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SOME ESTIMATES IN 9.NEUMANN BOUNDARY VALUE PROBLEM b 
FOR STRONGLY PSEUDO-CONVEX CR STRUCTURES 

by MASATAKE KURANISHI 

Introduction. We consider a system of partial differential equations 

of the first order 

C D Xf = 0 for all X € E , 

where f is an unknown complex valued function and E is a subbundle of 

the bundle C T M of the complex tangent vectors to a compact manifold 

M, possibly with boundary. We denote by C°°(M, E) the vector space of 

smooth sections of E. We assume that, for any X and Y G C°°(M, E) , their 

bracket [X,Y] is also a section of E. We also assume that E OE = {0}. 

Let M-> Cn be a smooth embedding. Denote by E the set of all 

X € C T M such that, when considered as a complex tangent vector to Cn 

via the embedding, it is of type (0,1). Then E satisfies the above 

conditions, provided E is a subbundle. This always happens when the 

codimension of M i s 1. We say that E is embeddable when it is locally 

obtained by embedding in Cn. 

The nature of the equation (1) depends very much on its Levi-form. 

Namely, we consider 

(2) 
C (M, E) x C°°(M, E) 3 (X,Y) 

_l 
i [ X,Y] mod E + E € C°° (M,C T M/ (E + E)) . 

We see easily that the map does not involve differentiation and actual­

ly comes from hermitian quadratic forms on the fibers of E valued in 

C T M / (E + E ) . Here, by hermitian we mean with respect to the bar ope-
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ration induced on C T M / (E + E) by that of C T M , 

When the complex fiber dimension of C T M / ( E + E ) is 1 and the 

Levi-form is non-degenerate, we have another interesting example. Na­

mely, we now consider the principal bundle on which its normal Cartan 

connection is defined. Then the vertical complex tangent vectors over 

E of the connection form a subbundle which satisfies our conditions. 

The equation (1) is closely related to the complex it induces. 

Namely, denote by A^(E) the bundle of skew-symmetric multi-linear maps 

E X . . . XE (q factors) •> C. Then we have the exterior derivative 

(3) D : C (W,Aq(E)) D : C (W,Aq(E) 

just as in the case of de Rham complex, i.e. 

D u ( X 0 , . . . , X ) d x q 
1=0 

D : C (W,Aq(E) D : C (W,Aq(E)D : C ( 

:4) 
+ x 

i < b 
r -i^a+b (-1) u D : C (W,Aq(E)xD : C \>•• • >\>• • • >V • 

Introduce hermitian metrics on the fibers of E and a volume element 

of M. Then they induce a pre-Hilbert structure on C°°(M, A^(E) ) . We 

wish to exhibit two formulas related to a semi-norm 

(5) IIXDull2 + Il X D*u|| 2 

where X is an arbitrary real valued smooth function compactly suppor­

ted in the interior of M . When the complex fiber dimension of 

C T M / (E + E) is 1, dim M = 2n - 1 with q(n - 2 - q) > 0, and the boundary 

of M satisfies rather strict conditions (cf. (31)) these formulas 

can be combined to find an estimate of (5). When we let X converge to 

a function y which may not be zero on the boundary, in the limit esti­

mate we find terms which involve integrals on the boundary of M. Our 

main concern is to find an estimate of (5) such that, under D-Neumann 
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ESTIMATES IN bh NEUMANN BOUNDARY VALUE PROBLEM 

boundary value condition (cf. (3) and 3) (48)), these boundary inte­

grals are non-negative. The formulas are improved versions of those 

in (I) [4], where one finds the details which are omitted here. The­

se formulas are not strong enough to solve the D-Neumann boundary va­

lue problem. In the last section we derive estimates from the above. Oui 

2 2 2 

hope is to find out eventually if the norm || Du|| + ||D *u|| L + C||u|| L 

is compact with respect to L^-norm, provided u satisfies conditions 

(cf. (48)) including the D-Neumann boundary value condition. However 

it seems that our estimates are not yet strong enough to show the 
compactness. 

