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0. Introduction

The nain purpose of this paper is to present sorne results on the
existence of bounded bianalytic functions on the bidisc D x D,
appearing as elerents of A(DxD) or E”(DxD) . The method is indirect
and based on duality. This work appears in the samre circle of ideas
which enabled to show that the dual A(D)* of the cdisc algebra A (D)
has the cotype-2 property, a notion which will be explained later.
It depends heavily on one-variable methods, such as the log modula-
rity of A(D), as will be clear in what follows. In this context,
several guestions remain unsettled which seem natural.

In the last section of the paper, the structure of the dual of poly-
disc alcebras , in particular A(Dz)*, is studied. 2s a corollary,
the non-isomorphism of the Banach spaces A(DZ) and A(D3) is deduced.
The non-existence of a linear isomorphism between the spaces A (D)
and A(Dz) was already known for some time and previous resitlts yield
another contribution to the so-called dimension conjecture (cfr.
[14], problem n. 1).

The reader will find in [3] full proofs of some results stated here.
The material of the last section was not published earlier and

appears here in detail.
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J. BOURGAIN

1. Analytic projections

The main tool in the approach using duality anc¢ extrapolation
arguments is a generalization of the classical Riesz-projection #,
which ¢ives the orthogonal projection from LZ(H) onto the space HZ.
Let m ke the Lebesgue measure on the circle II. If y is a Redon jro-
bability measure on' I and 0 < p < «, we denote by 1P (1) the closure

of the analytic trigonometric polynomials in the space (). Let
dpy = A.dm + dus

be the Lebesgue decomposition of p. As a consequence of peak-set

theory, we obtain the splitting
BP (1) = wP(8) @ 1P ()

We are concerned with projections from Lp(u) onto hp(u) for
1 < p < o, In this problem, we may restrict ourselves to rmeasures u

regular with respect to m, say g& = A.

It is well-known that if 1 < p < «, the usual Fiesz-operatcr is
bounded on Lp(A) iff A satisfies Muckenhoupt's (Ap)—condition
(see [ 12]), that is

1
1, p-1,P7}

1 1 P
sup ( f A) (=7 J () ) < ®
EIN 1T J; 8

where the supremum is taken over all intervals I in the circle. In

particular, if & satisfies the A,-condition, thus

1
* . .
A* € const. A, A = Haray-Littlewood maximal function

l’m(A) bounded.

® is LF(A)-bounded for all 1 < p < » and Ll -1
However, the measure u appearing above follows in general from
a Hahn-Banach separation argument (for instance the Grothendieck-
Pietsch factorization procedure for summing operators) and is gene-
rally not a weight. This difficulty is overcome constructing ad-hoc
projections as substitute for &. In fact, for our purpose, A can be

replaced by any Al > A, as long as

I Al < const. { A
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SOME RESULTS ON THE BIDISC ALGEBRA

Fix 1 < p < © and suppose log A an Ll(ﬂ) function. Let ¢ be an

outer function with |¢| = 8YP on T and define
P(r) = ¢ '®po] (1)

yieldirg a boundec projection from P () onto HP(A). These projec—
tions, clearly also depending on p besides A, were considered by
B. Mitjagin and A. Pelczynski in the context of absolutely summing
and integral operators on the disc algebra (see [13] or [14]).

The method was improved by S.V. Kisliakov (see [9]). Majorize A& by

A1 such that Ai/z is an (Al)—weight. Take for instance
- *_ .k
A1/2 = 1 &3 (V2% 3
3=0 L
e e——
for a suitable constant § > 0 and where a 3 denotes the j-fold
maximal function. If |[¢] = 22, the operator considered in (1)

’
provicaes a bounded projectioi from LP(Al) onto Hp(Al) in the inter-
val 1 < p € 2. There seems however to be no reason for P to be
Ll(Al) - Ll(Al), weak bounded, which is of importance for our pur-
pose. The construction of such projections is done by a more sophis-
ticatecd technique, which will be indicated later. One has the fol-

lowing theorem (see [3], Th. 1.1)

THEORE)M 1 : Assume A € Li(ﬂ), [ 4 dm = 1. There exists &y € Li(ﬂ),

A, > L and 4, dm ¢ const. and a projection P from L2(A1) onto

i (4)) which is bounded on LP(4)) for 1 < p < » and
Ltap - ot

“(8)) bounced.

