.6.3) as above. 
(2.6.6): Let us put 

S+ = {s£S|x'(f(s)) > 0} f+ = 1 
S 

wx,: 

S = {s € S|x' (f (s) ) < 0} f = 1 
S 
_f 

Then by (2.6.3) we have 

*|x'(f)|dy < *x' (f + )dy - x' (f )dy 

< a(f + ) + a(f ) 

If a € a then 

a(f+) =1 a(f) + 1 _a(0) < a(f) 
S S 

a(f ) = 1 a(0) + 1 _a(f) < a(f) 
S S 
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Thus a(f+) <a(f) and o(f ) <a(f) and so (2.6.6) follows. 
(2.6.7): Immediate consequence of (2.6.4). • 

Theorem 2.7. Let (S,S,y) be a probability space and 
(B,||«||) a Banach space, then we have 

(2.7.1) -l 
f - Ef is_ Tr-continuous: L (u ,B) -> (B " , || • || ) 

(2.7.2) 1 
L^(y,B) is air-closed, and TT-open linear space 

(2.7.3) L1(y,B), LLN(y,B), L/l(y,B) and L1(y,B) are 
7T \j W 

Tr-closed linear subspaces of 
i 
S 

(2.7.4) L1(y,B) cL^(y,B) cLLN(y,B) cL^(y,B) fl l J(y , B ) 

Proof. (2.7.1) follows easily from (2.6.7). 
(2.7.2): If {f^|a £ A} be a net in BS, so that I f 

then there exist U A and a £ II ( || • || ) , so that a (f -f) < 1 . 
Now let k be the number of elements in a, then 

* | | f | |dy < *l|fAl|du + * | | f x - f ||du 

< *l | fxl ldw + aGa 
*a(fx-f)dy 

< k + *l | fAl |dy 

1 
Hence if f^€L^(y,B) then so does f, and consequently we have 

1 
that L*(y,B) is 7r-closed. Similarly we have 
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*l|fxl|dP < *||fx-f ||du + * l | f II dy 

< ko(fx-f) + *l|f II dy 

< k + *||f ||dy 

so if f^ GB vL^(y,B) then so does f, and consequently we have 

that L*(y,B) is ir-open. 
1 1 (2.7.3): The spaces LLN(y, B) , L^(y , B) and Lw(y,B) are 

evidently linear spaces, however since the iT-topology is not a 

linear topology in general (see (2.6. 1+2}),it is not evident that 
1 

L (y,B) is a linear space. To see that this is actually so we put 

L. = {f G BS|tf G L1 (y,B) } V t G IR 
t ' TT 

L(g) = {f G BS | f + g G L^ (y ,B) } V g G BS 

Then by (2.6.1) and (2.6.2) we have that Lfc and L(g) are 
TT-closed for all t G IR and all g G B . Clearly we have that 
1 1 L (y ,B) c L fl L (g) for all t G IR and all g G L (y,B) • Thus 

hi (y ,B) 5 L n L (g) whenever t G IR and gGL1(U,B). I.e. tf and 
f +g belongs to L^(y,B) whenever t G IR, f G L̂ . (P ,B) and 

1 1 1 g G L (U,B). Hence L (y,B)<=L(g) for all g G L^ (y , B) and so as 
1 

above we have that f +g belongs to L (U,B) whenever f and g 
belongs to L^fUjB). Thus L (y,B) is a linear space. 

By definition we have that L (P,B) is ^-closed. 
Now let {f, | A G A} be a net in LT1(y,B), such that f 5fGBS. 

Then there exist l ^ A and ak€n(||«||) such that ak(fx~f) <2 

for all A > A^. Now by (2.6.6) we have 

*|x' (f (s) ) -x' (f (s) ) |y (ds) < 2 k + 1 ||x' || 
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for all x' € B1 , and all X > X̂ .. Now since x' (f A (•) ) is 
y-integrable for all X we find that x'(f(')) is y-integrable, 

1 1 and so L (y,B) is TT-closed. Moreover if f, €L_(y,B) for all 
W A \j 

XGA, then || Ef A-Ef || -> 0 by (2.7.1), and so EfGB, since B is 
1 1 norm closed in B". Thus f e L_(y,B) and so L (y,B) is TT-closed. 

Now suppose that {f }cLLN(y,B) so that f I f. Let h 
A — A 06 A 

be the upper y-envelope of a (fA (•)-f (•)) whenever a is a map: 
B-» IR+ and X G A. By assumption there exist X^ G A and 
a (k) € II ( 11 • 11 ) so that 

(i) *a(fA-f)dy = 
S 
haAdy < 2 k VX>Xk VaGa(k) v k > 1 
3 

1 1 Since LLN(y,B) czL (y,B) by Theorem 2.4, we have that f e L„(y,B) 
and Ef^->Ef. Hence we may assume that X^ is chosen so large 
that 

(ii) 11 Ef - Ef .II < 2 k V X > X, n X " - - k 

Let k > 1 and X > X^ be fixed for a moment, then we have 

||Ef - 1 n 
n 

j = 1 
f (s ) || <|| Ef -EfA|| +|| EfA -1 n 

n 

1 
f (s.) 

<2~k+ || Ef A xx 
1 
n 

• n 
V 

j=1 
fA(s )|| 1 

n 
n 

j = 1 
(f, (s . ) - f (s .) ) || 
A 3 3 

< 2 k + |EfA- l 
n 

n 

j = 1 
f, (s.)|| f 1 

n max a aGa(k) 

n 

j = 1 
if. (s.)-f (s.) }) 
A 3 3 

< 2 k + Ef '"X 
1 
n 

n 

D = 1 
fX(si + max 

aGa(k) 
1 
n 

n 

j=1 
h , (s . ) 
aX -j 

for all n > 1 . Now since f. E LLN (y, B) and h . is y-integrable ~ A aA 3 
we find by (i) that 
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lim sup 11 Ef 1 

n. n->°° 

n 

j=1 
f (s ) H < 2 

-k 
max 

aEo Ck] S 

wx,,;^$xnii;;!ùù= <n:!! 
=**a xjt;;w<<!n 

CO oo 

for y -a.a. (Sj)€S and all k > 1 . Hence f E LLN (y ,B) and so 

LLN ( y, B) is TT-closed. 

(2.7 . 4 ) : The first inclusion is trivial, and since LLN( y, B) 

is TT-closed by (2.7.3) and contains L (y,B) by Theorem 2.4, the 

second inclusion follows. The last inclusion was proved in 

Theorem 2.4. • 

1 1 1 
If B is separable then L (y,B) = L^ ( y,B) DL*(y,B) and we 

have equality everywhere in (2.7 . 4 ) . M. Talagrand has introduced a 

new measurability concept for B-valued functions, called properly 

measurable, and he has shown for an arbitrary Banach space B, 

that f E LLN(y,B), if and only if f is properly measurable and 

i 
f £Ljy,B) (to appear). 

