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NORMS OF CLASSICAL OPERATORS IN FUNCTION SPACES 

A. PECZYNSKI 

(Institute of Mathematics, Polish Academy of Sciences) 

This is a survey of results on best constants in some classical inequali

ties like the Riesz's inequality for the Hilbert Transform, the Khinchine inequa

lity for the Rademacher functions, the Marcinkiewicz-Paley inequality for the Kaar 

system, etc .... 

In the language of Functional Analysis that means evaluation of operator norms 

or ideal norms (in the sense of Banach ideals,cf. Pietsch [1] ) of some classical 

operators acting in Lp-spaces. 

Given a linear operator T acting between some spaces of measurable functions 

one considers the function 

(p.q) H T H P ' Q II T : LP Lq ¡1 

Often the following problems arise naturally 

a) for what pairs (p,q) is the norm l i T l l P ' 4 finite (the question of the 

boundedness of T) ; 
P »q 

b) if IITil ° ° = +°° , determine the asymptotic behaviour of II T li P ,qas (p,q) + (pQ ,qQ) ; 

c) identify the function (p,q) -> IITil P'^ or at least describe the quantitative 

character of the function. 

Similar problems arise if the operator norms are replaced by some ideal norms 

like nuclear or absolutely summing norms. 

From the point of view of Banach spaces problems of type a) are connected 

with the isomorphic theory, problems of type b) - with the so called local theory, 

problems of type c) - with the isometric theory. 
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A. PEICZYNSKI 

In this survey we are mainly interested in problems of type c). 

The survey is far from being complete. In particular it does not cover the 

beautiful work of Beckner [1] (1975) on the best Constantin the Hausdorff^Young 

inequality for the Fourier Transform as well as the recent progress on the best 

constants for the Sobolev embeddings, cf.Cartier [2]. 

1. THE HILBERT TRANSFORM 

Recall that the classical Hilbert Transform on the real line is defined by 

#(f)(x) p. V.TT-1 
+00 

-00 
f(x-t)t 1 dt =lim TT * e->0 

|t|>e 
f(x-t)t 1 dt, x 6IR 

(here p.v. means the principal value). 

An important property of the Hilbert Transform says that if F(z) is an ana

lytic function in the upper half plane Im z >0 and if f+ig is the "radial" 

boundary value function of F defined on the real line Im z = 0, then g = $(f) 

and ^(g) = -f . 

M. Riesz discovered that ((H))pp <°° for 1 < p <00 and unbounded for p = l,co. 

Thus l l%l lP,q is bounded at least for 1 <p <°° , 1 <q <«>. The best constant C in 
p 

the Riesz inequality II ̂  (f )ll ̂  < Ĉll f 11̂  i.e. the norm l!%llp,P has been identified 

by Pichorides [l] (1972) who based to some extent on an earlier observation of 

Gohberg and Krupnik [1] (1968). The result says : 
We have 

(1) 

l lU| |P 'P t^ TT 
2p for 1 <p< 2 

I I $ I P , P ctg TT 
2p for 2 < p < + oo . 
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NORMS OF CLASSICAL OPERATORS IN FUNCTION SPACES 

Let us present briefly the approach of Gohberg and Krupnik which naturally leads 
to the right conjecture. It bases on a proof due to the Cotlar [ 1] of the bouded-
ness of the Hilbert Transform. Let us put h = l l $ l lP ,P . Observe that for nice 

P 
real test functions < < K ( c p ) , ^ > = < cp, > . Thus h = h f where p' = p/(p-l) 

P P 
and it is enough to consider the case p > 2. 

Observe that if f+ig is the boundary value of an F analytic in the upper half 
2 2 2 plane, then f -g +i.2fg is the boundary value of F . Thus remembering that 

f = - ^(g) and f2_g2 = ~ ̂ (2fg) we get the basic identity 

(*) #(g)2 g2+ 2^(g K(g)) 

2 2 

Now fix g with II g II 2p = 1 • Using the identity II cp || = li cp ll2p and the Schwarz 

inequality in the form ||cp.ipl!p < " ^ 2 p " ̂  " 2p ' We get 

II K (8)11 2p iî (s)2llp 

l l g 2 | 1 P + 2 H ^ ( g j ( ( g ) | | 

1 + 2h Hg^(g)llp 

1 + 2 hpllgll2pll Ji(g)ll2p 

1 + 2 h h 
P 2p 

Kence, "suping" over all g with II g II 2p = 1 , 

h2 < l + 2h h 2P P 2p 

Thus 

(2) h <h + 2p p 1 +h^ 
p 

Next observe that the function ctg TT 
2p satisfies the functional equation 

h2p h -P 1+hр 
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On the other hand, a direct computation shows that for the one parameter 

family of functions 

Fy(z) 1 
z+1 

z+1 
z-1 

2y/ïï 
Im z > 0, 

P ' - I 

P ' 

7T 
2 Y 

TT 
2pf 

the functions f + i H(fy) being the boundary value of F^ satisfy 

f 6 LP' 
Y 

and lim 
Y 

TT 
2p 

II # ( f Y ) l l p , H f H ! 
Y P 

tg 
2P' 

Thus 

(3) h 
P 

l l # l l P ' ' P ' ctg TT 
2p 

for P >2 

Combining (2) with (3) and taking into account that h2 = 1 Gohberg and Krupnik 

[1] have shown that h 
2n 

ctg 
TT 

2.2n 
and they have conjectured (1). We believe 

that one could complete the proof of (1) using (2) and (3) and combining it with 

some missing a priori information on the behaviour of the function p ->h . 
P 

However, Pichorides [1] used a different argument. He worked with the Hilbert 

Transform on the circle 

^per<f> 
p.v. 

