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HODGE STRUCTURE VIA FILTERED D-MODULES

by Morihiko Saito )

We explain a method which will give an analytic proof of the decomposition
theorem [BBD] and a pure Hodge structure on the intersection cohomology.

In char. p > 0, Deligne defined the notion of a pure complex and proved its
stability by proper morphisms [CW IIJ. Then, using the theory of t-structure,
Beilinson-Bernstein and Deligne-Gabber proved the purity of the intersection com-
plexes and the decomposition theorem for pure complexes, i.e. after a base change
by ® fa , (@) any pure complexes are isomorphic to the direct sum of their perverse
cohoimologies shifted by their degree [BBD, 5.4.5] and (b) any perverse pure com-
plexes are semisimple (of finite length); the simple perverse complexes are given
by the intersection complexes with twisted coefficients [loc.cit. 5.3.8] (cf. also
[Br 2, p.131 and p. 147]). Gabber also proved that if K is a perverse pure complex,
the weight filtration coincides with the monodromy filtration up to a shift (see
[(BBD, p. 171[Br 2, 3.2.91).

In this note, we construct the category of "polarizable Hodge Modules" which
might correspond to that of perverse pure complexes (cf. Remark in (3.1)).

Due to the dictionary of Deligne, the (mixed) Hodge structure corresponds to
the action of Frobenius [TH,I] and the polarizable variation of Hodge structures
to the smooth (= lisse) perverse pure complex. It is also known that the category
of regular holonomic systems corresponds to that of perverse complexes by the
Riemann-Hilbert correspondence, which enables us to consider the filtered regular
hoTonomic D-Modules with Q-structure. Then, by induction on dimension, we can de-
fine the category of Hodge Modules as a full subcategory, so that it coincides
with the variation of Hodge structures if the underlying perverse complex is a
local system and the support is non singular (cf. (3.1)). Here it should be noted
that we take the above result of Gabber as the definition and use the recent result
of Kashiwara [K] on the description of Ve and ¢ via D-Modules. Because these
functors are compatible with direct images, this definition is convenient to induc-
tive arguments. The details of the proof will be published elsewhere.

*)Supported by the Netnerlanas Foundation for Mathematics SMC with financial aid
fram the ietherlands Organization for the Advancement of Pure Research (Z.W.0.)
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HODGE STRUCTURE VIA FILTERED ‘/,-MODULES

I would Tike to thank Prof. Deligne; the definition of the sign convention
of tne polarization is due to him [D3]. It should be noted that the sign is
crucial in the positivity argument and very delicate in the derived category
[D1,1.11CD21.

§1. VANISHING CYCLE FUNCTOR AND D-MODULES.

(1.1) In this note, we use right D-Modules; they are convenient to the operation
of dual and direct image, and the left to inverse image. We use Deligne's conven-
tion of perverse complex (see [BBD]);in particular, Cyfdim X3 e Perv(GX) if X is

L
smooth. The de Rham functor DRX is given by M — M ®p OX.
X

(1.2) Let X be a complex manifold and f : X - € a holomorphic function. We define
it X — XxCby i(x) = (x,f(x)). For K « Perv(QX), set Kp = € ®QK e Perv(C
R o= i,K e Perv(Qy,q) and Ky = 1K

Let ¥ be the vanishing cycle functor of Deligne (see SGA 7 XIII,XIV). For

W)

p=pry: XxC-C, wak coincides with the Verdier specialization Spr{O}R
(=

VXx{O}'K in [K1), cf. [V]. Set K = pr( and ¥K; = “’pkm'

We have the natural action of the monodromy transformation T on ¥K, and T has
the Jordan decomposition T = TSTu in Perv(mxxm), because T has a minimal polynomial
(at Teast locally). Set N = (Tog Tu)/Zni (it is independent of the choice of i).

