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HIGHER p-ADIC GAMMA FUNCTIONS AND DWORK COHOMOLOGY
by
Francesco BALDASSARRI

O. INTRODUCTION.

Let p be a prime # 2 and let Q be a universal p-adic domain. Let
mTE€Q be a fixed root of -p order p-1 ; let ¢ = c“e 2 be the p-th
root of unity which is closest to 1l+m . For a€@Qn zp let a'e pnN Zp be

such that pa'-a€s = {0,1,...,p~1} ; also define, recursively,
a(0)=a, a(l+1) = (a(l))', for i=0,1,... .
Suppose that a(f) =a, £>1, and let q=pf ; the Gross-Koblitz
formula ([5]) asserts that :
f-1
- - P P _ f-1 .
(0.1) ggla,m) =~ ) x-a(a-1)  x+xT+. o +x =S@l@-1)) """ p (a(l))
<3~ i=0 P

where S(n) = sum of the digits in the p-adic expansion of ne€ N (notice
that a(g-1) € N) and I‘p denotes the p-adic gamma function introduced
by Morita. Boyarsky ([1]) interpreted formula (0.1) in terms of
Dwork's cohomology and proved that Fp is analytic on the set

v b, (p /PTRTLT)
ies
D(t,p ) = {x€q||x-t| <p}

where as usual, for t€Q and p >0,

We take the viewpoint of Boyarski and Dwork ([1]1, [2], [3]) but,
following a suggestion of Dwork's (see section 21 of [2]), we use his
more complicated analytic liftings of an additive character of a
finite field (see [4], § 4, a)) to obtain a family of formulae
indexed by s=1,2,...,® :

£-1 (1)
S(a(g-1)) (a*™’)
s 1oy o .

(0.1)S gf(a,n) =y
i=0
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In (0.1) m is replaced by YSGSZ, where n/Ys is a unit in

s 14
Zb and Pp by PD s ! the s-th Dwork gamma function (see (1.21)), which
' e -1
is analytic on U D(i,(p 5 ), e =1—p-s(s+1+—l—) . For
ies s p-l
s=1, I‘D 1=I‘p (see [2], § 21), while for s =« we obtain a function
I -
PD » analytic on U D(i,1 ) . This improvement in the radius of
4 i€es

local analyticity of T for higher s is obtained at the expense of

simplicity in the funcgiznal equations (of translation (1.25) and of
reflection (2.12)) for rD,s' which involve a function As(y) that
gets more complicated when s is increased. The values of As at nega-
tive integers can however be effectively computed (in terms of n/Ys)
(see (1.13)) and from that one can effectively compute the values

of FD,s at negative integers. It has been shown by Adolphson that
any continuous non-vanishing function g on zp such that equation
(0.1) remains valid with Fp replaced by g must be of the form

1
g(a)==Fp(a) %%ST) where h is again a continuous non vanishing func-

tion on Zp . We believe that in the above statement "continuous"
may be replaced by 'locally analytic". Our results give a class of
functions of this latter type (see (1.27)).

An interesting feature of the cohomology theory presented here
is that it uses as cohomology space the analytic cokernel of a dif-
ferential operator whose analytic index differs from the algebraic
index.

This explains why the continguity (cohomology) relations among
differentials ((1.19)) and the functional equations for rD,s ((1.25),
(2.12)) involve a trascendental function As(y), and also why this
function As(y) itself satisfies a functional equation (1.13) invol-
ving only rational functions. We expect that a similar problem should
arise when dealing with varieties defined over a ring of p-adic
integers and having bad reduction to characteristic p ; our treatement
may serve as an introduction to how p-adic analysis should be modi-

fied to treat that case.

In section 2 we present an alternative approach to Dwork's dua-
lity theory via the notion of cup-product of analytic cohomology
classes. We believe that this notion can be widely generalized in
the set-up of Monsky-Washnitzer cohomology.
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HIGHER P-ADIC GAMMA FUNCTIONS

Finally, it is clear that a treatment similar to the one given
in this paper for the gamma function could be given for a number of
interesting functions, in particular for Bessel functions and for
(confluent) hypergeometric functions.

