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MINIMAL SURFACES WITH FREE BOUNDARIES AND RELATED PROBLEMS

by S. HILDEBRANDT (Universitdt Bonn)

1. INTRODUCTION.

These lectures provide a survey on joint work of the author with Nitsche [14]
and with Griiter and Nitsche [8], [9]. We are concerned with free boundary value
problems for minimal surfaces and related questions. Already in 1816, Gergonne
[5] posed a problem of this kind:

"Couper un cube en deux parties, de telle maniére que la section vienne se terminer
aux diagonales inverses de deux faces opposées, et que l'aire de cette section,
terminée a la surface du cube, soit un minimum. Donner, en outre, l'équation de

la courbe suivant laquelle la surface coupante coupe chacune des autres faces de ce
cube".

This problem remained unsolved for more than half a century. It was H.A. Schwarz
[19] who noted in 1872 that a solution of Gergonne's problem must not only have
mean curvature zero but has to meet the two faces of the cube, on which its
boundary is not preassigned, under a right angle. More generally, he considered a
surface M minimizing area among all surfaces bounded in part by given curves T ,
while the rest of its boundary lies on given surfaces $. By applying Gauss'
formula for partial integration, he found that M has to intersect the
"supporting" surfaces $ orthogonally in a system of curves which one might call
the "free trace" I of M on $.

Accordingly, Schwarz formulated Gergonne's problem somewhat more generally as

follows:
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S. HILDEBRANDT

Determine the surfaces of mean curvature zero (i.e., minimal surfaces) bounded by

r

two opposite faces 51, 32 of a cube and by a pair of straight arcs Fl, 2

connecting four end points of these faces cf. [19]1, Tafel 4, which intersect

51 and 52 orthogonally.

He found denumerably many simply connected minimal surfaces without singularities
satisfying these boundary conditions. This might seem surprising since it is still
not known as to whether there exist closed Jordan curves bounding more than
finitely many simply connected minimal surfaces. On the other hand, one can easily
find boundary configurations spanning more than denumerably many minimal surfaces
which intersect the free part § orthogonally. For instance, a sphere, a
cylinder, or a torus furnish an example, or, more generally, each surface $
which is symmetrical with respect to a l-parameter group of motions G and which
bounds a minimal surface orthogonal to $ but not invariant under G. The
boundary configuration of Gergonne's problem is not invariant under a continuous
group of motions. Therefore the infinitely many solutions of Schwarz exhibit a
rather interesting phenomenon.

Schwarz also described a further rigid configuration possessing infinitely many
helicoids as solutions of the corresponding boundary value problem. In a cartesian
system of coordinates x, y, z he considers a configuration <F1,F2,5> consisting
of the cylinder surface

8 = {xz + y2 = R2 y |z| §‘H/4}

and of the two straight arcs

F1={x=y,z=Tr/4}, 1"2={x=-y,z=-1f/4} .

Then the parts of the helicoids
M: = ltang(2n+ 1)z = (-H"L

X

and
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MINIMAL SURFACES WITH FREE BOUNDARIES

tang(2n+ 1)z = (—1)n$ '

n=20, *1, *2, ... , which are contained in the solid cylinder formed by the
convex hull of $ , are bounded by <F1,F2,5> and meet $ under a right angle.
Their areas Ai are given by
Ai = TTJRV1+ (2n+1)21:'2 dr
0
and are minimal for n = 0.

Since the fundamental investigations of Schwarz, a multitude of boundary
value problems for minimal surfaces has been investigated, of which free boundary
value problems play a prominent role. This does not only include the problem of
finding minimal surfaces the boundary of which (or part of it) is left free on
supporting manifolds, but also minimal surfaces with movable boundary curves of
prescribed length, obstacle problems, and systems of minimal surfaces meeting along
one or more curves which are not preassigned.

