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THE LAW OF LARGE NUMBERS FOR NON-MEASURABLE

AND NON-SEPARABLE RANDOM ELEMENTS

J. Hoffmann-Jdgrgensen

1. Introduction. The law of large numbers has been in the

center of probability ever since it was discovered by James Bernoulli
around 1695 (published in 1713 in "Ars Conjectandi"). Lately it has
been generalized to random variables taking values in a Banach
space, see [1], [4], [5] and [6]. However in these papers it is
assumed, that the random variables are measurable and separably
valued, two conditions which, weird as it may sound, are not ful-
filled in the first and most natural example of an infinitely
dimensional law of large number, viz. the Glivenko-Cantelli theorem,
see [8, p.20] or [2, p.261].

Let 51,52,... be a sequence of independent identically
distributed real random variable with distribution function
F(t) =P(£rl <t). Let F be the empirical distribution function

n

based on g1,...,gn, i.e.

n

1
(1.1) F (t) =— } 1
n n 4oy {gjgt}

Then the Glivenko-Cantelli theorem states that

(1.2) suplF_(t) -F(t)l » 0 a.s.
n
t n—-o
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J. HOFFMANN-JORGENSEN

Let B(IR) be the set of all bounded real valued function on 1R

with its usual sup-norm:

£, = sup|£(t) |
t

Then (B(RR), |

-|L) is a Banach space, and if
Xn(w,t) =1{En§t)(w) and Xn(w) =Xn(w,-)

Then Xn is a random variable with values in B(IR), and the
Glivenko-Cantelli theorem just states, that the sequence {Xn}
satisfies the law of large numbersin B(IR), i.e. that we have

X »F a.s. in (B(R), || -1l

=1
Ie~—13

=1
However Xn is neither measurable with respect to the Borel
o-algebra on B(IR), nor is it separably valued.

This example shows, that the general Banach space versions of
the strong law of large number are too special and too poor to
cover the first and most natural example of an infinite dimensional
strong law of large numbers. In this paper I shall prove an infinite

dimensional version of the strong law of large numbers, which

neither assumes measurability nor separability of the random vectors,

and which covers the Glivenko-Cantelli theorem as well as many other

uniform lawsof large numbers for stochastic processes.

2. The general case.

In all of this section we let (S,S,u) denote a probability

space and (B,]|*||) a Banach space with dual space (B',||-|])

and second dual (B'", ). As usual we shall consider B as a
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THE LAW OF LARGE NUMBERS

closed subspace of B'".
Let f:S-B Dbe a function. Then we say, that f 1is up-measurable,
if f 1is py-measurable when B has its Borel c-algebra. We say

that f is weakly p-measurable (respectively weakly u-integrable),

if x'(f(+)) 1is pu-measurable (respectively u-integrable) for all
x'€e€B'. If f 1is weakly p-integrable then we define its rean:
Ef = J fdu
S

to be the linear functional on B' defined by

(E£) (x') =Jf x' (F(s))u(ds) Vvx'en'
S

It is wellknown that Ef e€B'". If f 1is weakly p-integrable and

Ef € B, then we say that £ is Gelfand u-integrable. We say that

f 1is Bochner u-measurable, if f is p-measurable and £f(S\N) is

separable in (B, ||+]||) for some p-nullset N€S. Finally we say

that f is Bochner u-integrable, if £ is Bochner p-measurable

and ||£(+)]| 1is u-integrable. And we shall consider the following

four function spaces

L;(u,B) ={f:S->B|f 1is weakly u-integrable}
Lé(u,B) ={f:S2B|f 1is Gelfand u-integrable}
L1(u,B) ={f:S-B|f is Bochner u-integrable}

Ll (u,B) = {f;s»B|Jr*||f(s) I (ds) < =}

It is wellknown that L1 (n,B) gLé(u,B) gL‘l(u,B) and that the
integral above coincides with the usual Bochner integral on L1(U,B)

(see [3] p. 112 and p. 149).
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J. HOFFMANN-JORGENSEN

As we shall work with non-measurable functions we shall use a
few concepts concerning non-measurable sets and functions. Let
(2,F,P) be a probability space, then P* and P, denotes the

[

*
outer and inner P-measure and J £fdP and J*fdP denotes the

upper and lower P-integrals of £, whenever £ is an arbitrary

map from § into TR=[-»,«]. And if f is an arbitrary map from

Q in 1R, then £, and f* denotes the lower and upper P-envelopes

(2.1) f, and f* are measurable: (Q,F) - TR
12.2) feo(w) <f(w) <f*(w) VYweR
(2.3) P, (£,<g<f) =P, (£<g<f*) =0 V P-measurable functions g:0-TR

If & 1is a map from § into a measurable space (M,B) we say

that & 1is P-perfect if § is P-measurable and
(2.4) (P, (a) =P, (7 (&)  vAcH

where P is the distribution law of & on (M,B). It is easily

€
checked that (2.4) is equivalent to either of the following three

conditions

(2.5) VFEF3IBEB:BCE(F) and P(F~E ' (B)) =0

(2.6) P(FlgE=x) =0 for Pg—a.a.XEM\F,(F), VFEF
r* * —

(2.7) J fOEdP=J fc'lPE VE:M-> 1R

Moreover the composition of perfect maps are perfect, i.e.
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THE LAW OF LARGE NUMBERS

(2.8) If ¢:Q-(M,B) 1is P-perfect and n:M- (L,A) is

P, -perfect, then nof 1is P-perfect.

£

Let LLN(up,B) denote the set of all function £f:S-B, which

satisfies the following version of the strong law of large numbers:

n
(2.9)  3a€B: lim[la-1 § £(s

)]l =0 for p-a.a.(s.) €s”
n-e j=1 J

J

where (Sw,Sm,uw) is the countable product of (S,S,u) with itself.
Notice, that we do not assume any measurability or separability of
f, but of course a.s. convergence makes good sense no matter whether
the functicns are measurable or not.

Let f €LLN(p,B), then the vector a€B occuring in (2.9) is
of course uniquely determined, and we shall call it the mean of f

and it is denoted

Note that if f €LLN(u,B) and f is Gelfand integrable, then by
the real valued law of large number we have that the vector a in
(2.9) equals the Gelfand integral of £f. So there is no ambiguity
in our notation. Actually we shall see below that every function £
in LLN(u,B) 1is Gelfand integrable.

Clearly we have the following simple properties of LLN(u,B):

(2.10) LLN(u,B) is a linear space
(2.11) E:LLN(u,B) »B 1is a linear map
And if ¢ is a bounded linear map from (B,||+]||]) into a Banach

space (A,|{*||), then we have
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(2.12) @(f(+)) € LLN(u,A) v £ € LLN(u,B)

(2.13) ©(Ef) = Eo(f) vV £ € LLN(u,B)

Let (@, F,P) be a probability space, and let {En} be a
sequence of independent identically distributed random variables
with values in (S,S) and distribution law u. Then evidently we

have

n
(2.14)  ||Bf -2 ] £(£5)]] -0 P-a.s., VEELLN(,B)
j=1 n-o

However, even if B = 1R, we may have functions £, such that the
averages n_1(f(£1) ...t f(gn)) converges P-a.s., but f¢LIN(y,B).
However if the sequence {En} is P-perfect, i.e. if the product

map
E(w) = (Sn(w))1

is P-perfect from { into (Sw,Sm), then we shall see in Theorem 2.3
below, that this cannot occur.

Note that we have not assumed any measurability or separability
of functions in LLN(u,B). However it turns out (see Theorem 2.4)
that any function £ in LLN(p,B) is weakly measurable and Gelfand

integrable. To see this we need a couple of lemmas.

Lemma 2.1. Let S ¢S so that w*(s ) =1 for all n21.

Then we have

(2.1.1) W) *( 1 ) =1
n=1

Moreover if fn:S-»B are maps, so that fn(sn)-+0 for um—a.a.
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THE LAW OF LARGE NUMBERS

(sj) €S, then there exist a sequence {gn} of measurable maps

from (S,S) into 1R, so that

(2.1.2) anm)HfgnB) vVscS

(2.1.3) g,(s,) -0 for u-a.a. (s ) €s

Actually we may take g to be the upper u-envelope of £ ().
n P MO

= =%
Proof. Let S ={Fns_ |[FeS} and u (F) =u*(F) for FeS .
Then Sn is a o-algebra on Sn and My is a probability measure
on (Sn,Sn). By Tulcea's theorem (see [2] p. 183), we know that

the product probability space:

(S_1S,u,) = (11 S.,.8S., ©y.)
§=1 J 3=1 J 3=1 J
is welldefined, and since
(M F.NS.) = T u(F.ns,) = T u(F,) =y" (1 F.)
j=1 J J j:1 J J J j=1 J j_1

for all {F&} S, we conclude that
p (FNnsS,) =u (F) VFeS

Hence if F2S_ and F€S , then u (F) =1. Thus (2.1.1) follows.