1 
2TT 

TT 

-TT 

f (x-t)ctg 
t 
2 
dt 

A standard argument (cf. Zygmund [1], Chapter XVI, Theorem 3.8) shows that 

the Hilbert Transform on the line can be obtained as a limit case (by "blowing up 

the circle") of a Hilbert Transform on a circle. Thus 

(4) II M l P ' P ii 6/ i|P>P 
"ttper 

Pichorides'argument is a refinement of the classical proof of M. Riesz 

inequality due to Calderon (1950) (cf. Zygmund [1], Chapt VII). Recall that in 

this proof the actual work is done tor 1 <p <2. For one familiar with the proof 

we mention briefly main improvements due to Pichorides. 

1) A precise estimate for |sin x|P given by the numerical inequality 

C(p)(cosP x-cos px) I sin x I P A(p,y)cosP x - B(p,y)cos px, 

where 1 <p 2, 0Y Y 
TT 
2 

and 
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NORMS OF CLASSICAL OPERATORS IN FUNCTION SPACES 

A ( p , Y ) 
p-1 

t g ( p - l ) Y B ( p , Y ) 
. p-1 

sin Y sin(p-l)Y C(p) 1 
cos(p TT/2) 

2) Calderon's proof bases on the observation that if f >0 and f £ 0 and if 
u and v are the Poisson integrals of f and H(f) respectively, F = u+iv , 
then |FP(Z)| = |F(z)|p exp(pi arg F(z)) (| arg F(z) |<|- ) is analytic in the open 

1 2lT 
disc |z| < 1 . Hence FP(0)=!|fllp = ( — f f dx)P. The usual device is now to 1 ZTT o 
replace an arbitrary real function by the difference of two positive functions. 

Pichorides has observed that in general FP is a subharmonic function and this 
allows to obtain the same (sharp) estimates as for non-negative functions, namely 

(5) II % (f)ll "per p tg TT 
2P l l f l l 

P 
for f 6Lp 

Here and in the sequel LP denotes the LP-space of real functions and LP is the 
R 

LP-space of complex functions. 
Clearly, in view of (3), (4) and (5), one gets (1) and moreover 

(6) I I # I I P ' P i i # I I P , P . 
per 

In this paper, Pichorides considered the Hilbert Transform as an operator 
acting between real spaces. However his result (i.e. the identities (1) and (6) 
extends to the complex case without difficulties in view of the following general 
fact . 

Proposition 1 . : Let 0 <p<r < 00 . Let X be a linear subspace of 

LP , T: X-> Lra bounded (real) linear operator. Let T S 1 : X S Lr -^L^alf be R' R - - — - Lr R R R _ 
the tensor of T with the identity on L (i.e. the operator induced by T — - —'— R . --^—. ., .. ., . ,, , 
with values in L ). Then — j-( 

Il T S 1 
LR 

X®LrR LrR t LrRll Il T : X LR 

(We consider here X ® Lr as a subspace of LP (Lr ) and Lr 0 Lr with the 
R R R R R r r . r norm of L (L ) ; the latter is nothing else but the L space with respect to R R R 

the product measure). 
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2 

Then Il T : X LR T a l X 8 £2 
LR 

(b) Let T denote the complexification of T i.e. the complex linear  
operator induced by T from X into LT (here X denotes the subspace of iP 

generated by X ) . 

Then T : X LR T : X Lr 

2 To derive (a) from Proposition 1 observe that L contains a subspace R 
2 

isometric to £ (for instance a subspace spanned by a sequence of independent 
normal Gaussian random variables). For (b) note that one can identify T as 

2 
a real operator with T & 1 9 where £? denotes the 2-dimensional real Hilbert 

S 
space. z The proof of Proposition 1 in the full generality can be found in Figiel, 
Iwaniec and PeXczynski [ l](cf. also Beckner [1] lemma 2 for a weaker statement). 
It uses only the Fubini theorem for p = r, and the integral form of the 
Minkowski inequality for p< r. 

Remark. Proposition 1 and the Corollary fail for p>r . 

The last remark leads to an open question concerning the weak (1-1) and the 
Kolmogorov inequalities for the Hilbert Transform. 

Recall (Here m denotes the Lebesgue measure, LP = LP (-°°., 400) ) . 
K K 

The weak (1,1) inequality : 

m(|<tf( f) | > a) C 
a 

f 1 (f G L*R, a > 0) 

C is a universal constant independent of f and a. 

The Kolmogorov inequality 

H % ( f ) i i 
+-00 

— 00 
H (f) (x) P dx 

1 
P c 

p 
f 1 (fGL^, 0<p<l) 

C is a universal constant depending only on p but independent of f. 
P 

Corollary :(a) Let I denote the (real) Hilbert space. 
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DENOTE BY ll^f||Wea^"^ ' ̂  THE SMALLEST POSSIBLE C SATISFYING THE WEAK ( 1 , 1 ) 

INEQUALITY AND BY l$ l l ,P THE SMALLEST POSSIBLE C SATISFYING THE KOLMOGOROV 

INEQUALITY. THESE CONSTANTS HAVE BEEN FOUND BY BURGESS DAVIS [ 1 ] [ 2 ] ( 1 9 7 4 ) , ( 1 9 7 6 ) 

WHO USED PROBABILISTIC METHODS,LATER A. BAERNSTEIN [ 1 ] [ 2 ] ( 1 9 7 6 ) GAVE ANALYTIC PROOFS 

OF BURGESS DAVIS ' RESULTS WHICH BASE ON SOMEWHAT SIMILAR USE OF SUBHARMONIC 

FUNCTIONS AS IN PICHORIDES [ 1 ] AND SOME PROPERTIES OF CERTAIN "COUNTING FUNCTIONS". 