In the next two sections we shall sea that in the non-separable 

1 1 

case we may have, that L (y,B) :fL7r(y,B), and one may naturally 

pose the following problem 

(2.15) Is: L^(y,B) =LLN(y , B)? 

In Definition 2.5 we introduced the TT-topology on B°, and 

in Lemma 2.6 we showed that f ̂  tf and f ̂  f + g are Tr-continuous 

S 1 
for all t £ IR and all g £B . However if f £L^(y,B) then by 

(2.7.2) we have that t ̂ tf is discontinuous at t = 0 in the 

TT-topology. Hence the TT-topology is not a linear topology, if 

1 S 1 L^ (y,B) ^ B (i.e. if dim L (y ,IR) = «> and dim B > 1 ) . However we 

may pose the following problem: 

(2.16) 
1 

Is the TT-topology on L^(y,B) a linear topology? 
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In order to solve this problem one probably need to exhibit an 

explicitly defined neighborhood base at 0 for the 7T-topology, 

and I have not been able to do this. In connection with the 

ir-topology one may pose several problems e.g. 

(2.17) 77 
Does: f ̂  -* f in the Tr-topology imply -> f? 

(2.18) Is: cl ($) = {f |3{f,}c$:f, I f}? IT A — A 

where cl̂ ((I)) is the Tr-closure of 
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3. Sample bounded stochastic processes 
We shall now specialize the results of the previous section to 

the case where B = B(T) is the set of all bounded real valued 
functions on a set T with its usual sup-norm (see [3] p.240). 

Let T be a set and cp: T IR a function. If A g T and 
t E T we define 

Il cp II = sup |ip(u) I 
uEA 

w, (cp,t) = sup|cp(u) -cp(t) I 
u€A 

W (cp) = sup |cp(u) - co(v) I 
u, VGA 

with the convention: sup 0 = 0. A finite cover of T is a set 
A = {A^,...,An} of non-empty subsets of T, such that T = A,j u •.. U A^. 
We let 

r(T) = {A I A is a finite cover of T} 

denote the set of all finite covers of T. 
Let (S,S,y) be a probability space and let T be a set. A 

stochastic process g on (S,S,y) with time set T is a map 
g: S x T -+ IR, such that g(* ,t) is y-measurable for all t € T. If 
g: S x T IR is a stochastic process we put 

g ( s ) = g ( s , • ) E IRT V s e S 

T 
Then s^g(s) is a y-measurable map from S into IR with its 
product a-algebra. A first order stochastic process g: S x T -> IR, 

1 
is a stochastic process g, such that g(-,t) EL (y) for all tE T. 
The mean function of a first order stochastic process g is the function 

M(t) = 
' S 

g(s,t) y(ds) 
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A stochastic process g: S x T -> E is uniformly bounded in y-mean, 
if we have 

(3.1) ||g(s)|| y(ds) = sup|g(s,t) |y(ds) < oo 
t€T 

(Note that II g (•) II T need not be y-measurable). Finally we say that 
a stochastic process g: S x T -» 3R is totally bounded in y-mean, if 
g is a first order stochastic process satisfying 

(3.2) V e > 0 3 A € T (T) : WA(g(s) ) y (ds) < c VA £ A 

Let g: S x T -> IR be a stochastic process, then clearly we have 

(3.3) If g is uniformly bounded in y-mean, then 
i 

g(s)€B(T) for y-a.a. s£S and g e L* (y , B (T) ) 

(3.4) If g is totally bounded in y-mean, then g is 
uniformly bounded in y-mean. 

Proposition 3.1. Let T be a set and (S,S,y) be a probability  
space. Let g: S x T -> 1R be a first order stochastic process, such 
that for all e > 0 there exist sets L and L. and stochastic 

o 1 
processes g.: SxL. ]R for j =0,1 satisfying 

j j ^ j. 
(3.1.1) V t e T 3(xq,x1) € LQ x L1 so that go(s,xQ) <g(s,t) < g1 (s,x1) 

for all ses and j {g^{s,x^) - gQ(s,xq)}y(ds) < e 

(3.1.2) 3 A e r(Lj): WA (g^ (s) ) y (ds) < £ V A e A- Vj = 0,1 

Then g is totally bounded in y-mean. 

Proof. Let e > 0 be given, and let A = {A1,...,AV} and 
o I K 

Â  = {B1,...,Bm} be the finite covers of LQ and L^ from (3.1.2). 
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Now put 

C. . 
ID 

^wx; t € T 
3 (x ,x ) E A. x B. : g (s,x ) < g(s,t) < g1(s,xj 

for all sES and {g1 (s,x1) -go(s,xo) } y(ds) < e 

A = { ( i , j ) | 1 < i < k , 1 < j < m, c± . * 0} 

0ij = inf { I g>j (s ,x1 ) - gQ (s,xq) | | (xQ, x1 ) € A± x B ; 

Then by (3.1.1) we have that {Ĉ .. | (i,j) € A} is a finite cover of T 

and 

(i) 
* 

Ö.. dy < e V(i,j) e A 

Now let (i,j) €A and vxbnn t',t" G , then we choose 

(x̂ ,x̂ j) and (x̂ ,x!j) in A^ x B.. according to the defining property 

of C... Then we have 
13 

g(s,t')-g(s,tM) <gi(s,x^) - gQ(s,x£) 

= g^SfX') - g-,(s,v) + g1(s,v) - gQ(s,u) + gQ(s,u) - gQ(s,x^ 

< WB (g^s)) + {g1 (s,v)- gQ(s,u)} + WA (gQ(s)) 
j 1 

for all (u,v*) E A. x B . . Taking infimum over all (u,v) E A. x B. we 

find 

g(s,t) - g(s,t") < W (g^s)) + 0±. (s) + WA (gQ(s)) 
j i 

So interchanging t1 and t" gives 
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w xv,$ (g(s)) < W B (g i(s)) + B±.{s) + W A (g (s)) 
j i 

for all s G S and allw<^$ € A. And by (3.1.2) and (i) we have 

Wc (g(s))y(ds) < 3e 
ij 

V (i,j) € A 

Thus g is totally bounded in y-mean, since Ĉj_j I (if J) £ A} is a 
finite cover of T. • 

Theorem 3.2. Let T be a set, and (S,S,y) a probability  
space. Let g: S x T -» ]R be a first order stochastic process, then  
the following four statements are equivalent: 