Let g_ be the upper u-envelope of }Ian (see (2.1)-(2.3))

n

and let

1}

v

S, ={s ESlgn(s) §2||fn(s)’] or |\fn(s)[

Then I claim that u*(sn) =1 for all n>1. So let n>1 and put
h = min{1,%gn}

n
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then h_ is measurable and S~S_c{||f || <h_ <g_}. Hence by (2.3)
n n = n!l =%n " *n

we have that u*(Sn) =1. Now let L ESw, so that fn(sn)-»O for

all (sn) €L and uw(L) 1. Then by (2.1.1) we have that

(1) (1) * (1)

i
)
oy
[0)
a]
)
=

Now let (sn) €Ly, then fn(sn)«»O so for some p>1 we have

that llfn(sn)|}< 1 for all n>p, and since s €S we find that
g, (s)) §2|lf(sn)1| for all n>p. Hence g (s )-0 for all
(sn) €Ib’ and since 9, is measurable for all n>1 we conclude

from (i) that gn(sn)-+0 for y -a.a. (Sn) €s”. I.e. the sequence

{gn} satisfies (2.1.2) and (2.1.3). o

Lemma 2.2. Let (2,F,P) be a probability space and ¢ a

P-perfect map from Q into a measurable space (M,B). Let £ be

a P-measurable map from @ into a measurable space (L,A), and g

an arbitrary map from M into L, such that

(2.2.1) f(w) = g(€(w)) Vwe%

where QO is a subset of Q. Then there exist a set BO € B such

that

-1
(2.2.2) BO'EE(QO) and P*(QO\E (BO)) =0
(2.2.3) g-1(A)f1BO is Pg—measurable VAEA

i.e. g[BO is Pg—measurable, and Pg(BO) ZP*(QO).
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THE LAW OF LARGE NUMBERS

Proof. It is no loss of generality to assume that P is
complete. Let F €F be chosen so that FcQ, and P(F) =P, (2) -
And let P(Fl&=x) be a conditional expectation of 1F given Eg.
Then by (2.6) we may assume that P(Flf=x) =0 for all x¢E(F).

Now let
B0 = {x|IP(Flg=x) >0}

Then BOEB, and

(i) P(Fn£_1(B))=J[ P(FlE=x)P, (dx) VBEDB

€
BNB,

And since P(F|&=x) =0 for x¢E&(F) we have

(ii) By c&(F) c£(ag)
From (i) we find that P(F\E_1 (BO)) =0, and since P*(QO\F) =0,
we see that BO satisfies (2.2.2).
- -1 -
Now let FO =FNg (BO), then FO € F, and g(FO) = BO. Also

since FjcFc®,, it follows easily from (2.2.1) that we have

(iii) g '@ nB =eF ne @) vacL
Now let A€A, then Fg N £ 1(a)  and Fg N £71(a%) belongs to
F, so by (2.5) there exist B1,B,'I € B so that
(iv) B1§B§B0 and BiSBO\B
-1 -1 _ -1, .c -1,
(v) P(Fonf (A)NE (B1))—P(Foﬂf (AY)NE (B1))=O
where B =g '(a)n By =£(Fy N £ '(A)). Now put B, =B, ~BJ, then

by (iv) we have that B,cBcB, and from (i) and (v) we find
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_ -1 _ -1
0=P(FyNE "(B,~B,)) =P(FNE (B2\B1))
=J P(Fl&=x) Pg(dx)
By By
. _ -1

since FO—Fﬂg (BO) and B, cBy. Now B2\B1§BO and so
P(FlE=x) >0 for all x(EBz\B1, hence we have that Pg(BZ\B1) =0
and B, cBcB,. Thus B =g_1 (A) NBy is P -measurable and so

(2.2.3) holds. o

Theorem 2.3. Let (%,F,P) be a probability space and let

{En} be a P-perfect sequence of independent, identically distributed,

(S,S)-valued random variables with u as their common distribution

law. Let f be a map from S into the Banach space (B, ]||-]|),

and suppose that there exist a Bochner measurable function a:0-B,

and a set Qo € F, such that P(QO) >0 and

n
L1 _
(2.3.1) hmﬁ_if@jmn)-am) Vwe€Q,

n-o ]:']

Then f € LLN(u,B) and a(w) =Ef for P-a.a. w€QR

Proof. By removing a nullset from QO’ we may assume that

there exist a separable subspace BO of B so that a(w) EBO for

all w EQO. Let £ (w) =(£1(w),€2(w),...), then by assumption §

is a P-perfect map from § into (Sw,Sm). Let us put

n
L=1{(s.) ESw|1imJ- ] f£(s.) exists in (B, ]]+|])}
3 now M 421 3
0 if  (s.) €8°NL
(x(s):{ 1 n J
lim— ) £(s;) if (s.) €L
noo 429 3 J
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Then by (2.3.1) we have that £(2,) <L and alw) =a(g(w)) for all

weERQ So by Lemma 2.2 there exist 1L, €s” so that LOgg(QO) cL,

0°

uoo(LO) ZP(QO) >0, and alL is um—measurable (note that P =u°°).

0 €

Let

sk+1,sk+2,...)€L0} Vk>0

Then Lk€SQo for all 0<k<~, and um(Lk)=poo(L0)>0 for all

k >0. Hence

uOO(LOO) > p7 (1im sup Lk) > lim sup uoo(Lk) >0

n-o

and so by the zero-one law we see that pw(Lw) =1. Moreover if ‘[k is

the translation map:

Tk(s)=(sk+1,sk+2,...) Vs=(sj)

Then a(s) =oc(Tk(s)) for all s€L, and so oclLk is u -measurable
for all 0<k<», and since pm(Lw) =1 we seethat a 1is um-
measurable on all of Sm, and that um(L) = 1. Moreover since
a(E(w)) =alw) GBO for w€Q0, we have that al(s) €BO for all
s€L_. Thus o is Bochner measurable from (SOO,SOO,UOO) into
B, .

Now let C be a countable subset of B(') which separates
points in BO. Since «a(s) =0c(Tk(s)) for all s€s" and all
k>1, it follows from the zero-one law that x(')(oc(-)) is constant

o
W -a.s. for all x('):‘C. And since C separates points in By and

C 1is countable it follows that o is constant uoo~a.s., since
[ee] [ee]
al(s) EBO for u -a.a. s€S . Thus there exist ag € B so that

309



J. HOFFMANN-JORGENSEN

a(s) = 1lim

=<}

for u -a.a. s =(sj) ESm. Hence f € LLN(u,B), and clearly we

have a(w) =a =Ef P-a.e. in QO. a]

Theorem 2.4. Let (S,S,u) be a probability space and

(B, ]| - a Banach space. Then we have
1 1 1
(2.4.1) L (4,B) cLLN(4,B) <L, (u,B) N L, (4,B)
*
(2.4.2) J|HHdu<w v f € LLN (u,B)

Remark. The key point of the second inclusion in (2.4.1) is
to prove that every f in LLN(u,B) 1is weakly measurable. The
proof below of this fact is due to M. Talagrand (private communica-
tion), who has also proved a very nice and surprising characteriza-

tion of LLN(u,B) (handwritten manuscript).

Proof. The first inclusion is a wellknown result due A. Beck

(see [1] p. 26).
Let f €LLN(M,B) and let x'€B' and g(s) =x'(f(s)). Then
g 1is real valued, g€LLN(u,IR) and Eg=x'(Ef). Now let g, and

g* Dbe the lower and upper u-envelopes of g. We shall then show
(1) g = g* u-a.s.

To see this we choose two measurable functions hO and h1

from S into 1R, such that
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THE LAW OF LARGE NUMBERS

(ii) g, (s) =h0(s) =h1(s) =g*(s) Vs €{g, =g*}

(iii) 94 (s) <hg(s) <h,(s) <g*(s) vsed{g, <g*}

Note that ho(s)=h1(s)=g(s) on {g, =g*}, so h0 and h1 are

finite every where. Now by (2.3) we have

Hy (hy <g) S, (g <hy<g) =0

Hy (g <hy) <, (g <h, <g¥*) =0

Hence if SO={g§hO} and S1={h1§g }, then u*(Sj)=1 for

j=0,1. Now let LESOo so that uw(L)=1 and

g(sj) - Eg V(sj)EL

Sl=
It~ 8

j=1

If we put
=L N (S, xS, x ... for j=0,1

Then by Lemma 2.1 we have that (uw)*(Lj) =1 for 3j=0,1. And by

definition of SO and S1 we have
L 1
Egsllmlnfﬁ.z ho(sj) V(sj)ELO
n-e j=1

n

L

Eg > 1lim sup%

h, (s.) YV (s.) €L
noo  By=7 103 J

1 1

Since h0 and h1 are measurable we consequently find that the

two inequalities holds uw—a.s., and since h0 5h1 everywhere we

have

o
1h0(sj) —llmB— )
n-e

Eg =1lim
n-o ]

Sl=
Ine—s

ne~—s

1h1(sj)
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for U -a.a. (sj) €s”.
Now by the converse law of large numbers, we have that h

and h1 are p-integrable and
(iv) { h du = J h,du = Eg

(see [2] p. 122). But hj, <h, and hy<h, on the set (g, <g*},
hence by (iv) we have that wu(g,<g*) =0, and so g, =g* p-a.s..

