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ANALYTIC APPROXIMATION FOR HOMOGENEOUS SOLUTIONS 
OF INVARIANT DIFFERENTIAL OPERATORS ON LIE GROUPS 

M. S. Baouendi* Linda Preiss Rothschild** 

0. Introduction and Statements of Results. 

A classical result by Malgrange [3] states that if P(D) is a 
differential operator with constant coefficients in IRn, then any 
solution u of the homogeneous equation P(D)u = 0 is a limit of 
exponential-polynomials solutions of the same equation. 

Suppose now that P(x,D) is a differential operator with 
analytic coefficients in an open set of 3Rn. Assume that the 
principal symbol is nowhere identically zero. It is natural to ask 
the following question: 

Is it true that any solution of P(x,D)u = 0 is locally a limit 
of real analytic solutions of the same equation? 

The answer to this question is not known. However an affirmative 
answer is given in Baouendi-Treves [2] when P has simple (complex) 
characteristics. (See also [1] for first order overdetermined 
systems). We prove in this paper that the answer is also affirmative 
for left invariant operators defined on a general Lie group. 

Theorem 1. Let L be a left invariant differential operator defined  
on a Lie group G. For every open set U c G, neighborhood of the  
identity e 6 G, there exists another open neighborhood of e, 
W e G, such that if u is a distribution on G (u € $' (G)) 
satisfying Lu = 0 in U, then there exists a sequence u^ of 
real analytic functions defined in W and satisfying: 

(i) LuV = 0 in W 
(ii) lim uV = u in D'(W). 

* Partially supported by NSF Grant MCS-8105627. 
** Partially supported by NSF Grant MCS-8203949. 
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Furthermore if u is of class C k , k ^ 0, then the convergence in 
(ii) is in C k ( W ) . 

Let X l ' " - ' X n be a basis of 0, the Lie algebra of G. If a 
is a multi-index. a € ^ , as usual set 

|A| 
n 

J+L 
a . 
J 

, X A= X 1 
a l X 

n 
a n 

Note that a left invariant differential operator on G is of the 
form 

(0.1) L = 
I a I <sm 

a 
a 
x a a 

a 
E D 

We can state a somewhat more general result than Theorem 1. 
Consider a differential operator on (-T,T) x G, (T > 0) , of the form 

(0.2) P = 8 m t + I a I+j^m 
j <m 

a . (t)X a8 t 

where a j / 01 
are real analytic functions defined on (-T,T). 

Theorem 2. Let P be a differential operator on (-T,T) x G of the  
form (0.2). For every open set U c G, neighborhood of e, there  
exists W, another open neighborhood of e, and e € (0,T), such  
that if u € $ f((-T,T) x G) and satisfies Pu = 0 in (-T,T) x U, 
then there exists a sequence u^ of real analytic functions in 
(-£,£) x w satisfying 

(i) Pu = 0 
v 

in (-e,e) x w. 

(ii) lim u = u 
v 

in 3' ( (-£,£) x W) . 

Furthermore if u is of class c k , then the convergence in (ii) is 
in C k((-£,£) x w ) . 

I. Proof of Theorem 1. 

Before starting the proof we need to introduce some notation. 
Denote by dg a right Haar measure on G. If f, h 6 L"L(G,dg) 
define the convolution f*h by the integral 
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ANALYTIC APPROXIMATION 

(1.1) (f*h)(x) = 
G 

f (xg - 1 ) h(g)dg. 

If we set 

(1.2) f (x) = f (x 1 ) , Vx e G, 

then making the change of variable g' = gx -1 we also get 

(1.3) (f*h)(x) = 
G 

f(g)h(gx)dg. 

Note that if f is a smooth function defined in an open 
neighborhood V of the identity e, and h is a distribution with 
compact support in V then (1.1) (or (1.3)) is defined for x in 
an open neighborhood W of e (depending only on V and the support 
of h, we may take W satisfying W(supp h) ^ cc V ) . 