We do not attempt to describe the variety of results on free boundary problems
for minimal surfaces available in the literature. Instead we refer the reader to
Chapter VI of J.C.C. Nitsche's lectures on minimal surfaces [18], to the papers
[20], C21] and [11], [12], [13]1, [14] of Jean Taylor and of Hildebrandt-Nitsche.

Here we shall restrict ourselves mainly to the study of minimal surfaces
having free or partially free boundaries on prescribed supporting surfaces. 1In the
last section we shall touch upon a free boundary value problem for surfaces of
constant mean curvature.

Satisfactory results exist regarding the existence!

of solutions, and to the
behavior of a solution surface near the fixed arcs of its boundaryz, while the

behavior of a solution surface at its free boundary had only been studied for

! cf. [2], chapt. VI, pp. 199-223, and [18], Kap. VI, pp. 431-LTk,

2 cf. [18], Kap. V, pp. 281-3L8.

Al



S. HILDEBRANDT

absolute minima of the area’

but not for stationary solutions in general. Recent
investigations by Griiter-Hildebrandt-Nitsche [8] and by Dziuk [3] have filled the
gap, and the present survey will describe some of the results obtained in those
papers. Moreover, we shall state an estimate for the length of the trace of a

minimal surface on the free part of the boundary, derived by Hildebrandt-Nitsche

C14].

2. REGULARITY AT THE BOUNDARY.

The investigation of the boundary behavior of minimal surfaces in :m3 with a
free boundary can be reduced to the study of mixed boundary value problems for

vector-valued functions
xwv) = &), v, ()
satisfying a system of equations
(2.1) Axl + Fg (X){xixk + xixk} =0
ik uu v v

2 2
where A = Ji§-+ - is the ordinary Laplacian, and Fik are the Christoffel
ou v

symbols of second kind with respect to a symmetric positive definite matrix (gik)'
It turns out that the system (2.1) are the Euler equations of an integral of the
form

(2.2) Iy = J £(u,v,X,VX)du dv , QCR® ,

Q
where £(u,v,x,p) is a continuous function of its variables (u,v,x,p) such that
(2.3) m |p|2 -m < f(u,v,x,p) <m |p|2 +m, O<m, <m,, m_ >0

: 1 o — PYrtrEl =72 o’ 1—="2" "

and

3 cf. [18], Kap. VI, pp. Lb7-L7h, and [11], [12], [13].
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MINIMAL SURFACES WITH FREE BOUNDARIES

£, g EE32AE7 L aso
PaPB

(2.4)
€. .| <w

ij
PuPB
3 6 i i )
holds for all (u,v) €EQ, x€ER” , p,E€ER (p = (pu), £ = (Ea), 1<i<3, 1<0x<2).

In fact, the integrand £ associated with (2.1) is

1 ik, ik _1 ik
(2.5)  £(u,v,x,p) =5 g5 PP+ PP, (= 5 95 (XIPR, -

Before we turn to the boundary regularity of stationary surfaces X of (2.2), we
shall briefly review the situation with respect to interior regularity.
Morrey [17] has proved the following celebrated result:

Suppose that £ satisfies (2.3), and that XEH;(Q,]R3) fulfils
1,0 < L(x+8) for all <I>€H;(Q',]R3) ,Q'ccq .

Then X s HOlder continuous in .
Starting from this point, one can prove higher regularity for every minimum X
of IQ.
However, it is impossible to carry over Morrey's theorem to stationary points
of (2.1) in general since Frehse [4] has constructed an integrand f satisfying
(2.3) as well as the ellipticity condition (2.4), for which the integral (2.1)
possesses a critical point X of class H;. Thus it was unclear whether "weak"
minimal surfaces in a Riemannian manifold are regular, i.e., are classical minimal
surfaces.
However, the integral
xixk + xi xk
uu vv

=1
(2.6) EQ(X) =3 JQgik(X) du dv

is invariant with respect to conformal transformations of the independent

variables. Thus it is well known that critical points of EQ with respect to
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boundary conditions of the Plateau type or to free boundary conditions are a. e.

on § conformally parametrized, i. e., we have

(2.7) gik(x) xixﬁ = gik(X) xixt B gik(x) xixt =0 a.e. in Q .
Thus weak minimal surfaces in a Riemannian manifold are weak solutions of (2.1),
contained in H; , and satisfying in addition (2.7).