Thus g 1is u-measurable and u-integrable and we have
[ gdu = x'(f(s))u(ds) =x"'(Ef)

for all x'€B'. Thus £f 1is Gelfand integrable and Ef 1is the
Gelfand integral of f.
Now let us show that £ €Ll(u,B). First we note that if

f € LLN(u,B), then
1 e ©
(v) Ef(sn)-+0 for u -a.a. (sj) €S

Let h Dbe the upper p-envelope of ||f(+)]||. Then by Lemma 2.1
we have that n_1h(sn)-+0 for 1" -a.a. (sn)G Sw, and so by Lemma 1.4
(p.53) in [5] we have that h 1is p-integrable, and since

[|[£(s) || <h(s) for all s€S, we see that f eLl(u,B). o

Theorem 2.4 gives a necessary condition for f € LLN(y,B) and
we shall now seek sufficient conditions. To do this we shall
introduce a topology on BS (the set of all function from S into
B), and show that LLN(u,B) 1is closed in this topology. Since
L1(u,B)§IJN(u,B) we will then know, that the closure of L1(U,B)

is contained in LLN(¥,B), and in sections 3 and 4 we shall see
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THE LAW OF LARGE NUMBERS

that this fact implies the law of large number for a large class of

stochastic processes.

Definition 2.5. (The m-topology). Let (B,]||-]|]) be a Banach

space, then a finite partition of the norm ||+]||], is a finite set

0 of functions from B into i§+ =[0,»], such that

(2.5.1) a(x+y) <a(x) +aly) Vx,y €B and a(0)=0 Vac€o
(2.5.2) [|x]| < max a(x) VX EB
aem

I.e. a finite partition of is a finite set of subadditive

.
.

T§+-valued functions on B whose maximum dominates the norm |

We put

m(|

[}

) ={c]o 1is a finite partition of

If (s,S,u) is a probability space and (B,||*]||]) is a Banach

space we put:

(2.5.3) o(f) =max}*a(f(s))u(ds) vV f €BS Vo€ET(

a€o’ S

)

Note that o(f) is subadditive on BS, but not necessatily homo-
geneous nor symmetric.

We can then define a convergence notion on BS as follows. If

{fA|A €A} is a net in B> and f EBS, we shall say that {fx}

is m-convergent to f, and we write fA 3 £, if

(2.5.4) Ve>03r €A 0€ETN(] J:o(f,-f) < VAx)

0

Let ¢ be a subset of BS, then we say that ¢ is mw-closed, if

313



J. HOFFMANN-JORGENSEN

for every m-convergent net {fx} cd with fk 5 £, we have that

f €d. Since a subnet of a m-convergent net clearly is m-convergent
to the same limit, we have that the class of all m—closed sets is closed
under finite unions and arbitrary intersections. Thus there exists a
topology on BS, which we shall call the w-topology, such that a
set @(EBS is closed in the m-topology, if and only if ¢ is
m-closed. Clearly we have

T
(2.5.5) fA - f = fA - f in the mw-topology.

I do not know if the converse implication holds, i.e. if 3 is a

topological convergence notion, but I strongly suspect that this is
not so in general.

If ¢c BS is m-closed, and ¢ 1is a map from ¢ into a tooological smace
T, then it is easily checked, that ¢ 1is continuous in the

restricted m-topology, if and only if ¢ satisfies:

(2.5.6) @(f,) »o(f) vieov{f,}cd so that f, 3f

A function ¢ satisfying (2.5.6) is said to be m-continuous on ¢.
Finally we let L;(u,B) denote the m-closure of L1(u,B),

i.e. L;(u,B) is the smallest m-closed set containing LT(u,B).

Lemma 2.6. Let (S,S,u) be a probability space, and (B,]||«]])

a Banach space. Then we have

m

and t € IR, then th - tf

Hh
1=
Hh

(2.6.1). If

and g EBS, then f% +g Ly f+g

H
h
H
e
H

(2.6.2)
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THE LAW OF LARGE NUMBERS

Moreover if o€l (|[+]|), and x'é€B with ||x'|| <1, then we have
(2.6.3) -5 (£) gjf x' (£(s))y (ds) 5Jf*x' (£(s))y(ds) <o (£)
*

[* s
(2.6.4) 1] x'(£(s))u(ds)| <o (£) vVfEB

[ s
(2.6.5) || %' (E(s))u(ds) | < olf) VEEB

*

[* . R S
(2.6.6) ] |x' (£(s)) [u(ds) ¢ 20(f) VEEB
(2.6.7) IEE]| <o(f)  VEEL (u,B)

Proof. (2.6.1): If t=0 then (2.6.1) is obvious. So
suppose that t#0 and let e >0 be given. Then we choose XOEA

and o €1 (

) such that o(fx—f)<e/]t| for A>Xry. If ac€o

we put
a(x) = ]tloa(t_1x) VxE€EB

Then o ={d|a€o} belongs to I( ), and

o(tf,-tf) = |t|0(f)\—f) <e

for all A > A Thus tf)‘ T et

0°
(2.6.2): Evident!

S

(2.6.3): Let f€B~, o€l and x'€B' with |[x'|l <1.

If o(f) =« then (2.6.3) is obvious. So suppose that o(f) < .

Then

(i) J[*||f||d1i§ ) Jf*ot(f)dufko(f) < o
€

ako
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where k 1is the number of elements in o.
Let g(s) =x'(f(s)) and let g, and g* be the lower and
upper u-envelopes of g. Also let fa be the upper u-envelope of

a(f(+)). Then by (i) we have that g,,g* and fu are u-integrable

and
. ( _[*
(ii) Jsfoad“ = a(f(s))u(ds)
(ii1) Jr g*ay = J[*x' (£(s))u(ds)
S
(iv) J( g,du =J x'"(£(s))u(ds)
S *

Now let m be any real number satisfying

gudu = J[ g*du

(v) J(g*du<m<J(g*du or m=[
S S

S JS

Then we can find a measurable function h, such that

(vi) h(s) =g,(s) =g*(s)  Vs€{g,=g*}
(vii) g, (s) <h(s) <g*(s) Vs € {g,<g*}
(viii) [ hdu =m

Is

As in the proof of Theorem 2.4 we find that
u*(g<h) =u*(g>h) = 1

Hence by Lemma 2.1 we have that the two sets:

M, ={(sj) €S lg(sj) gh(sj) vi>1}

My ={(sy) €5 ]g(sj) >hisy) v3j21)
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have outer uw—measure equal to 1. And by the real valued law of

large numbers there exist MeS” with um(M) =1 and

. 1 3

(ix) sz1h(sj)—>m v(sj) €M

(x) 15 ¢ (s - £ au Vi(s.) eM
nyZqte 3 JS a j

(see (viii)). Now note that we have

o]

n

1 1
-max— ) f (s,) <- max— ) a(f(s.))
ago =1 ¢ I ago M 3=1 J

1 n
£l =gl 1 £sp |

< —max-la( N
=1 J=1

a€o j

n 1
<xtd s -1

j=1 J

ne—s

1g(sj)

I

1 ‘z‘ 1
<ol Y f(s) ] ¢max —al
n . J aeon

f(s,))
3=1 )

j=1

;D ;0
< max— ) a(f(s.)) <max= ) f (s.)

aco M =1 J aco Mg=1 *
since each o in o is subadditive, f >a(f(+)) and |[x]| ¢max a(x).

Hence by (ii) and (x) we find

n
-G (£) < liminfL § g(s.)
n—o nj:’] J
<linsuwl ¥ g(s.) <o(f)
n- j=1 J

for all (sy) €M. Now since u (M) = (u“)*(mo) =1 we have that

MnMO+¢> and if (sj)EMﬂMO, then

o]

n
m=lim% 1 his.) Zliminfl Y
n-o J=1 J n-ow n':

g(s;) >-o(f)
3 J

1
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And similarly since MﬂM1 +¢ we have that m<o(f). TI.e. we

have shown that any real number m satisfying (v) also satisfies
-o(f) <m<o(f)

But then (2.6.3) follows from (iii) and (iv).

(2.6.4): By (2.6.3) we have
I’*
J x'(£(s))u(ds) < ol(f)
[* [
o x'(£(s))u(ds) <) x'(£(s))u(ds) < o(f)
*

and so (2.6.4) holds.
(2.6.5) follows from (2.6.3) as above.

(2.6.6): Let us put

n
_
Hh

st ={ses|x'(£(s)) >0} £

s ={se€s|x'(f(s)) <0} £

]
-
H

Then by (2.6.3) we have

|’* * + [ -
x'(f) |du < x'(f )dpu -1 x'(f )du
J - J*

<o(£') +o(£)

If o €0 then

a(£7) =1 ,a(f) +1 _a(0) <al(f)

S S

a(f)

1 ,a(0) +1 _a(f) <al(f)
S S
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Thus o (f") <o(f) and o(f ) <o(f) and so (2.6.6) follows.

(2.6.7): Immediate consequence of (2.6.4). o

Theorem 2.7. Let (S,S,u) be a probability space and

(B,||*||) a Banach space, then we have
(2.7.1) f~Ef is n-continuous: L (u,B) » (B, | -]
(2.7.2) Ll(u,B) is anm-closed, and m-open linear space
1 1 1
(2-7-3) LH(UIB)I LLN(UIB)I LG(UIB) and LW(UIB) are
m-closed linear subspacesof BS
1 1 1 1
(2.7.4) L (u,B) gLﬂ(u,B) c LLN (u,B) ELG(U,B) nw,(u,B)

Proof. (2.7.1) follows easily from (2.6.7).

(2.7.2): If {fA|A €A} be a net in BS, so that f, L

then there exist A €A and o €1I( ), so that O(fA—f) <.