We denote by (n) the tensorization by Zx(n)over ZXfOr ne Z, where Zx(n)=
(Zni)nlx<: EX. Then N is a morphism of ¥K to ¥K(-1). For x» ¢ C, set

¥ Ky = Ker(TS-A) < ¥K

Ko WlK = Ker(TS-l) c ¥K .

m b
We say that K is quasi-unipotent along f, iff Tg = id for some m ¢ Z and m > 0.
We denote by W the N-filtration on'wK, i.e., W is a unique increasing fil-
tration such that Ni; < Wy, (-1) and Wi Grf = 6!, (-5) (3 > 0).
*
(1.3) Letn': € — t* be a universal covering and set m=idxn':XxC~+XxC .Then
there exists uniquely.yK Perv(l,) such that m*¥K =~ Qg[1] ® 4K (=prj Qg(1] e pr] vK).
(This-definition is different from the usual one by the shift of complexes).
We have a canonical morphism sp : R'XX{O} + yK[1] and we define ¢K by the

mapping cone, i.e. ¢K[1] = Cone(sp: kIXX{O} -+ pK[11). Then it is known that
oK € Perv(mx).
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M. SAITO

We can also define the action of T and the N-filtration W on wK oK and y Km,
le ¢1K, etc. so that w*y K(£ = [l] ® wx c and n*Gr?wk = thl] ® Griwk.

(1.4) We now assume that K has no nontrivial subobject nor quotient with support
in Xx{0}. Then we have

W W W
Gri ¥k = (Qm[lj ® Gr1¢1K) ® (Q{O}N Gri¢1K)

for any i.

We denote by TX the topological dualizing complex Qx(dim X)[2 dim X] for a
complex manifold X. We choose dualities ¢ thlj ® mmtll > QEEZJ =T ( 1) and
0 Q{O} ® Q{O} - Q{O} K, T{O} > T by ¢ (x®y) = XY ¢ (QEEZJ) and
Colxwy) = xy e Q- 0} where k : {0} ~ E and k, T{0I+T¢ is the trace morphism.
Let a be a duality a: Ke K » TX( n). Then it induces the dualities:

w*as(N'eid) 1 m6rieK & mHGrIvK - T, o (-n-i)

i I W .
ao(N eid) uriwlk ® Grile > TXx@ (-n-1)

hence there exist uniquely the dualities:

. N i w.e W W N i
bi : ]wK ® Gr YK TX( n-i+l), bi' Gri¢lK ® Gr1¢1K TX( n-i)
such that n*ao(N.® id) = © b' and ao(N ® id) = ( © b] 1) (c L b”) where

b' .1 is the restriction of b to Gr ¢ K. We say that b' and b“ are 1nduced duali-
t1es by a and N (and CO’Cl)

(1.5) Let M be a regular holonomic system such that DRX(M) = KG' Set M = jiM S0
that DRy ¢(W) = ?m. Let VyDy ¢ be the Oy o-subAlgebra of Dy . generated by
prlvx ® pri ¢[t3 ] where t is the coordinate function of G We define the in-

creasing f11trat1on Von Dy o by VpDXxE O<1<p (VO Xx E) (p = 0) and (VODX c)

(p < 0). We have tne foliowing result due to Kashiwara [KI:
If K is quasi-unipotent along f, there is a unique increasing filtration
{Va}aEQ on M such that:

O)UV'MM
acQ

i) V.M are coherent VD, o-subModules of M
i) (vt ev M, (vMs, eV ¥ forany aand (v Mt - V,_4M for o << 0.
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HODGE STRUCTURE VIA FILTERED 4s-MODULES

iii) tst- a is n11potent on Grvﬁ (= Vv f WV uv M)

iv) D (Gr'M W e ) = ¥K Bea
XX([ GY‘VD Xx(I C
V.
DRy (Graﬂ) = fwe(a)KG (¢ # 0,1,2,...)
Ly K (a=0,1,2,...)

iloreover the action of tat-a is identified with N by the second equality of iv).
Here e(a) = exp (2wia).