Griiter has proved in his remarkable thesis [6, 7] that one can derive from
this fact the interior regularity of each minimal surface in a Riemannian
manifold*. The papers [8] and [3] employ Griiter's technique to tackle the
regularity of minimal surfaces at a free boundary. The approach of [8] is somewhat
more flexible and permits also the discussion of obstacle problems as considered
in [11], C12], [13], while the method of [3] is based on the reflection principle
introduced by Jdger so that is cannot be applied to the obstacle problem. On the
other hand, Dziuk's technique yields HSlder continuity of VX assuming only that
the supporting surface $ is of class Cl’l.

In the following we shall restrict ourselves to the consideration of minimal
surfaces with a partially free boundary. Since our approach will contain all the
essential ideas, it can as well be applied to other free boundary value problems.
Thus we consider the following type of boundary configurations in R3:

Let I be a regular arc in :R3 having its two end points P1 and P2, P1 +
* P2 , on a two-dimensional surface $ of :m3 , but which has no other points in
common with $.

We identify the two-dimensional Euclidean space Zmz with € , and write

accordingly w = (u,v) = u+iv for the points of 1R2. We shall choose the open

semi-disc

B={w: |w|< 1, v>0}

4 A more general result has recently been obtained by R. Schoen.
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MINIMAL SURFACES WITH FREE BOUNDARIES

as parameter domain of the surfaces X = X(w) which will be considered.

Denote by C the closed circular arc {w: Iw[ =1, v>0} and by I the
open interval {w: |w| <1, v =0}, so that 9B = CUI.

Then we introduce the class £ = £(T',$) of admissible surfaces
X = (x1 (w) ,x2 (w) ,x3 (w)) as set of mappings X€H;(B,]R3) which are bounded by the
configuration <I',$> in the following sense: For X€ £ , let Xc and XI be the
L2—traces of X on C and I , correspondingly. Then XC maps C continuously
and in a weakly monotonic manner onto I such that XC(—I) = P1 and XC(l) = P2 ’

while XI (w)€g Ll-almost everywhere on I.

For X €H; (B,IRB) we introduce the Dirichlet integral by
1 2
D_(X) : =—J |vx| “dqu av
B 2 B

where VX = (xu,xv) is the weak gradient of X , and

1 2 PR . 2\1/2
|vx| = (Ix 1%+ |x |2) 2 <xlxl+xlx1) /
u v u u v Vv

denotes its Euclidean length.
3 ..
As usual, a mapping X :B =+ IR~ is said to be a minimal surface (parametrized

on the domain B) if it is real analytic, and if it satisfies Laplace's equation
AX =0
as well as the conformity relations

2 2
Ix 17 = Ix,[%, x +x =0

on B, and X(w) ¥ const on B.
Furthermore we define an admissible variation of a surface X€L as family
> =
{XE}[€| <€o' eo 0 , of surfaces XEE[, of the form XE(w) X(w) + €¥(w,e) such
that DB(‘Pe) is bounded independently of € , and that 1limY (w) exist for
€+0

almost all wE€B , where ‘{’e = Y(s,€).

A surface X€L is said to be stationary in  if
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1
lim —-[D (X)—D(X)]=0
€+0€B£ B

holds for all admissible variations of X.

It is known that a nonconstant surface X € £ , which is stationary in ( ,
has to be a minimal surface (parametrized on B). We call it a minimal surface
which is stationary in £. It turns out that a stationary minimal surface
intersects $ orthogonally if it is of class C1 at its free boundary.