Now let k be the number of elements in o, then

* ) *
™)1 )aw <

J

Jf ||f>\||du+J*Hf)\—f]|du
ﬁJ[*||f)\||dU+ ) J*oc(fx—f)du

a€o

S NENTEY

. 1
Hence if £, € L, (u,B) then so does £, and consequently we have

that Ll(u,B) is m-closed. Similarly we have
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[Mreaw < [T =gl + Fhepaw

[*
Sko(fk—f)+J || £1]]du

*
< [TIlelay

so if fA EBS\Ll(u,B) then so does £, and consequently we have

that Ll(u,B) is m-open.

(2.7.3): The spaces LLN(u,B), Lé(u,B) and L;(U,B) are
evidently linear spaces, however since the n-topology is not a
linear topology in general (see (2.6. i+2}),it is not evident that

L;(u,B) is a linear space. To see that this is actually so we put

Lt={f€BS]tf€LT1T(u,B)} vteR

L(g) ={f€Bstf+g€L;(u,B)} vqus

Then by (2.6.1) and (2.6.2) we have that Ly and L(g) are

m-closed for all t€IR and all g EBS. Clearly we have that

L1(u,B)§L NL(g) for all t€IR and all gEL1(u,B)- Thus

t
L;(U,B)EI%'QL(g) whenever t € IR and g'€L1(U,B). I.e. tf and
f +g belongs to L;(U,B) whenever t €IR, f ELl(U,B) and
g‘€L1(U,B). Hence L1(U,B)‘§L(g) for all g EL;(U,B) and so as
above we have that f +g belongs to L;(U,B) whenever f and g
belongs to L;(U,B). Thus L;(U,B) is a linear space.

By definition we have that LL(U,B) is T-closed.

Now let {fA|A €A} be a net in L;(u,B), such that fA s fEBS.
Then there exist X €A and oy €n(||+|l) such that o (f,-f) 52-k

for all A ZAk. Now by (2.6.6) we have

Jf*|x' (£,(s)) -x' (£(s)) |u(as) <27 x|
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for all x'€B', and all A\ zxk. Now

u-integrable for all X we find that

and so L;(u,B) is m-closed. Moreover

X €N, then |]Ef>\—EfH—>0 by (2.7.1),

norm closed in B'". Thus f ELé(u,B)

Now suppose that {fA}(;LLN(u,B)

be the upper p-envelope of a(fx(-)-f(°

B-*i§+ and X € A. By assumption there

o(k) €n(]|+]]) so that

(i) r*a(f -f)dp -l n du<2”
J A JS ax "=

Since LLN(u,B)‘gLé(u,B) by Theorem 2.

since x'(fA(')) is

x'(f(+)) 1is p-integrable,

. 1
if fx €LG(u,B) for all

and so Ef €B, since B 1is

and so Lé(u,B) is m-closed.

m
-

so that fA f. Let h

aA
)) whenever o 1is a map:
exist Ak ¢\ and
k
VA2 voacolk) vk2>1

4, we have that f eLé(u,B)

and EfA-eEf. Hence we may assume that Ak is chosen so large
that
(i) lEf-Ef || <27  wva>a
A= -k
Let k2>1 and A ZAk be fixed for a moment, then we have
15 17
||Ef—HjZ1f(sj)||SHEf-Efo+||Ef>\-ggf(sj)1],
-k 1 2 1, ¢
2 lEf, - p L £l oIl Lo(E,(s5) = £(s5)) ]
j=1 j=1
-k 1 ¢ 1 2
<2 "+ HEfX-H L £ (s )]l +-max a( ] {f,(s.)-f(s.) 1)
§=1 J aco(k) =1 J J
<27® 4 jjeg, -1 rf £,(s.) || +max 1 7 L (s2)
Py=1 J agotk) Mg=1 0
for all n>1. Now since fA € LLN(u,B) and huk is U-integrable

we find by (i) that
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n
nmmmHEﬂJ-Efm.H|<fk+mm<Jh au < 27K
n. 3j - S AT =

n- j=1 a€o (k)
for p”-a.a. (sj) €s” and all k>1. Hence f €LLN(y,B) and so
LLN(u,B) is m-closed.
(2.7.4): The first inclusion is trivial, and since LLN(u,B)
is m-closed by (2.7.3) and contains L1(u,B) by Theorem 2.4, the
second inclusion follows. The last inclusion was proved in

Theorem 2.4. o

If B 1is separable then L1(u,B) =Lé(u,B)rTL1(u,B) and we
have equality everywhere in (2.7.4). M. Talagrand has introduced a
new measurability coneept for B-valued functions, called properly
measurable, and he has shown for an arbitrary Banach space B,
that f €LLN(y,B), 1if and only if £ 1is properly measurable and
f ELl(u,B) (to appear).

In the next two sections we shall sesthat in the non-separable

case we may have, that L1(U,B) +L;(U,B), and one may naturally

pose the following problem
(2.15) Is: L) (u,B) =LLN(y,B)?

In Definition 2.5 we introduced the mn-topology on BS, and
in Lemma 2.6 we showed that f~tf and f~f +g are m-continuous
for all t€IR and all g EBS. However if f {Ll(u,B) then by
(2.7.2) we have that t ~tf is discontinuous at t =0 in the
m-topology. Hence the n-topology is not a linear topology, if
Ll(u,B) +BS (i.e. if dim L1(u,ﬂﬂ =« and dimB> 1). However we

may pose the following problem:
(2.16) Is the m-topology on Ll(u,B) a linear topology?
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In order to solve this problem one probably need to exhibit an
explicitly defined neighborhood base at 0 for the m-topology,
and I have not been able to do this. In connection with the
m-topology one may pose several problems e.g.

(2.17) Does: £, >f in the m-topology imply £, > £?

(2.18) Is: cl (9) ={f|3{f,} co:f, L £y2

where clﬂ(¢) is the m-closure of ©¢.
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3. Sample bounded stochastic processes

We shall now specialize the results of the previous section to
the case where B = B(T) 1is the set of all bounded real valued
functions on a set T with its usual sup-norm (see [3] p.240).

Let T be a set and ¢: T » R a function. If A <c T and

teT we define

HwHA= sup |o(u) |

u€A
wA(cp,t) = suplo(u) - @(t) |
u€A
WA(co) = sup lo(u) = w(v) ]
U,VEA

with the convention: sup @ = 0. A finite cover of T is a set
A = {A1,...,An} of non-empty subsets of T, such that T = A1u...uAh.
We let

rT(T) = {A| A is a finite cover of T}

denote the set of all finite covers of T.
Let (S,S,u) be a probability space and let T be a set. A

stochastic process g on (S,S,u) with time set T is a map

g: SxT » R, such that gi(-,t) is uy-measurable for all te€T. If

g: SxT » IR 1is a stochastic process we put

g(s) = g(s,) € R VSES

Then s~g(s) 1is a uy-measurable map from S into B{P with its

product o-algebra. A first order stochastic process g: Sx T -» IR,

is a stochastic process g, such that g(-,t) € L1(p) for all te€T.

The mean function of a first order stochastic process g 1is the

function

M(t) = Jf g(s,t) u(ds)
S
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A stochastic process g: SxT - IR is uniformly bounded in p-mean,

if we have

* *
(3.1) J Hg(s)HTu(ds) = } suplg(s,t) [p(ds) < =
teT
(Note that IIg(-)IIT need not be u-measurable). Finally we say that

a stochastic process g: SxT -» I]R is totally bounded in yuy-mean, if

g 1is a first order stochastic process satisfying
*
(3.2) vV e>D3A€T(T): J( Walg(s))ulds) <e VAEA

Let g: SxT » R Dbe a stochastic process, then clearly we have

(3.3) If g 1is uniformly bounded in p-mean, then

g(s) € B(T) for wu-a.a. s€S and ge€ Ll(u,B(T))

(3.4) If g 1is totally bounded in p-mean, then g is

uniformly bounded in py-mean.

Proposition 3.1. Let T be a set and (S,S,u) be a probability

space. Let g: SxT - R be a first order stochastic process, such

that for all ¢ > 0 there exist sets LO and L1 and stochastic

processes gj: S x Lj - R for j = 0,1 satisfying

(3.1.1) V teT a(xo,x1)€.Lox L, so that go(s,xo) <gl(s,t) 5g1(S,x1)

for all s€S and J {g1(s,x1)-go(s,xo)}u(ds) < e
S

*

(3.1.2) 3 AgEr(ry): J Walgy(s))u(ds) < ¢ VAEA; V3 = 0,1

Then g 1is totally bounded in u-mean.