§2 FILTERED D-MODULES WITH Q-STRUCTURE.

(2.1) Let MF ( X) be the category of regular ho]onom1c DX-Modules with good
filtration. (We assume that GrFM is coherent over Gr D but not that Ann Gr M is
reduced). Here the filtration F on D is given by the order of operator. We have
the functors DRy MFrh( ) > Perv(¢x) and (e : Perv(mx) > Perv(@x) given by
DRX(M,F) = DRX( ) and (e KQ = ¢®(K¢). We define the category HF(DX,Q) to be the
fiber product of MF  (Dy) and Perv(QX) over Perv(Cy): the objects consist of
((M,F),Km,a) where (M,F) « MFrh(DX)’Km € Perv(QX) and o is an isomorphim

DRX(M,F) ~C® (KQ) in Perv(&x) and the morphisms are pairs of morphisms in
MFrh(DX) and Perv(mx) compatible with a. For simplicity we shall denote by (M,F,K)
an object in MF(DX,Q).

(2.2)  For (M,F,K) € MF(DX,(D), we define the Tate twist by (M,F,K)(n)=(M®ZZ(n) >
FIn1,K ®,Z(n))where Z(n)= (2n1)"Z, < €, and (FLnd), = Fp_
If Gr'M is Cohen-Macaulay, we can define the dual (M,F,K)* e MF(D,,Q) b

(M,F,K) "=((4,F)",K")where K'= RHom(K,T,) is the Verdier dual and (M,F)"= Riom, (M,F),
(Qd1m X

X
o (dim X)) ®) (DX,F)[dim X1) can be calculated by taking a filtered reso-
1ut1on of (M,F).

(2.3) Let f : X~ Y be a proper morphism of complex manifolds.For (M,F) e MFrh(DX)’
we can define the direct image 4 (M,F) « DF(DY) by taking a semi-free resolution of
(M,F) (at Teast Tocally on Y; we have to use a Cech covering to define globally).
Here (M,F) is called semi-free iff (M,F)~e Lp @O,(DX,F[p]) with Lp coherent 0~
Modules, and for (M,F) =L ® (DX,F[p]) we set £(M,F) = f,l ®0Y(DY,F[p]). To induce
the morphisms between the direct image of semi-free Modules, we use the relation
with the usual definition:

£ LeD, = f((Le Dy) ®DX Dy,y) = fi b QOYDY
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M. SAITO

M) > ﬂ fw ) is injective for any

f M,F) = [(M,F) is strict, i.e. ﬂi(F
A i
(H'IJF' )byF(HJ’M (FIM

i,p, we can define the cohomologies H1 [ (M,F
f
For (M,F,K) ¢ MF(D X,Q) such that f (M,F) is strict, we define H f (M F,K) =
(ﬂ1f (MF), pH f K) e MF(D Y,Q), where pH is the perverse cohomology (see [BBD])

f
and the isomorphism DRyﬂ fM ~(o (pﬂ f,K) is induced by DRy [M e f_DRyM.
f f

If f is a closed immersion, then [(M,F) is strict,[(M,F) € MF ., (Dy) and
f f

fo(M,F.K) € MF(Dy,0).

Y

(2.4) Let f : X > C be a holomorphic function. For (M,F,K) € MF(DX,Q) such that
K is quasi-unipotent along f, let M = [ M and V be as in (1.5). Because i:X - XxC
is a closed immersion, we have (F,F) ='[ (M,F) ¢ MF  (Dy ) so that

X i
F M =i,.( 2 Fp-jM ®33) by the isomorphism M = Ty (Mello, 7).

t
J=0
We say that (M,F) is compatible with the V-filtration along f, iff

(VanM)t =Y, 1Fpﬁ for a < 0

(GranW[)at = Gr a+1 p+1M n (Gr Wl) for o > -1

. v V s .
X (03 (=0 (i.e. (Gr_lﬂ)atz GroM), the two conditions are equivalent to:

) -1 i
FpM —éo (VoM 3 Fp_iﬂ)at

where j: XxC e XxC and v, M =Y V M
Set W(M,F LK) = (L8 g Gr 'M FL11,uK)
91 (M,F.K) = ((GrOM,F),¢1 )

Because the action of t3,-a is 1dent1f1ed with N, v(M,F,K) and ¢1(M F,K) have the

N-filtration W, i.e. NW, < W, 2( 1), Gr? ¥ Gr? (-3) (§ > 0) if we forget the

filtration F. Taking the induced filtration by F, we get
¥y (,F,K) 5 Grlle, (M,FLK) € MF(D,,0), if Grf GrY coherent
'11‘)( sb s B 1 1 LA} X’ B i .

. W
ker N'*1: o 6, with the induced filtration by F on Gry.

We set PyGr = Ti)
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HODGE STRUCTURE VIA FILTERED “/-MODULES

§ 3. POLARIZABLE HODGE MODULES.

(3.1) Let X be a complex manifold, x€X, and Z a germ of closed (locally) irreduc-
tible analytic subvariety of X at x. Set MF(DX,Q)x = 1jim MF(DU,Q) where U are open
U3 x

neighborhoods of x.
We define a full subcategory MHZ(X,n); of MF(DX,Q)X by induction on dim Z :

a) If X is a point, MFrh(DX) is the category of finite dimensional vector spaces
over € with finite filtration. Then (Hc,F,Hm)EEMHX(X,n); iff Ht S*g=n (Fpn ?q)
where FP = F_p HC and T4 is the complex conjugate by the Q-structure

Hp=CB H0 (cf. [TH 1)

b) If Z = {x}, then (M,F,K) EMH (X,n) , iff (M,F,K)= i, (M'F,K') for
(M',F,K')E ML (Z,n),, where i : ZoX.

¢) If dim Z > 0, then (M,F,K)EEMHZ(X,n);, iff supp M = Z or ¢ and, for any
f e OX X wa is quasi-unipotent along f (see (1.2)), (M,F) is compatible with
the filtration V along f (see (2.4)), and, if dim (f_l(O)ﬂ Z) < dim Z, we have :

(GrYl M)at = er M, Ker( t : er Mo Gr\_/1 M) =0

W ,
Gr, Yo(M,F,K) € ® MH, . (X,n+k-1)

k 7f dimZ < dimz ° X

W ;
Gry ¢f’1(M,F,K)6 9 MH, . (Xonk)) . cf. (2.4).

dim Z' < dim Z
Set MH(x,ng = g MHL(X,n)', .
subvariety of X. We define a full subcategory MH(X,n) (resp. MHZ(X,n)) of MF(DX,Q)

by :
/

(M,F,K) € MH(X,n)(resp. MH;(X,n)) iff (M,F,K), € MH(X,n)), (resp. @ MH, (X,n))
i 4

Let Z be a closed (globally) irreductible analytic

for any x€X,
where (M,F,K), is the image of (M,F,K) in MF(DX,Q)X and (Z,x) = U Z, is the irredu-
cible decomposition at x €X. Then we have MH(X,n) = @ MHZ(X,n) (Tocally finite
direct sum) and, if (M,F,K) EEMHZ(X,n), we have K = ICZ(L) for some local system L
on a Zariski open subset of Z. (But I don't know whether MH(X,n); = bgn MH(U,n))