(3.2.1) g is totally bounded in y-mea 

(3.2.2) v 6 > 0 aAer(T) 3 fQ e L1 (y,B(T) ) such that 

llg(s) - fQ(s)llAy (ds) < e V A G A 

(3.2.3) There exists a totally bounded, ultra pseudo-metric 
p on T, satisfying: Ve > 0 3 6 > 0, such that 

WBp(z,6) 
(g(s) ,t)y(ds) < e V t G T 

(3.2.4) There exists a totally bounded, uniformity U on T, 
satisfying: Ve > 0 3 U G U, such that 

wu(t) (g(s) ,t) y (ds) < e V t G T 

where B (t, 6) = {uGT | p(u,t) < 6} and U(t) = {u G T | (u, t) € U} 
whenever p is a pseudo-metric on T and U c T x T. 
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Remark (a): A totally bounded pseudo-metric on T is a pseudo-
metric p on T, such that T may be covered by finitely many 
p-balls of radius e for all e > 0. 

(b): A totally bounded uniformity is defined similarly, i.e. the 
uniformity U is totally bounded if the cover: (U(t) | t6 T}, of T 
admits a finite subcover for all U€ (J. 

(c): An ultra pseudo-metric on T is a pseudo-metric p on T 
satisfying the following strong triangle inequality: 

p(u,v) < max{p(u,t),p(t,v) } 

for all u,v,t € T. 

Proof. (3.2.1) =» (3.2.2): Let e > 0 be given and choose a 
finite cover A of T, so that (3.2) holds. By replacing A with 
a suitable refinement we may assume that the sets in A are mutually 
disjoint. For each A€ A we choose a point t_ E A and we define 

fQ(s) 
AC A 

g ( s , t A n A 

1 Then f maps S into B (T) and since g(-,tj EL (y) we have o ^ 
that f €L1(y,B(T)). If A € A, then 

||g(s) -fQ(s)|lA = wA(g(s),tA) < WA(g(s)) 

and so by (3.2) we have that 

* 
||g(s) - fo(s)HAy(ds) < WA(g(s))y(ds) < e 

for all AC A. Thus (3.2.2) holds. 
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(3.2.2) => (3.2.3): By (3.2.2) there exist E T (T) and 
fkE L1(y,B(T)), so that 

(i) 
* 
||g(s) - fk(s)HAy (ds) < 2"k"1 VAEAk Vk > 1 

Now notice that the set of functions of the form 

h(s) = 
BE 8 

hB(s) 1B(.) 

where BET (T) and hB E L (y) V B E B, is || • II 1 -dense in 
i 

L (y,B(T)). Hence we may assume that fk is of this form for all 
k, i.e. 

(ii) f,(s) = I hVR(s) 1R(.) 
BEB, 

where Bk E r(T) and hRB E L1 (y) V B E BR Vk > 1. Now let 
Fk = a(A^ U ... U U B1 U ... U Bk), then Fk is a finite a-algebra 
on T. If t E T we let ^(t) denote Fk-atom containing t. Since 
F1 c F9 g ... we have 

(iii) F1 (t) ID F2 (t) 3 . . . V t E T 

And we define 

p(u,v) = sup{2 n I n E E, Fn(u) n Fn(v) = 0} 

for u,v E T, with the convention: sup 0 = 0. Then I claim that we 
have 

(iv) p is an ultra pseudo-metric on T 
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(v) B (t,2 n) = F„ (t) V t € T Vn > 1 
p n 

(vi) p is totally bounded. 

(iv): Clearly p(t,t) = 0 and p(u,v) = p(v,u). Now let 

u,v,teT, and let p(u,v) = 2~~p. Then = Fk for 
1 < k < p and Fp(u) PI Fp(v) = 0, and so either t $ Fp(u) or 
t £ F (v). In the first case we have that p(u,t) > 2 p, and in 
the second case we have that p(v,t) > 2 P. Thus in any case we 
have 

p(u,v) < max{p(u,t),p(t,v)} 

Thus p is an ultra pseudo-metric. 
(v) : If u£Bp(t,2"n), then p(u,t) < 2~n, and so 

u€Fn(u) =Fn(t). If u€Fn(t), then u € (t) for all 1 < j < n 
by (iii) . Hence Fj (t) = Fj(u) for all 1 < j < n and so 
p(u,t)<2~n, and ueBp(t,2_n). 

(vi): Since FR is a finite a-algebra, we have that the set 
of Fn~atoms is finite. But then it follows from (v) that p is 
totally bounded. 

Now let us show that the pseudo-metric p satisfies the 
condition in (3.2.3). 

—k 
So let e > 0 be given and choose k > 1, such that 2 < e . 

-k 
Now put 6 = 2 and (see (ii) ) 

fk(s,t) = fR(s)(t) = 
BE8k hkB 

(s)1B(t) 

Then fk(s,-) is Fk~measurable and so fk(s,«) is constant on 
all Fk~atoms. Now let t £ T and u£ Fk(t) , since Ak g Fk is 
a covering of T, there exists an A £ Ak such that u,t £ <=A' 
Moreover since fk(s,t) = fk(s,u) we have 
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|g(s,t) - g(s,u) I < | g (s,t) - fv(s,t) | + If, (s,u) -g(s,u)| 

< 2 ||g(s) - fk(s)llA 

-k 
And since B (t,6) = B (t,2 ) = F,(t) by (v) we have 

D D K 

wB (tf6) <g(s),t) < 2 ||g(s) - fk(s)HA 

Thus by (i) we conclude that 

* 
WB (t,ó)(g(s)ft)y(ds) < 2"k < £ v t e T 

and so (3.2.3) holds. 

(3.2.3) (3.2.4) : Evident! 

(3.2.4) =* (3.2.1): Let e > 0 be given, then by (3.2.4) there 

exist UE Ü so that 

(vii) wu(t) (g(s) ,t)u(ds) < e V t E T 

And since the uniformity is totally bounded there exist t^,t^/...,tnGT 

such that 

T = 
n 

j = 1 
U(t.) 

Hence A = {U (t1) , . . . ,U (tn) } € r (T) , and by (vii) v;e see 

that (3.2) holds. Thus g is totally bounded in y-mean, and the 

theorem is proved. • 

Theorem 3.3. Let T be a set and (S,S,y) a probability space. 