Proof. Let ¢ > 0 be given, and let Ao = {A1"°"Ak} and

A1 = {B1,...,Bm} be the finite covers of Lo and L, from (3.1.2).
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Now put
I(x_,x,) €A, xB.: g (s,x) < g(s,t) < g,(s,x,)
cy; = {tE'T o'™ i” 73" Yo o 1 1 1
] for all s€S and J{%(&%)‘%ﬁ&%&}U@Q(gI
S
A= {(i,3) |1<i<k, 1<3<m, Cyy* @l
eij = inf{lg, (s,x;) - g (s,x )| | (xgrxq) EAixBj}

Then by (3.1.1) we have that {Cij‘ (i,3) € A} is a finite cover of T

and
r*
(i) J 6ij du < e VvI(i,j) e
Now let (i,j) €A and t',t" € Cij’ then we choose
(Xé,x%) and (xg,xq) in Ay xBj according to the defining property

of Cij' Then we have

g(s,t' )= g(S,t") S 91 (Slxi) - go(srxg)

g1(ssx)) = gq(s,v) + gy(s,v) - 9o (ssu) + g (s,u) - 9 (8,%7)

in

WBj (g,(s)) + {9y (s,v)~ gy (s} + WAi(go(s))

for all (u,V) € A x Bj' Taking infimum over all (u,v)ElAix Bj we
find
g(s,t) - gls,t") ¢ W

B (971500 + 035(8) + Wy (5g(6D)

So interchanging t' and t" gives
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We (g(s)) < Wy (g (s)) + 68,.(s) + W, (g,(s))
ij 3 J i

for all s€S and all (i,j) € A. And by (3.1.2) and (i) we have

J We (g(s))u(ds) < 3e vV (i,j) €A
ij

Thus g 1is totally bounded in u-mean, since {Cij| (i,3) € A} is a

finite cover of T. o

Theorem 3.2. Let T be a set, and (S,S,u) a probability

space. Let g: SxT » IR be a first order stochastic process, then

the following four statements are equivalent:

(3.2.1) g is totally bounded in p-mean

(3.2.2) ve>0 3Aer(m) 3f eL'(u,B(T)) such that

*
Jf IIg(s)—fo(s)IIAu(ds) < e VAEA

(3.2.3) There exists a totally bounded, ultra pseudo-metric

p on T, satisfying: ve > 0 36 > 0, such that

*

| s ¢ )(g(s),t)u(ds) <e VterT
B (z,6
P

(3.2.4) There exists a totally bounded, uniformity U on T,
satisfying: Ve > 03U0U€U, such that

*
J wu(t)(g(s),t)u(ds) < € VteT

where Bp(t,d) = {u€T|plu,t) <8} and U(t) = {u€T | (u,t) €U}

whenever p is a pseudo-metric on T and U < T«xT.
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Remark (a): A totally bounded pseudo-metric on T is a pseudo-

metric p on T, such that T may be covered by finitely many

p—-balls of radius € for all € > 0.

(b) : A totally bounded uniformity is defined similarly, i.e. the

uniformity U is totally bounded if the cover: {U(t) | t€ T}, of T
admits a finite subcover for all UE€ U.

(c): An ultra pseudo-metric on T 1is a pseudo-metric p on T

satisfying the following strong triangle inequality:

o(u,v) < max{p(u,t),p(t,v)}

for all u,v,t€T.

Proof. (3.2.1) = (3.2.2): Let ¢ > 0 be given and choose a
finite cover A of T, so that (3.2) holds. By replacing A with
a suitable refinement we may assume that the sets in A are mutually

disjoint. For each A€ A we choose a point tA(EA and we define

fO(S)

Y} gls,tx)1
ACA ALA

Then fo maps S into B(T) and since g(-,tA) €L1(u) we have

that fOEL1(u,B(T)). If A€A, then

Ig(s) = £ (s)liy = wyl(g(s),ty) < Wy(g(s))

and so by (3.2) we have that

* *
[ g - g, 00,u0 < [ wysnu@s <

for all A€ A. Thus (3.2.2) holds.
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(3.2.2) = (3.2.3): By (3.2.2) there exist AkEF(T) and
£, €L (u,B(T)), so that

*

(1) Jr lg(s) = £ (s)llu(ds) < 277

VAE Ak vk > 1

Now notice that the set of functions of the form

where BeT(T) and hBEL1(u) vBe€B, is ||'||1—dense in
L1(u,B(T)). Hence we may assume that fk is of this form for all

k, 1i.e.

(ii) £.(s) = ¥ h _(s) 1,(-)
k BEE, kB B

1
where By €T(T) and h €L (u) VvBeB vk > 1. Now let
Kk = O(A1U ... U AkU B1U e U Bk), then Fk is a finite o-algebra

on T. If te€T we let Fk(t) denote Fk—atom containing t. Since

F, ¢ Fp ¢ ... we have
(iii) Fpt) 2 Fylt) 2 ... VteT

And we define

i

o(u,v) sup{z—n | n € W, Fn(u) n Fn(v) = @}

for wu,ve€T, with the convention: sup @ = 0. Then I claim that we

have

(iv) p is an ultra pseudo-metric on T
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n

(v) B (t,27 ) = F_(t) YtET vn > 1
) n z

(vi) o 1is totally boundea.

0 and p(u,v) = p(v,u). Now let

u,v,teT, and let pl(u,v) = 27P.  Then Fk(u) = Fp(v) for

(iv) : Clearly op(t,t)

1 <k <p and Fp(u)r}Fp(v) = ¢, and so either t¢ Fp(u) or
t ¢ Fp(v). In the first case we have that p(u,t) > 2—p, and in
the second case we have that p(v,t) > 2"P. Thus in any case we

have

< max{p(u,t),pl(t,v)}

o (u,v)

Thus p 1is an ultra pseudo-metric.

(v): If ue Bp(t,z-n), then pl(u,t) < 2—n’ and so
u€ Fn(u) = Fn(t). If ue Fn(t), then ue Fj(t) for all 1<Jj<n
by (iii). Hence Fj(t) = Fj(u) for all 1<j<n and so

n

olu,t) <277, and uEBp(t,Z— ).

(vi) : Since Fn is a finite o-algebra, we have that the set
of Fn—atoms is finite. But then it follows from (v) that o is
totally bounded.

Now let us show that the pseudo-metric p satisfies the

condition in (3.2.3).

So let ¢ > 0 be given and choose k > 1, such that 2—k< €

Now put § = Z—k and (see (ii))
fi(s,t) = £,(s)(t) = ] ho (s)15(t)
B€Bk
Then fk(s,') is Fk—measurable and so fk(s,-) is constant on

all Fk-atoms. Now let te€T and uc€ Fk(t), since Ak c Fp is
a covering of T, there exists an A€A, such that wu,te Fr(t) cA.

Moreover since fk(s,t) = fk(s,u) we have
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lg(s,t) —g(s,u)| < lg(s,t) =f (s,t)| + If (s,u) - g(s,u)l

IA

2 1g(s) - £, (s)l,

k

And since Bp(t,é) = Bp(t,Z- ) Fk(t) by (v) we have

pr(tlg)(g(s),t) < 219(s) = £ (s)liy

Thus by (i) we conclude that
* -k
J pr(t’6)(g(s),t)u(ds) <2 < ¢ VteT
and so (3.2.3) holds.
(3.2.3) = (3.2.4): Evident!
(3.2.4) = (3.2.1): Let ¢ > 0 be given, then by (3.2.4) there

exist U€ U so that

*

(vii) J wU(t)(g(S),t)u(ds) < € VtET

And since the uniformity is totally bounded there exist t1,t2,...,tn€T

such that
n
T = U Ult.)
j=1 )
Hence A = {U(t1),...,U(tn)}€ I (T), and by (vii) we see

that (3.2) holds. Thus g 1is totally bounded in up-mean, and the

theorem is proved. o

Theorem 3.3. Let T be a set and (S,S,u) a probability space.

Let g: SxT » IR Dbe a stochastic process, which is totally bounded

in uM-mean, then we have
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(3.3.1) g €Ll (1,B(T)) c LLN(u,B(T))

Hence if {En} is a sequence of independent, identically di-

stributed (S,S)-valued random variables defined on a probability

space (2,F,P), and with u as their common distribution law,

then

;1 D
(3.3.2) izg[m(t) -3 jz1q(€j,t)| 520 P-a.s.
where

m(t) =J( g(s,t)u(ds) = Eg(Ej,t)
S

is the mean function of g.

Proof. By (3.3) and (3.4) we have that g€ Ll(u,B(T)). By
(3.2.2) there exists f, €L'(1,B(T)) and A, €T(T), such that

*

(1) J lig(s) - £, (s)l ulds) < 27%

VAEA, Vk > 1

Now put o, = {H'HA[ A€A}, since A, is a finite cover of T
we have that o, 1is a finite partition of the norm H'HT, and by
(i) we have that oy (£,-9) < 27¥.  Hence fk-£+g (see Definition
2.5) and so (3.3.1) holds by Theorem 2.7. Now it is easily checked
that Eg = m (see Example 3.5 (in particular (3.5.8)), and so

(3.3.2) follows from (3.3.1) and (2.14). o

Theorem 3,4. Let T be a set and (?,F,P) a probability space.

Let X.: 2@xT > R be a sequence of independent identically

distributed stochastic processes, such that for some k > 1 we have

(3.4.1) X is P-perfect: Q - (Rr,BT)

k
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(3.4.2) Xy is totally bounded in u-mean

Then we have

n
(3.4.3) sup|m(t) - % Y X.(w,t) | — 0 P-a.s.
teT 3=1 7 N -
where m(t) = EXn(t) is the common mean function of the processes
X .
n

Proof. Let (S,S) = (RT,BT) and let y be the common distri-

bution law on (S,S) of the processes X, Put

g(s,t) = s(t) VS€S=]RT vteT

Then g 1is a stochastic process on (S,S,u) and Xn(w) = g(Xn(w))
for all weQ and all n > 1. Now let ¢ > 0 be given, then by
(3.4.2) there exists a finite cover A of T, such that

*
J Wp(X, (0))P(dw) < & VYAEA

And since X, is P-perfect and X (0) = g(X; (w)) it follows from

(2.7) that

* *

J Wylg(s))ulds) = J Wy (X (0))P(dw) < & VAE A

Hence g 1is totally bounded in up-mean, and so the theorem follows

from Theorem 3.3. @©

Example 3.5. Let (S5,S,u) be a probability space, T a set

and g: SxT -» IR a map such that

(3.5.1) g(s) = g(s,*) € B(T) Vs€ES

333



J. HOFFMANN-JORGENSEN

From Corollary IV.5.2 in [3] we have that BI(T)' = ba(T) is the
set of all finitely additive real valued set functions on (T,2T)
which are of bounded variation, and the total variation of ) € ba(T)
equals its norm as an element of B(T)'.