It ray be an interesting question to decide for what functions
A

conditions can be found.

(if there is any restriction) a projection ¥ verifving these
1 Y ¥

The prcof of Th. 1 does nct clarify this point.
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2. Results of Kisliakov on Fourier coefficients cf functions in

the bidisc algebra

Dencte A (DxD) the algebra of bianalytic functions on L x D,
which are continuous on D x D and Hw(DxD) the alcebra of bounded
bianalytic functions on D x D.
Passinu to the radial limit, these spaces will be mostly seen as

function spaces on II x II. Define further

£(m,n) = f £0,v) e TOV) 1 ide) miaw)

for m,n € Z.

The following theorem and its consequences were proved by

S.V. Kisliakov a few years ago (see [10]).

PROPOSITION 2 : Rssume (ay.). .., @ ratrix of positive
that

S ™M 8
)
n
—

m,
For each § > C, there exists a function f € A(Dz) satisfying

2,1/2

(z Iawn - [Em,n) |9 < § anc Mgl < c(9)

where C (8) is a function cof §.

The proof is indirect and based on an interpolation-inequality

for the couble Riesz-transferm K = & @ ®, which can be stated as

follows
PROFOSITION 3 : RAssume 1 < p < q and é =6+ lég- Then following
ineguality holds

0 . 1-6
llK[a]llp < C "q“l Hh[a]Hq

for o € LE(xM) and where C = C(p,q) is a constart.

A proof will be cutlined in section 4 of this paper.
Let us state 2 consequences of Prop. 2. The first is formel, the
seconc follows from en azbstract scherme developped by S.V. Hruscev

(see [10] for details).
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SOME RESULTS ON THE BIDISC ALGEBRA

bidisc algebra in the space 21(2243‘221- These are the positive

systems A = (A )0 150

such that
Y [E(m,n)| < ® for £ € A(D?)
m,n
m,n

Then X € M(A(DZ),ll) iff X is square summable.

COROLLZRY 5 : For any square-summable matrix (a__) of positive

m,n>0

mn
numbers, there exists f € A(D®) such that

CHIEN |f(m,n)|, for all m,n > O.

Curiously, the characterization of Ql—multipliers given in Cor. 4
seens unknown for the algebra A(D3). The validity of Prop. 3 for the
3-fold Riesz-projection is not settled. The extension cf the result
is not obvious, since again the argurent depends on the log-modular

property of the one-variable space.

3. Fourier coefficients of lianalytic functions with respect to
" “one variable T T

e 2 € u® (2 P _
For f 2 (D7) on f H ("), we can define for each m = 0,1,2,...

the function

£,09) = f £(o,9) e "% ao.
In this way, a sequence of 7 (D) (resp. Hw(D)) functions is obtained,

which is clearly weakly 2-summable, thus

©

sup (I IfW(z)|2)l/2 <
Z€ED ‘

Conkining Th. 1 and inequalities of the type stated in Prop. 3,
several results concerning the l-variable coefficients fIr can be

proved. They refine Kisliakcov's theorem. Let us state some of them.

*
PROPOSITION € : The weak -closure of the convex bull of the set

283



J. BOURGAIN

{(elfl,ezfz,...)|sm=i1 and (f ) corresponding to £€a (p?) I £lc1)

. Tw s :
in the space K ,(D) has nonerpty interior.