Preliminary. We first fix a complex vector subbundle F of C T M (with 

F = F ) supplementary to E + E . Write for X,Y€C°°(M,E) 

(6) 

[X,Y] = i CF (X,Y) + [X,Y]F + [X,Y]__ s 

ß E 

where 

C (X,Y) €C~(M,F), [X,Y]E €C°°(M,E) , and 

D : C ( 

E 
ec°°(M,E) . 

We define E-hessian of a function f by 

(7) Hf (X,Y) = X Y f - [ X,Y' 
E 
f 

for any X, Y € C°°f M, E) . We find easily that it does not involve diffe­

rentiation. When f is real valued 

(8) H£(X,Y) = H£(Y,X) + i CF(X,Y) f . 

The exterior product induces an algebra structure on A(E) =yA^(E),and 

D(uAv) = (Du) v + ("1)PuA D v , uAv = M ) P q v A u 

for u € C°°(M,AP(E)) and v € C°°( M, Aq (E)) . In terms of the metric we in-
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troduce the interior product L v : AP(E) + Ap"1 (E) by 

(9) < u L v , w > = < u , v^ w > . 

If a € A '(E) and u € Ap (E) 

(10) (u.v) L a = (u L a) ̂ v * (-1)puA(vLcO . 

This formula plays a crucial role in the proof of (23) . We assume that 

the support of X is so small that we can pick an orthonormal base 

e1'"**,em °^ A^(E) defined on a neighborhood U of the support of X. 

Let g : A \ E ) -*A^(E) be a homomorphism of vector bundles over the iden­

tity map of M. Then we let g also operate on A^(E) by 

(11) gu = I k ( g e k ) A ( u L e k ) . 

Thus g f= 0 for a scalar valued function f. We see easily that the 

above g coincide with the given g when q = 1. Since the right-hand si­

de of the above is clearly independent of the choice of orthonormal 

e^,...,e , (11) is defined globally. We also see easily that the ad-
* 1 1 

joint of the above g is equal to the map induced by g : A (E) -> A (E), 

where * is in terms of the metric. Moreover 
(12) g(u.v) = (g u) Av +uA g v 

(13) g(u L v) = ( g u ) L v - u L g v . 

We denote by Y1,...,Y„ a base of E dual to e1'*•* 'enT We set 

(14) [Y. , Yk] = I f rjk£ Y£ 

and define r (K) : A1 (E) -* A1 (E) by 

(15) r(k) e £ " I J rkj* 6j * 

For K = (kr...,k ) and u eC°°(U,Aq(E)) , set 
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(16) U K = U (Yk ,..-,Yk ) . 

If G is a vector field on U, we let G operate on C (U,Aq(E)) by 

;i7) ( Gu)K = GuK . 

By definition we see that the operation of G commutes with the exte­

rior and the interior product by e^. We define Yk : c"3 (U, Aq (E) ) -»• 

C ^ U . A ^ E ) ) by 

(18) 
0, 

Y k u = Y-,Aq(E) 
) 
) roou-

It then follows (cf. §.1 I [4]) 

(19) Du = 1 d ek 
Yku . 

Hence by duality 

(20) D'u = d o 
o 

Cu L ek) . 

Finally, set 

(21) [Yi;Y*] = 
i C p 

D : C E) xw Y* + Y* + Ï c 
Y* Y* + Y* + 

(cf. (6)). We define 
q(k) 

: A 1(E) •* A 1(E) by 

(22) : A 1(E) Ï : A 1(E) 

A priori estimate. Let X be as indicated in (5). Pick a section u of 

Aq(E) which is smooth on a neighborhood of the support of X. To find 

a formula for the semi-norm (5), it is enough to consider 

* 2 ? * 2 
D X D + D X D . For simplicity we consider X instead of X for a while. 
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(23) PROPOSITION 1. 