THE CONSTANTS ARE 

^ w e a k O , ! ) 3 
IT 

TT 

O 

In CTG 
2 
dV> - 1 i+3-2 + 5-2+... 

l-3"2+ 5"2-... 

I l t f l l 1 ' ? 1 
2TT 

2TT 

O 

SIN -pdlA 

1 

P (0 <P < 1 ) 

WE ALSO HAVE AS IN THE CASE OF RIESZ INEQUALITY 

H #|| WEAK(L,L) 
" * PER" 

WEAK(L , 1 ) 

I! %\ì['p \ \ % II 
PER 

1,P ( 0 < P < 1 ) . 

HOWEVER AS WAS POINTED OUT TO THE AUTHOR BY A. BAERNSTEIN, THE CONSTANTS 

(H)WEAK ( 1 , 1 ) AND H ^ I I ^ P ARE KNOWN ONLY FOR REAL FUNCTIONS (!). TO OUR BEST 

KNOWLEDGE THE FOLLOWING IS OPEN. 

PROBLEM 1 : IDENTIFY THE BEST CONSTANTS IN THE WEAK ( 1 5 1 ) AND THE KOLMOGOROV 

inequalities FOR THE KILBERT TRANSFORM FOR F COMPLEX-VALUED. 

I N CONNECTION WITH THE PICHORIDES RESULT IT MIGHT BE INTERESTING TO SOLVE 

PROBLEM 2 : FIND l l ^ l l P , q FOR P > Q . 

A CLOSE RELATIVE OF THE COMPLEX HILBERT TRANSFORM IS THE SO CALLED RIESZ 

PROJECTION FROM L P ONTO THE HARDY SPACE HP. THE RIESZ PROJECTION R CAN BE 

FORMALLY DEFINED BY 

R 
1 
2 

(I-i H) FOR THE REAL LINE 

R 
PER 

1 

2 
(I-i Hper) F ( 0 ) . 1 FOR THE CIRCLE. 

HERE I DENOTES THE IDENTITY OPERATOR AND 

F(K) 
1 

2TT 

TT 

-TT 

F ( T ) ~Ìkt J«-
E DT 

FOR K = 0 , ± 1 , ± 2 , . . . 
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It is annoying and of some interest for the metric theory of Hardy spaces 
that the following is open. 
Problem 3 : Find l i R l l P , P and IIR l l P , p .  per 

Also we do not know the best constants in the weak (1,1) and the Kolmogorov 
inequalities for the Riesz projection. 

The Hilbert Transform is a special case of a Calderon-Zygmund singular inte
gral operator. The question of identifying best constants for inequalities invol
ving such operators seems to be too general. However it might be possible to attack 
successfully the case of operators with some additional algebraic properties 
like operators satisfying the identity (*). P. Cartier has suggested to consider 
the operators satisfying the Baxter identity V(fg) + V(f) V(g) = V(f V(g))+ V(V(g)f) 
which is somewhat similar to (*). The reader is referred to Cartier [1] for a 
discussion of algebraic consequences of the Baxter identity. 

-2 
Another interesting example is the operator S of convolution with z 

defined for nice test functions on the plane by 

S(f) - p.v. 1 
TT 

R 

f (C,n) 

[(x-02+i(y-n)]2 
dÇ dn 

An important property of S is that it changes the D- derivative into D^, 
in symbols 

S D- f z D f z for nice f. 

T. Iwaniec [1] (1982) discovered a relation of the asymptotic behaviour of 
the norm I ISl lP,P with the theory of quasi-conformal mappings. For this purpose 
it would be interesting to solve 

Problem 4 (T. Iwaniec) : Find I ISl lP,P for K p < ° ° or at least decide whether 

lim p"1 l l s l lP ,P = 1. 
p=oo 

2. THE MARCINKIEWICZ-PALEY INEQUALITY FOR THE HAAR SYSTEM. 

In this section we discuss briefly the recent result due to Burkholder on the 
best constant in the Marcinkiewicz-Paley inequality for the Haar system. 

oo # 2 Recall that the Haar system (h.) is the orthonormal system in L [0,1] J j =0 
obtained by the Schmidt orthogonalization process from the sequence of characte
ristic functions of the intervals 
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[0,1] [2m 2 k,(2m+ 1)2 k] for m = 0,1,...,2^ ^ -1 k= 1,2,.,. 

The Marcinkiewicz-Paley inequality says : 

Given p with 1 <p < , there is a constant C such that 
p 

(7) sup 
£.=±1 J 

Z e. t. h. 
J J J P 

C II I t. h.H P J J P 

for all sequences of scalars (t_.) . 

Note that in view of corollary to Proposition 1, one can take the same 
constant both for real anf for complex sequence (tj)* 

D. Burkholder [3] (1982) has shown that the best constant 

b = inf { C : C satisfies (7) } is : P P P 

b = p-1 P for p > 2 

bp - (p-1)"1 for 1 < p < 2 . 