PROPOSITION 7 : Assume Qgr&ysQy, ..+ 2 Sequence in Ll(H). Then the
map
A(Dz) hd 241 HES g (<f0r0‘0>l<f11a1>1<f2la2>r---)

is bounded if

inf, [ (L {a“mmlz) vz .

€ : !

h €Hy /T

For convenience, we denote here Hé = {n € u! | h(o) = 0}.

Say that a subset S of 7Z is a A,-set provided L1 (n) and LZ(H)

iné i
norms are equivalent on the linear span of {e'"° | n € s}.

PROPOSITION 8 : Suppose S C Z_  a hy-set and (¥ )

peg @ weakly

2-summable sequence in H . Then there exists f € £” (0% satisfyiny

£ = [ £(p,.) e 1MO

n 46 = L for each r € §

This fact is a 2-variable version of a well-known H™ property.

In particular, one can take for the set S in Frop. 8 some
lacunary set. Ignoring the analyticity of f with respect to the

variable 6, the following fact appears

Denote (em) the Rademacher sequence on the Cantor group {1,-1}1N

‘u)

m
f in Lm({l,—l}:IN X D) such that

a seqguence in HmZ(D). Then there exists

and assume (¢ =1,2,... .

F{m}(y) = I £(e,y) €, de = ¢ (y), for each m
and

o ] ¥ .
f(e,.) is an K -function in the second variable.

We say that a Banach space X has cotyve q (2 ¢ ¢ < «) provided

the inequality
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SOME RESULTS ON THE BIDISC ALGEBRA

I | Iy 10y Y
J Te, xml de > cq(X) (z s 19
holds for all finite sequences (Xm) in X.

The previous observation implies forrally that the speces A(D)* and
hence Ll/Hl have the cotype-< property. This problem is open for
2. * ° ) 2 *
A(D") . In fact, it seems even unknown whether or not A(RP®) has a
finite cotype, which means equiyalently that the space S is not

finitely representable in A(DZ)

The results mentioned before are derived fron the following

proposition

PROPOSITION 9 : Assume U a regular product measure on . Then there

exist a regular product measure u' on II", u < p' and a projection

¢ in L?(u"), bounded on L™ (1') for 1 < r < =, such that
(1) Tu'l ¢ const Iyl
(ii) Spec (I-Q) N A = ¢ (I = identity)

(iii) Tor 1 <p <qandp * = o + (1-8)q >

IQ[ o] ! < const. (inf la+gl | ) 8 "aﬂl;e
Py g L7 (p") AN CTRD

where A is the negative quadrant {(m,n) € Z x Z | m < 0, n ¢ 0}

and the infimum in (iii) is taken over functions £ such that
(Spec R) N A = ¢.

The proof of Prop. 6 follows from the property
lim inf [ (z lwm(w)—emfm(w)lz)l/z
€= fea(p?),lflgc

€m=tl

v(dy) = 0

uniforrly for regular probability measures v on I and finite
sequences (¢m) in A(D) satisfying I (¢m|2ﬂeo € 1. This fact is
deduced from Prop. 9 by a duality reasoning, taking py = m @ v.

Prop. 8 admits a generalization in a more Banach space theore-

tical language, which we state now.
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PROPOSITION 10 : Assume Y a reflexive subspace of L'/ i and u a
0
boundec linear operator fror Y into H . Then there exists a func-
tion £ € L (DxD) which "extends" the operator u, i.e. such that
uly) (p) = { £(6,y) y(8) d8 for each y € ¥
this follows from Prop. 9.
The application is indeed clear. Take Y = [eimd ' m € Y] and

. . -imé¢
define u by ul(e ) = L

4. Outline of some proofs

The proof of Th. 1 uses the following "decomposition" lemma,

depending crucially on the log modularity of A(D).