(D* X D + DX D*) u = A u + B u + C u , wheve A = A^ +Ag with 

A1u - I k 
f * 
k 
X Yku 

A2u = hj3' (Ak)+ 
1_ 
2 

: A 1(E) XVMLV 

+ ek Y * «7 X(u L (q + 
1_ 
2 
: A 1(E) A 1(E) 

r*(k) ejk(u lr*(j) ek} * 

B u - *-
3 J k j ̂  (XiCF(Y.,Yk) + HX (Y^Yk) ) (u L 3 

C u = D (u L D X) + D X 
x 
D u . 

Outline of the proof. First work out the commutator relation between 

Y, and the exterior product by e- (cf. (12), (13)), Similarly for the K J 
interior product by e-. Write down ( D * X D + D X D * ) u using (19) and 

(20). Apply (10) and rewrite it as the sum of Ek Y*k X YK u -and terms 

containing uLe^.. Then our formula follows by (21) and (7). 

We note that the above formula is a precise version of the one 

given by J.J. Kohn in [2]. 

Note that < u , u > ̂  0. In view of A^, we do not have to worry 

too much about the term < A^ u , u > . When we let X converge to a func­

tion which may not be zero on the boundary of M, D X will blow up on 

the boundary. Note that D X appears in C u . The Neumann boundary con­

dition we consider later is exactly the one which makes < C u , u > go 
2 

to zero. When we want to obtain an a priori estimate for || D u || + 

||D*u||2+C ||U||2, we see then that the main difficulty comes through 

< B u , u > . We try to eliminate this term by taking advantage of the 
term ZjCYj)* XY- in A . 
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_ -o % 

We assume that M is in a manifold M and E extends to M. Let t be 

a real valued function on M . For later application we consider the 

case when the boundary of M is defined by t = 0 . However, there is no 

need to do so now. Set 

[24) Y.t = a. 
= 

a). = a . /b 
J J = 

b = (> a. a-) 
1/2 

§ 

We also define (where b * 0) 

(25) Y =Ik"kYk > 1(E) W u j Y ~h% Yk § 

Qkj =ôkj ~wk uj d wj =^k Qkj Yk 

so that 

(26) W, t = 0 , I 
_ % 
w • W . = 0 
3 J d 

Then we see that 

(27) £kYkXYk = ( Y ° ) * X Y° + 
: A 1(E) 

We set 

(28) W 1 d K k Y k • 

When X is a vector field and f is a function, we often write [ X , f ] 

instead of X f , i.e. we regard a function as a multiplication opera­

tor . 

(29) PROPOSITION 2. Assume that the support of X is contained in 

M' = {p € M ; b(p) * 0]. Then lw*XW. = Ar + Br + Cr, where A ' - A ' + A ' + G 

J J 1 2 
with 
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4' = e (w rj * X (w rj + •lj(X B~1HT (W .,w. 
3 3 

)Y° + (Y°)* xb-1 Bt(wj3w.)), 

A ' - - (w rj (xaYv (w + ^K QLK QKLJ)WJ c (w rj (w rjv xcv QKL QKLJ> 3 

G=-X ^3,K (II, t (w rj 
c (w rj Q3KL xcvb cvbg + Q3K QJK} 3 

B' = d ixcF (W W J ,7 ,7 +x x xw c(w rj 

C •=- c 2[Y 
xc V(w rj c (w rj c [vx] c 2 i a 3 

(w rj v(w rj (w rj w rj+ (w rj (w rjv(w rj 

Outline of the proof. Since the matrix (Qj^) defines a projection 

operator 

c vc * cx (w rj vYk X Q j k Y j 

(w rj (w rj X Wj - £j,k :x Qjk 
rj (w 

rj 
+ [Yk>XQjk 3YJ 

- k [YJ> xQjk (w rj where 

R = -(w rj [Yk> [ Y r X Q j k v x v v ] ] 

= - 2 ̂ k [Yk> [wk,xU + ̂ i,k (IYk,[Y. ,X]Qjkl " tYk^CYj ,QikU) 

= - 2 c [Yk,[Wk,X]] + (a purely imaginary number) 

(w rj [Yk>[Yi •X]]Qjk (w rj X t Y k , [Yj)Qjk]] . 
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The last term of the above goes into G, and the second from the last 

(modulo i t ) is lj,k V[Y,[Y,,X]]Qkj which goes into B'. 