In the following, we shall describe the behavior of minimal surfaces XE€fL ,
which are stationary in £ , at their free boundary 1I. For this purpose, we have
at least to assume that $ is a regular two-dimensional surface in IR3 , without
self-intersections and without boundary, which is of class C3. Moreover, we have
to impose an assumption (V) which is a uniformity condition at infinity. This

assumption will automatically be satisfied if $ is also compact.

Assumption (V). $ is a two-dimensional manifold of class C2 , imbedded into ]R3
and without boundary, for which there exist numbers po> 0, K>0 , and K1 ,K2

with 0<1(1_<_K2 such that the following holds:
For each f €% , there exist a neighborhood U of £ in IR3 and a C3—diffe-
omorphism h of ]R3 onto itself such that the inverse h-1 maps f onto O ,
and U onto the open ball {y: lY[ < po} such that $NU is mapped onto the set
{y: lyl < po, y3 = 0} of the hyperplane {y3 = 0}.

Moreover, if g, (y) := hl.(y)hl (y) , (summation with respect to 1 from 1
ik yi vk

to 3!), then we have
2 ik 2
K, |E]° < g, WEE <K, E]|
3 3
for all £€R  and all y€R , and also

3g,, ()

<
1 <K

dy

for all yE]R3 and all i,k,1€{1,2,3}.
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MINIMAL SURFACES WITH FREE BOUNDARIES

Finally, for every point x*E]R3 , there exists a point f€$% , such that
|x*— f| = dist(%,x*) provided that dist(§x*) < % po\/ !(2 .

Now we can formulate the main result of this section:

Theorem 1. Suppose that X:B + R 18 a minimal surface of class (L(T,8%) which
18 stationary in this class. Furthermore, let § be a supporting surface which

2,8

satisfies assumption (V). Then X <is of class C (BUI,JR3) for every

B€ (0,1). Moreover, if w €I s a branch point of X on the free boundary, <.e.

2.3

X, (W) =0, then there exist a vector b = (bl,b b )€¢:3 with b $ 0 and

beb =0, and an integer V>1 , such that
X (W) =be (w-w )\)+o(|w-w l\)) as w->rw_ ,
w o o o

where X, = %(xu- ixv) . Consequently, the surface normal

X (W) AX_(w)
NwW) = —2— ¥
[x, ) A X (w) |
tends to a limit vector as w - W That is, the tangent plane of X tends to a
limiting position as w tends to a branch point on the free boundary. Moreover,
the nonoriented tangent of the trace {X(w):we 1l of the minimal surface on $
moves continuously through a boundary branch point. The oriented tangent is
continuous at branch points vy of even order Vv , but, for branch points of odd
order, the tangent direction jumps by 180° degrees.
. . s,0 3 | s,0

Finally, X 1<s of class C (BUI,R") <Zf also $E€C , s>2, 0<a<1,
and X 1is real analytic on BUI , <f § <8 real analytic.

An interesting, non-planar, and not area minimizing but stationary minimal
surface with boundary on $ has been exhibited by H.A. Schwarz, Gesammelte Math.

Abhandlungen I, pp. 149-150. We present the picture of this surface, due to

Schwarz, in figure 1:
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We sketch the proof of Theorem 1, starting with the following fundamental

observation:

Lemma 1. Let X:B ~ ]R3 be a minimal surface. Then, for each open subset §Q of

B and for every point w*€Q , we get

lim sup = |Vx|2 du dav > 21 .

o+0 o2 J{wefz: [% (w) - X (w*) <0}

The proof of this formula can easily be derived from the well known asymptotic
expansion of minimal surfaces; cf. [18], §361.

The next estimate is essentially due to Courant and Lebesgue (cf. [2],
p. 102). We introduce the following notations:
Let w = (u,v) = u+iv be a point of ]R2 = c , and set Sr(wo) = {w: |w-wo| <

<r, v> 0} , Cr(wo) := {w: |w—w°| =r, v>0}, I :={w: Iw|<1, v = 0}.