PROPOSITION 11 : Assume £ € L'(F), £ > 0. There are sequences (c;)
oo

of positive scalars and (8;), (ty) of H functiors, such that fol-

1s are fulfilled

1. l!eillm € 1 for each i

2. bz frl, < c
3. I, €, T? =1
i vii
Definirg F = L ¢; |7y
4. £ < F

5. |t;] F ¢« Cecy for each i
I Il
6. IFl, < c bel)

where C stands for a numerical constant.

The role of the power 5 in (3) will appear later. In fact, one
could take any other power. The idea behind the Hm—sequence (Ti)
is to cenerate something which looks like a partition of unity of
T with respect to the level sets of f£.
The functions ei appear only for a technical reason. Details of the
construction can be found ir [3] (see Prop. 1.2).

Let us now pass to the proof of Th. 1. Apply Frop. 11 to
f = A + 1 and define
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4
4, =F and P(y) = Zi o, 1 ﬁ[ri¢]

Clearly P (y) = g 0 Tg M[riwl rakes sense (as Ll'm~function) for

finite sums &' and ¢ € Ll(H). For 1 < p < », the Lp(H)—boundedness

of ol ¢gives (using (2), (5) of Prop. 11)

[1eget® oy ccn [l tetgenP ey cc ey [ latnellP

< C ( le|P by

7/

)
o [ 1l ' ey ry |

Thus, for ¢ € Lp(Al), the series defining P ‘converge in Lp(Al) and

Ipgll

Py LP(AI) g C llwlle(Al)
The abcve argument also easily shows that P(y) € Hp(Al), using the
inclusion H~ C Hp(Al) and approxirmation of & by 6 % Po (0 < p < 1),
where YC denotes the Poisson kernel. Also, if ¢ € Hp(Al), it fol-
lows from Prop. 11 (3) that Py = ¢.
It follows from the weak-type property of # (see [5]) that if

c€Llm, 8 e1”m

f 6ol |22 |8] am < ¢ 1al}/? 1g11/2 1gy}/2 (*)
Hence, for any w € L:(H), Ilwlloo =1
J |P0¢|1/2 w b &L J |1i|2 Iﬁ[riwlll/z w by
sz [ IRl M2 ey o

1/2 1/2
£ CZ cy |lTi¢||1 ll-ri(u"l

1/2 1/2
cc {f o] (x ey ltyl)) {f o)
using the Cauchy-Schwarz inequality.

Specifying w as the indication function of the set [[Povl 2 A, A>0
a fixed number, it follows
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- /
A, Lleeel > Al cc W2 e ¢! » 212
A 0 L A 0"
2 L (ul) 1
and hence
Y, [pge] > Al < c vl
1 Lo(a))
If ¢ is in Ll(Al), PY = lim P0¢ in Ll’m(Al) and previous estiration
yields
lpgll el
el | o < c el .
L (Al) L (Al)

This ccmpletes the proof of Th. 1.

Prop. 3 is a consequence of the following l-variable interpola-

tion inequality for the Riesz transform .

PROPOSITION 12 : If p,q,6 are as in Prop. 3, the following inequality
holds

N[ o] | Tal® ety opnl-® *
U al pgc al,w [ al q (*)
for a € L3 (m).
g , ] - -
Proof : Take A = uanlqm/qnm|azug and ¢ = (1 v A 1o 7h

Consider the outer functicn T defined by

eie + z
t(z) = I log |z (8) | 56 m(de) (z € D)

e - 2

thus with boundary value

ot H 1log tl

T =7 , where ¥ denotes the Hilbert-transform

Thus, ky construction
la] 1] € A on T
Next, write
a=Ta+ (1-1) a
Rlo)] = R[Tal + &[ (1-7) Rlall

implying
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Hﬁ[a]"p < c, "Ta"p * e, "(1-T)ﬂ[a]"p.

Estimate

It P pP=1 4l
TO P < cp A a 1

14

and using H8lder's inequality

£ 1-p/q
(o) Rl el 1P < ([ |1-7]97P) 1R[] 1P
2 q
where
[ llmr[agg < J [1-1|P < c, f (log gigl)p < ¢ A—lnanl -
P al2Al P '
Finally

"ﬁ[a]"p < c,

£

ATVRIGIVP o o ZVATVD 11/ 1/ g o
1,7 p 1, q

yielding (%) after substitution of ).