If L is a left invariant operator on G, using (1.3) we see 
that 

(1.4) L(f*h) = f*(Lh) . 

Recall that X,,...,X is a basis of Q. Let V be a I n 
sufficiently small open neighborhood of the identity in G such 
that the exponential map Exp is an analytic diffeomorphism from a 
neighborhood of 0 in Q onto V. For simplicity we assume 
V = V ^. For x € V we may write 

x = Exp(s,X.. + ...+ s X ) ^ 1 1 n n = Exp (s .X) 

with s = (s 1,...,s ) E Rn . The map 

(1.5) S:V -> HR S(x) = S , 

is then an analytic diffeomorphism of V onto a neighborhood V of 
the origin in HRn. 

There exists an analytic function o , o ^ Q f defined in V such 
that if u is, say a continuous function with compact support in 
V, then 

(1.6) 
G 

u(q)dq = 
R n 

u(S 1 (t))o(t)dt. 
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For v E Z+ and x € V, set 

(1.7) f (x) = V 

/F 
n o(0) -1 e -v

2 (S(x)) 2 

(If s € 3Rn, 2 
s = 

n 

j=l 
s H 
j Note that f v is an analytic function 

defined in V and satisfies fv - V 

Lemma 1. Let h be a distribution with compact support in V. 
There is an open neighborhood of e, W c G, depending only on the  
support of h, such that 

v 
lim 

CO 
( f v * h ) | W=h|w in 3' (w). 

Moreover if h is in ck then the convergence is in C k ( W ) . 

Proof : Let 
w i 

be an open neighborhood of the support of h 
satisfying 

w i 
e V. 

We may choose an open neighborhood W of e in G satisfying 

(1.8) w. w -1 1 ce V. 

(Recall that V = V -1 

Assume first that h is a continuous function (with compact 
support in w1) Using (1.3), (1.7) and the fact that f 

v 
= f 

V 
we get for x 6 W. 

(f *.h) (x) v 

vn 

n 
o(0) -1 

G 
e - v

2 (S(g)) 2 h(gx)dg 

and making use of (1.5) and (1.6), we obtain for x e W 

(f *h)(x) v 
vn 

n 
a 10) 

-1 

Rn 
e 

2 2 -v s h((Exp s.X)x)a(s)ds. 

Changing variables in the latter (vs = t) yields 

(1.9) (f *h)(x) o(0) -1 
n/2 

IT ' R n 

e 
-t-

h ( (Exp t v . X ) X ) G t 
v 

dt 
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A limiting argument in (1.9) easily shows that <f.h) |W converges 

uniformly to H T I • 
1 W 

If in addition h is of class C k , k > 0, since we have 

X a(f *h) 
v 

= f 
V) 
* ( x a h ) , Va E 2 n 

+ 

we also get the convergence in CK (W) 

Assume now that h is a distribution with compact support in 

W1 Let Q m C 
oo 

0 
(W) Since V = V 

-1 we get from (1.8) 

w i .W 
-1 

ce V . 

Therefore it follows from the first part of the proof of this lemma 

that f *<£ converges to 4> in 
oo 

c ( w 1 ) . 
On the other hand, using 

(1.1) and (1.3) we have 

G 

(f *h) (x) <|> (x)dx = 

G 

h(g) (fv*c|)) (g)dg. 

This shows that f *h 
v 

converges to h in D'(w). Q.E.D. 

Lemma 2. If the open set V in (1.5) is small enough then for  

every pair of open neighborhoods of e, V Q and V.̂ , v1 cc v Q cc v (  

there exists an open neighborhood 0 of the origin in C such  

that if h is a distribution with compact support in V Q , and 

h = 0 in V^, then for every v 6 # + , 

(f *h)os" 1 

extends holomorphically to O't and converges uniformly to zero in 

0 as v •> 0 0 . 

Proof ; Let us first state the Baker-Campbell-Hausdorff formula in a 

form which will be needed further (see Varadarajan [4] for example). 