Let g: S x T -> 1R be a stochastic process, which is totally bounded 

in y-mean, then we have 
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(3.3.1) g £ L|(y,B(T)) c LLN(y,B (T) ) 

Hence if {̂ n̂  is a sequence of independent, identically di­

stributed (S,S)-valued random variables defined on a probability 

space (ft,F,P), and with y as their common distribution law. 

then 

(3.3.2) sup|m(t) 
t€T 

w; 
1 
n 

n 

j = 1 
g(?vt) | n-K» 

P-a.s. 

where 

m(t) = 
:n 

g(s,t)y(ds) = Eg(^,t) 

is the mean function of g. 

Proof. By (3.3) and (3.4) we have that g £ L J ( y , B ( T ) ) . By 

(3.2.2) there exists fk€ L1(y,B(T)) and AR€ r(T), such that 

(i) 
* 
llg(s) - fk(s)llAy(ds) < 2~k V A ^ A k vk > 1 

Now put ak = (II • IIA | AG Ak>, since Ak is a finite cover of T 

we have that ak is a finite partition of the norm ll'llT, and by 
—k tt 

(i) we have that ak ̂ k""^ 1 2 . Hence fk—>g (see Definition 

2.5) and so (3.3.1) holds by Theorem 2.7. Now it is easily checked 

that Eg = m (see Example 3.5 (in particular (3.5.8)), and so 

(3.3.2) follows from (3.3.1) and (2.14). • 

Theorem 3.4. Let T be a set and (fi,F,P) a probability space. 

Let Xn: ft x T -» ]R be a sequence of independent identically 

distributed stochastic processes, such that for some k > 1 we have 

(3.4.1) Xk is P-perf ect: ft -» (]RT,BT) 
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(3.4.2) xk is totally bounded in y-mean 

Then we have 

(3.4.3) sup|m(t) 
t€T 

cv 1 n 
n 

i = 1 
X . 
1 

( w,t) I 
n->oo 

0 P-a.s. 

where ra(t) = EX (t) is the common mean function of the processes 
X . 
n 

T T 
Proof. Let (S,S) = (3R ,8 ) and let y be the common distri­

bution law on (S,S) of the processes X . Put 

g(s,t) = s(t) V s G S = 3RT V t 6 1 

Then g is a stochastic process on (S,S,y) and Xn(o)) = g(Xn(u))) 
for all a) € Q and all n > 1. Now let e > 0 be given, then by 
(3.4.2) there exists a finite cover A of T, such that 

WA(Xk(u) )P(du>) < e V A e A 

And since Xk is P-perfect and Xk(cj) = g(Xk(w)) it follows from 
(2.7) that 

[ WA(g(s))y(ds) hh WA(Xk(co) )P(du) < £ VA € A 

Hence g is totally bounded in y-mean, and so the theorem follows 
from Theorem 3.3. • 

Example 3.5. Let (S,S,y) be a probability space, T a set 
and g: S x- T -» 3R a map such that 

(3.5.1) g(s) = g(s,•) G B(T) V s G S 
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From Corollary IV.5.2 in [3] we have that B(T)' = ba(T) is the 
T 

set of all finitely additive real valued set functions on (T,2 ) 
which are of bounded variation, and the total variation of A£ba(T) 
equals its norm as an element of B(T) 

Thus g is weakly y-measurable (y-integrable), if and only if 
the function 

(3.5.1) s ~ A(g(s)) = 
T 

g(s,t)A(dt) 

is y-measurable (y-integrable) for all A£ba(T). In view of the 
result in [10] (see also [9] p.364-366) we have that non-a-additive 
functions A£ba(T) are highly non-measurable, so weak measurabili-
ty is a severe restriction, which in general is difficult to verify. 

Now let g£L1(y,B), then Eg £ B (T) ", and w 

(3.5.2) (Eg)(A) = 
<xc 

y (ds) 
T 

g(s,t)A(dt) 

(3.5.3) I (Eg) (A) j < Il Ef H H A I11 

where IIA II^ is the total variation of A over T. In particular we 
see (put A equal to the Dirac measure at t), that 

(3.5.4) m(t) = 
S 
g(s,t)y(ds) 

exists for all t £ T and m is bounded, i.e. m £ B (T) . 
Hence we see that g is Gelfand integrable, if and only if g 

satisfies the following 3 conditions: 
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(3.5.5) s -
T 
g(s,t)A(dt) is y-integrable vAGba(T) 

(3.5.6) m(t) = 
S 

g(s,t)y(ds) exists and is bounded on T 

(3.5.7) 
S 
y (ds) 

lT-
g(s,tww)À,;(dt) ww 

w 
A(dt) 

w: 
g(s,t)y(ds) v AG ba(T) 

And if so, then 

(3.5.8) Eg = m 

Note that (3.5.7) states that g, y and A satisfies the 

Fubini Theorem for all AGba(T). Now the Fubini Theorem is only rarely 

true for finitely additive set functions, so condition (3.5.7) is in­

deed a severe restriction. • 

Example 3.6. Let (S,S,y) be a probability space and let 

n1 ,r|2' " " " ^e a sequence of real valued random variables on (S,S,y). 

Now put 

g(s,j) = Tij(s), g(s) = g(s,-) = (n j (s) ) j = 1 

Then by the Borel-Cantelli lemmas we have 

(3.5.1) 
w 

j=1 
y(lnJ>a)< oo for some a G 3R =*g(s)G£,°° y-a.s. 

and the converse implication holds, if n-]/^'--- are independent. 

Similarly it is easily checked that if (nn} satisfies the 

following condition 

(3.6.2) V e > 0 3 m > 1 : 
OO OO 

j=1 n=m 
y wx (s . 1 

n 

n 

i = 1 
TI j (S^ I >£ ) < oo 

then g (s) G £°° y-a.s. and 

(3.6.3) sup 
j 

i 1 
n 

n 

i = 1 
n^s,) 

' n^oo 
0 y°°-a. s 
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i.e. g E LLN ( y, £°°) and Eg = 0. 

Now suppose that n-]/^'-"- are independent gaussian random 

2 2 

variables with Enj = 0 and Enj = aj, then a straight forward ar­

gument using the remarks above shows that the following 3 statements 

are equivalent 

(3.6.4) 
CO 

g (s) ei 
y-a.s. 

(3.6.5) g E LLN(y,£°°) 

(3.6.6) 3 a > 0: 
co 

x 

exp(-a/o 
2 

< co 

And similarly that the following 3 statements are equivalent 

(3.6.7) g(s) € c y-a.s. (see [3], p.239) 

(3.6.8) g is totally bounded in y-mean 

(3.6.9) 
CO 

j=1 
exp (-a/a 2 

J 
< oo y a > 0 

Putting a 
2 
j 

<$ 
1 

log j 
for j > 2, we thus obtain an example of a 

gaussian sequence, which satisfies the uniform law of large numberst 

but which is not totally bounded in y-mean. 