The case of codimension 1 with definite Levi-form. We fix a generator 

S eC°°(M , T M ) of F. Write 

(30) CF(X,Y) =CS(X,Y)S . 

To get rid of the B term in Proposition 1, we put a condition on the 

boundary of M. Pick a real valued function t on M without any critical 

point on the boundary of M and such that M is defined by tN<0 and the 

boundary of M is defined by t = 0. 

(31) DEFINITION 1. Assume that M is of dimension 2n - 1 with n > 3. We 

say that the boundary of M is admissible when 

1) There is a smooth function y on M such that 

Ht = ycs 

at each point on the boundary of M, provided n >, 4. If n=33 we assume 

further that alt the first order partial derivatives of C^ - Y also 

vanish at each boundary point of M. 

2) At each boundary point p G M such that b(p) -0 (cf. (24)) 

Y(p) * 0 , 

3) For any X, Y £ C°° (M3 E) and for any p as above 

X Y t(p) = 0 . 

We see easily that the above definition is independent of the 

choice of t as well as of the choice of a supplementary real vector 

field S. 
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To give an exemple of M with admissible boundary, consider a 
°° n n real hypersurface M 9 C of codimension 1. We write (z,w) E C , where 

n-1 % ^ z € C and w E C . We assume that the origin is in M and M is given by 

an equation : 

(32) y = h(z,z,x) 

where x = Rw and y = 3m w . We assume further that 

(33) hfz.z . xl = u 1 -k 
. -, h . 7 Z J z 
J ,k jk 

mod(z,z,x) 3 

where (hj^) 1S a positive definite hermitian matrix. As is shown by 

Chern and koser in [1] we can always find a holomorphic chart (z,w) 

so that the above is valid locally, provided M is strongly pseudoconvex. 

(34) PROPOSITION 3. For a sufficiently small r > 0 set 

— 2 
t=h(z3z3x) + Eu -v . 

Then the equation t ^ 0 defines a submanifold M with admissible boun­

dary . 

In the following we always assume that the boundary of M is ad­

missible. We pick a smooth real valued function cp(t) on R supported in 

{t € R ; x < 0} such that <p(t) = 1 for t < - ĉ  for a positive number c-j . 

We also pick ii€C°°(M,R) with compact support. We assume that its sup­

port is small enough so that we can find an orthonormal base Y-|,... ,Yn_^ 

of E on a neighborhood of its support. We set 

(35) X = y cp(t) . 

In the following we outline how to get rid of the B term in (23), 

which is the main obstruction to obtain an a priori estimate. 

Note that for functions f and g 
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(36) Hfg(X,Y) =f Hg(X,Y) + gH£(X,Y) + (X£)(Yg) + (Yf ) ( Xg) . 

Also we see that 

(37) l(wrj* =cp (t) Ht(X,Y) + <p"(t) (Xt)(Yt) . 

Write 

(38) HV(Yj,Yk) = Y C S (Y Yk) + rjk l(w = 0 on bd M . 

We pick our hermitian metric to be the one defined by Cg (which we 

can always assume to be positive definite by replacing S by - S if 

necessary). Then we see that 

< Bu,u > = < B1 u,u > + < B~u,u > d where 

< B, u, u > = -EK EK < (i X S + y Y tp') (u Lek) , u L ek > 

< B^u,u > = - ^i,k < y <p! (t)r -k (u L ek) , u L e . > 

(39) 
- 2 K< cpf u L Dt,u L Dy > - < cp" u L Dt ,u L Dt > 

l(w <cpHy ( Y j Y k ) (u L ek) , u L e . > . 