We are indebted to Professor Dwork for suggesting the problem

studied here and for guidance in the preparation of this paper.

1. ANALYTIC DIFFERENTIALS. .

For s=1,2,...,, let Yg € Q2 denote the zero of i-zs-o xpl/p:'L
which is closest to m ; we have in fact ord (Ys—n) = p-1+ p—il— for
s=2,3,...,, while Yy =T It follows from section 4,a) of [4],
that the field @ (Ys) is independent of s and that it coincides with
the field obtained by adjoining to Qp the p-th roots of 1. Let us de-
note this field by K and limit ourselves to the consideration of
objects (e.g. analytic functions, analytic differentials,...) which
are defined over K. Notice that Gal(K/Qp) is isomorphic to the
group of the roots of unity of order p-1 : if € denoted such a root
the corresponding element of Gal(K/Qp) is Pe s where pe(Ys) = €Yg s
for s=1,2,...,o . In particular, Py is denoted by a symbol of
conjugation : P_1X = x, for x € K. Let L = {functions analytic in
an annulus 1-8<|x| <1468, with unspecified § >0}, a K-vector space
endowed with the norm [ £[| =[£]| (1) =I)£‘;1[1;_>1 |f(x)|, for £ € L. Let

U = anp\ Z ; Z operates on U by translations : for a€ U, a will
denote the orbit of a under Z. For real numbers b, c, we define :

d .
L(b,c) ={ § aixlla.eK, ord a, >ib+c, for i=0,1,...1}
i=0 * *

L(b) = U L(b,c). Then L(b) is the space of functions analytic and
CER
bounded on D(O,pb ) and is therefore naturally a Banach space in the

supnorm over that ball.

For s=1,2,...,», we define (see [4], § 4, a)) :

1 1 (a_ = (p-1)"!

a_ = (p-1) " -p %(s+ (p-1)~ -

S

)

s J s i
8 _(t) = P /pdy = (s) 3
s(t) exp {j£0 (tyg )™ /p } j£O €5 t'€Llag,,,0)
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j i .
_ p i .
YS,j - iio Y s/P ’ for J Olll°-~l
a s-1 Pj
64 (t) =exp {jzo Ys,j tF 1
N hed 2
5 (e)/6.(t) = 3 88 ddera-1,0).
s 1 j=0 J P

For ae€ U we also define :

QO = xa6 L (independent of s=1,2,...,» and of a€ a), a normed
a‘ S
vector space isomorphic to L via :
(o} . o
¥s,a * L —> 5
a
(1.1) £ — x3_E,
Qi = QS dx , again isomorphic to L via :
a a
Cfl : L — Q
s,a —
a
as dx
(1.2) g —> X esE; = -
Let E=xd/dx ; if we define, for a, s as before :
s-1 A |
1.3 D = E+a-+ . pr
( ) s,a jzo Ys, 3P
then the diagram :
a,a
L a©
a
(1.4) Ds’al ld
1
®
L s,a Q-l_
a
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where d denotes exterior differentiation, commutes.

We set W(a) = ni/ dag , [w] =class of we 9_]; , modulo dﬂg ,

a a a a

(1.5) w =X 9, =€ Q9 .

From (1.1) - (1.4) we obtain an isomorphism :

(1.6) fg,a * L/Dg L — W@ .

The theory depends upon the initial choice of = = Yy - Replacing
n by en, ¢P 1 =1, produces a "conjugate" theory. If ¢ = -1, the ob-
jects of this new theory are denoted with a symbol of conjugaison ;

for example

— _ La -1 ax =1
s,a = X OS X € Q_
a
or
s-1 |
B = J. P
D = E + a - P X .
s,a jzo YS,]p

We rely upon the results of Dwork (section 21 of 2 ) expressed
by him in terms of the operator D, o and in particular upon the
4

fact that dimKW(3)==1 , to deduce relations among cohomolgy classes.