Finally suppose that n-jr^'*-* is a Bernoulli sequence, i.e. 

n-j/Ti2'*»« are independent and 

y (n j = 1 ) = y (n j = -1 
1 
2 

Then g(s) e and ||g(s)|| = 1 for all s £ S. However, if (n-;) 
oo J 

is a perfect sequence, then by [10] we have that the map 

s -
wù 

rij(s) A(dj) 
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where AEba(lN) (see Example 3.5) is y-measurable, if and only 
if A is a-additive (i.e. if and only if A E £^) . Hence g is 
not weakly y-measurable and so g £ LLN(y,£°°). • 

Example 3.7. Let (S,S,y) be an atomfree probability space, 

such that {s} E S for all s E S. Let T be a subset of S and 

define 

g(s,t) = 
1 if (s,t) E S x T and s = t 
0 if (s,t) e S x T and s * t 

g(s) cvnl g ( s , . ) = 1{S} 

Then g is a map from S into B(T), and by Example 3.4 we have 

Mg(s)) = 
T 

g(s,t) A(dt) = 
0 

lA({s}) 
if s e svr 
if s € T 

for all AEba(T) = B (T) 1 . Hence A(g(s)) is only non-zero for 

countably many s £ S , and since y is atomfree we find 

(3.7.1) s ~ A(g(s)) is S-measurable V A E ba(T) 

(3.7.2) A(g(s)) = 0 y-a.s. V A E ba(T) 

(3.7.3) gE L^(y,B(T)) D L|(y , B(T)) and Eg = 0 

(3.7.4) Hg(s) II T = 1T(s) V s E S 

Moreover if £ > 0 is given, then since y is atomfree there exist 
S1,...,SR E 5 so that S = S1 U ... U SR and y (Sj) < £ for all 
j = 1 , . . . ,n. Then A = {T PI Sj | 1 < j < n} belongs to T (T) , and if 
A = T n s . E A then 

WA(g(s) )y (ds) = sup I 1{u}(s) - 1{ ,(s) |y(ds) < y*(A) < s 
u, vEA 
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Hence we have 

(3.7.5) 

(3.7.6) 

g is totally bounded in y-mean 

g £ LLN (y , B (T) ) 

Note that even though Á(g(-)) = 0 y-a.s. for all A € B ( T ) ' , 

then llg(OIIT need not vanish y-a.s. (take T c= S with 

1M*(T) > 0). Also note that even though g is Gelfand integrable, 

then II g (•) IIT need not be y-measurable (take T to be a non-y-

itieasurable subset of S) . • 
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4. Sample continuous stochastic processes 

We shall now see that if a first order stochastic process has suf­
ficiently continuous sample paths, then it is totally bounded in mean. 

Let L be a topological space, cp: L -» 3R a function and A a 
subset of L; then we define the boundary function by 

8A(cp,x) = inf {WAnu(cp) I U € W(x) } 

where W(x) is the set of all neighbourhoods of x. Clearly, if x 
belongs to the closure of A, then we have 

(4.1) 8 (cp,x) = 0 <=> lim cp (y) 
y->x 
y€A 

exists and is finite. 

And so cp is continuous at x, if and only if 3_ (cp,x) =0. If 
a: 2L ]R is a set function and a € IR, then we write a = lim a(U) 

tf*x 
if 

(4.2) Ve > 0 3U € W(x) : la(unv)-al £ £ , VV £ W(x) . 

Note that since U wAfJU (cp) is increasing in U, we have 

(4.3) 9A(cp,x) jl lim W (cp). 
U->x 

Theorem 4.1. Let T be a set and (S,S,y) a probability space.  
Let g: S*T ~> 3R be a first order stochastic process and suppose  
that for all e > 0 there exist compact topological spaces L^ and  
stochastic processes qy. SXL^ -> IR for j = 0,1, satisfying 

(4.1.1) VtfET 3 (xQ,x1) € L.0 x L1 : g0(s,xQ) ^g(s,t) ^ g ^ s ^ ) 

for all s € S and 
' s 
{g1 (s,x1) - gQ (s,xQ)}y(ds) ̂  e 
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(4.1.2) Vj = 0,1 Vx G L_. 3A a finite cover of L j, so that 

lim 
U->x 

WAnu(g.(s))y(ds) < e VA £ A. 

Then g is totally bounded in y-mean and so g €LLN(y,B(T)) . 

Proof. We shall apply Proposition 3.1. So let £ > 0 be given 
and choose LQ, L^, gQ and g^ according to (4.1.1) and ( 4 . 1 . 2 ) . 

Then evidently (3.1.1) holds. Now let x€ L. and choose A GT ( L . ) 
J x j so that 

lim 
U->x • 

WAnu(gj(s))y(ds) < £ VA e A . 
x 

Then we may choose a neighbourhood Ux of x so that 

(i) k 
WAflU (g . (s) ) y (ds) < e • a e Ax 

since A is finite. By compactness of L. we can find a finite set 
F c L. so that L. = U _ U . Now put = 3 J xGF x ^ 

A = {Anux I A e Ax, x e F } . 

Then A is a finite cover of L., and by (i) we have 

WA(g.(s)) (ds) < £ VA G A, 

Thus (3.1.2) holds and the Theorem follows from Proposition 3.1. • 
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Theorem 4.1 turns out to be a very useful interpolation prin­

ciple. But in order to make its application more convenient, we shall 

study Condition (4.1.2) a bit closer. First notice that if L is a 

topological space and f: S*L -> IR is a stochastic process, then we 

have 

(4.4) I" 3A(f (s) ,x)y(ds) cb lim 
U->x 

WAnu(f(s))y(ds) 

for all A g L and all x € L. Our next lemma gives some sufficient 

conditions for equality in (4.4). 

Lemma 4.2. Let L be a topological space (S, S , y ) a probabil­

ity space and f: SxL -> 3R a stochastic process. Let xQ € L, let 

A g L, and let F be a y-measurable subset of S satisfying 

(4.2.1) 3U e W(x0) so that WAnu(f(s))y(ds) < « 
F 

(4.2.2) L has a countable neighbourhood base at x0 

(4.2.3] vue w(x0) ave w(xQ) such that V c U and the 

map: s ~ 1F(s) W, (f(s)) is y-measurable 

where W (xQ) is the set of all neighbourhoods of xQ. Then we have 

(4.2 .4) s - 1F(s)3A(f(s),x0: is y-integrable 

(4.2.5) lim 
w<mù$ 

*WAnu(f(s))u(ds) 
o 

$ lim 
U-.x0 S^F 

WAnu(f(s))y(ds) 

+ 
F 
9A(f(s),xQ)y(ds). 
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Moreover, if f: SxL -* IR is an arbitrary stochastic process,, 
and F c S ijs y-measurable, then (4.2.3) holds in either of the fol-
lowing two cases: 

Case 1°. There exists a countable set D c A such that f(s,*) 
is D-separable on A for all sEF. 