This constant is to some extent important both for the theory of vector-valued 
martingales and for the Banach spaces because of the following facts. 

a) The Haar system is the worst possible sequence of martingale differences with 
values in LP (the worst possible in the sense that for any sequence in LP of 
martingale differences the analogue of the Marcinkiewicz-Paley inequality holds 
with a constant not greater than b^ (Maurey [1] (1975) . 

b) The Haar system is the best possible unconditional Schauder basis in LP (i.e. 
if (e_.) is a sequence of functions in LP such that for each f G LP there is 
unique sequence of scalars (c^) such that f = Z c e . and if the inequality (7) 

holds with (h.) replaced by (e.) with a constant C , then C >b (Olevskii [l ] J J P P P 
(1967), [2]; Lindenstrauss and Pefczynski [2] (1971). 

Burkholder's proof is highly ingeneous but complicated. It combines probabi
listic ideas with geometric ones. A crucial role is played by the existence of some 
biconvex real function on LP x LP satisfying certain minimal properties. 
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In the final stage the problem reduces to solving the non linear partial differen
tial equation which \-?e write here for curiosity 

(p-1) [y F -x F ]F 1 •'y x yy [(p-1) F - x F ]2 
y xy 

x2 F F xx yy 0 

for F non constant and subjected to some other constraints on a suitable domain in 
the plane. The reader interested in the subject is referred to Burkholder [1],[2] 
[3],[4]. 

The measuring of unconditionality of a Schauder basis in complex Banach spaces 
is slightly different than that in the real case. From this point of view, it 
seems to be interesting to solve 

Problem 5 : Identify the best constant b 
P 

inf (C : C P P satisfying (7)} where 

(7) sup 
la.f-1 

E a. t. h. 
J J J P 

C 
P 

E t. h. 
J J P 

for all sequences of scalars (t..) 

and the supremum is taken over all complex sequences (aj) with I a j I = 1 f°r j =021,•. 

Clearly b >b we conjecture that b = b for 1 <p<°°. 
P P P P 

3. CRITICAL EXPONENTS 

From the examples which we have discussed one might get a wrong idea that 
the function p -*K̂  (where kp is the best constant in some classical inequality) 

is always a nice one (for p ^ 2) like ctg II/2p or p-1. 

However the answer may be more complicated even in very simple cases. 

All results discussed in this section will appear in the paper Figiel,Iwaniec, 
and PeZczynski [1] . 

We begin with the simple 2-dimensional example. 
Let LP = LP( - I T , I T) with respect to the normalized Lebesgue measure. Let < ^ be 
the 2-dimensional orthogonal projection defined by 

f2(f) f(0) + f(l) e1Ü . 

Let us consider the function p II ̂ 1 1 ,P for p>2 where as usual 

^ 2 
,oo. p 

S 2 = L00- Lp 

Then we have 

Fact. P2 
°°,P 1 for 2 < p< 4 P2 °°,P is a strictly increasing 

function for 4 <p< OO 42 
00,00 4 

TT 
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Sketch of the proof : First, we describe potential extremals using the following 

general 

Lemma 1 : Let E c L°° be a finite dimensional linear subspace such that for  

every 0 ^ e e E , m{t : e(t) = 0} = 0. Let P£ denote the orthogonal projection 

onto E . 

Then every f G L°° with Ifl = 1 sa t i s fy ing ||P̂  f|| = ll-Plf'P for some p  
• — 1 1 E p E 

with 2 < p < oo is of the form f = e. | e | for some e e E. 

Proof by variational method. 

Corollary : Given p with 2< p <«> there is an r = r(p) with 0 <r(p) <1 

such that 
P2 oo,p 

ff2(fr> 

where f 
r 

it 
1 + r e 

i t 
1 + r e 

Now we are ready to outline the proof of the Fact. 

We have (fp2(f ) 
2 r 

A(r) + B(r) it T, e where 

A(r) 
1 

2TT 

TT 

-TT 

f r ( t ) d t fr(0) B(r) 
1 

2TT 

TT 

-TT 

f r ( t ) e_ i t dt f r ( D • 

Expanding the integrands into powers of r one can identify A(r) and B(r) with 

some Gauss hypergeometric series. Using the expansions it is not difficult to show 

that 

d 
dr 

A(r) + B(r) e1Ü 
P 

P rr=0 
0 for p > 4. 

Since A(0) = 1, B(0) = 0, we infer that ?2<v 
p 

P2(f0) 
P 
for p > 4 

and r sufficiently close to 0 . 

To prove that J2 
°°,P 1 for 2<p <4 it is enough to show that 

v 2 
°°,4 

sup{||{P2(fr)ll4 0 < r < 1 1 
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For the latter identity it suffices to prove that 

* (r) A(r) + B(r) eXt 4 4 
4 

A(r)H 
4 

B(r)^ 4 A2(r) B2(r) 

is a monotonely decreasing function of r. 

This is the most difficult part of the argument. It requires a careful analy
sis of the derivative (j)'(r) which among other things bases on a few non obvious 
formulae on Gauss hypergeometric series due to Gauss. 

In fact the function <j> is "almost constant" ; we have 

M O ) 1 and Φ(1) 6. 2 
TT 

4 
0.98 

The qualitative phenomenon described in the Fact holds in general. 
One has (cf. Figiel9Iwaniec and Pe^czynski [1]). 