-4 2 N S -7 a(s)
[”s,a] [es/e1 “l,a] [jzo Bj X “1,a] jzo Bj [“1,a+j]
= E B!s) —iili [w ] where for j=1,2
j=o 3 (-m3I 1.2 o
(a)j = a(a+l)...(a+j-1) , while (a)0 = 1.
Therefore, for a € U :
(1.7) [ms'a] = Rs(a) [wl,a]
where :
_ v (s) h] 1 1
1.8 = : ./ (- -
(1.8) R (y) ) By (¥)y/ (-m- e L1 5 p-1'9 -

j=o
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1 1
In fact Ry is invertible in L(1 » p-1

written down later ((1.15)). Let us now define functions As(a),

,0) ; its inverse will be

s =1,2,...,, a€U, by means of :
(1.9) [ws’a+1] = a/(-YS)As(a) [ws,a] ’
so that :
_ _ i _
(1.10) [ms,a+il -(ai)/( ys) As(a)As(a+1)...As(a+1 1) [ws,a] ,
for i=1,2,... .
We have :
[ws,a+1] =R (a+l) [wlla+1] = R (a+1) a/(-vl)lwlla]
and
[ws,a+i] ==a/(-Ys)As(a)[ms,a ==a/(—Ys)As(a)Rs(a)[ml,a] .
We conclude that :
(1.11) As(a) = ys/n Rs(a+1)/RS(a) for ae€e U .

The right hand side of (1.11) represents a function of a which
belongs to L(l—%—p—i—l,o) ; therefore a —>As(a), a€ U, admits an
interpolating function A_€ L(l'-%._E%T"O)' By (1.4) we have :

an SEI 3
o= [dx"86_] = [D (1w ] = [aw + Y . P w ] =
s s,a s,a s,a j=0 s,J s’a+PJ
s-1 . (a) j .
= (a+ ¥ vy_. s p? —B~ A_(a)A_(a+l)...A_(a+pI-1)) lw_ _1 .
el S,] J S S S s,a
j=0 P
(=vg)
Therefore :
s-1 . (a+1) - )
(1.12) 1-A_(a)= J vy_. .p7 —E== A_(a)A_(a+l)...A_(a+pI-1) .
s L s,Jj s s s
3=1 (-y )P
s
For l-l- 1 £rgl consider the map
p p-1%7"°%
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(1.13) n{¥) : n(r,00 — L(x,0)

defined by :

s-1 (y+1) 4
(r) ] p~-1 B]
ng  2E(Y) —1- T v  sp 3= (W E(y+D) .. .e(y+p-1) .
= (-v )P
s
Clearly, n(r) is a contraction of L(r,0) : its unique fixed

s
point is As(y) which therefore belongs to L(1,0). Since the map nér)

is invariant under the replacement Yg he-eys, Ep-l= 1, we conclude :

LEMMA 1.4. The function As appearing in (1.9) is represented by a

power series As(y) € zp[[y]], such that As(y)= Z Ais)yl,
. i=0

(s) i *

\j €PpZ, .

We can now write down explicitly the inverse of Rs(y) in

1 1 s :
L(1 E E,O) ; it is :

1

(1.15) Ry Th= T O ESS (9 v )T o agtyel) (v

Il =~ 8
(o]

For a, be U, pb-a € &, the K-linear maps (cfr. [2], § 21) :

a-pb
(1.16) Ew — y (x27P 0g)ug b

x3 £ — xbésw(xa'pbesg)
for ¢€ L, are independent of s=1,2,..., and of a€a, beb. We
remind the reader that ¢y : L — L is defined by

i i
v ) a.xt) = ) a_.x" .
iezm * iexn P*
Since uiod = pd °“2 , we get an induced map, denoted by a_ :
a a a
(1.17) a_ : W(@a) —> w(b)

a
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We now define, for pb-a € Z,

- ()
(1.18) “;([“s,a]) =y (a,b)[ws,b]
so that :
(1.19) v @a,py= § o8 s o)A (1) . A (brin1)
’ joas b pb-a+pi (_Ys)l s s **Ts -
P

We have, for m, n=0,1,... :

(@n n-m Mg(@)Ag(a+l) . .A_(a+m-1)

(b)n('ys) As(b)As(b+l)..As(b+n-1)‘

(1.20) y(s)(a+m,b+n)==Y(s)(a,b)