Lemma 2. For each xec1 (B,IR3) » for every wET, and for each
R € (0,1~ Iwol) » there is a number r€ [RO/Z,RO] such that

1/2
osc, )X <V m/log 2 J lVX|2 du dv .
r'Yo s, (w))
Ro o

The following estimate follows from a simple application of the triangle

inequality:
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MINIMAL SURFACES WITH FREE BOUNDARIES

Lemma 3. Let w_€I, r€(0,1- [wol) , and suppose that X <is a surface of class

Cl(B,]R3) . Assume also that, for some positive numbers oy and oy

<
osc (u )X___otl
r o

and
sup inf | % (w) = X (w¥) | <a, .
w¥€ES (w ) weC_(w))
r o r o
Then
oscg (o )x 5_2a1-+202 .

r o

The crucial estimate of our regularity result is contained in the following

Lemma 4. Let W ET, and suppose that X:B - R is a minimal surface of class
£ = £(T,8) which is stationary in L. Assume also that the supporting surface §
satisfies the assumption (V) with constants P rKiKy /Ky Then, for Py := po\/K—2
the following

and for some number XK. depending only on p KK and on K

3 1 2°

holds:

If w*esr(wo), 0<r<1- |wo|, 0<R<p, , and if
inf [xw) -xw*)| >R ,
w€Cr(w°)

then
R < K3V e(wo,r)

where we have set
2
e = e(w_,r) := |vx|© du av .
o
S_(w))
r o
The proof of this lemma is rather complicated. We shall briefly indicate the
main ideas of the proof at the end of this section and proceed presently with the

verification of Theorem 1:

Choose an arbitrary point WOEI and an arbitrary number R with O<R< pl.
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Since DB(X) < o , we can find a number ROE (0,1 - |wo|) such that
> .
R K3Ve(wo,Ro)
Then we infer from Lemma 4 that

sup inf |x(w) -x(w*)| <R
w¥€ES (w) wEC_(w)
r o r o
for every ré€ (O,Ro].
Moreover, in virtue of Lemma 2, there exists a number r € [%- Ro ’ Ro] such

that
< V
osc, (w )X _K4 e(wo,Ro) < (K4/K3)R
r o
where K4 =V m/log 2 .

On account of Lemma 3, we obtain that

<
oscgy (o )X_2(1+K4/K3)R .
r o
That is,
lim osc X=0 .
0 Sr(wo)

Thus we have proved that X is continuous on BUI.
Next one proves by a "hole-filling" device that XECo'u(BU I,]R3) . This is
by now more or less standard. For details, we refer the reader to [8], pp. 19-21.
From here on, well known techniques furnish the statement of Theorem 1; cf.
[18], pp. 447-474 and p. 707 for references.

The proof of Lemma 4 proceeds as follows:

Let w*€ Sr(wo), 0<R<p, , and set x* = X(w¥) , S(w*) = dist(s,x*).
If &§(x*) >0 we choose
0 w¢Sr(wo)
niw) = if
Ap - [xw) - x*[) {x(w) - x*} WwES (W)
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where ) = )\EECI(]R,]R), A'>0, A(t) =0 for t<O0 , and A(t) =1 if t>E€.

It turns out that xe = X+€n is an admissible variation of X so that

0 = lim VX+Vn du dav .

€=+0

1
€ DB(Xe)_DB(X) =J

S _(w)

r o

Employing the conformality relations for X , letting € tend to zero, and taking

Lemma 1 into account, we may infer that

21 < |vx|2au av

R¥2 I
*
Sr (wo) n KR*(x )

where we have set
R* = min{§(x¥*), dzR} , KT(x*) = {weB: |x(w) -x*| <1} .
Hence

1/2 ) )
if R* = @R (i.e. d°R = 6(x%)) .