Proposition 2 : Let E be a finite dimensional subspace of L (uj,y-a probability 
2 

atomless measure. Let P^ denote the orthogonal (with respect to L (u)) projec 
tion onto E. Then 

(8) cr(PE) sup p: HPEir>P = 1 2 

Precisely, if_ K£ = sup {Il e 11^. ||e|| ̂  : e 6 E \ {0} } then cr(PE) = - for_ K£= \y 

and cr(P )>p (K )where p(K ) is the unique root of the equation E o E o Hi 
KE - 1 x(KE - KE) in the interval 2 <x <3. 

The inequality (8) is sharp in the following sense : 
OO 

Given K>1 there is an EcL [0,1] with dim E = 1 such that K = K and 
E cr(PE) - po(K). 

The proof of proposition 2 reduces to the variational problem of finding 
sup a (g) where 

ap(g) g P 
K"1 g -2 2 

with p 6 (2,°°) and K G (1 ,°°) fixed : the supremum is extended over all functions g 
on [0,1] such that 

\> g>0 
1 

o 
g dx = K 1 g non-increasing. 
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To solve this problem we use a long argument which involves variational method 
and elementary Lagrange multipliers technique. 

The symbol cr(P ) - stands for "critical exponent". To justify the name E — ~-
observe that if the subspace E contains a unimodular function (i.e. there is 
an e 6 E with |e 1=1) then it follows immediately from Proposition 2 that the 

OO p funtion p * IIPJI is constant in the interval [2,cr(P )] . E H H k 
The sketch of the proof of Fact indicates that the evaluation of cr(p£) 

for a fixed E may be difficult. In particular we have 

Problem 6 : Evaluate cr((fn) for n>3 where <Pn(f> 
n-l 

j=0 f(j) eijt is the 

orthogonal projection frc«;L2(-7r,7r) onto the span [ 1 ,elt:, ... , e^R . 

4. THE KHINCHINE INEQUALITY AND ITS RELATIVES 

Somewhat similar effect to the critical exponent can be observed in the 
behaviour of the best constant function in the Khinchine inequality. 

Recall that the j-th Rademacher function r. is defined by 
i 2 

r\ (t) = sign sin 2 -rrt for 0 <t <1 (j = l,2,...). The sequence (r_.) is a realiza
tion of aBernoulli sequence, i.e. a sequence (6j) of independent random variables 
each distributed according to the law P{<5. = 1} J P{6. = -1} J 

1 
2 

The Khinchine inequality says 

For each p with 0<p <°° there are constants A and B such that 
p p _ 

(9) A 
P 

? a. r. 
J J J 2 

S a. r. 
j J J P 

B 
p 

2 a. r. 
j J J 2 

for all sequences of scalars (aj)* 

In the language of Banach spaces the best possible constants appearing in (9) 
or their inverses can be interpreted as the norm of embedding of %~ into L^ which 

2 
takes the unit vectors of £ into the Rademacher functions or the norm of the inverse 
operator. 
Note : 1) From this interpretation and from Proposition 1 and its Corollary, it 
follows that the best constants in (9) are the same for real sequences (a.) as well 
as for the complex ones. 

2) (r^) is an orthonormal sequence. Thus 2 a. r. 
3 2 J 2 

2 a. J 
2 

1 
2 
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Several mathematicians contributed to the problem of finding the best cons

tants in the Khinchine inequality : Steckin [1] (1961), Young [1] (1976), Szarek 

[1] (1976) evaluated Ap and Bp for some values of p. Finally in 1978 Haagerup 

[1][2] solved the problem completely using techniques of analytic probability and 

theory of special functions. 

To formulate the result let from now A and B denote the best constants in 
P P 

the Khinchine inequality. Let yp denote the p-th moment of the standard Gaussian 

variable » 

YP 
(2TT) 

1 
2 

+ oo 

-00 
t p e 

t2 
"2 dt 

1 

P 2 
1 
2 

TT 

Ì 
2 r p+1 

2 

1 

P 

Then A 
P 

1 for p>2 and B 
P 

1 for p <2, and 

A 
P 

_1_ 

22 

1 
p for < 0 <p 

o 
Y 

P 
for P0< P < 2 , 

B 
P 

Yp for p > 2 , 

pQ is the root of the equation Yp 2 2 p or equivalently the equation 

2_r p+1 
2 

/ - I T for 0 < p < 2 . The p is the critical noint at which the beha-
o 

viour of the function p -> A changes ! 

The Khinchine type inequality for Steinhaus variables 

One may also think of the Rademacher functions as the coordinate functions 

of the infinite product of two elements group z2

00 It is natural to consider 

the coordinate functions of the infinite torus Tf° i.e. the infinite product of 

the circle groups. 

The j-th Steinhaus function s. is the i-th coordinate function of the infi-

nite torus H00 . The sequence (s..) of the Steinhaus functions consists of mutually 

independent equally distributed variables, each distributed as the function 

t-ei2Ttt on [0,1]. 

The following problem is well known and still open. 

Problem 7 : Find the best constants in the Khinchine type inequality (10) for 

Steinhaus functions, where 
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(10) A 
P 

2 a . s . 2 2 a . s . . 1 J J P 
B 
P 

2 a . s . 
j J J 2 (0<p<°°) 

for all sequences of scalars (a / ) . 