Note that 

(40) 

li HZ (Wj,Wj) = Y(n-2)(i +ro; , rQ = 0 on bd M , 

Rj l(wrj*Wj) = (n - 2) . 

and 

(41) q < v,w > = d < v L ek ,w L ek > 

where q is the degree of v and w. In view of (27) we can always take 

d (q/(n-2))W* X W , u out of the A term, and 

(1/(n-2)) Ek < B ' ( u L ek) ,u L ev > = < BJu,u > + < B ^ U y U > , where 
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(42) 

< B'u,u > = Ek < (i X S + y Y cpf ) (u L ek) ,u L ek > 

< B'u,u > = < U CD ' r 
o 
u L ek,u L ek > 

+ (1/(n-2)) 
'h 

<pHy(W, w ) (u L eR) ,u L eR > . 

(cf. (26)). Hence 

< Bu,u > + lk (V(n-2)) < Bf (u LeR),u L ek > 

= < B ^ U j U > + < B^u,u > 

Note that the right-hand side of the above does not cause any trouble 

at the boundary under the D-Neumann boundary condition. By (23) and 

(29) we find then that for X as in (35) 

< (D* X D + D X D *)u,u > = < Y * X Y u , u > o o ' 

[43) 
+ d a-2 (2 Kl< X Y 

o d d 
d 

b " V (W. ,W. )u > + < Gu,u > ) 

+ l(wr 
n-2 x 

x 
: W * 

j 
a. 

X W. 
J 
u ,u > + q 

n-2 E 
j 

< (W.~)* X W . A u , u > 

+ < B2u,u > + < B^u,u > + < (A2 +C + ;q/(n-2)) ;A^ + c')u,u > . 

Now when we calculate G more explicitly, we find that 

G = X b 2 I L Ht ( W W ) | 2 * s y with 

(44) - 4 
G1 =- Xb ^ l(wrj* x l(wrj(ZjHt (Wj,Wj) Ll ,i,s Q . - q . - a ) 

11 j i s s^ 

+ X b 1 R 

where R is bounded. Therefore we obtain : 
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llx 
2 Du|| 2 + II x 

_1 
2 D*u|| Z = H X 

1 
2 (Y +• v o 

q 
n-2 b"1 Ej H* {WjJWj))u|| 2 

+ (n-2-q)q 
(n-2)Z 

II X 
1 
2 b"1I. H1 (W W,)u|| 2 

(45) + n- 2-q 
n- Z 

Ej || X 
1 
2 °° ,,2 Wj u|| + q 

Q-2 L l l x 
1 
2 W. 

J 
~u||2 

+ <G1u,u> + <B2u,u> + < B^u,u > 

+ < (A2 + C + (q/ (n-2))(A^ + C')u,u > . 

Note by (40), (44), and 3) (31) that < b2G1u,u > vanishes where b = 0 , 

provided the support of X is contained in a sufficiently small neigh­

borhood of a boundary point. 

D-Neumann boundary value problem. The classical method of Kohn and 

Nirenberg (cf. [3]) to solve the problem is to find a norm ||u|| ' on 

C2(M,Aq(E)) such that 

D II u|| ' is compact with respect to L2~norm || u|| , 

2) Il D u Ü 2 + || D*u 11 2 + C ||u|| 2>c (|| u||')2 

for all u satisfying the boundary condition : u LDt = 0 . 

We apply the same method in our case. However, the nature of the 

formulas in PROPOSITION 1 and 2 forces us to modify it. Firstly, since 

b ^ comes in our picture which is not smooth, it is more natural to 

enlarge the space C2(M,Aq(E)). Secondly, since we localize and use 

different methods to prove our estimate depending where we are, we re­

place a single norm || u|| ' by a pre-frechet space structure. 

We first study neighborhoods of boundary points p with b(p) = 0 . 

They are the characteristic boundary points. By the non-degeneracy of 
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C„ and 1), 2) in (31) we see easily that : 

(46) PROPOSITION 4. Let p be a char act eristic boundary point. Then, on 

a sufficiently small neighborhood of p, (t,o) is a chart. 

(47) COROLLARY. The set' of characteristic boundary points is isolated. 

(48) DEFINITION. We denote by C ' (M, ï\q (E) ) the vector space of sec­

tions u of Aq(E) on M satisfying the following conditions : 

1) u is C in the interior of M. 

* — 1 

2) D u and D u are in L ̂ , b u is in L^ on a neighborhood of 

each characteristic boundary point, and W .u is in L^ in a neighborhood 

of each boundary point. 