X
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M. SAITO

We say that (M,F,K) e MH(X,Z,n) is a Hodge Module of weight n with support Z. We
can verify that if K[-dim X] is a local system HQ, there is a variation of Hodge
sgructures (HQ ® 0y,F) of weight n-dim X such that M = H(D ® ﬂ§1m X, FM=

im X . dim X , .
oy QOX(Fp+d1m X(HQ ® 0y)) i.e. (M.F) = (o) (dim X) ®0X(HQ ® Oy,F))(=dim X).
REMARK. If we consider mixed Hodge Modules, it is natural to assume the compati-
bility of the weight filtration with the monodromy (cf [CWII,1.8.7]) (and some
condition on F). It is not clear whether y(M ,F,K ) and ¢1(M ,F,K ) satisfy these
conditions, hence we might get a stronger detinition of Hodge Modules by assuming
these conditions on y and 91

(3.2) MWe also define the notion of polarization by induction on dim Z

(M,F,K) « MHZ(x,n); is polarizable, iff GrFM is Cohen-Macaulay and there is a
duality a : K® K » TX(—n) (called a polarization of (M,F,K)) which satisfies:

a) a is compatible with the Hodge filtration, i.e. a induces a duality
(M,F,K) "= (M,F,K)(n).

b) If X is a point, a : H<D Q + Q(-n) satisfies a(x,y) = (-1 )na(y x) and
(Zni) a(x, Cx) > 0 for any x,y € Hp, where C is the Weil operator (cf.[THI)
(Here a(Fp p+1) 0 follows from a).) (x#0).

c) If Z = {x} , there is a polorization a' on (M',F,K") (where i*(M',F,K')=(M,F,K),
cf.(3.1.b)) such that i*a' : i*K‘Ei*K' — i*TZ(—h) - TX(—n) coincides with a.

. -1 .
d) If dim > 0, then for any f& OX X such that dim(f “(0)a Z) < dim Z,
we have the following.
Let b' and b" be the induced dualities on Gr yK-and on

Gr ¢1K by a,N (and o1 )(cf. (1.4)). Then, for i=0, b0 1 and ba give a po]arw-
zation on PNGrO ¥y and on P Gr0¢1, and for any i, b% and b: give a polarization
up to sign on PNerw and on PNGr0¢ (cf. (2.4)).

A duality of (M.F,K)E MHZ(X n) is a polorization, if its restriction to any (M,F K)

€ MH(X,n)y is.
REMARK. If HQ = K[-dim X1 is a local system, then the conditions imply that

(1MI2 5 o g (= (K e 1)) = Gy (o) (=(Ty(-m) ™M)

gives a polarization on the variation of Hodge structures, where m = dim X. We note
that this is the sign convention of polarization given by Deligne [D3].
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(3.3) The main results will be:
(A) Let f : X > Y be a projective morphism of complex manifolds and & the first

chern class of a relatively ample line bundle for f. If (M,F,K) ¢ MHZ(X,n)
has a polarization a, then:

i) f (M,F) is strict and ﬂif*(M,F,K) e MH(Y,n+i),cf (2.3),

i) 21 SRR (MFK) = H'f (M,FLK) (i) for i > O,

ii1) et a‘ be the induced duality on PHT'f,K by fa : PH'fK @ PHTIF,K > Ty(-n)
and 2", then, for i=0, a0 gives a polarization on P Hof «(M,F,K), and for

i>0, al gives a polar1zat1on up to sign on P H f (M F,K). Here

Py H k; «(MsF,K) = Ker 21+1 < H ' (M. F LK) (ﬂ%351g115 given by (~1)i(i_1)/2),

. . . ] m_ m mo_
(B) We define the Hodge filtration on 2y by F—mQX = Oy and F-m-IQX = 0, where

= dim X. Then (Q?,F,thm]) e MH(X,m) and it is polarizable.

Combined with (D41, (A-ii) implies:
i A
(C) fuke o, PHlf KC-11 in D(Qy)
By the definition of MH(Y,n+i), we get:
(D) pﬂ1f*K is the direct sum of intersection complexes with twisted coefficients.

Using Hironaka's desingularization theorem, (A) and (B) imply:
(E) Let Z be an irreducible projective variety, then H1(Z,1£(Z)) has a Hodge
structure of weight dim Z + 1.