(2.8) RZ |Vx[2 du av

21rd4 J’S (w)
r o
If &§(x*) < a’r (which will also include the case 6(x*) = 0 ) we have already

found that

2

(2.9) 2m < 8(x*)~ |Vx|2 du dv

*
Sr (Wo) nKG (X*) (x™)

Then there exists a point £ €% such that

| £ - x*| =8(x* <a’R<ir .

INSES

We choose f as center of a new system of coordinates as indicated in assumption
(V), with the defining diffeomorphism h , and we introduce Y := h—1 °X. Let
gij(Y) = hki (Y)hl. (Y) be the components of the associated fundamental tensor, and

Y Yy
set

lean |I? = g, xemy @y w .
ij

£ d 16 (x%) <p<dR , we define
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0 w¢gB - Sr(wo)
niw) = if
Ap - |y |y wes (W

For sufficiently small |€| , the family of surfaces
X (w) = h(¥(w) +€n(w))

forms an admissible variation of X(w). Hence we infer from

o1 _
lim DB(XE) —DB(X)f =0
e~>0
that
i k 1 i k L
J gik(Y)Day Dal') + 29 J?,(Y)Day Day N~)du dv = 0
S_(w)) ik,y
r o
where u:l =u, u2 =v, Doc = —aa— , and Y(w) = (yl(W) ,yz(w) .Y3(w)).

du

By a similar reasoning as before, we obtain that

-‘21— I valz du dv
*
87 (x¥) Sr(wo)nKZG(x*)(f)
(2.10)
S_C(IZ) %J IVX|2 du dv .
a* R" /s (w)
r o

By virtue of Kg . (x*)cKzG(x*) (£) , we derive from (2.9) and (2.10) the

inequality

(2.11) R _<_C(R;

J 2
2ma” s (w_)

|vx|% au av if 0<6(x*) <d’r .

In the case &(x*) =0 (i.e., x* = f ), we arrive at

(2.12) R%< C(RLI
8md” ‘s_(w.)
r o

|vx|? au av if S(x*) =0 .

From (2.8), (2.11), and (2.12), we infer that R _<_K3/; for some number K3 as

described in the assertion of Lemma 4, q.e.d.
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Remarks.
1) If the supporting surface § is a manifold with boundary, then any stationary

C1'1/2(BUI,]R3) , and this result is, in

minimal surface X in  1is of class
general, optimal; cf. [12] and [13].
2) One should note that our regularity proof does not yield a priori estimates for
minimal surfaces X stationary in £ , since one needs to know how fast

I lVXlz du dv

SR(wo)
tends to zero as R > 0 .

In order to obtain such estimates we have to specify the conformal
representation X of every minimal surface by fixing a 3-point-condition. For
instance, we may look for estimates in the class £* := {X€f£:X(i) =P3} where
P3 is a fixed point of I between P1 and P2. Yet we shall be disappointed
since Schwarz' helicoid example from section 1 exhibits a boundary configuration
<T1,F2,S> bounding infinitely many "really different" stationary minimal surfaces,
the modulus of continuity of which can obviously not be bounded, nor exists a
bound on their area. Thus the best one can hope for are estimates for XE€ L£*

which only depend on I, $, P, , and on the area D(X)

3
Such a result has recently been proved by Ye for various classes of

supporting surfaces $ , assuming that X has no branch points of odd order on I

(cf. section 3). 1In particular, one obtains a priori estimates if § is smooth

and oriented, and if there exist a constant number 0 >0 and a constant unit

vector ng such that n- noj:G holds for some field of unit normals n on $.

3. GEOMETRIC PROPERTIES OF THE TRACE.

We consider in the following a boundary configuration <I',$> with the same
properties as in section 2. Let L(I') <® be the length of the arc I. Moreover,

let $ be a regular orientable surface of class C3 such that
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(i) ]R3 ~-% consists of two disjoint
opens sets;

(ii) For each point P of § , there
are two spheres of radius R , one
on each side of $ , such that §
has no points in common with the
interior of these spheres.