Let us point out here that Prop. 12 clearly does not hold any
more if & is replaced by the double Riesz-projection ® @ &,

The deduction of Prop. 10 from Prop. 8 uses a "lifting" property

for reflexive subspaces of Ll/Hl, namely (see [2], Cor. 2.13)
0

E@EEHKEJQ=££§Y§9é;&ﬂ@gﬁrwmaﬁﬁgfLVﬂl@Q
0
a

a : th) > L'/, the quotient map. Then there exists a subspace ¥
0

of L(I) such that the restriction rap q|¥ is an isomorphism frorm
Y onto Y, more precisely

Iy, ccla@ml for vy € ¥
where C depends on the so-called type p > 1 and type-constant T _(Y)
of Y. i

The reader is referred to [11l] for definition of type and to [ 3]
for Ceteils. To ¥, H. Fosenthal's theorer (sece 1)) is epplied,
vielding an enbedding of Y ir an Lr~space (1 < r <p) by a charge

of density. The full proof of Preop. 13 is ~iven in | 23], sectien V.
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5. On the dual of polydisc algebra's

For d = 1,2,..., let A(Dd) be the algebra of functions which are
analytic on Dd and continuous on Ed. The problem whether or not the
spaces A(Dd) are mutually non-isomorphic (sometimes called "dimension
conjecture") is unsolved in general. It is known thet A (D) and A(Dz)
are not linearly isomorphic (cfr. [13], [14]) and the purpose of this

section is to show
THEOREM 14 : The Banach spaces A(Dz) and A(D3) are not isomorphic.

The non-isomorphism of A (D) and A(Dd) for d 2 2 is already a
consequence of local structure. The invariant is the so-called

(ip-ﬂp)—ratio kp (1 €« p < ») defined as follows for a Banach space X

kp(X) = sup 1p(u)

where the supremum is taken over all p-summing operators u from X
into an arbitrary Banach space such that np(u) =1 (ip denotes the
strictly p-integral norm).

For X = A(D) and 1 5 p < «, it is known that kp(X) < ® and more

precisely bp(X) LY g:T' Now if X = A(Dd), it is not difficult to see

2 d
that kp(X) 2 C (g:T) , considering the natural identity map

u : A(D?) » uP (9.
Details and proofs of these results can be found in [ 14].The previous
distinction between dimension 1 and d > 2 will be used in proving
Th. 2, which relies also on infinite dimensional considerations.
* 3 *
and A(D")

are ngt isomorphic. The first step consists in a description of

In fact, it will shown that the dual spaces A(DZ)

A(Dz) as a direct sum of a separable Banach space and a space
related to the one-variable Riesz-projection. This part cf the proof
generalizes to arbitrary dimension. Denote C the space of continuous

functions on TI.

PROPOSITION 15 : Let i : A(DY) » (1) be the erbedding. The spaces
* N . .oy *
acd)  ana 1Yala) e a®h & o

*
are isororphic to_the d-fold projective tensorproduct of A(D)
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COROLLARY 16 : There is a linear isomorphism between the spaces

* *
A% and i"@rm?)) e ad o) .

Postponing the proof of Prop. 15, let us derive Th. 14 from
Cor. 16.

*
LEMMA 17 : The dual gpace A(D3) contains a complemented copy of

the space 2%(2 A(DZ) ), where I' denotes the continuum.

Proof : The argument is essentially contained in [14], section 11.
For each a € 1, consider the subset Fa*= {a} x T2 of NI and the
subspace D, of those elements of A(D3) which are induced by a
measure, supported by Fa' Since the*Fa are disjoint peak-sets for

A(D3), the subspace ® Dy of A(DB) satisfies the lemma.
a€l

Notice that if we write Prop. 15 for 4 = 3, the ll‘suw appears

immediately as comnplemented subspace of the second component.