§4. REMARKS ON ISOLATED SINGULARITIES.

(4.1.) If f : X > € has an isolated singularity at x ¢ Y : = f_l(O) and X is non-
singular, then supp¢f(®X[n+1]) = {x}, where n=dim Y. Here we define y and ¢ so
that yK,¢K « Perv(wY) if Ke Perv(wx), cf. (1.3), hence ¢f(wX[n+1]) can be re-
garded as a Q-module. Let X _ be a Milnor fiber of f, then we have canonically

Hn(Xw) = dp (QX[n+1]) so that the decomposition Hn(Xw) = Hn(Xw) ® Hn(Xw)

1 +1

corresponds to ¢ = 91 @ 15 where € ® ( 041 ) = K Because Yy 0yqs We get
>\

a mixed Hodge structure on the vanishing cohomo]ogy such that the weight fil-
tration is given by the monodromy filtration. Then its coincidence with Steen-
brink's mixed Hodge structure implies a result of Varchenko, Scherk-Steenbrink:

If we also denote by f : X ~ S a Milnor fibration, the Gauss-Manin system
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f Oy (= f Qn+1 ® (Ql)® 1) calculates Rf, C,[n+1]. The functors ¥,¢ commute with
f
Rf, and the filtration V with [ ,i.e. V is strict on f Qn L. But the Hodge
f
filtration F is not strict, it is strict on Gr f Qn+1 for a # -1,-2,

But the Gauss-Manin system H f Q n+l coincides w1th the micro local Gauss-Manin

system (which can be regarded as a DS 0- module) on which F is strict, because

the process of microlocalization changes only ¥ (= GrYl) to ¢1(=Grg) so that 3

acts bijective]y (and ¢ = ¢1 ® U, remains invariant). Moreover the induced fil-

n+1

tration Im( H F f nn+1 > H f 2y ") coincides with the Hodge filtration on the

micro-local Gausa Manin system. Thus we see that our Hodge filtration on ¢ coin-
. . . . . V,0 n+1 n-p( n+l n-1
cides with the induced filtration on_; e , Gr H 4 x by 3y \QX,X/df/\dQX,x>
c HO f QQ+1(p c 7). (We suppose that n>0).
.F

(4.2) If X has an isolated singularity, the weight filtration on Hn(Xm) is not
the monodromy filtration, but it is so for y mx[n+1] o~ yIC(X) . The difference can
be analyzed by the weight spectral sequence and the local invariant cycle
theorem, and we find a formula:

T h‘l)qtpsq =1 aPd (” P-q (ts) tp 945 bpq E q(ts)1>tp 9in zZt, s],where
Pq Pq 21 Pq i=0

h'iq,apq,bpq are the Hodge numbers (i.e. dim Gr Gr
-1

beq) OF Ha0K) o HE (/M ()

and H?:%(X) respectively and Y = f “(0). In fact, using a theory of Steenbrink,

(in his Arcata paper), we can show the following:
There is a direct sum decomposition e Gr?Hn(Xw)1 = A e B as a graded module

1 .
(compatible with Hodge structures) such that N A .= A

n+1+i ne1-i (1)

N: By ™ B (1) for i >0,
W

. n
Ker N @ A(l) +~ A = e Gry H{x}( )/H{X}(X)

© R 4 Bl W n+l
Ker N : B > B(-1) ~ ? Gr H{x} (Y).

We note that this is compatible with the exact sequence

n+l

0 > Hiyy (V) > HI(X)y > ¢IC(X) 0
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N e

[BBD]

[Brl]

[Br2]

[CW]

[TH]

(D11

[D2]

(b31
(D43

[K]

vl

HODGE STRUCTURE VIA FILTERED -MODULES

the weight filtration on 91 is given by the monodromy filtration (i.e.,

~ W . . . . .
Pelei 01 Grn+1*i 99(-1), here W is the weight filtration).
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