Note that in the metric theory of complex Banach spaces, the Steinhaus func
tions play the same role as the Rademacher functions for the real spaces. This 
makes Problem 7 interesting from the point of view of geometry of Banach spaces 
and the theory of Banach ideals. However the problem is also interesting just to 
see whether the behaviour of the best constant functions in the inequality (10), 

p * A and p + B , has the same qualitative character as in the case of the 
P. . .P 

Khinchine inequality. 
In a discussion during the Leipzig Conference in 1977, Haagerup has con

jectured that for the function p + A there is a critical point, say p with 
p ro 

0 <'p < 1(!) ; for p < p < 2 one should have A = 'Y while for p < p the o ro P P o 
character of the function p * A changes ; we should also have B = Y for p>2. 

P P P 

Here Yp is the p-th moment of the standard complex Gaussian variable, 

Yp 1 
TT 

R2 

2 2 , 2 2 , e~x -y (x +y ) 
P 
2 dx dy 

1 
P r p+2 

2 

1 
P 

Observe that the identity 

2 
j 

a. 
J 
s . 
J P 

2 a. r.(t)s. 
j J J J P for a.e.t G [ 0,1] 

combined with the Fubini Theorem yields 

A < A P P and B < B P P for 0 < p < 00 

There is an unexpected connection between moments of linear combinations of 
Steinhaus functions and the Bessel functions. We shall discuss it now. 

Already Kluyver [1] (1906) solving the problem of random flight in the plane 
has shown that if r>0, a ,aoJ...,a are complex numbers and 

1 z n 
p (a ,a ,...a ;r) denotes the probability that |2 a. s .1 < r (i.e. p (a.,a_,...a ;r) n l z n J J n l z n 
is the normalized Haar measure of the subset {w GIT11 : I 2 a. s . ( w)| < r} of the 

1 1 
n-dimensional torus 1Tn) then 

*) It is not hard to prove that B = y for m = 2,4,6, ... 
m ' m ' ' 
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P n ( W " " V r ) 

r 

00 

o 

I1(rt) n 

j=1 
^ (|a.|t)dt for max 

1< j<n 
a. 
J 

r 

1-r 

00 

0o 
V r t > 

n 

j=1 
3 (|a.|t)dt 
o j 

for max 
1 <j<n 

a. 
J 

: r 

where 
In (t) 1 

2ÏÏ 

2TT 

o 

cos(t sin & - n l?) n= 0, 1 

are the zero and the first Bessel function respectively (cf. Watson [1] p.419 

for details). Thus 

d o 
n 

j = l 
a. s. 
J J 

P 
P 

00 

o 

rp 3 
3r 

Pn(a1,a2,...an;r)dr 0 < p < °° . 

It is likely that from (11), one can derive Kwapien's Formula 

(12) 
n 

j=i 
a. s 
J J 1 

CO 

O 

1 
G 

j - l 
i • 
o 

a. 
J 
t 

2 
t 

dt 

We present here a direct proof of (12) due to Kwapien. It is a modification 

of an argument of Haagerup [2] p.235 for the Rademacher functions. 

(i) One has a 
2 
TT 

oo 

O 

1 - cos at 

t2 
dt a G R (For, substitute u = at, use the 

integration by parts and the formula for the Dirichlet integral TT 
2 

oo 

O 

sin t 
t 

dt 

(ii) The map U : L*(P) L1 (P x d 
2TT 

( P - a probability measure) defined by 

Uf (w,^0 
TT 
2 

(Ref cos If + Im f sinlA-) 
TT 

2 | f | cos (2^-arg f ) ex ν<ι 

is the isometric imbedding of the complex space (P) into the real space 

4 ( p 
dv 
2TT 

it is a real linear map. (For the proof use the Fubini theorem and 

note that 1 
2TT 

2TT 

o 
cos(iX- arg f ) 00 1 

2tt 
00 

o 
cos V dv 2 

TT 

(iii) Let c ,c ,•••cn 9 be mutually independent random variables each distri

buted as the function t * cos 2TT t 0< t< 1. Then for arbitrary complex scalars 
a1,a2,...,an 

2 a. s . 
J J 1 

7T 
2 2 a. 

J 
c. 
J '1 
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Clearly || 2 a, s . II = II 2 la. I s . I L • Next observe that if s . is realized as J J 1 J J 1 J 
e - the j-th coordinate on the torus II , then U(s.)= cos (2^-t.) . Now (iii) 

^ n ^ 
follows from (ii) and the properties of the Haar measure on IT 

Write E(f) = j f dp . Recall that if W1,W2,…,Wn are mutually independent 

symmetric random variables, then E cos n 
j=1 J 

n 
j=l 

E(cos We also have 

E (cos a c_.) 1 
2TT 

2 TT 

o 
cos (a cos t) dt 1 

2TT 
2TT 

o 
cos(a sin t)dt ^ (at) o for j = 1,2,...n. 

Now using (i) and (iii) and the Fubini Theorem, we complete the proof of (12) as 
follows 

2 a. s . J J 
7T 
2 E n 

j = l 
a. 
J 
c. 
J 

E 
00 

o 

1 - cos t 
n 

j=1 
a. 
J 
c. 
J 

t2 
dt 

oo 

O 

1—E cos t n 
j=1 

a. J c. J 
2 
t 

dt 

x 

o 

1 
n 

j=1 
E cos t a. 

J 
c. 
J 

t2 
dt 

x 

o 

1 
n 

j=1 J o a. 
J 

2 
t 

dt 

Using (12), Kwapien and Sawa (cf. Sawa [l] ) obtain : 

(13) A1 = y1 

Their argument is similar to that of Haagerup [2], Theorem 1.1. Put 

<Ks) 

x 

o 

1 1 
o 
t s s 

t2 
dt. 