3) For each C°° function f on M whose support is compact and dis­

joint from the set of characteristic boundary points, f t ^ u L D t is 

in Lg . 

We prove a priori estimate on C1 (M,Aq(E)) . The above condition 

3) is the D-Neumann boundary condition. We work separately on neigh­

borhoods of interior points of M, of characteristic boundary points, 

and of non characteristic boundary points. 

(49) PROPOSITION 5. Let X be a C°° function with compact support on M 

which is zero on the boundary of M. Then there are constants C > 0 and 

c>0 depending on X such that for any u €C 1 (M,l\q(E)) 

\\D u\\2 + || D*u\\2 + C \\u\\2>c(Ej \\Y.Xu\ 
2 

l(wx Y* Xu\\ + \ < S Xu , X u > \ ) . 

This follows by (23) because we can get rid of B term (without 

introducing b ) by the well-known method of Kohn. Note in the above 
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that the term J\ ||Y^ Xu||2 is independent of a choice of a local or­

thonormal base Y1,...,Yn 1 and hence has a global meaning. Similarly 

L IIY- Xu|| 2 has a global meaning modulo a term « C U u|| 2. 

We next consider a small neighborhood U of a boundary point pQ. 

In (35) we take yeC°°(H,R) with support in U D { b * 0 } . We also replace 

cp(t) by cp£ = cp(t/e) and let £ -> 0. In (45) the term which contains the 

derivatives of <p(t/e) in t and the derivatives of y is 

E = < B2u,u > + < B^u ,u > + < (C+ (q/(n-2)) :f)u,u >. 

Because r.k = rQ = 0 on the boundary of M we see by 3) (48) that E con­

verges to 

E1 
y 
= 2 & < D*u,u L Dy > - (2q/(n-2)) l(wrj[Yk [Wk,y]]u,u > 

+Ej < [Wj,y]u , WjU > = l(wrjxjYj,Yk] (u L ek) , u L e . > ) 

+ (q/(n-2)) wrj* x (W.,W.)u,u > 3 3 

because (cf. (26)) 

y[W, ,cpf] = 0 [Y- ,tp ] [W y] = 0 . 3 £ J 

Assume now that pQ is a characteristic boundary point. We assume 

that U is sufficiently small so that (t,a) is a chart on U (cf. (46)). 

We pick y^EC°°(M,R) with support in U and set 

y = y -j <P ( 1 b) 

and let e-*0. Because b u is in L2 (cf. 2) (48)), we find that E^ 

converges to E' . In view of (40) and 3) (31) we then find by (45) 
y 1 

the following : 
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(50) PROPOSITION 6. Let pQ be a characteric boundary point of M. As­

sume that q(n-2-q) >0. Then there is a neighborhood U of po such that3 
CO 

for any Y € C (M,R_) with support in U3 there are constants C3c>0 such 

that 

\\Du\\2 + | | D*u\\ 2+C\\u\\2 ^ M irl II 2 
Q J J b Y U I I 

for any u £ C ' (M3 R_) . 

We next consider a non-characteristic boundary point pQ and pick 

a sufficiently small U which does not contain any characteristic boun­

dary point. Let y EC°°(M, R) with support in U. Then the above argument 

proves that for any u £ C 1 (M , R) 

(51) ||Du||2 + ,|D*u||2 •C||u|| l(wrEk C || Yk y u || 2 + l | W k y u | | 2 ) . 

Looking at terms B and B' in (23) and (29) we also find that 

(52) l | D u | i 2 + ||D*u||2 + C||u||2 >=c\ < i S y u , y u > - < Y pu,y u > y | 

where < u , u > ^ denotes the square of the L2~norm of the restriction 

of u to the boundary of M. With cp as in (35), [YQ,cp] = tp1 (t)b . Hence 

we see easily that 

- < Y y u , y u > b d = - < b Y Y° y u , y u > + < y u , (Y°f u Y b u > . 