We define the s<~th Dwork gamma function FD s’ by :
’
t - T -
(1.21) ~g rD’s( t+py)-—i£0 Cpitt A (Y)A (y+1) .. A (y+i-1)

where t€ S and ord Y>-eg ., and

_ _ -1 _ _. -s 1
(1.22) e, = Pag,, (p-1) = 1-p ~(s+1l+(p-1) ) .
Clearly :
-s~-1 -1
(1.23) FD s(—t+PY) € L(eS , —tp (s+1+(p-1) ))
el _
so that T is analytic and bounded on U D(t,(p ) ). If
D,s tes
p bt s p
p-1 _ € = - (s) i i (s) e_ _t_(s)
€ = 1,0 _(x) = o_(ex) izo c; ’e"x”, so that (cpi+t) =€ Chite
-t _(s) -
and s cpi+t(EQp . We conclude that rD,s( t+py) € Qp[[y]] . If a,
beU, pb-a = u, € S, we have :
(1.24) a b (@) = v (a,p)
. YS D,s Y ’

so that we obtain the following functional equation of translation

for rD,s :
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-ang(ayry J(a), if Jal=1
(1.25) I‘D'S(a+1) =
p-1 .
p/vg = Ag(a)/ag(a/p) rp,sf@) »  if la] <1
e -1 _
valid a priori for ae€ U, but extended to U D(t,p ) )., by

analytic continuation. t€s

Now, if pb-a € Z :
o (log, 1) = v @b o 1 = v @) rR1) [0y,
a

and, on the other hand :

a_(log o1) = Rg(@)a_(luy 1) Rg(a)y M (a,p) ) 4]

3 ,a
so that :
(1.26) v (@,p) = r (@) /R (B) ¥y 1) (a,p) .

From (1.26) and the identification ([2], § 21) of T with the

D,1
Morita gamma function I'_, it follows that for t€ S and x

eD(-t , (p_l/P- 1/(P"1) )—) .

_ t
(1.27) FD,s(x) = (ﬂ/Ys)

Either from (1.27) or from (1.21), we deduce that

(1.28) rp g(0) = 1.

Since (1.12) shows that Ag(-1) =AS(—2) =...=A (1-p) =1, it
follows from (1.25) that :

(1.29) r (-i) = 1/4i! for i=1,2,...,p-1.

e
If ord I‘D S(—t+py) were to change in the ball D(O,(p %)7),
’

then I‘D s(-1:+13>Y) would have a zero there, i.e. I‘D s(x) would have
’ ’
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e_=-1
a zero in D(-t, (p s ) ) for some t€S . From this and the func-

tional equation (1.25) we could then show that T s(x) has infinite

D,
e -1 _

zeros in D(t, (p ) ) for all t€ S, hence FD s would be identi-
14

cally zero. This contradiction prove that FD s(x) is a unit for all x

’
es—l -
€ v D(t, (p ) ) .

t€eS

We conclude :

THEOREM 1.30. The s-th Dwork gamma function T

e_=-1
U D(t, (p 5 )7) where ey is given by (1.22), and assumes only
t€Ss

(x) is analytic on

D,s

e -1
unit values. On D(-t, (p s ) ), FD S(x)==I‘D s(—t+py) , where
r’ r

FDIS(-t+py) € Zp[[Y]] NL(e,,0) .

2. DUALITY.

We explain here in different words Dwork's duality theory (see
sections 2 and 4 of [2]). Let Ré (resp. R!) denote the ring of
Laurent series in x that represent analytic functions in an annulus
1-e<|x| <1 (resp. 1 < |x| <1+e) for unspecifiec e¢>0. Let Ry
(resp. R_) denote the ring of functions analytic in D(0,1 ) (resp.

D(»,1”), vanishing at =). We view R, as contained in Ré (resp. R_ in

O

R;) and R=R,eR_ as contained in R'=RjeR, .