2 
Now fix aj >0 (J = !>2,...,n) with i â  = 1 . Combining (12) with the 

elementary inequality 
n 

j=1 

1o (t..) 
n 

j=1 
a2 

J 
1 (ta.) o J 

1 
a^ J 
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one gets 
n 

j=1 
a. s . 
J J 1 

00 

o 

1 
n 

3 = 1 
a 2 J 

I0(taj) 

1 
I ? 

2 
t 

dt 

x 

o 

n 

J-l 
a 
2 
J 

1 1 (ta.) 

1 
2 a. 
J 

2 
t 

dt 

n 

j - i 
a 
? 
J 

w 2 
2 

j 

The difficult part of the proof of (13) is a detailed analysis of the 
behaviour of the function $ ; in particular to show that <J>(s)>Yj ^or large s» 

The vector-valued Khinchine inequality 

The Khinchine inequality in the form (9) stated in this paper remains valid 
for the aj 's Dei-n§ elements of any Banach space. This fact has been discovered 
by J.P. Kahane [1] (1964). As an easy consequence one gets analogous inequalities 
for the Steinhaus functions and for standard Gaussian variables. Of course, the 
constants appearing in the vector valued inequalities need not be the same as 
in the scalar ones. However, the new constants can be taken to be independent of 
a choice of a Banach space. The result can be stated as follows. 

Let a = (aj) De a sequence of equally distributed mutually independent 
random variables having all moments. Then for every pair p,q with 0 <p^q <00 
there is a constant Ap,q (a) 6 (O,00) such that for every Banach space X and 
every eventually zero sequence (a_.) c X with not all a_. = 0 , 

(14) E |2 a. a. J J 
q 

l 
q 

A p , q
 (a) 

E 2 a. a . 
J J 

[P 
1 
P 

Observe that in the scalar case the second moment is distinguished by the 
2 2 2 

identity E | 2 a_. a I = Eloijl ( 2 I a. I ) while for every Banach space X 
which is not isometric to a Hilbert space the analogous identity fails for some 
sequence (a.)c:X . Moreover, by Kwapien's Theorem (cf. Kwapien [1]) if X is not 

2 

isomorphic to a Hilbert space, then the integrals E II 2 â  a_. II are not uniformly 

(with respect of all eventually finite sequences (aj cX) of the same order as 
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2 
2 llâ. II .This is a reason that we prefer to state the vector valued Khinchine type 
inequality in a different form than scalar ones . 

The most interesting cases of the inequality (14) are : for real Banach 
spaces a = r - the sequence of Rademacher functions and a = g - the sequence 
of mutually independent standard real Gaussian variables;for complex Banach 
spaces a = s - the sequence of Steinhaus functions and a = 'g - the sequence of 
mutually independent standard complex Gaussian variables. 

The best constants A(r) A (g) , A (s) A(g) ^ are unknown. Some 
p>q p,q p,q p,q 

effort was made to identify A^ Clearly A^ ^ ^1 ̂  = ̂  (where A^ is 

the best constant in the Khinchine inequality). B. Tomaszewski [1] has shown that 

A. </3. He conjectured that A. = v2 As was observed by C. Borell[1] 1 , z 1, z 
using a numerical inequality due to Beckner [1], Lemma 1, one can get good 

(r) 
estimates from above for A . The inequality (14) for a = g has been 

p>q 
discovered by Landau and Shepp [l], and independently by Fernique [1]. 

5. GROTHENDIECK'S CONSTANTS 

In 1956 in his remarkable Sao Paulo paper, Grothendieck has proved " The 
Fundamental Theorem in the Metric Theory of Tensor Products". The theorem has 
several equivalent formulations. Grothendieck [1] has stated it in the language 
of bilinear forms on C(S) - spaces (cf. also Cartier [3] and the excellent survey 
Pisier [2] ). We prefer to formulate it in the language of operator ideals. 

(I) Every operator from any L^(u) space into a Hilbert space H is 1-summing. 

Recall that a linear operator u : X •> Y is p-summing (0 < p < 00 ) if 

TT (u) < 00 where TT (U) = sup( E II u(x.)llP) P ; the supremum extends on all 

finite sequences (x_.) in X such that for every linear functional x* 6 X * , 

Z|x*(Xj)|P < llx*|lP. 

By a standard Baire category argument (I) is equivalent to 

(I1) There is a constant G such that 

(15) TT (u) G u for every linear operator u : L1 (u) + H. 
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The best constant in the inequality (15) depends on the field of scalars. 
We shall write G to denote the best constant for real spaces and G for R (C 
complex spaces. For statements concerning both constants we shall write G. 

It is not hard to see that (I') is equivalent to the following elementary 
statement about matrices (cf. Lindenstrauss and Pe^czynski [1]. The constant 
appearing below is the same as that in (15). 

(Iî5) The Grothendieck inequality : There is a constant G such that for every 
n = 1,2, ... and for every scalar n x n - matrix (a. ) the condition 

J > k 

j,k 
a j;k Ej nk 1 for all scalars c. and n with „ _ j — - k J nk 

(j,k = 1,2,...,n). 

implies 

d o ) 
j,k 

a j,k xj>yk S for all vectors xj. and yk rn l2 

with x. 
J yk 1 (j,k = 1,2,...,n). 

Now one of Grothendieck1s problems (cf. Grothendieck [1] Problem 3, cf. also 
Pisier [2])can be restated as follows. 

Problem 8 : Find the best constants G and G for the real and complex  R C 
inequalities (16). 