Therefore by (51) and (52) 

(53) ||Du||2 + ||D*u||2 +C|| u||2 »c| < i b~ 1 X 
o 
y u,y u > | 

where 

(54) X 
o 
= i b S + Y Y ° - Y Y . 

o 

Note that X Q , W j , W j are tangential to the boundary of M. We denote by 

(bd)'M the set of non-characteristic boundary point. 
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(55) PROPOSITION 7. (bd) 1M has a foliation of codimension 1 suoh 

that X W . 3 W . generate the complex tangent vector space of each 
o «7 «7 

leaf. 

Outline of the proof. It is enough to show that the equat ion XQ =W_J = Wj 

= 0, when restricted to (bd) 1M, is completely integrable. This fol­

lows by the same calculation made in §.2 II [4]. As long as we do not 

differentiate Ht(Y.,Y,), the calculation there is still valid for our 
J K 

more general t. In view of 1) (31), no modification is needed when 

n = 5. For n >4 we have to take a little more care for terms contai-

ning [ Y r Y ] . Set P j = [ Y j ) Y ] - ^ i r j ¥ o k - Y r j and H1 (Yj , Yk) = Y 6 . R + a. R 

with a_-k = 0 on the boundary. Then instead of the formula P.. ^^£=Pj^^j£ 

(cf. the middle of the proof of (2.23) II [4]), we have 

Pi ôk£+ CVak£] l(wrj* x l(wrj*jl] 

Apply £j Qji ££>k Qk£ • We then find Ij Qj i Pj = 0 on (bd)'M, provided 

n ^ 4 . This is what we need. The term containing [Y^,Y] can be also 

handled similarly. 

In view of (51) and (5 3) we find by the above the following : 

(56) COROLLARY. Let V be any complex tangent vector field on U which 

is tangential at the boundary to the leaves of the foliation in (55). 

Then 

\\Du\\2 + \\D*u\\2 + C\\u\\2 >,c\ < V y u3 y u > I . 

Note that Y° - Y° is tangential to the boundary and its restric­

tion together with the restrictions of XQ, W j , Wj generate C T (bd M ) . 

(57) PROPOSITION 8. The flow generated by i b 1 (Y° - Y°) preserves the 

foliation of (55). 
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Outline of the proof. By the same calculation as in §.2 II [4] we 

find that [b~ 1(Y° - Y°) ,W^] s 0 mod W ^ W ^ Hence [b~ 1 (Y° - Y°) , ] = 0 

mod Ŵ . >W^. Since W. ,W- with bracket generate XQ, our contention fol­

lows. 

We are now going to prove the following : 

(58) PROPOSITION 9. There is a neighborhood U of pQ in M with a 

chart (x3y13y')3 y 1 - (y 2> * - - >y 2n_^ > centered at p q satisfying the 

following : 1) U = U Ç\M is given by x4 03 2) the equations x = 0 and 

y1 - constants define the local fibering of (52), 3) Y° - ̂  b(d/dx+ 

i 3/3 z/ ) + B with B - 0 at each boundary point in U3 and 4) for any 

u GC'(M3Aq(E)) with q(n-2-q) > 0 

\\Du\\ \\D*u\\ 2+C\\u\\ 2ic(\\vu\\ \/2)2 

where ( || ||1/2)2 denotes the integral in (x3y^) of the square of the 

Sobolev norm with respect to the variable y'. 

PROOF. Pick a chart y! centered at p of the local fiber F^ of the 
J r o o 

foliation in (55). Consider the flow generated by i(Y°-Y°)/b. Let 

y = (yp--->y') be the point on the boundary with the parameter y^ 

originating from yf in P . This gives a chart of bd M. We now use 

the flow generated by (Y°+Y°)/b to define a chart (x,y). By the 
construction 

Y° - y0 = i b a/ay- + 2 B 

Y° + Y° =b a/ax 

with B = 0 at each boundary point. Note also that (Y° +Y°)/b = 2 3/3t 

modulo a vector field tangential to the boundary. Hence the inequa­

lity x ^ O defines U. Now our contention follows by (56) and (57), 

q. e . d . 
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