For s, t 6 JRn sufficiently small we have 

(I.10) Exp(s.X).Exp(-t.X) = Exp(u.X) 

with u = (u x,...,u R) É]R n, and for j = 1,...,n. 
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(I.11) u. = u.(s.t) 
J J 

= s . - t. + 
J J I a 1*1 

I3U1 

c 
a,ß,j 

t as* 

where c a, 3,1 
£ 3R and satisfy 

|ca, ß,j| <; M |a|+|ß|+l 

Let V be the open set in (1.5) (V = V 
-1 

) . We may assume that 

V is small enough so that for all x, g € V, if 

S(x) = s. S(g) = t , 

then the power series (I.11) is absolutely convergent. 

Now let h e V ( v 0 ) , h e 0 in v1 with v i cc Vo ce V. 

Using (1.1) and (1.7) we get, for x near e 

h (x) = (f * h ) ( X ) = C 
V 

G 

e 
2 
(S(xg 

-1 
) ) 

2 
h(g)dg 

with C = 
v 

vrr 

n 
a 0 

-1 
Writing x = Exp(s.X), g = Exp(t.X) 

h = hoS , h = h oS~ 

V) V) 

and using (1.6) we obtain 

h (s) = C 

V V Rn 
e 

2 [S(Exp(s.X)Exp(-t.X))] 
2 

h(t)a(t)dt. 

Making use of (I.10) yields 

(1.12) h v(s) = C 

R n 

e 
2 2 

-v u 
h(t)a(t)dt 

where u = ILL., . . . ,u ; is given by (I.11). Since h vanishes in 

v 
we may assume that 

supp h c {t € M , A < 11 I < B}, A > 0. 

We must show that 
h v 

defined by (1.12) extends holomorphically to 

a neighborhood of 0 in Cn (independent of v) and there converges 

to 0 as v—> 00 
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Indeed for 
~ ^ .^n 

s, s ( 1 , sufficiently small, we get from (1.12) 

(1.13) h (s + is) = C 

As t sB 

e 
2 2 

-v v 
h(t)a(t)dt. 

with v = ( v i V ' 
and v . 

3 
is the expression obtained by 

putting s . 
D 

+ is . instead of s . 
3 

in (I.11), i.e. 

(1.14) v. = s. + is. - t . + 
3 3 3 3 |a|*l 

1*1*1 

c 
a, p , j 

t a (s + is) 3 

Note that the latter is absolutely convergent for t s B and s 

and s sufficiently small. Set 

Q = Re 
2 

v 
= Re 

n 

j=i 

V 
2 

3 

It is easy to check that there is 6O > 0 and C > 0 such that if 

6 e (0,0 ) then for I s I s Ô, Isl s 6 and A s Iti s B we have 

Q ^ (A - ô) 2 
- Co. 

Choosing 8 E (0,6 ) small enough we get 

(1.15) Q ^ 
A 2 

2 

Since h is a distribution with compact support in 

{A < Iti < B} it follows from (1.13) that there exists C > 0 and 

l E Z + such that for I s I s Ô, Isl s 6 

(1.16) |h (s + is) I s CC 
V 

sup 

|a|s£ 

9 
a 

t 
e 

2 2 
-v V 

As 11I SB 

I s I, I s I so 

It is clear that the right hand side of (1.16) may be bounded by 

C'v 
N 

sup 

As t SB 
s , s so 

(e -v 
2 Q) 
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where C > 0 and N E Z + are independent of v Therefore (1.15) 

and (1.16) imply that for |s| £ 6, |s'I £ Ó 

(1.17) |h v(s + is) I £ C'V 
N 
e 
- v 2 A 2 / 2 

(1.17) yields the desired result by taking 

0 = {s + is e c , IsI < 6 |s| < 6}. O.E.D. 

We are now ready to prove Theorem 1. Let u be as in Theorem 1 

i.e. 

u <E T (G) , Lu = 0 in U, e 6 U e G. 