We observe that L is contained in both Ré and R! ; we will the-

refore regard L as embedded diagonally in R'. We have in fact R' = ReL

and denote by y_ (resp. y+) the projection of R' onto the first

(resp : second) factor. Let a€U, w€ szi, neﬁl_ . We define a non-

a -a
degenerate alternating pairing (which we call "cup-product") :

W(a) xW(-a) —> K
(2.1)
([w] ’ [n]) — <[¢0]I[n]>

as follows. Let w = fw and =

gw with £, geL ; we want to
l,a l,1-a

120



HIGHER P-ADIC GAMMA FUNCTIONS

show that there exists a unique & = (go,gw)e R' such that :
(2.2) Dl,l—a(gi/f) =g, i= 0,= .

This is a consequence of the following lemma.

LEMMA 2.9. Let a€ U . The operator D1 a==E4-a4-nx operates bijecti-
r
vely on both Ré and R! .

Proof. We consider the action of D on R! . Clearly D has no
Proof 1,a o 1,0
kernel on R' . Let ) a,x eR' ; we look for | b,x’ e R' such
(0] i (6] : i (0]

iez iez
that :
(2.3.1) (E+a+ mx) ) bix1 = 7 aixl .

i€z iez

We then have :

(2.3.2) (E+a+mx) ] byx"=b_jn+ ] a;x .
i<o i<o

But X a.x’€1L and E+a+mx is known ([2], § 21) to have
i<o
index -1 and O-Kernel as an operator on L. We conclude that (2.3.2)
can be satisfied for precisely one value of b_1 and that 2 bixle L.
We then solve formally : i<0

(2.3.3) (E+a+mx) § byx'=-b_jm+ ] axt.
i>o i>o0
Since :
ai—wbi_l
(2.3-4) bl = ——5—_‘_—1—— ’ i>0
and
(2.3.5) lim |a;|r" =0 re (0,1) ,
i+4e

we conclude that

(2.3.6) lim |bi]r1 =0 re (0,1),
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i

and therefore that ¥y bix €R, - Therefore Y bixle Ré . A simi-
iz0 i€z
lar proof for R!. Q.E.D. .
We then define :
(2.4) <w,n> = ) Res, &, ax .
i=0,«
Notice that, formally, <w,n>= ) Res, mjn.

We have :

LEMMA 2.5. If ned a° ,
-a
<w,n> =0 .
- N - - -
Proof. Suppose that n = x17a 611 g %? = d(x1 a %11 G) , GEL . We
then have, if w = x° @lf ax <w,n> = ¥ Res, £, dx , where
X . i ~i
i=0,
£g;= £=xfGEL. But if helL, ] Res;hdx=0. Q.E.D. .
i=0,
1 =1
LEMMA 2.6. If weQ_, n€ Q _ :
a -a
<w,n> = - <n,w> .

Proof. It is sufficient to prove the assertion for

a % dx k-a 6—1 dx

1 x ! kexz.

) %? =Res (¢ +% ) X =0.

o © X

v
and prove that Res,(f,+ g,
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Explicitly :

_ ('n'x)sxk _ 3 (1_k+a)s—1 k
Eg = sy = fw= L ———— X
s=0 s+1 s=1 (=mx)
(2.6.2)
v % (—nx)sxk v T (1-a) o _, k
o= §oGEie, p -y =
s=0 s+1 s=1 (7rx)
Then the assertion is obvious. Q.E.D. .
We are then in a position to define, for meﬂi , neﬁl_
a -a
(2.7) <[w],[nl> = <w,n> .
We have :
LEMMA 2.8. Let meﬂi, neﬁl_ . Then
a -a
<a_(lwl), @ _(I[nl) >= p<lul,Inl> .
a -a
Proof. For w = w, ., n = ;1,1—a’ we compute :
— dx
, = Res, ==
<lw, Sl lw, 1-3l> 1=g,w es; & x
where
(E+1—a—nx)(£i/x) =1, i=0,~ .
Therefore
P> s d (a)
1 1
=7 1 s -3 I —=.
s=1 s s=0 (=71x)
So :
— 1 .
(2.8.1) <[m1,a], [wl,l-a] = - + independent of a.
On the other hand if pb~-a = t € S :
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<a_(loy 1), & () 4 10> = v a,m v (-a, 100

< [w =1y Wa@,p M a-a, 1o =

1,bl r Loy, 1p1>

t p-1-t

=251y (@) (-m rp,q(1-a) =
= DTER @ oty (ma) = --DE B (1-a) =
= p< [ml,a] ’ [;l,l-a]> ’
since Fp(a)rp(l-a) = -(-nt.
Since [wl,a] and [;1,1—a] span W(a) , W(-a), respectively, the

theorem is proved. Q.E.D. .