Finally we assume that X is a minimal

surface as in section 2, parametrized

over the semidisc B , bounded by <I',$>

and stationary for the Dirichlet

integral in the class £(I,§). Then the

following holds:

Theorem 2. For c = 2 , the length L(I) = f |ax| of the trace I = {X(w) :w€1}
I

of the free boundary of X can be estimated by

C

(3.1)  L(X) <L) + R Pg ¥

provided that X possesses no branch points of odd order on 1. Here L(T)

denotes the length of the arec T. Moreover, the constant c = 2 1is optimal.

Remarks.
1) The estimate (3.1) has been proved by Hildebrandt-Nitsche [14] for ¢ = 7. By
sharpening the estimates of [14], Kister [15] has established the optimal result
c = 2.
2) Kister has also pointed out that neither an estimate of the form

LD < LM + e VE D)

nor of the form

L(Z) < L) + ¢+ Hg* DX
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MINIMAL SURFACES WITH FREE BOUNDARIES

can hold, where Ks and Hs are upper bounds for the absolute value of the Gauss
curvature K and of the mean curvature H of $ , respectively. The first
estimate can be disproved by taking $ as an appropriate part of a cylinder
surface, the second one by some part of a catenoid.

3) In [14], also the following has been proved:

(i) X has no branch points on I if it lies on one side of $. This is, for
instance, the case if § 1is the boundary of an open star-shaped convex or H-convex
set (i.e., H>0 ), and T 1is contained in QUS$.

(ii) X has no branch points of odd order on I if it minimizes area in f.

(iii) X has no branch points at all if § is real analytic and X minimizes area
in £.

4) An immediate consequence of Theorem 2 is the following result:

X(u,v) <8 continuous on B = BUCUI <if <t does not possess any branch points of
odd order on I.

The proof of Theorem 2 follows from Gauss' formula

9X 1
. H
") n d

J VXe*eVn du dv = —J n e AX du dv-r[
B B 9B

by inserting the test function n = (X), where C denotes a smooth vector field
3
C(x) on R which is on § of length one and orthogonal to $. Then we obtain on

I that

9X
v N T val = |Xul

whence

3x 1
Jlav naH = Jleu| du = L(Z) .

If we assume also |§|§1 on ]R3 , we get

)

Jax . ndHIiL(Z)
C
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and therefore
L(Z) < L(I') + const DB(X) .

A suitable choice of the vector field ( 1leads to the more precise estimate

stated in Theorem 2.

4. A PARTITIONING PROBLEM.

3
Let K be a convex body in IR with boundary $. Then we consider the
following partitioning problem:
Determine a rectifiable surface F of minimal or at least of stationary area, with

boundary I on $ which divides K into two parts K1 and K2 such that

(4.1) measK1 = 0 * meask , measK2 = (1 - 0)meask

where O denotes a preassigned number with 0<0<1.

We shall not discuss the existence of solutions to this problem but shall restrict
ourselves to the question of regularity at the boundary.

In order to have a clear cut situation, we shall assume that the "inner part" F
of F is a regular Cl-surface of the type of the disc which is given by a
conformal parameter representation X :B > R3 of class Cl(BﬁRB) on the unit

disc and has finite area, i.e., XGH:IZ(B,]RE)) . We suppose that
L := X(9B)cS

(i.e. the trace X/9B maps a.a. points of 9B into § ), but X(B) omits a
neighborhood of some point of $.

Finally we assume that X embeds B into the interior of K such that

ﬂQ =¢ ’

intK—F=91U92, Q 2

1

where 91 and 92 are simply connected and of measure O * measK and

(1 -0) * meask , respectively.
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Then the following result is a special case of a theorem proved in [9].

Theorem 3. Let S be a regular surface of class Cs’a, s>3, 0<a<1 , or real
analytic, respectively. Moreover, let X:B > Fc:m3 be stationary for the area
functional in the class of disc type surfaces with boundary on S which decompose
K into two parts of measure O *meask and (1-0) * meask.