The following elenentary result from general Banach space theory

will be needed.

LEMMA 1t : Let X,Y,Z be Banach spaces, Z being separable. If
7(Z X), with [ uncountable, embeds corplementably in Y ® Z, then X

embeds complementably in Y.

Proof : Denote % = 2;(2 X), i : % » Y®Z the embecding anc { the
projection onto i(3%x ). Let Py =P, be the Y,Z projections and
iY : X+ 2%, P : X -+ X (y €T) have the obvious neaning. For each
Y € T, consicder following operators

-1

jo s B, idi, s X>Y and Q =P i Q:Y X
y Pty Ny Y oy

We show that QY jY is the identity for some y € I', which will com-

plete the proof.

Notice that the operator i—l @ P, : Y ®Z > X has separable range

by hypothesis and hence there is a countable subset T'g of T such

tnat P 1" 0B, =0 for v € I'\Ty. For y € NIy, we obtain indeed
.—1 . -1 A -1

id, = FY i Wi i, = PY i @by i 1Y + PY i Q P, 1 iY
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* *
Proof of Th. 14 : If A(Dz) and A(D3) are assumed isomorphic, then

A(Dz) contains a ﬂomplemented copy of 2 (Z A(D ) ) and hence‘ by
Cor. 16 and Lemma 18, A(D ) embeds complementably in (A Q c) .
Taking the local structure of these spaces in account, this is
however lmpossible.

Indeed, 1f A(D ) was isomorphic to a complemented subspace of
(A Q C) , it should follow for 1 < p < =

v
kp(A(DZ)) € const kp(A ® C) = const kp(A)

*k
using the general facts kp(x) = kp(x ) (see [8]) and

v
kp(x) = kp(x e C).
Since the constant does not depend on p, the previous discussion yields

a contradiction for p -+ «.

It rerains to prove Prop. 15. We will make use of Bishop's
generalized Rudin-Carleson theorem [2] as stated in [ 14].

THEOREM 19 : Let X be a subspace of a C(K)-space. Let F be a closed
subset of K such that

1
u(F,) = 0 for every closed F; C F and every u € X
(where Xl denotes the annihilator of X).

Then for every u € C(F), € > 0 and every open set GoF, there is an
f, € X such that

(i) £,(s) = u(s) for s €T
(ii) [fu(s)l < e lul for s ¢ G
(iii) "fu" = lal.

Moreover, if X is separable, the rap u * fu from C(F) into X can

be chosen to be a linear isometry.

This result will be used to prove the followinc fact. Compact
spaces are assumed separable and metrizable (they will appear as

k-dimensional torus).

COROLLARY 20 : Let X,Y be sul'spaces 9f C(K), C (L) reSpgpziyg}Y~ Let
B C M(K) be the band of measures on K
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} 1
{py €MK | ul v for each v € X }.

Denote i1 : X > C(K), i2 : Y > C(L) the embedding operators and let

i=1i,8i,: X8 Y >C(KxL) and j =Id 8 i, : C(K) 8 Y > C(KxL).
(a) For £ € B é M(L) , one has
1Y eyl = 15% (g

* -
Consequently, if E is a subspace of M(L), then i (B  E) and

B ® 12(L) are isometric.

(b) guppose K = K x K , R a separable band in M(K') and
Bl r @ M(K"). Then with previous notations, also

% geg )0 2 157 (o)

for £ € B & M(L) and &, € R 8 M(K"XL) .

LEMMA 21 : If B is as in Cor. 20, every element p € B is localized
on an F -subset of K, of |v[-reasure 0 for each v € X'
Proof : Clearly we may assume p a probability measure.