Case 2°. There exists a Blackwell a-algebra G on L contain­ 
ing a neighbourhood base at xQ such that A E G and f is_ S 0 G-
measurable. 

Remarks. (a): Let L and M be topological spaces and cp: L-*M 
a function. If D and A are subsets of L, we say that cp is 
D-separable on A if 

(4.2.6) cp (GflA) c c l ( p (GPID) VG open ^ L 

where cl B denotes the closure of B. Note that if cp restricted 
to A is continuous, then cp is D-separable on A whenever D is 
a dense subset of A. 

(b): A a-algebra G on a set L is called a Blackwell o-alge-

bra if cp(L) is an analytic subset of IR in the sense of [9], when­

ever cp is a real G-measurable function on L . 

(c): Let L be a topological space; then the Baire a-algebra, 
denoted 8a(L), is the smallest a-algebra on L making all real 
valued continuous functions measurable. It is well-known that if L 
is K-analytic in the sense of [9] (e.g. if L is a compact Hausdorff 
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space), then Ba(L) is a Blackwell a-algebra. 

(d) : The main feature about Blackwell a-algebras, which we shall 

use here, is the so-called Projection Theorem. Suppose that G is 

a Blackwell a-algebra on L, and 5 is an arbitrary a-algebra on S; 

if AcSxL belongs to the product a-algebra S®G, then we have 

(4.2.7) TTg (A) is y-measurable, Vy a probability on (S,S), 

where TTg(s,x) = s is the natural projection of SxL 

onto S. 

Proof. By (4.2.1) -(4.2.3) there exists a countable neighbour­

hood base {Vn | n^ 1} at xQ such that 

(i) 1 - z - = n -

(ii) W.n.. (f (s) )y(ds) < oo 
F AMV1 

(iii) cpn(s) = 1p(s)wAnv (f(s)) is y-measurable Vn ̂  1 . 
n 

By (i) we have that decreases, and since i-s a base at 

XQ, we have that 

cpn(s) + 1F(s) 3A(f (s) ,x0) . 

By (ii) we have that cp̂  is y-integrable, and so by the monotone con­

vergence theorem we have that (4.2.4) holds and 

lim 
n-*x 

<Pndy lim 
<w,:ù$ 

W (f(s))y(ds) 
F ^ n 

$$x 8A(f(s) ,x0)y(ds). 
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Now since ívn^ is a neighbourhood base at x^, we find 

(iv) lim 
U-xn 

r* 

'F 
W (f(s))y(ds) = ;wx 

,;^$ 
9A(f(s) ,xQ)y(ds) . 

Finally, since F is y-measurable, we have 

lim 
U-x0 

WAnu(f(s))y(ds) xn; lim 
U-x 0-

FWAnu(f(s))p(ds) 

+ lim 
u-xoJ 

• * 
W_nn(f(s))y(ds) 

and so ( 4 . 2 . 4 ) follows from (iv). 

Case 1°. Let f be a stochastic process such that f(s,«) is 

D-separable on A for all sGF, where D is a countable subset 

of A. Then it is easily verified that 

W f (f(s)ff) ff o ooo=f Www<$$$ (f(s)) = sup If(s,x) - f(s,y) I 
x ,yeDf1U 

for all s€F, and all open sets U in L. Since DflU is at most 

countable and f(•,x) is y-measurable for all x € L , it follows 

that WAnU^f^*^1F is Immeasurable whenever U is open. Thus (4.2.3) 

holds. 

Case 2 ° . Now suppose that AG G and f is S ® G-measurable 

where G is some Blackwell a-algebra on L containig a neighbour­

hood base at xn. Now let G £ G and put 

cp(s,x,y) = I f (s,x) - f (s,y) I 

cpn(s) = Wr(f(s)) = sup cp(s,x,y) . 
0 x,y€G 

Then cp is 5 ®G ®G-measurable, and G ®G is a Blackwell a-algebra. 
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Hence if a € 2R, then the set 

A = { (s,x,y) € S xL x l | tp(s,x,y) > a, x € G , y€G} 

belongs to S ® G ® G . Let 7Ts(s,x,y) = s be the natural projection 

of S xL x l onto S. Then by the Projection Theorem (4.2.7) we have 

that the set 

iTs(A) ={s | 3x,yGG: tp(s,x,y) >a} = {s | cpQ(s) >a} 

is y-measurable. Thus W_(f(«)) is y-measurable for all G £ G , and 

since A € G and G contains a neighbourhood base at XQ , we conclude 

that (4.2.3) holds whenever F c S is y-measurable. • 

Recall that a topological space L is called first countable 

if every point in L has a countable neighbourhood base. And a sub­

set A of L is called separable if there exists a countable set 

D such that D g A c c l D , where cl D denotes the closure of D. 

Theorem 4.3. Let T be a compact, first countable, topological 

space, and (S,S,y) a probability space. Let g: SxT -> 3R be a sto-

chastic process which is uniformly bounded in y-mean, and suppose  

that for all 6 > 0 there exists a finite cover A _of T satisfying 

(4.3.1) A is separable VA £ A 

(4.3.2) y* (s £ S | 3A(g(s) ,t) = 0 Vt€T)£1-6 VA £ A. 

Then g is totally bounded in y-mean, and g £ LLN(y,B(T)). 
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Remarks. (a): It follows from the proof below that we may re­

place Condition (4.3.1) by the following condition: 

(4.3.3) 
VAeA 3DcA 3F€S such that D is countable, 

u(F) > 1-6 and g(s,«) is D-separable on A Vs £ F 

(b) : Let FA = {s | 3A(g(s),t) = 0 Vt € T} be the set occurring 

in ( 4 . 3 . 2 ) . It is then easily checked that we have 

(4.3.4) FA ses 
the restriction of g(s,») to A has a continuous! 

real valued extension to the closure of A 

i.e. s € FA if and only if there exists a continuous function 

from cl A into nR such that g(s,t) = ip(t) Vt € A. 

Proof. We shall apply Theorem 4.1, so let e> 0 be given. Let 

]p be the upper y-envelope of llg(-) IIT; then by assumption we have 
i 

that I|J € L (y) and hence there exists 6 > 0 such that 

(i) 
B 
^dy < èe VB e S with y (B) < 6 . 