Let V be a sufficiently small open neighborhood of e, V c G, in 

which Lemmas 1 and 2 are valid. Take S E C 
CO 

0 
(V) c = i near e. 

Set 

(1.18) h = Cu, r = Lh. 

Both h and r are distributions with compact supports in V. 

Furthermore r = 0 in some neighborhood V 1 of e, V1 ccV. Since 

L commutes with the convolution with fv we get from (1.18). 

(1.19) L(f *h) = f 
v 
*r . 

By Lemma 1, we know that f *h converges to h in a neighborhood W 

of e. Lemma 2 implies that f v *
r extends holomorphically to a 

complex neighborhood of e (independent of h and v) and there 

converges to zero. By the Cauchy-Kovalevski theorem and by shrinking 

W if needed, we may find a sequence k^ of analytic functions in W 

converging to 0 (in the space of analytic functions in W) and 

satisfying 

(1.20) Lk = f *r. 

V V 

[In fact we can require that the Cauchy data of k^ be zero on a 

non-characteristic analytic hypersurface passing through e ] . 

Put 

u = f *h - k 

V V V 
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It follows from (1.19) and (1.20) that 

Luv = O in W. 

On the other hand 

(1.21) lim u = h in D ' ( W) ; 

since h = u near e (where £ = 1, see (1.8)), the proof of 

Theorem 1, when u is a distribution, is complete. 

If u is of class Ck, it follows from Lemma 1 that the 

convergence in (1.21) is in C k(W) . Q.E.D. 

II. Proof of Theorem 2. 

The proof of Theorem 2 is similar to the proof of Theorem 1. 

Let u € 3T ( (-T,T) x G) satisfying 

Pu = 0 in (-T,T) x u. e G U c G. 

Without loss of generality, by shrinking U and the interval (-T,T) 

if needed, we may assume 

(II.1) u e C m((-T,T); 
-N 

H W(U)) 

(N 6 2 + , H 
- N 

(U) is the usual negative Sobolev space in U ) . 

Let V be an open neighborhood of e in which Lemmas 1 and 2 

are valid. Take S E C E 
oo 
(V) , C = 1 near e, and set 

(II.2) Cu = h. Ph = r. 

It follows from (II.1) and (II.2) that we have 

h <E C m((-T,T) ,H 
-N 

comp 
(V) ) , r e c 

o 
( (~T,T) ,H 

-NHTÌ 

comp 
(V)), 

furthermore 

r(t,«) e o near e. 
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Let f v be defined by (1.7), since P (defined by (0.2)) 

commutes with the convolution with fv (convolution on G, t being 

a parameter) we get from (II.2) 

(II.3) P(f v*h) P (fv *h) 

Inspection of the proofs of Lemmas 1 and 2 shows that 

(II.4) lim f * h = h in %' ( (-T,T) x w) , 

and that f *r extends as an element of 

CU((-T,T),I(ß)) 

and converges to 0 in this space (1(0) is the space of bounded 

holomorphic functions in 0 c c"). 

Using a refinement of the Cauchy-Kovalevsky theorem, and 

contracting W if needed, we may find e > 0 (independent of h 

and v) and a sequence 

Kv £ C m ( (-£,£) ,d№ ) 

U(W) is the space of real analytic functions in W) converging to 
zero in that space and satisfying 

(II.5) 

Pkv = fv *r in ( - £ , £ ) X W 

8 J 
t k t=0 = o. j = 0 ,...,m - 1. 

If we set 

u = f *h - k , 

it follows from (II.3) and (II.5) that we have 

(II.6) Pu v = 0 in (-e,e) x w. 

On the other hand we have 

uv 6 C 1 U( (-£,£) ,d№ ) . 
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Since 8 J 
t u V t=0 

= f 
V * (a J t h) t=0 e i ( w ) , uniqueness for the Cauchy 

problem, in conjunction with (II.6), implies that uv is analytic in 

(-£,£) x w. Q.E.D. 
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