There are many beautiful proofs of the Grothendieck inequality which yield 
better or worse estimates from above for G (cf. Kaijser [1], Krivine [1], [2] , 
Maurey [2] , Pejczynski and Wojtaszczyk (see PeJfczynski [1], Pisier [1], Rietz 
[1] ). We recommend to the reader the papers Pisier [1] and Krivine [2] where the 
best estimates from above for G^ and respectively are obtained. 
We have 

GR 7T 

2 In (1+^2 
1,782 ... (Krivine (1977)) 

CI 1-c 
e 1 ,527 7T 

2 (Pisier (1978)) 

here c is the Euler constant. 

Very little is known on the estimates from below for G . The only published 
estimates are that of Grothendieck [1] . 
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We have 

(18) 
II 

2 
GR 4 

71 
G! 

Consequently GC GR 

Krivine [ 2 ] anounced that 7T 
2 

GR he also conjectured that GR 
7T 

2 ln ( l+ \Jl) 

We present here a proof of (18) similar to that of Grothendieck [1]. 

Consider the map U 
v n tr((c(n)) I ) = n(c(n)) we where S ^ is the unit 

sphere of £^ ; A^n^- the normalized Haar measure on S ^ ; ^J(t)(x) = < t,x > 

for t e £2 , x e s(n) ; Q(f)(x) c(n) 

.(n) 

f(Y) <x,y>A y(dy) 

c(n) 

stn) 
y'el A(n)(dy) , e j (1,0,0S...0) … 

- denotes the scalar product on ^\ Clearly ^ is an isometric embedding, and 

Il Q II < 1 . 

Next consider the map 

U U : n n 
i1 
n 

I co 
L 

* 
Q Q L1 

I 
i2 
n 

Use the facts : (a) the composition wv of an one-summing operator w with an 
oo 

operator v from L is nuclear and the nuclear norm n(wv) <TT ̂  (w) II v li , (b) the 

2 2 
trace tr(u) of a nuclear operator u = £ -> I admits the estimate |tr(u)| <n(u). 

Now assuming that ir^(5 *) l l ì * Il G = G and observing that 

tr(U*U) 
2 2 

tr((c(n)) I ) = n(c(n)) we get 
I 
n 

(19) n( c ) n(3*(Q*Q)l) G I Q Q5 1 G 

Note that in the real case 

c 
(n) 
R 

c. (n) 
R 

S 
(n) 

R 

Xl d X (n) 
R 

-1 

where x^ denotes the first coordinate of the vector x (x1 ,x ,...,x ) 
I I n 

e s (n) 
R 
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While in the complex case 

c(n) c 
(n) 

C 
S R 
(2n) 

Xt + yl dX (2n) R 
-1 

where z1 = x^ + iy^ denotes the first coordinate of the vector z - (Zj,z ,. .. ,z )GS^1^. 

A straightforward computation shows that 

lim 
n 

'n c (n) R 
7T 
2 lim 

n 
n C: (n) 

<C 
2 
IT 

which in view of (19) completes the proof of (18). 

1 . 2 
Specifying classes of operators from L into L one can consider questions 

related to Problem 8;one of them arose from a discussion with S. Hartman a few 
years ago. 1 2 

Consider the operator u^: L (T) ^ L ( T ) o f convolution with a function f. 
Then Uf f 2 

2 2 Problem 9 : Compute : D_ = sup {ir (u_) : f 6 L ( T )} and D = supin, (u.) : f G L (IT)}.  (L 1 r K i r 

Clearly, if D denotes either D or 3D_ , then D < G . 
IK (C 

One can consider similarly the constant D(A) for any compact Abelian group A. 

There are other constants related to G like the best constant (also unknown) 
of factorization of every operator from an L°°-space into an L^-space through a 
Hilbert space as well as the constant relating 2-summing norm of such operators 
to their operator norms. The reader is referred to Pisier [2] for further infor
mation. These constants do not seem to be objects of intensive study. 

Before formulating the last problem, let us remark that in all previous 
inequalities we have considered in fact one parameter families of inequalities. 
There are several ways of including the Grothendieck inequality into a one para
meter family. The most natural seems to be the following. 

Observe that every one-summing operator is p-summing for p ̂  1. However, 
by a result of Maurey [2], Theorem 9, (1979) every operator from an L^-space into 
a Hilbert space is p-summing for every p>0. Thus, for each p G (0,°°) there is 
a constant C such that vr (u) < C Hull for every operator u from an -space P P P 
into a Hilbert space. Put G(p) = inf C . Again we have two functions G (.) 

P R 
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and GE(-) depending on the field of scalars. Clearly GR(1) = GR and 0̂ ,(1)= Gc. 

The inequality TT (u) < G(p)llull can be also restated in elementary language as 

follows : 

For every 1,2,... and for every scalar n xn-matrix (a. .) the condition 

2 

j 

2 
k 

ajk nk P P 1 for scalars n. with  
J — — J 

1 (j=l,2,...,n). 

implies 

2 
k 

2 

J 
ajk xj,yk P 

1 
P G(p) 

2 
for all vectors x.and y. in £ 

J ^ — 

with x. 
J 

yk 
1 (j,k = 1,2,...,n). 

Problem 10 : Describe the functions p G (p) and p -> G (p) . 
K iL 

Let us observe that using the operator U defined in the proof of (18) 

Grothendieck [1] has shown that 

GR(2) 
7T 

2 
and 

V 2 ) 
2 

II 
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