Consider a countable dense subset D cf C(K) of non-vanishing func-

tions 1. Fix 1T € D and ¢ > 0. Since by hypothesis 6(u,TXl) = Iyl
and T X’L is w -closed in M(K), there is a function ¢ = wT in C(K),
lel = 1 satisfyino Re | ¢ dp > 1 - e and f ¢ T dv = ( for each

1
v € X

Thus ¢ T € X. Defining F o= [ |1-¢]| ¢ €], we get

J duy < e™2 [ |1~¢[2 du < 2 g2 j (1-Re ¢) duy < 2e¢.
K\r

llence, fixing any number § > 0 and choosing a suitable sequence

e = e  for €D, the set F = N F will satisfy p(K\F) < §.
TE€ED

It rerains to show that [v| (F) =0 if v € %}, Checse k > 0 anc a
neighborhood G of F with |v| (G\F) < k. Let o be ary C(K)-function

vanishirg outside G and T € T with la-tl < « and €. < K- Write
= + - - -
@ Xp T (a=1)¢ Qe Xp\p o (1 ¢T) Xp
from where, since F C FT and T 2 € X

|I o dv] < k Il + « loll + « Iyl
F
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Conseguently I o dv = 0, corpleting the proof.
13

rroof of Cor. 20 : It clearly suffices to prove (k). A density arqu-

- ' . '
nent allcows to assume ¢ = ZA 9 3 vy a?u El = ZA Y 4 Ny where
By © B, vy € 1(L), py & P and ny € M(k xL). Fix € > 0 and apply

Lerma 21 to find a closed sul set T' of k satisfying
(i) |ul (¥) = 0 for each p € X
(11) [u, | (&\F) < e for cech 2.

Moreover, the hypothesis on I' and a sirilar construction as given
in the proof of Lerma 21, perrits to ensure the concdition on

P .
F CK' » K"

(iii) p (F,.) = 0 for each x" € K" and p € P.

Let G ke some open neighborhccd of F and e : C(F) » X the linear
extensicn operator given in Th. 3, which applies acain by Lemma 21.

Take
a=23I ax) vy
such that
(iv) a« €C(h), Yy €Y
(v) lal <1
(vi) Re <g,a> > I3* (&)l - ¢
Define
b =13 elalp) (x) y(y)
Then clearly by the properties of e
(vii) b € X & ¥
(viii) Ipl < lal
(ix) a=bon F x L
(x) |b|] € e on (K\NG) x L

Write, using (vii), (ix), (ii), (iii)

11 g+ )1 > Re <E,b> - [<E b
> Re <g,a> - 2| ((K\F)xL) - [g;]|(GxL) - e bg,l
> UM @ -lg ) - 2 [ @R v, - (g ] ((G\F)xL)
> 3% @) I-(1+lg 0+ z'nvxn)e - l&,] ((G\E)xL)
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Since € was arbitrary and G any neighborhood of F, we may conclude.
Use the symbol L 1 to denote the generated banc of measures.

LEMMA 22 : IA(Dd)l] = A(Dd)l +

j Ll(ej) 2 M(el,...,ﬁj,...,ed)

oo

1
(~ meaning omission).

Proof : Clearly the left menber contains the right rember. It
remains to prove that the richt member is closed and contains all
measures of the form a.v for v € A(Dd)l and a a triconoretric poly-
nomial in 61,...,8d.

The idee consists in considering a l-variable polyncmial F whose
transform F equals 1 on the set {—N,»N+1{...,N} ané with HFHI < 2.
Denote F. the convolution operation on Hd with the function F(ej).

We may then use the decomposition

Id = Fl + (I—Fl)]?2 L (I—Fl) RN (I—I‘d)

The rmethod is standard and we leave cdetails to the reader.

REMARK : In case of the ball-algebras A = A(Bm)' the set EALJ are
the henkin measures and Lenmra 22 corresponds to the theorens of
Valskii and kenkin (cfr. [16], ch. 9).