Thus g 1is weakly uy-measurable (u-integrable), if and only if

the function

(3.5.1) s ~ A(g(s)) = J g(s,t)(at)

T
is p-measurable (u-integrable) for all X € ba(T). In view of the
result in [10] (see also [9] p.364-366) we have that non-og-additive
functions ) € ba(T) are highly non-measurable, so weak measurabili-
ty is a severe restriction, which in general is difficult to verify.

Now let gE.L;(u,B), then EgeB(T)", and
(3.5.2) (Eg) (1) = j 1 (ds) J g(s,t)1(dt)
S T

(3.5.3) [ (Eg) (M) | <

NEEIH WA,

where HAIH is the total variation of ) over T. In particular we

see (put )\ equal to the Dirac measure at t), that
(3.5.4) m(t) = J g(s,t)ulds)

S
exists for all t€T and m is bounded, i.e. mé€ B(T).

Hence we see that g is Gelfand integrable, if and only if g

satisfies the following 3 conditions:
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(3.5.5) s ~ JT g(s,t)A(dt) 1is yp-integrable Vv )€ bal(T)

(3.5.6) m(t) = Js g(s,t)u(ds) exists and is bounded on T

(3.5.7) J p(ds) [ gls,t)r(dt) = ( )\(dt)f gis,t)u(ds) v xe ba(T)
s Jo Jop Js

And if so, then

(3.5.8) Eg = m

Note that (3.5.7) states that g, uy and ) satisfies the
Fubini Theorem for all ) € ba(T). Now the Fubini Theorem is only rarely
true for finitely additive set functions, so condition (3.5.7) is in-

deed a severe restriction. o

Example 3.6. Let (S,S,u) be a probability space and let
UPRAIPYTRER be a sequence of real valued random variables on (S,S,u).
Now put

gls,3) = nj(s), g(s) = gls,*) = (nyls)y_,

Then by the Borel-Cantelli lemmas we have
(3.5.1) ZU(lnj|>a)<oo for some a€R = g(s) € " p-a.s.
3=1
and the converse implication holds, if NqrNpre.. are independent.
Similarly it is easily checked that if {nn} satisfies the
following condition
o oo - 1 n
(3.6.2) ve >0 3Im > 1: ‘Z Z wls g § nylsi)i>e) <o
j=1 n=m i=1

then g(s) € e p-a.s. and

(3.6.3) sup |+
i i

ne-1s

: nj(si)|5:;*0 u-a.s.
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i.e. gE€E LLN(u,Qm) and Eg = 0.

Now suppose that NqyrNgres. are independent gaussian random

variables with Enj = 0 and En§ = 0?, then a straight forward ar-

gument using the remarks above shows that the following 3 statements

are equivalent

(3.6.4) g(s) € 2~ H=a.S.

(3.6.5) g € LLN (1, 2)

(3.6.6) 3a>0: exp(-a/o§)<oo
j=1

And similarly that the following 3 statements are equivalent

(3.6.7) g(s) € Co M-S (see [3], p.239)
(3.6.8) g 1is totally bounded in p-mean
(3.6.9) Zexp(—a/og) < » yvas>o
=1
. 2 _ 1 . .
Putting oj = 153 for j > 2, we thus obtain an example of a

gaussian sequence, which satisfies the uniform law of large numbers,
but which is not totally bounded in y-mean.
Finally suppose that UPRAPYERE is a Bernoulli sequence, i.e.

NqrNgrese. are independent and

u(nj = 1) = u(nj = =1) =

N =

1 for all se€S. However, if (nj)

Then g(s) € ¢” and lig(s)ll j

is a perfect sequence, then by [10] we have that the map

S»wj nj(s) A (d3)
N
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where A € ba(N) (see Example 3.5) is pu-measurable, if and only
if X is o-additive (i.e. if and only if >\621). Hence g is

not weakly u-measurable and so g ¢ LLN(u,sLOO) . o

Example 3.7. Let (S,S,u) be an atomfree probability space,
such that {s} €S for all s€S. Let T be a subset of S and

define

1 if (s,t) €SxT and s =t
g(s,t) {

0 if (s,t) €SxT and s % t

g(s) gl(s,*) = 1{8}
Then g 1is a map from S into B(T), and by Example 3.4 we have
{0 if s € S\T

Mg (s)) =J g(s,t) A(dt) =
T X({s} if s€ET

for all A€ba(T) = B(T)'. Hence A(g(s)) is only non-zero for

countably many s €S, and since u 1is atomfree we find

(3.7.1) s ~ A(g(s)) is S-measurable VY A € ba(T)
(3.7.2) Alg(s)) = 0 wu=-a.s. VX€bal(T)

(3.7.3) g€Ll(u,B(T) NLl(1,B(T)) and Eg = 0
(3.7.4) g (s)liqp = 15.(s) VSES

Moreover if ¢ > 0 1is given, then since u 1is atomfree there exist
Sire++sS, €S so that §=8,U...Us and u(Sj) < e for all

j =1,...,n. Then A={TnSj|15j5n} belongs to TI'(T), and if

A Tﬂs_]EA then

*

r *
] wA(g(s))u(ds)

J sup |1, s) =1, (s)|u(ds) < u*(@) < ¢
e )
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Hence we have

(3.7.5) g 1is totally bounded in yp-mean
(3.7.6) g € LLN (u,B(T))
Note that even though A(g(+)) =0 py-a.s. for all AEB(T)',

then Jllg(-)ll, need not vanish yu-a.s. (take T < S with
p*(T) > 0). Also note that even though g is Gelfand integrable,
then Hg(-)HT need not be p-measurable (take T to be a non-p-

measurable subset of S). o
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4. Sample continuous stochastic processes

We shall now see that if a first order stochastic process has suf~
ficiently continuous sample paths, then it is totally bounded in mean.
Let L be a topological space, : L - IR a function and A a

subset of L; then we define the boundary function by

9 (0,x) = inf{W,,,(0) [ UEN(x)}

ANU

where N(x) is the set of all neighbourhoods of x. Clearly, if x

belongs to the closure of A, then we have

(4.1) aA(cp,x) =0« limo(y) exists and is finite.
y=X
YEA

And so ¢ is continuous at x, if and only if BL(gp,x) =0. If

o 2L + R is a set function and a€ R, then we write a = limo(U)
Ux

if

(4.2) vYe >0 JUEN(x): la(unv)=-al < ¢, VVEN(x).

Note that since U ~ wAnU(tp) is increasing in U, we have

(4.3) BA(tp,x) = limWAnU(w).

U-x

Theorem 4.1. Let T be a set and (S,S,u) a probability space.

Let g: SXT » IR be a first order stochastic process and suppose

that for all €>0 there exist compact topological spaces Lj and

stochastic processes gj: S><Lj - R for j=0,1, satisfying

(4.1.1) VEET 3(x0,x1)€L0xL1: go(s,xo) < gls,t) ¢ g1(s,x1)

for all s€S and {g,(s,x,) = gy(s,x,) }u(ds) < ¢
—_— —_— S 1 1 0 0 =
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(4.1.2) vj = 0,1 VxE Lj JA a finite cover of Lj' so that
*
limJW (9. (s))u(ds) < e VA€ A.
Usx ANU 73

Then g 1is totally bounded in u-mean and so g€ LLN(u,B(T)).

Proof. We shall apply Proposition 3.1. So let € >0 be given

and choose Lgs L1, 99 and 94 according to (4.1.1) and (4.1.2).
Then evidently (3.1.1) holds. Now let xE€ Lj and choose AXG F(Lj)

so that

*
limJW (g.(s))u(ds) < ¢ VAE A .
Ux ANU " 7j X

Then we may choose a neighbourhood Uy of x so that
*

(1) j WAnUX(gj (s))u(ds) < ¢ va€ A

since AX is finite. By compactness of Lj we can find a finite set

Fc Lj so that L. = U Now put

Jj Ux€F x"*

A = {AﬂUXIAEAX, XEF}.

Then A 1is a finite cover of Lj’ and by (i) we have
*
JWA(gj(s)) (@s) <¢  VAEA.

Thus (3.1.2) holds and the Theorem follows from Proposition 3.1. o
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Theorem 4.1 turns out to be a very useful interpolation prin-
ciple. But in order to make its application more convenient, we shall
study Condition (4.1.2) a bit closer. First notice that if L 1is a
topological space and f: SxL -» IR is a stochastic process, then we
have

* *

(4.4) [ aatee) muas) géigj Wy (£ (5)) 1 (ds)

for all A ¢ L and all x€L. Our next lemma gives some sufficient

conditions for equality in (4.4).