Now put LQ = L^ = T and g^ = g^ = g. Then evidently (4.1.1) 

holds. Now let tg6 T and choose a finite cover A of T satis­

fying (4.3.1) - (4.3.2) . Let A £ A; then by (4.3.2) there exist F£5 

so that y(F) I 1-6 and 8A(g(s),t) = 0 for all t £ T and all s € F. 

Then the restriction of g(s,-) to A is continuous, so by (4.3.1) 

there exists a countable set D c A such that g(s,«) is D-separable 

on A for all s£F. Hence by Lemma 4.2 (see Case 1°) we have 
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lim 
x-kùù 

wAnu(g(s)) < 
cv 

2iJjdu + 
F 
3A(g(s),tQ)y(ds) 

nn 
S\F 

2iMy 

since wAnu<g(s)) i 2ty(s) for all s € S and 3 (g(s),tQ) = 0 for 

all sG F. Now since y(SSF) < 6, it follows from (i) that (4.1.2) 

holds. Thus the Theorem follows from Theorem 4.1. • 

Corollary 4.4. Let T be a compact, separable, first count­ 

able, topological space and (S,S,y) a probability space. If C(T) 

is the Banach space of all real valued continuous functions on T 

with its usual sup-norm: II • 11 T, then we have 

(4.4.1) L^(y,C(T)) = LLN(y/C(T)) = L^(y,C(T)) fl L^(y ,C (T) ) . 

Remark. If T is a compact metric space, then C(T) is II* I n ­

separable, and so the equalities in (4.4.1) follows from Beck's the­

orem (see [1] p. 26). However, if T is not metrizable, then C(T) 

is not II • II T-separable. The split interval, i.e. [0,1]x{-i,i} with 

its lexicographic order topology, provides an example of a compact, 

first countable, separable, Hausdorff space which is not metrizable. 

• 

Theorem 4.5. Let T be a compact, first countable topological  

space, G a Blackwell a-algebra on T containing a base for the  

topology on T, and (S,S,y) a probability space. Let g: SXT -> ]R 

be an S®G-rreasurable process which is uniformly bounded in y-mean, and 
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suppose that for all 6 > 0 and all t € T there exists a finite cover 

At 6 Q^ T satisfying 

(4.5.1) At,6 i G Vt € T V6 > 0 

(4.5.2) y*(s € S | 9A(g(s) ,t) = 0) I 1-6 VA € A g Vt € T V6 > 0. 

Then g is totally bounded in y-mean, and g£ LLN(y,B(T)). 

Remark. Note that 3A(g(s),t) = 0 for all t £ T \ c l A and all 
s € S, and that if t £ cl A, then we have 

(4.5.3) {s | 3A(g(s),t) = 0} = {s I limg(s,u) exists and is finite}. 

u£A 

Also notice that Condition (4.5.2) is much weaker than Condition 
(4.3.2) 

Proof. We shall apply Theorem 4.1 in much the same way as in 
the proof of Theorem 4.3. So let e > 0 be given. Let \p be the 
upper y-envelope of llg(*) IIT, then by assumption we have that 

i 
€ L (U) , and so there exists 6 > 0 such that 

(i) 
B 
ipdy ^ Je if B € S and y(B) ^ 6. 

Now put LQ = L1 = T and gQ = g^ = g. Then evidently (4.1.1) 
holds. Now let t£ T and choose a finite cover A = A^ of T sa­
tisfying (4.5.1) and (4.5.2). By Lemma 4.2 (see Case 2° and put F = S) 
we have that 3A(g(-)/t) is y-integrable and 
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(ii) lim 
U-»t 

w (g(s))y(ds) = 
ADU 

3,(g(s),t)y(ds) 
's A 

for all A E G , in particular for all A £ A ^ (see (4.5.1)). Let 
A € A ^ and put 

B = {s | 3A(g(s) ,t) > 0}; 

then B is y-measurable and y(B) ^ 6 by (4.5.2). Hence by (i) and 
(ii) we have 

lim 
U+t 

WAnu(g(s),t)y(ds) v 2 
B 
î dy < e 

since 3A(g(s),t) ^ 2 1B(s)^(s). Thus (4.2.1) holds, and so the theo­
rem follows from Theorem 4.1. • 

Corollary 4.6. Let T be a compact, first countable, topological  
space, G a Blackwell g-algebra on T containing a base for the  
topology on T and T£G a subset of T. Let (S,S,y) be a prob-
ability space, and g: S*T 3R a stochastic process satisfying 

(4.6.1) g is S ® G - measurable 

(4.6.2) sup|g(s,t) |y (ds) < oo 
tGT 

where G = {G£G\GgT} is the trace of G on T. Suppose that for 
every t e T there exists a finite cover A^ of_ T such that A£<=G 
and 

(4.6.3) y*(s I lim g(s,t) exists) = 1 
t-t 

tEAHT 
for all A€ A- with t £ cl (AflT) . Then g is totally bounded in 
y-mean, and g€ LLN(y,B(T)). 
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Remark. Since TG G, it follows easily that G is a Blackwell 
a-algebra on T, and from (4.6.1) and the Projection Theorem (4.2.7) 
it then follows that 

(4.6.4] l|g(s)llT is ]J-measurable 

(4.6.5) {s I lim g(s,t) exists} is y-measurable 
t->t 

tGAflT 
for all A G G and all t G ci (ADT) 

Proof. We extend g to g: S><T •> 3R by putting g(s,t) = 0 
for s G S and t G TVT. Since TEG, we have that g is S ® G -
measurable, and by (4.6.2) we have that g is uniformly bounded in 
y-mean. If t G T, we put 

A£ = {ART | A G A^} U { T ^ T } . 

Then A£ is a finite cover of T, and if A cr T and t G T , then 

9AnT(g(s),t) = 3AnT(g(s)ft) 

9^T(g(s),t) = 0. 

Since llg(s)llT is finite y-a.s., it follows from (4.6.3) and (4.5.3) 
that (4.5.2) holds. And since T G G and A^ c G, we see that A*cG; 
and so (4.5.1) holds. 

Thus by Theorem 4.5 we have that g is totally bounded in y-mean, 
but this clearly implies that g is totally bounded in y-mean. • 

Putting T = IR, G = B (IR) and 

A- = {[-»,t[,{t},]t,«>]}, 
we get the following corollary 
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Corollary 4.7. Let T be a Borel subset of HR, (S,S,y) _a_ 

probability space, and g: S><T -* IR a stochastic process satisfying 

(4.7.1) g is S ® B(T)-measurable 

(4.7.2) sup|g(s,t) I y (ds) < oo 
1 tGT 

(4.7.3 y* (s lim g (s, t) 
t-*u 
t<u 

exists) = 1 Vu G T 

(4.7.4) y*(s I lim g (s , t) 
t-n; 
t>u 

exists) = 1 Vu G T + 

where T and T+ are the set of all left,respectively,right limits 

points of T, i.e. 