Let E = {p € M(19) | vl v for each v € A(Dj)l}, i.e. the band
singular with respect to [A(Dj)l]. Fixing S € {1,...,d} and identi-
fying 17 with the variables 6i (i € 9), [S] = j, the correspondina
band B will be denoted BS.

Lemma 23 : (Y = g xg + 20D, vhere
sC{1,..,d}
X, =Li(6, | 1 €5 @B .
“s i c

S
rroof : We argue by induction on the dirension d. One has

Londy 4,1
(% = [A@H'T o Bry ... a)

and apply next Lemma 20 to the first component. Then the induction
hypothesis permits to decompcse each of the spaces V(el,m,@j,m,ed).

This ¢ives the result, taking into account that
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1 - '\J 1 d, 1l
L (ej) ® A(ol,m,oj,m,od) C AT,

*
LEMMA 24 : A(DY) identifies with the direct sum

® (us R B )
sC{1,..,d} S

* -
where ¢ = ig(L'(6,]i€6)) and ig : A(8,1iS8) » C(8,!i€8) the

S
embedding.

Proof : Denoting i = i{l a}’ one clearly has
.

* *
A(Dd) = I i (Xg) by Lerra 23. For fixed 8 c {1,.,dY, arplv
sc{1,..,4d}

Cor. 20 in the situation K ¢ (€ L'ig¢s), < (6; | 1 & 8) anc
x=n(e; | 1 ¢85, ¥v=>2r(; | 1i€s).

Thus B _ corresponds to B,and (a) applied with & = 1.7 (8, I i€ 9)
S
* -
yields the identification of i (X.) with Qg R B e
S €

If S is fixed, then
X % 1 . 3 - 1 = s
I (;+gl)"zﬂ1 (£)l for £€L" (e, |i€S)@B _ and £.€ © L (6.)aM(0, |i#]).
i ] 1 . J i
S JES
Previous inequality follows from (b) of Cor. 20 if we fix some j & S
N

and consider more particularly €1 € Ll(ej) ® M(el,m,e ,m,ed). Write

J
® (65) and K" * (6; | i £, 1 # 3), and use

1

indeed K = K' x K", K

the fact that B c is singular with respect to
S

- 1
Ll(ej) & M(6; | i £, i #3), contained in [a(e; | 1 # )71 by
Lemma 22. But the argument to obtain Cor. 20 (b) yields also the
inequality

1% (grepl» 15 ()

for £, an element of the sum © LY'(6.) @ M(8, | i # 3).
! j¢s ] :

It is now routine to verify that the sum in Lemma 24 is a direct sum.

Proof of Prop. 15 : Notice that if § # ¢, the band Bg is isomorphic
to the space M = M(Il), as a consequence of the decomposition method
(see [11]). If i : A(D) » C(II) is the l-variable embedding, the
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. . - *
space QS identifies with the projective tensorproduct & i (Ll(ei)).
i€s

Lemma 24 therefore gives the isomorphism of
* - * -
AH* ana o { e i"@whe;) &8
sc{1,..,4} i€s 5
: * . I S | .
Since A(D) identifies with i (L (M)) ® MS(H), latter space is fur-
* - ~ *

ther iscmorphic to the d-fold tensorproduct A(D) & .. & A(D) .
These considerations may be applied to the space Z = C(Il) ® A(Dd*l)
as well, yielding the formula

* ~ * - - *

Z ~ M@ A(D) & .. & A(D)

e e e e —— e

(d-1) -feld

By P. Wojtaszczyk theorem A(DJ) ~ cy (2 A(DJ)) (see [17]) and relyina
again on the decomposition method, Prop. 15 is obtained.
a *
In [ 4], it is shown that the dual spaces A (DY) are weakly

complete among other linear topological properties.

*
of A(Dm) and A(D™) for m # n, by showinc that A(Dr) is not isomor-

K
phic to a subspace of A(Dm) for m < n. Details will appear else-

where.
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