Lemma 4.2. Let L be a topological space (S,S,u) a probabil-

ity space and f: SxL -» IR a stochastic process. Let Xg €L, let

A c L, and let F be a yu-measurable subset of S satisfying

*

(4.2.1) 3V € N(x,) so that JFwAnU(f(s))u(ds) <w
(4.2.2) L has a countable neighbourhood base at X0
(4.2.3) vU € N(xo) Jve N(xo) such that Vc U and the

map: s ~ 1F(s)wAnv(f(s)) is u-measurable

where N(xo) is the set of all neighbourhoods of Xqg- Then we have

(4.2 .4) S ~ 1F(s)8A(f(s),xO) is u-integrable
* *
(4.2.5) linnJ W (f(s))u(ds) = 1lim J %) (f(s))u(ds)
U-x,’S ANy U-x ) SNF AnU

+ JFBA(f(s),xo)u(ds).
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Moreover, if f: SxL -» 1R is an arbitrary stochastic process,

and F¢S is p-measurable, then (4.2.3) holds in either of the fol-

lowing two cases:

Case 1°. There exists a countable set DcgA such that f£f(s,"*)

is D-separable on A for all s€F.

Case 2°. There exists a Blackwell oc-algebra G on L contain-

ing a neighbourhood base at x, such that A€G _and f is S@®G-

0

measurable.

Remarks. (a): Let L and M be topological spaces and ¢: L-M

a function. If D and A are subsets of L, we say that ¢ is

D-separable on A if

(4.2.6) ¢ (GNA) < cl ¢ (GND) VG open @ L

where clB denotes the closure of B. Note that if ¢ restricted
to A 1is continuous, then ¢ is D-separable on A whenever D is

a dense subset of A.

(b): A g-algebra G on a set L is called a Blackwell c-alge-

bra if (L) 1is an analytic subset of IR in the sense of [9], when-

ever ¢ 1is a real G-measurable function on L.

(c): Let L Dbe a topological space; then the Baire o-algebra,

denoted Ba(L), is the smallest oc-algebra on L making all real
valued continuous functions measurable. It is well-known that if L

is K-analytic in the sense of [9] (e.g. if L is a compact Hausdorff
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space), then Ba(L) is a Blackwell c-algebra.

(d): The main feature about Blackwell oc-algebras, which we shall

use here, is the so-called Projection Theorem. Suppose that G is

a Blackwell o-algebra on L, and $S 1is an arbitrary o-algebra on S;

if AgsxL belongs to the product o-algebra S®G, then we have

(4.2.7) WS(A) is y-measurable, Vu a probability on (S,S),
where ﬂS(S,X) = s 1s the natural projection of SxL
onto S.

Proof. By (4.2.1) - (4.2.3) there exists a countable neighbour-

hood base {V_ |n21} at x, such that
(i) V12V22 ..gvng,. .
*
(ii) J Wanv (£(s))u(ds) <=
F 1
(iii) (pn(s) = 1F(s)wAnVn(f(s)) is p-measurable Vn2 1.

By (i) we have that {¢_} decreases, and since {v,} 1is a base at

Xqr We have that
@, (s) ¥ 1F(s)aA(f(s),x0).

By (ii) we have that @4 is u-integrable, and so by the monotone con-

vergence theorem we have that (4.2.4) holds and

lim J@ au = 1mjw (£(s))ulds) = | 5, (£(s),x)u(ds).
Mo 4 1 F AV, JFA 0
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Now since {Vn} is a neighbourhood base at Xgr we find

*

(iv) Ul_)ixm JFWAnU(f(s))u(ds) = jFBA(f(s),xo)u(ds).
0

Finally, since F 1is u-measurable, we have

* *

lim j W (£(s))u(ds) = 1imj W (£(s))u(ds)

U">X0 ANU U-’Xo F ANU
*

+ limJ W (£(s))u(ds)
U-x ) SNF ANy

and so (4.2.4) follows from (iv).

Case 1°. Let f be a stochastic process such that £(s,-) is
D-separable on A for all s€F, where D 1is a countable subset

of A. Then it is easily verified that

WAnU(f(s)) = WDnU(f(S)) = ) iggnuif(s'}{)_f(s’yn

for all se€F, and all open sets U in L. Since DNU 1is at most
countable and f(-,x) 1is u-measurable for all x€L, it follows

that wAnU(f(-)HF is p-measurable whenever U is open. Thus (4.2.3)
holds.

case 2°. Now suppose that A€G and f is S ® G-measurable
where G is some Blackwell cg-algebra on L containig a neighbour-

hood base at Xq- Now let G€G and put

e(s,x,y) = I|f(s,x) -f(s,y)l
wo(s) = WG(f(s)) = sup ¢(s,x,y) .
X,Y€G

Then ¢ is S ®G ® G-measurable, and G®G is a Blackwell c-algebra.
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Hence if a€ IR, then the set
A = {(s,x,y) € SXLxL | o(s,x,y) >a, X€G, y€G}

belongs to S®G®G. Let ﬁs(s,x,y) = s be the natural projection
of SxLXL onto S. Then by the Projection Theorem (4.2.7) we have

that the set
mg(A) ={s | 3x,y €G: o(s,x,y) >a} = {s|g;(s) >a}

is u-measurable. Thus WG(f(-)) is u-measurable for all G€G, and
since A€G and G contains a neighbourhood base at Xgr we conclude

that (4.2.3) holds whenever FcS 1is u-measurable. o

Recall that a topological space L is called first countable

if every point in L has a countable neighbourhood base. And a sub-
set A of L 1is called separable if there exists a countable set

D such that DgAcclD, where <c¢clD denotes the closure of D.

Theorem 4.3. Let T be a compact, first countable, topological

space, and (S,S,u) a probability space. Let g: SXT - IR be a sto-

chastic process which is uniformly bounded in u-mean, and suppose

that for all §>0 there exists a finite cover A of T _satisfying

(4.3.1) A 1is separable VAE€EA

(4.3.2) u*(SESIBA(g(s),t) = 0 Vt€ET)>21-8§ VAEA.

Then g 1is totally bounded in u-mean, and g€ LLN(u,B(T)).
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Remarks. (a): It follows from the proof below that we may re-

place Condition (4.3.1) by the following condition:

VAEA 3IDcA 3IF€S such that D is countable,
(4.3.3) -
w(F) 2 1-6 and g(s,-) 1is D-separable on A Vs€EF.

(b): Let F, = {s | BA(g(s) ,£) =0 Vt€T} be the set occurring

in (4.3.2). It is then easily checked that we have

the restriction of g(s,+) to A has a continuous
(4.3.4) F

s€S
real valued extension to the closure of A

i.e. s€ FA if and only if there exists a continuous function V¢

from c¢lA into IR such that g(s,t) = ¥(t) Vte€EA.

Proof. We shall apply Theorem 4.1, so let €>0 be given. Let

P be the upper u-envelope of |lg(-) HT; then by assumption we have

that Y€ L1 (u) and hence there exists § >0 such that
(i) J pdu < ie vBeES with u(B) 6.
B

Now put LO = L1 = T and 99 = 97 % 9- Then evidently (4.1.1)
holds. Now let tOET and choose a finite cover A of T satis-
fying (4.3.1) - (4.3.2). Let A€A; then by (4.3.2) there exist F€S
so that wu(F) 2 1-8 and BA(g(s),t) = 0 for all t€T and all s€F.
Then the restriction of g(s,-) to A is continuous, so by (4.3.1)

there exists a countable set DcA such that g(s,-) 1is D-separable

on A for all s€F. Hence by Lemma 4.2 (see Case 1°)  we have
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*

limj W, (g(s)) < j 21pdu+J 5. (g(s) ,t.)u(ds)
U*to ANU = SF F A 0
= J 2ydu
SN\F
since WAnU(g(s)) < 2y(s) for all s€S and BA(g(s),to) = 0 for

all s€F. Now since u(S5~F) ¢ §, it follows from (i) that (4.1.2)

holds. Thus the Theorem follows from Theorem 4.1. o

Corollary 4.4. Let T be a compact, separable, first count-

able, topological space and (S,S,u) a probability space. If C(T)

is the Banach space of all real valued continuous functions on T

with its usual sup-norm: ||l then we have

Tl

(4.4.1)  L1(,CIT) = LIN(1,CM) = Ly(w,C(m) nL] a,c(m).

Remark. If T 1is a compact metric space, then C(T) is H'HT-
separable, and so the equalities in (4.4.1) follows from Beck's the-
orem (see [1] p. 26). However, if T is not metrizable, then C(T)

is not |l-|l,~separable. The split interval, i.e. [0,1]1x{-1,1} with

T

its lexicographic order topology, provides an example of a compact,

first countable, separable, Hausdorff space which is not metrizable.

o

Theorem 4.5. Let T be a compact, first countable topological

space, G a Blackwell o-algebra on T containing a base for the

topology on T, and (S,S,u) a probability space. Let g: SXT - IR

be an S®G-weasurable process which is uniformly bounded in u-mean, and
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suppose that for all ¢>0 and all t€T there exists a finite cover

At,6 of T satisfying

(4.5.1) A c G VteET vé>0
(4.5.2) p*(s €S| 9,(g(s),t) =0) 2 1-8 VAEA VEET VE§>0.

Then g is totally bounded in u-mean, and g€ LLN(u,B(T)).

Remark. Note that 8A(g(s),t) = 0 for all t€T~clA and all

s€S, and that if te€cla, then we have

(4.5.3) {s| 3,(g(s),t) =0} = {s | limg(s,u) exists and is finite}.
urt
u€A

Also notice that Condition (4.5.2) is much weaker than Condition

(4.3.2).