We now compute some important cup-products. For s=1,2,...,®

let us define
. (y) - (1-y) .
s=1 3 pJ—l pJ-i-l t
M (y) = 1+ Y v. 4P ) - .
j i=o p’
(2.9) Vs

. As(y)As(y+1)"'As(y+Pj'i'2)As(1'Y)AS(Z‘Y)---As(i‘y) ;

then Ms is an invertible element of L(1,0).

We have :

LEMMA 2.10. Let a € U and s € {1,2,...,«} . Then

“Us,a’ ;s,l-a> = Y;I Ms(a)—l'
Proof. If
(2.10.1) s,1-a £ = 1+ i=0,~, &; €R},
then
(2.10.2) <Wg v Is’l_a> = 1=g,m Res; &, dx .
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Therefore, subject to (2.10.1), for & = (EO,EN) :

(2.10.3) <0g a1¥ 1-a" = i—g . Res,y_(£) dx = Res_y_(£), dx.
a

> =
s,a'%,1-a B € k, and

So, if we set <uw

v_(8) = (v_(B)g s v_(8)) = (] axxt, T byxh,
Lo L

1

we have, for j>1 :

= - j i=- =
Wg,a+gr¥s,1-a> = (@) 3/ (vg) A (@A (atl) LA (av3-1) 8

= J - - ; - -
= Res_ X y_(g)°° dx = bj+l ’ while B bl'
Therefore :
(a);_,
(2.10.4) b, = - g8 ——————— A _(a)A_(a+l)...A _(a+i-2)
i i-1 s s s
(-Ys)
for i > 2, while b1 = - RB. We now compute :
Ds’l_a(Y_(E)) = Ds,l—a(g) - Dsll_a(y+(£)) = l-Dsll_a(Y+(£)) €L .
Therefore :
- = = - i, _
Dg,1-a(Y-(8)) =Dy ;_,(v_(&)) =Dy ;_, (iZl by /x7) =
@ s-1 3 i
= l-a-i)b, - . b, j -
izl [( s jzo ¥s, 3P ”PJ] /x
J 3
s=1 . p -1 : s=1 . p -1
- 7 Yg ij Y b jxl =- 3 Yo .p3 7 b, xt,
j=0 S’ i=0 -i+p j=o S+3 i=0 pl-i
by (2.10.4) and (1.12). We conclude that
3
_ s=1 . p -1
b (vy(e)) =1+ ) v .p? I b, xt

s,l-a j<o s,3 i%o pj_i

and, since y+(E) € L, that the differential
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J
s=1 . p -1
1 - Jj —
no= 2 (w, 1 vg 4P D by wgyg44)
B s,1l-a j=0 s,J i=0 pj_l s,l-a+i
is exact, i.e. belongs to d 50_ . Therefore :
-a
- J_ (a) .
_ _ s-1 3 p -1 J_i_l
0 = <ug 0> =1- y Vs, 4P Y — P 17" A (a)A (a+1) ...
’ j=o0 = j=o pl-i-1
(-YS)
j A (l—a)i .
e As(a+p -i=-2) -i As(l—a)As(Z—a)...As(l—a) .
Y
s
From this we deduce the formula in the statement. Q.E.D. .

THEOREM 2.11. Let a, beU, pb~-a € 2, and s € {1,2,...,2} . Then

Ms(b)

(s) (s) (;_ _ -
Y (a,b)y (1-a,1-b) =p ﬁ;j;y .

COROLLARY 2.12. (Functional equation of reflection for FD s
e_ -1 !

Let s € {1,2,...,»} and x€D(-t,(p S 37) for tes ; we have

) .

t+x

- = (-1t p-1 x+x
FD,s(x)FD,s(l x) = (-1) p/yS Ms( o ) / Ms(x) .
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