T~ = { u E E I 3{t }cT: t u and t <u Vn} 1 n = n n 

T+ = {uG3R I 3 {t } c T: t -» u and t > u Vn} . 
1 n = n n 

Then g is totally bounded in y-mean, and gG LLN(y,B(T)). 

Clearly we have a similar result in more dimensions for any 

given family {A^ | t E È q } of finite Borel covers of JR^. 

In the Glivenko-Cantelli case (see (1.1) and (1.2)) we have 

S = T = R and 

g(s,t) 
1 if s i t 

9fg if S > t 

and so the Glivenko-Cantelli theorem (1.2) is a direct consequence of 

Corollary 4.7. 

In the q-dimensional Glivenko-Cantelli case we have S = T = ]R̂  

and 
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g(s,t) cv 
1 if s. < t.,...,s <t 

1 = 1 q = q 
0 otherwise. 

Let T = ]Rq and 

A A 3 Y ( ^ = ^ e ̂  I uj = tj Vj € a, Uj > tj Vj € 3, u. <t VjCy} 

whenever t= (t. . . ,t ) € 3Rg and {a,ß,y} is a disjoint partition 

of {1,...,q}. Then putting 

Aä = {A q (t) | {a,ß,y} a disjoint partition of {1,...,q}}, 
£ upy 

we see that the multi dimensional version of the Glivenko-Cantelli 

theorem follows from Corollary 4.6. 

Theorem 4.8. Let (ft,F,P) be a probability space, and {5n) 

a sequence of independent, identically distributed, q-dimensional 

(1^q<oo)f random variables on (ft,F,P) such that 

(4.8.1) uOK) = 0 for all convex sets KglR4 

where y is the common distribution law of the £n on 3Rq. Let 

M: 3Rq -> [0,co] be an upper semi-continuous function such that M is  

y-integrable. If <J> is the set of all functions, cp: IRg -» 3R satis­

fying: 

(4.8.2) {s£ ]Rg I cp (s) > a } is convex for all a € 3R 

(4.8.3) lcp(s) | ̂  M(s) Vs£iq, 

then $gL1 (y) and we have 

(4.8.4) sup 
cp£<l> 

cpdy !ù 
1 
n 

n 

i = 1 
<PUJ> 

w<ù 
0 P-a.s. 

352 



THE LAW OF LARGE NUMBERS 

Remarks. (a): If A is a subset of a topological space, then 

3A denotes the boundary of A, i.e. 3A = clA^int A. 

(b) : Notice that (4.8.1) holds in particular if y is absolutely 
continuous with respect to a product of atom-free one-dimensional 
probability measures. 

(c): A function cp satisfying (4.8.2) is usually called uni-
modal or quasi-concave. 

Proof. First notice that by (4.8.1) we have that every convex 
set and every unimodal function is y-measurable. Hence by integrab-
ility of M and (4.8.3) we find that $ cr L1 (y) . 

We shall apply Proposition 3.1 with S = IRq, T = <J> and g(s,cp) = 
cp(s) for (s,cp) e x $. To do this, we need the so-called upper 
and lower Fell topologies. 

Let Use denote the set of all upper semi-continuous functions 
from ]Rq into JR. Then the upper Fell topology n on Use is 
the weakest tonoloav nn TTsr saf-.i sfvina 

(i) cp rn sup cp(s) is lower semi-continuous VG open 
s£G 

(ii) cp ~ sup cp(s) is upper semi-continuous VK compact. 
s£K 

Then (Usc,n) is a compact metric space and 

,cp(s) < lim sup cp (s ) Vs Vs -* s j = n_>oo n n n (iii) cp -* cp in n \ 
lV s 3{sn>: sR s and cpn(sn) -» cp(s). 

Now let L1 = 0 n Use and g^(s,cp) = cp(s) for (s,cp) m^xL^. It is 
then a routine matter to verify the following propositions: 
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(iv) L<| is a closed subset of (Usc,n) 

(v) g1 
(vi) {tpn> c L1 , w qa ̂n"*^ in ^ jjj<w ̂^s) "* VsEC(tp) 

where C(cp) is the set of continuity points of cp. If D(cp) de­
notes the set of discontinuity points of cp and Q is a dense sub­
set of 3R, then the reader easily verifies the following inclusion: 

(vii) D(cp) c U 3{cp > cr} 
wx<<^$ 

Vcp: ]Rq^ JR 

So by (4.8.1) and (vi) - (vii) we have 

(viii) u(C(cp)) = 1 vcp e $ 

(ix) Mis | 3 (g (s) ,ip) = 0) = 1 Vcp G L1 

Thus by Theorem 4.5 we have 

(x) g^ is totally bounded in y-mean. 

Now let Lsc denote the set of all lower semi-continuous func­
tions ww<^^$hh;! TR with its lower Fell topology n^, i.e. the 
weakest topology Lsc satisfying 

(i)* \b ^ inf ibis) is upper semi-continuous VG open 
s€G 

(ii) * ijj ~ inf \bis) is lower semi-continuous VK compact. 
sGK 

Then exactly as above we have 

(x)* gn is totally bounded in y-mean 

where Ln = 0 fi Lsc and gn(s,cp) = cp(s) for (s,cp) GIR^xLQ. 

is upper semi-continuous on üR̂ x 
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Now let cp € $, and cp̂  and cp be the lower respectively upper 
semi-continuous envelopes of cp. Since 

{(P° > a) = int{cp > a} and {cp > a} = cl{cp I a} , 

we see that cp̂  and cp are unimodal, and since M is upper semi-
continuous and (-M) is lower semi-continuous and -M ^ cp ̂  M, we 
have 

-M(s) < cp°(s) ^ cp(s) ^ cp(s) <; M(s).» 

Thus cp° G LQ and cp G and moreover we have 

gQ(s,cp0) = cp°(s) ^ cp(s) ^ cp(s) = g^s^cp) 

g1 (s,cp) - gQ (s,cp°) = 0 Vs G C(cp) . 

Hence conditions (3.1.1) and (3.1.2) hold by (4.8.1), (viii), (x) and 
(x)*. Thus by Theorem 3.1 we have that g is totally bounded in y-
mean and g G LLN(y, B ($)), and so the theorem follows from (2.14). • 
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