Proof. We shall apply Theorem 4.1 in much the same way as in

the proof of Theorem 4.3. So let e€>0 be given. Let ¢ be the
upper u-envelope of Hg(-)IIT, then by assumption we have that

(VNS L1(u), and so there exists § >0 such that
(i) J ydu < 3e if B€S and u(B) < 6.
B

Now put Ly = L, =T and g, =g, = g. Then evidently (4.1.1)
holds. Now let t€ T and choose a finite cover A = AtG of T sa-
tisfying (4.5.1) and (4.5.2). By Lemma 4.2 (see Case 2° and put F=09)

we have that BA(g(-),t) is u-integrable and

348



THE LAW OF LARGE NUMBERS

*
. (gls)utas) = | 3,(ats),E)u(as)
(ii) llmJ YWanu 9 H g A 9 H
U-t
for all A€G, in particular for all AEAtcS (see (4.5.1)). Let
A€ Atd and put

B = {s] 3p(g(s),t) >0};

then B is u-measurable and u(B) ¢ § by (4.5.2). Hence by (i) and

(ii) we have

*

limj W (g(s),t)u(ds) = ZJ ydp < €
Ut ANU B =

since BA(g(s),t) < 2 1B(s)1p(s). Thus (4.2.1) holds, and so the theo~

rem follows from Theorem 4.1. o

Corollary 4.6. Let T be a compact, first countable, topological

space, é a Blackwell oc-algebra on T containing a base for the

topology on T and TE€EG a subset of T. Let (S,S,u) be a prob-

ability space, and g: SxXT > IR a stochastic process satisfying

(4.6.1) g is S®G-measurable
*

(4.6.2) j suplg(s,t) lu(ds) < =
teT

where G = {GEé]GgT} is the trace of G on T. Suppose that for

every t €T there exists a finite cover 'ZE of T such that Egé
and
(4.6.3) u*(s | lim g(s,t) exists) = 1

t-ot

t€EANT

for all Ac R% with ¢t €cl(ANT). Then g is totally bounded in

u-mean, and g€ LLN(u,B(T)).
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Remark. Since TEG, it follows easily that G is a Blackwell
o-algebra on T, and from (4.6.1) and the Projection Theorem (4.2.7)

it then follows that

(4.6.4) Hg(s)HT is p-measurable

(4.6.5) {s | lim g(s,t) exists} 1is u-measurable
t-t
teEANT

for all A€G and all t€cl(aANT).

Proof. We extend g to g: SxT » R by putting é(s,E) =0

for s€S and t€T~T. Since T€é, we have that 6 is S8G -

measurable, and by (4.6.2) we have that § is uniformly bounded in

u-mean. If t€T, we put

Ap = {anT | A€ Az} U {T~T).

Then AE is a finite cover of T, and if Ag'i‘ and Eei‘, then

danplg(s),t) = 9d,qp(g(s),t)
dpeplgls),t) = 0.
Since lIé(s)IIT is finite p-a.s., it follows from (4.6.3) and (4.5.3)

that (4.5.2) holds. And since TE€ é and RE c é, we see that AegG,
and so (4.5.1) holds.

Thus by Theorem 4.5 we have that § is totally bounded in u-mean,
but this clearly implies that g 1is totally bounded in u-mean. o

Putting T=1R, G

B(IRR) and

([-w,E[,{E},1t, 1},

At

we get the following corollary
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Corollary 4.7. Let T be a Borel subset of R, (S,S,u) a

probability space, and g: SXT » IR a stochastic process satisfying

(4.7.1) g is S ®B(T)-measurable
*
(4.7.2) J suplg(s,t) lu(ds) < =
teT
(4.7.3) u*(s | limg(s,t) exists) = 1 Yu€ET
t-u
t<u
(4.7.4) u*(s | limg(s,t) exists) = 1 vueTt
t-u
t>u

where T and T' are the set of all left ,respectively,right limits

points of T, i.e.

T = {u€R [3{t }cT: t ->u and t <u vn}
™ = {ue® |3{t_ }cT: t -u and t_>u Vn}.
n = n —_— n

Then g 1is totally bounded in uw-mean, and g€ LLN(u,B(T)). =]

Clearly we have a similar result in more dimensions for any
given family {AEI te RY} of finite Borel covers of =Y.
In the Glivenko-Cantelli case (see (1.1) and (1.2)) we have

S=T=R and

HA
ct

f 1 if s
g(s,t) = 1
0 if s>t
and so the Glivenko-Cantelli theorem (1.2) is a direct consequence of
Corollary 4.7.
In the g-dimensional Glivenko-Cantelli case we have S= T =Y

and
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1 if s, <t ...,s_ <t
g(srt) = { 1 1 a= 4g
0 otherwise.
Let T = ®RY and
s imo=q A _= ' . . ) -~
AOLBY(t) = {ueRr |uj tj Vi€ a, uj>tj V]€3,uj<th€Y}

whenever ¢t = (E1,...,Eq)€ R®Y and {o,8,y} is a disjoint partition
of {1,...,9}. Then putting

AE = {AGBY(t) | {o,8,y} a disjoint partition of {1,...,q}},

we see that the multi dimensional version of the Glivenko-Cantelli

theorem follows from Corollary 4.6.

Theorem 4.8. Let (Q,F,P) be a probability space, and {gn}

a sequence of independent, identically distributed, g-dimensional

(1<g<«), random variables on (Q,F,P) such that

(4.8.1) u(3K) = 0 for all convex sets Kgimq

where u 1is the common distribution law of the gn on RY. Let

M: RY [0,=] be an upper semi-continuous function such that M is

u—integrable. If ¢ 1is the set of all functions, o: R’RY - R satis-

fying:
(4.8.2) {ser? | v(s) 2a} is convex for all a€ R
(4.8.3) lo(s) | < M(s) vs € ®RY,

then QEIJ(U) and we have

n
(4.8.4) sup | deu-—% L g - 0 P-a.s.
QeEDd 3=1 J n-o
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Remarks. (a): If A is a subset of a topological space, then

9A denotes the boundary of A, i.e. 3A = clANintA.

(b) : Notice that (4.8.1) holds in particular if u is absolutely
continuous with respect to a product of atom-free one-dimensional

probability measures.

(c): A function ¢ satisfying (4.8.2) is usually called uni-

modal or quasi-concave.

Proof. First notice that by (4.8.1) we have that every convex

set and every unimodal function is p-measurable. Hence by integrab-
ility of M and (4.8.3) we find that o ¢ L'(y).

We shall apply Proposition 3.1 with S = RY, T=6¢ and gls,) =
@(s) for (s,w)EIRqX¢. To do this, we need the so-called upper
and lower Fell topologies.

Let Usc denote the set of all upper semi-continuous functions

from R®? into RR. Then the upper Fell topology n on Usc is

the weakest topology on Usc satisfying

(1) ¢® ~ sup ¢©(s) is lower semi-continuous VG open
SEG
(ii) © ~ sup @(s) is upper semi-continuous VK compact.
s€K

Then (Usc,n) is a compact metric space and

o(s) ¢limsupo (s ) Vs Vs - s
(iii) ©, 2> in n e { n-e
Vs a{sn}. s, > s and cpn(sn) > @l(s).

Now let L, = ® NnUsc and g1(s,®) = @(s) for (s,op) Hfle1. It is

then a routine matter to verify the following propositions:
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(iv) L, is a closed subset of (Usc,n)
(v) 94 is upper semi-continuous on EHXIW
(vi) lo} gL,y @ 20 in n =0 (s) > ols) VseEC(o)

where C(p) 1is the set of continuity points of ¢. If D(y¢) de-
notes the set of discontinuity points of ¢ and Q 1is a dense sub-

set of IR, then the reader easily verifies the following inclusion:

(vii) D(e) ¢ U 3{e2q} ve: RY»> R
qeQ

So by (4.8.1) and (vi) - (vii) we have

(viii) u(Cle)) =1 Vo€
(ix) uis | 3g(g,(s),0) =0) = 1 VO EL
Thus by Theorem 4.5 we have

(x) 94 is totally bounded in u-mean.

Now let Lsc denote the set of all lower semi-continuous func-

tions y: R? - R with its lower Fell topology no, i.e. the

weakest topology Lsc satisfying

(i) * Y ~ inf yY(s) 1is upper semi-continuous VG open
sSEG

(ii) * Y ~ inf y(s) 1is lower semi-continuous VK compact.
S€EK

Then exactly as above we have

(x)* 99 is totally bounded in p-mean

where L, = ®NLsc and go(s,w) = p(s) for (s,w)EIRqXLO.
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Now let €9, and mo and @ be the lower respectively upper

semi-continuous envelopes of . Since

{(DO >al} = int{e > a} and {o

v

al = cl{p a}l,

we see that @0 and ¢ are unimodal, and since M is upper semi-
continuous and (-M) is lower semi-continuous and -M < ¢® < M, we

have

-M(s) < ©%(s) < @(s) < @(s) € M(s).r

Thus wOE LO and @€ L1 and moreover we have

90(5:0%) = 0%(s) < 0ls) < B(s) = g,(s,5)
- 0
g,(s,0) —gg(s,07) = 0 Vs €C(p).
Hence conditions (3.1.1) and (3.1.2) hold by (4.8.1), (viii), (x) and

(x)*. Thus by Theorem 3.1 we have that g 1is totally bounded in u-

mean and g€ LLN(u,B(®)), and so the theorem follows from (2.14}). o
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