Then X is a real analytic surface of constant mean curvature on B which is of
class Cs’a(EFR3), or real analytic on B , respectively, and which intersects S

orthogonally in L.

REFERENCES

1] R. COURANT, The existence of minimal surfaces of given topological structure

under prescribed boundary conditions, Acta Math. 72 (1940), 51-98.

[2] —————, Dirichlet's principle, conformal mapping, and minimal surfaces,

Interscience, New York, 1950.

[3] G. DZIUK, Uber die Stetigkeit teilweise freier Minimalfldchen, Manuscripta
math. 36 (1981), 241-251.

[4] J. FREHSE, Un probléme variationel bidimensionel possédant des extremales

bornées et dicontinues, C.R. Acad. Scienc. Paris.

[5] J.D. GERGONNE, Questions proposées, Ann. Math. Pure Appl. 7, 68, 156 (1816),
99-100.

[6] M. GRUTER, Uber die Regularitdt schwacher Ldsungen des Systems

Ax = 2H(x)xulev, Dissertation, Dilsseldorf, 1979.

[7] ————, Regularity of weak H-surfaces, Journal fiir die Reine Angew. Math.

329 (1981), 1-15.

[8] M. GRUTER, S. HILDEBRANDT and J.C.C. NITSCHE, On the boundary behavior of
minimal surfaces with a free boundary which are not minima of the

area, Manuscripta math. 35 (1981), 387-410.

87



S. HILDEBRANDT

[9] M. GRUTER, S. HILDEBRANDT and J.C.C. NITSCHE, Regularity for stationary

[10]

[11]

C12]

[13]

[14]

C15]

C16]

[17]

[181

[19]

L201

[21]

[22]

surfaces of constant mean curvature with free boundaries, Manuscript.

S. HILDEBRANDT and K.-O. WIDMAN, Some regularity results for quasilinear

elliptic systems of second order, Math. Z. 142 (1975), 67-86.

S. HILDEBRANDT and J.C.C. NITSCHE, Minimal surfaces with free boundaries,

Acta Math. 143 (1979), 251-272.

, A uniqueness theorem for surfaces of least
area with partially free boundaries on obstacles, to appear in

Archive for Rat. Mech. Analysis.

, Optimal boundary regularity for minimal

surfaces with a free boundary, Manuscripta math. 33 (1981), 357-364.

, Geometric properties of minimal surfaces

with free boundaries, to appear in Math. Z.

A. KUSTER, The optimal version of Hildebrandt's and Nitsche's estimate of the

length of the trace of a minimal surface with a partially free

boundary, Preprint, 1983.

H. LEWY, On minimal surfaces with partially free boundary, Comm. Pure Appl.

Math. 4 (1951), 1-13.

C.B. MORREY, Multiple integrals in the calculus of variations, Springer,

Berlin-Heidelberg-New York, 1966.

J.C.C. NITSCHE, Vorlesungen Uber Minimalfl&chen, Springer, Berlin-Heidelberg-

New York, 1975.

H.A. SCHWARZ, Fortgesetzte Untersuchungen liber spezielle Minimalfldchen, Mo-

natsberichte der Kdéniglichen Akad. Wiss. Berlin (1872), 3-27.
Gesammelte Math. Abhandlungen I (1890), 126-148.

J.E. TAYLOR, The structure of singularities in soap~bubble-like and soap-film-

like minimal surfaces, Annals of Math. 103 (1976), 489-539.

, Boundary regularity for various capillarity and boundary

problems, Comm. P.D.E. 2 (1977), 323-357.

.-O. WIDMAN, H6lder continuity of solutions of elliptic systems, Manuscripta

math. 5 (1971), 299-308.
Stefan HILDEBRANDT
Mathematisches Institut
der Universitdt Bonn
Wegelerstrasse, 10

D-5300 Bonn West Germany

88



